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Optimal Power Allocation for Jammer Nodes in
Wireless Localization Systems

Suat Bayram, Musa Furkan Keskin, Sinan Gezici, and Orhan Arikan

Abstract—In this paper, optimal power allocation strategies are
investigated for jammer nodes in a wireless localization system.
Building upon the concept of the restricted Bayesian approach,
a generalized optimization strategy, called the restricted scheme,
is proposed for power allocation of jammer nodes, and its
theoretical properties are characterized. In the restricted scheme,
the aim is to maximize the average Craḿer-Rao lower bound
(CRLB) of target nodes while keeping their minimum CRLB
above a predefined level in the presence of average (total)
and peak power constraints. The restricted scheme is shown
to provide a trade-off between the two extreme strategies –
maximization of the average CRLB and the minimum CRLB.
In addition, it is proved that the average CRLB achieved by the
restricted scheme is a strictly decreasing and concave function
of the constraint on the minimum CRLB level. A closed-form
solution is obtained for the restricted scheme when the trade-
off parameter and the total power limit are below certain
thresholds. Furthermore, it is shown that the optimal solution
of the restricted scheme corresponds to the use of at mostNT

jammer nodes, whereNT is the number of target nodes, and
that the optimal solution of the minimum CRLB maximization
scheme is determined by at mostNJ target nodes, whereNJ is
the number of jammer nodes. Extensions of the restricted scheme
and an alternative scheme that aims to maximize the number of
disabled target nodes (whose CRLBs are above a preset level)
are considered, and the corresponding optimal strategies for
jammer power allocation are identified. Numerical examplesare
provided to verify the theoretical derivations for various network
configurations.

Keywords: Localization, jammer, restricted scheme, power
allocation, Cramér-Rao lower bound.

I. I NTRODUCTION

A. Background and Motivation

Wireless positioning has attracted a significant amount of
interest due to its crucial role in numerous applications for
location-based services, such as package tracking, home au-
tomation, intelligent transport systems, monitoring of patients,
and search-and-rescue operations [1]–[4]. Indoor wireless lo-
calization systems provide a promising alternative for position-
ing in environments where GPS signals cannot be utilized. A
common approach for position estimation in wireless networks
is to deploy a number of anchor nodes with known locations,
from which target nodes estimate their locations using parame-
ters such as time-of-arrival (TOA) and received signal strength
(RSS) [5]. In order to quantify performance bounds of wireless
localization systems, theoretical accuracy limits have intensely
been studied in the literature; e.g., [6].

Localization accuracy of wireless networks can be re-
duced by employing jammer nodes over the area of interest,
which aim to disrupt the position estimation process of target
nodes [7]. Several studies are performed on jamming of
wireless localization systems in the literature [8]–[14].In [8],
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performance of GPS jamming and anti-jamming techniques
are investigated, while the studies in [9], [10] focus on the
design of anti-jamming algorithms for GPS receivers. In [11],
optimal locations of jammers on the nodes of a uniform grid
are determined in the absence of any information about the
network to be jammed. Optimal attack and defense strategies
from the viewpoints of the jammer and the network are
analyzed for wireless sensor networks in [12], where the
optimization objective is to maximize (minimize) the total
delay for the jammer (network). Although jamming and anti-
jamming methods and their performances have been consid-
ered in the literature, only a few studies have presented a
theoretical framework to optimize the performance of jammer
nodes with respect to different optimization metrics [13],[14].
In [13], two different optimization schemes with the aim of
maximizing the average (max-mean scheme – Scheme 1) or
the minimum (max-min scheme – Scheme 2) CRLB of target
nodes are employed in order to obtain the optimal power
allocation strategies for jammer nodes. The work in [14]
investigates the optimal location of the jammer node that
maximizes the minimum CRLB of target nodes in a non-
cooperative localization network.

The work in [13] explores optimal strategies for jammer
power allocation by maximizing the minimum or the average
of the CRLBs of target nodes under average and peak power
constraints. Since either the minimum or the average CRLB
metric is considered in [13], the obtained power allocation
strategy can lead to unfavorable performance in terms of the
other metric not considered in the optimization. In partic-
ular, the max-min scheme adopts a conservative approach
by optimizing the worst-case performance from jamming
perspective (i.e., the minimum CRLB) whereas the max-
mean scheme considers the average performance. However,
the max-min scheme may lead to poor performance in terms
of the average CRLB by considering only the worst-case
performance, and the max-mean scheme tends to produce
intolerably low CRLBs for some target nodes, which can be
of critical importance from jamming perspective, by ignoring
the worst-case scenario. Hence, the max-mean and max-
min schemes account for only the two extreme cases of the
optimal jammer power allocation problem. The motivation
behind this paper is to devise a new optimization scheme
which covers the max-mean and max-min schemes as special
cases and balances the effects of each criterion on the overall
jamming performance via a design parameter. Therefore, in
this paper, a new optimization approach, namely the restricted
scheme, is proposed for jammer power allocation, where the
objective is to maximize the average CRLB while keeping
the minimum CRLB above a predefined level. The restricted
scheme is shown to be equivalent to the maximization of a
linear combination of the average and the minimum CRLBs;
thus it presents a trade-off between the average and worst-case
performances by incorporating the minimum CRLB level into
optimization constraints for average CRLB maximization. In
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addition, an alternative scheme is considered, where the aim
is to disable as many target nodes as possible under average
and peak power constraints. Even though the optimal jammer
power allocation problem has been studied before in the
literature, e.g., [13], novel optimization schemes are employed
in this paper which provide improved jamming performance
in terms of degradation of localization accuracy in a wireless
localization network.

B. Literature Survey on Resource Allocation

The problem of optimal resource (e.g., power and band-
width) allocation for wireless localization and radar systems
has widely been studied in the literature [15]–[23]. In [15],
the power allocation problem for anchor nodes in a wireless
localization network is formulated to minimize the squared
position error bound (SPEB) and the maximum directional po-
sition error bound (mDPEB) regarding the position estimation
of target nodes. It is shown that SPEB and mDPEB based
formulations can be expressed as semidefinite programming
(SDP) and second-order cone programming (SOCP) problems,
respectively, which lead to fast solutions. The study in [16] in-
vestigates optimal power allocation algorithms for anchorand
agent (i.e., target) nodes in a cooperative localization system
by using the individual SPEB (iSPEB) as the performance
metric for localization. Similarly, sensor and beacon ranging
energies are minimized for a wireless sensor network in [17]
via an SDP based efficient algorithm under the constraint that
the CRLB for positioning does not exceed a certain threshold.
In addition to power allocation schemes, several studies are
carried out on joint allocation of available resources, such as
power and bandwidth, in wireless localization networks [18],
[19]. As a common approach, the purpose of joint resource
optimization in such systems is to maximize the localization
accuracy of target nodes via efficient utilization of power and
spectral resources. In [18], the joint power and bandwidth
allocation problem is formulated to minimize the total SPEBof
agent node positioning in a cooperative localization network.
Due to the nonconvex nature of the objective functions, a
Taylor linearization based iterative algorithm is proposed for
finding the optimal power and bandwidth distributions related
to agent nodes. The study in [19] performs joint optimization
of power, carrier frequency, and bandwidth allocation for agent
nodes in non-cooperative wireless localization networks in
order to maximize the localization accuracy by employing the
single condensation (SC) method for approximating the non-
convex problems as geometric programming problems.

Power allocation for radar systems, especially for distributed
architectures, has drawn some attention in the literature.The
authors in [21] investigate optimal power allocation strategies
under total and individual power constraints in wireless sensor
networks for distributed passive multiple-radar architectures.
In [23], a cognitive radar network consisting of several radars
used for multiple-target tracking is considered, where algo-
rithms for optimal power allocation among multiple antennas
are developed by using the posterior CRLB on target and
channel state estimates as an optimization criterion. The study
in [22] exploits constraint and objective relaxation of the
formulated optimization problem and domain decomposition
methods to determine the optimal power allocation among
radar transmit powers in a distributed multiple-radar system,
where both CRLB of target localization and total transmit
power budget are used as performance metrics.

C. Contributions

In this paper, a new scheme (named as the restricted scheme)
is proposed for optimal jammer power allocation in wireless
localization systems. The proposed scheme is essentially based
on the notion of the restricted Bayesian approach [24], [25],
which covers the Bayesian and minimax approaches as special
cases. The objective in the restricted Bayesian problem is to
minimize the Bayes risk (average risk) under the constraint
that the minimum risk is not allowed to exceed a predefined
level which is specified according to the uncertainty degree
in the prior probabilities (related to unknown parameters or
hypotheses). In this paper, we basically build up a framework
for power allocation of jammer nodes in wireless localization
systems by using the notion of the restricted Bayesian ap-
proach. Even though the restricted scheme and the restricted
Bayesian approach are similar from the technical point of view,
the motivations, and the parameter and function definitionsare
completely different. In summary, by utilizing the notion of
the restricted Bayesian approach, we propose a generalized
power allocation criterion (named as the restricted scheme)
for jammer nodes in wireless localization systems, which is
a generalized criterion in the sense that it covers the criteria
proposed in [13] as special cases and establishes a trade-off
ground between them. The main contributions of this paper
can be summarized as follows:

• The restricted scheme is proposed as a generalized opti-
mization framework for power allocation among jammer
nodes in wireless localization systems. The proposed
scheme is formulated as a linear programming problem
and shown to represent a trade-off between the average
and the minimum CRLB optimization schemes.

• It is demonstrated that the average CRLB corresponding
to the optimal solution of the restricted scheme is a
strictly decreasing and concave function of the constraint
on the minimum CRLB level.

• A closed-form power allocation solution for the restricted
scheme is obtained under certain conditions on the total
power limit and the design parameter that signifies the
level of trade-off.

• Based on the minimax theorem, it is shown that the
optimal solution of the restricted scheme contains at most
NT jammer nodes, whereNT is the number of target
nodes, and that the optimal solution of the minimum
CRLB maximization scheme is determined by at most
NJ target nodes, whereNJ is the number of jammer
nodes.

• By utilizing the framework in [25], an extension to the
restricted scheme is proposed to cover more generic
scenarios and the corresponding optimal solution is char-
acterized. In the extended scheme, the target nodes are
grouped into subsets based on their significance levels and
the constraint on the minimum CRLB level is different
for each subset.

• An alternative optimization scheme is proposed in order
to maximize the number of disabled (deactivated) target
nodes in a given wireless localization system, where
deactivation of a target node is determined according to
its CRLB for localization. The solution of the alternative
scheme is proved to be the same as that of the minimum
CRLB maximization scheme for a specific subnetwork of
target nodes.
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II. SYSTEM MODEL

Consider a two-dimensional wireless localization system
consisting ofNA anchor nodes andNT target nodes located
at yj ∈ R

2, j = 1, . . . , NA and xi ∈ R
2, i = 1, . . . , NT ,

respectively.1 In the localization scenario, self-positioning is
considered [5]; that is, the target nodes are assumed to estimate
their locations based on signals received from the anchor
nodes with known locations. In addition to the target and
anchor nodes, there existNJ jammer nodes atzℓ ∈ R

2,
ℓ = 1, . . . , NJ in the system, which aim to degrade the
localization performance of the system. In compliance with
the common approach in the literature [26]–[28], the jammer
nodes are assumed to transmit zero-mean Gaussian noise.

In this paper, there exists no cooperation among the
target nodes; that is, the target nodes receive sig-
nals only from the anchor nodes (i.e., not from the
other target nodes) for position estimation. In addition,
the connectivity sets are defined asAi , {j ∈
{1, . . . , NA} | anchor nodej is connected to target nodei}
for i ∈ {1, . . . , NT }.2 Then, the received signal at target node
i coming from anchor nodej can be expressed as [13]

rij(t) =

Lij
∑

k=1

αk
ijsj(t−τkij)+

NJ
∑

ℓ=1

γiℓ

√

P J
ℓ vijℓ(t)+nij(t) (1)

for t ∈ [0, Tobs], i ∈ {1, . . . , NT }, and j ∈ Ai, whereTobs

is the observation time,αk
ij and τkij denote, respectively, the

amplitude and delay of thekth multipath component between
anchor nodej and target nodei, Lij is the number of paths
between target nodei and anchor nodej, andγiℓ represents
the channel coefficient between target nodei and jammer node
ℓ, which has a transmit power ofP J

ℓ .3 The transmit signals
sj(t)’s are assumed to be known and orthogonal, and the

measurement noisenij(t) and the jammer noise
√

P J
ℓ vijℓ(t)

are assumed to be independent zero-mean white Gaussian
random processes, where the average power ofnij(t) is N0/2
and that ofvijℓ(t) is equal to one. In addition, for each target
node i, nij(t) is independent forj ∈ Ai, and vijℓ(t) is
independent forℓ ∈ {1, 2, . . . , NJ} and for j ∈ Ai.4 The
delay termτkij in (1) can be expressed as

τkij ,
‖yj − xi‖+ bkij

c
(2)

wherebkij ≥ 0 and c denote, respectively, the range bias and
the speed of propagation. For the paths between anchor node
j and target nodei, the range biasbkij describes the difference
between the actual travel distance of thekth signal path and
the distance between nodes. SetAi is partitioned as

Ai , AL
i ∪ ANL

i (3)

1Generalizations to the three-dimensional scenario are straightforward, but
not explored in this study.

2An anchor node being connected to a target node means that thereceiver
of a target node will be able to decode the signal coming from an anchor
node, which happens only when the SNR is above a threshold.

3The channel coefficientγiℓ between target nodei and jammer nodeℓ is
modeled to be independent of the anchor node index based on the assumptions
that time division multiple access is employed for communications of different
anchor nodes with target nodei and the channel coefficientγiℓ does not
change considerably over the time slots.

4Multiple access techniques makevijℓ(t)’s independent over the anchor
nodes; i.e., forj ∈ Ai (Remark 1 in [14]).

whereAL
i andANL

i represent the sets of anchors nodes with
line-of-sight (LOS) and non-line-of-sight (NLOS) connections
to target nodei, respectively.

In order to derive the CRLB for localization of the target
nodes, the unknown parameter vector for target nodei must
be specified. The vector consisting of the bias terms relatedto
target nodei in the LOS and NLOS cases is given by

bij =











[

b2ij . . . b
Lij

ij

]T

, if j ∈ AL
i

[

b1ij . . . b
Lij

ij

]T

, if j ∈ ANL
i

. (4)

Based on (4), the unknown parameters related to target node
i are defined as [29]

θi ,

[

xT
i bTiAi(1) · · · b

T
iAi(|Ai|) α

T
iAi(1)

· · ·αT
iAi(|Ai|)

]T

(5)

whereAi(j) denotes thejth element of setAi, |Ai| represents
the number of elements inAi, andαij ,

[

α1
ij · · ·α

Lij

ij

]T
. It

is assumed that the total noise level is known by each target
node [14].5

The CRLB for location estimation of target nodei is
provided by [4]

E
{

‖x̂i − xi‖
2
}

≥ tr
{

[

F−1
i

]

2×2

}

(6)

wherex̂i denotes an unbiased estimate of the location of target
nodei, tr{·} represents the trace operator, andF i is the Fisher
information matrix for vectorθi. Following the derivations
performed in [6],

[

F−1
i

]

2×2
can be expressed as

[

F−1
i

]

2×2
= J i(xi,p

J)−1 (7)

where the equivalent Fisher information matrixJ i(xi,p
J) in

the absence of prior information about the location of the target
node is calculated as

J i(xi,p
J ) =

∑

j∈AL
i

λij

N0/2 + aT
i p

J
φijφ

T
ij (8)

with

λij ,
4π2β2

j |α
1
ij |

2
∫∞

−∞
|Sj(f)|

2df

c2
(1 − ξij) , (9)

ai ,
[

|γi1|
2 · · · |γiNJ

|2
]T

, (10)

pJ ,
[

P J
1 · · ·P J

NJ

]T
, (11)

φij , [cosϕij sinϕij ]
T . (12)

In (9), βj is the effective bandwidth, which is expressed

as βj =
√

∫∞

−∞ f2|Sj(f)|2df/
∫∞

−∞ |Sj(f)|2df , with Sj(f)

denoting the Fourier transform ofsj(t), and the path-overlap
coefficientξij is a non-negative number between zero and one,
i.e., 0 ≤ ξij ≤ 1 [6]. Also, in (12), ϕij denotes the angle
between target nodei and anchor nodej. In addition, it is
assumed that the elements ofai are non-zero (i.e., strictly

5This assumption enables target nodes to employ the maximum likelihood
(ML) estimator for localization, which involves the total noise levels corre-
sponding to different anchor nodes. Since the ML estimator asymptotically
converges to the CRLB as the SNR and/or effective bandwidth increases [30],
it is reasonable to assume that target nodes perform position estimation using
an ML estimator. In that case, the CRLB as a performance metric represents
a localization accuracy that is close to the accuracy attained by target nodes
(see Remark 3 for a detailed discussion).
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positive) for i ∈ {1, 2, . . . , NT }. It is noted from (8) that the
effects of the jammer nodes appear as the second term in the
denominator since the jammer nodes transmit Gaussian noise.

According to Lemma 1 in [13], the trace of the inverse of
the equivalent Fisher information matrixJ i(xi,p

J ) in (8);
equivalently, the CRLB for target nodei, is an affine function
with respect topJ , which is expressed as

tr
{

J i(xi,p
J)−1

}

= ri a
T
i p

J + riN0/2 , Ci(p
J ) (13)

where

ri , tr















∑

j∈AL
i

λijφijφ
T
ij





−1










. (14)

Remark 1:The dependency of the Fisher information ma-
trix on network geometry (i.e., locations of anchor, target
and jammer nodes) and jammer powers can be scrutinized
by considering the expression in (8) as follows: The Fisher
information matrix in (8) for the location of target nodei
depends on the target locationxi via the parametersλij , ai,
andφij , and on the jammer powers via the power vectorpJ .
First, from (9), the amplitude of the LOS pathα1

ij and the path-
overlap coefficientξij between target nodei and anchor node
j depend onxi andyj . Next,ai in (10) consists of the channel
gains between target nodei and jammer nodes, which depend
on xi andzℓ for ℓ ∈ {1, . . . , NJ}. In addition, the parameter
φij in (12) is determined by the anglesϕij , which are also
location dependent. Therefore, both network geometry and
jammer powers affect the performance of jamming strategies.

Remark 2:The role played by multipath propagation in a
practical localization scenario can be explained as follows: The
parameters affected by the network configuration (i.e., anchor,
target and jammer positions) in the CRLB expression for target
nodei in (8) areai, φij , andλij . As discussed in Remark 1,ai

contains the channel gains between target nodei and jammer
nodes and thus has no relevance to the multipath scenario.
Hence, varying jammer positions does not alter the multipath
conditions between the anchor and target nodes. Secondly,φij

depends on the angleϕij between target nodei and anchor
node j via (12). Sinceϕij is determined by the network
geometry, changing the value ofϕij , imposed by a change
in the network geometry, will affect multipath conditions (i.e.,
delays and amplitudes of multipath components). In addition,
the parameterλij in (9) also reflects the multipath effect
via the path-overlap coefficientsξij , which are determined
by the transmitted waveformssj(t) and the delaysτkij for
j ∈ AL

i [6, Appendix III-A]. According to [6, Corollary 1],
ξij = 0 is obtained if the first path is resolvable, i.e., the
delay between the LOS path and the first arriving NLOS path
exceeds the duration ofsj(t). Depending on the amount of
overlap between the LOS path and the NLOS paths,ξij takes
values in the interval[0, 1]. Hence, the multipath scenario
characterizes the value ofξij , which, in turn, affects the CRLB
via λij . Therefore, the effect of varying anchor node positions
on the CRLB can be manifested in the anglesϕij and the
multipath delaysτkij between target nodes and anchor nodes.

Remark 3:The CRLB is considered as the performance
metric for target location estimation since it provides a tight
bound on the mean-squared error (MSE) of the ML estimator
for high effective bandwidths,βj , and/or high SNRs [30].
Hence, the CRLB serves as a meaningful performance bench-
mark for high-accuracy localization scenarios. When neither

the SNRs nor the effective bandwidths are sufficiently high,
the performance of the ML estimator may deviate from the
CRLB [31]. These conclusions are also valid in the presence
of multipath since the considered CRLB expression based on
(8) and (9) takes the multipath effects into account via the
path-overlap coefficients,ξij in (9) [6]. In other words, when
the ML estimator is designed for the multipath scenario and the
CRLB is calculated via (8) and (9), the CRLB again provides
a tight bound on the MSE of the ML estimator for high
effective bandwidths and/or SNRs. When neither the SNRs
nor the effective bandwidths are high, the CRLB is not tight
in general and the gap between the CRLB and the MSE of
the ML estimator depends on specific multipath conditions.
In this study, the optimized CRLB constitutes a lower bound
on the target localization performance of the ML estimator
when the optimal jamming strategies are employed by the
jammer network. Optimal jammer power allocation solutions
obtained via CRLB optimization provide essential guidelines
for developing efficient jamming strategies. Moreover, the
choice of CRLB as an optimization metric is also motivated
by its decent mathematical structure that favors theoretical
characterizations (e.g., [13], [15], [17], [19], [32]).

III. R ESTRICTEDSCHEME

In this section, one of the proposed schemes, namely the
restricted scheme, is introduced. The restricted scheme is
an optimal power allocation strategy for jammer nodes in a
wireless localization system, which covers both Scheme 1
(the max-mean scheme) and Scheme 2 (the max-min scheme),
proposed in [13], as special cases. For a given wireless
localization system (see, e.g., Fig. 1), Scheme 1 attempts to
maximize the average CRLB of target nodes while Scheme 2
considers the minimum CRLB as the jamming performance
metric. In what follows, the formulations for Scheme 1 and
Scheme 2 are revisited with certain modifications, and the
restricted scheme is proposed as a generalization of Scheme1
and Scheme 2. All the schemes are formulated by imposing
average (total) and peak jammer power constraints, as consid-
ered in [13]. Also, in accordance with practical systems, itis
assumed that the total power limit for the jamming network is
lower than the sum of the peak power limits for the jammer
nodes.

Since the elements ofai in (10) are positive, the CRLBs of
the target nodes in (13) monotonically increase with jammer
powers. Therefore, similar to Scheme 1 and Scheme 2 in [13],
the restricted scheme has the full total power utilization
property, meaning that its optimal solution always operates
at the average (total) power limit (cf. Lemma 3 in [13]).
Therefore, all the power vectorspJ (see (11)) in this study
are assumed to satisfy1TpJ = PT , wherePT represents
the total power limit. Hence, in the following optimization
problems, the total (equivalently, the average) power constraint
is represented by1TpJ = PT instead of1TpJ ≤ PT . Also,
due to the full total power utilization property, the CRLB for
target nodei can be expressed via (13) as

Ci(p
J ) = d

T
i p

J (15)

where
di , ri ai + ri

N0

2PT

1. (16)

Let g[i] denote a probability mass function (PMF) defined
over the set{1, 2, . . . , NT }, which describes the significance
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level of each target node. Then, the average CRLB is calcu-
lated as follows:

Cavg(p
J ) =

NT
∑

i=1

g[i]Ci(p
J). (17)

In Scheme 1 in [13], all the target nodes are assumed to have
the same significance level in terms of jamming performance
and are thus considered to contribute equally to the average
(overall) CRLB. However, in some cases, jamming some target
nodes may have priority over jamming others. Therefore,
it is important to calculate the average CRLB by taking
the significance level of each target node into account. The
significance level of a target node can be specified by the
characteristics of a target or by the region occupied by it
(i.e., some regions may be more critical than others from the
jamming standpoint). The expression in (17) generalizes the
average CRLB formulation in [13], which considers only the
uniform PMF, to an arbitrary PMFg[i]. Accordingly, Scheme 1
in [13] is reformulated as follows (cf. [13, Eq. (16)]):

maximize
pJ

Cavg(p
J )

subject to 1
TpJ = PT (18)

0 ≤ P J
ℓ ≤ P

peak
ℓ , ℓ = 1, 2, . . . , NJ .

The solution of (18) is given by that of the original version
of Scheme 1 in Proposition 2 of [13] withw being redefined
as w ,

∑NT

i=1 g[i]di. Namely, the solution assigns all the
available power to the jammer node corresponding to the first,
second, third, . . . largest element ofw under the peak power
limit and until the average (total) power limit is reached (see
Eq. (18) in [13]).

Before formulating Scheme 2 for power allocation among
jammer nodes, the definition of theleast-favorable PMFis
provided as follows:

Definition 3.1: Let g[i] be a PMF over the set
{1, 2, . . . , NT } and pJ

∗ denote the corresponding optimal
solution of (18). Then,g[i] is defined as the least-favorable
PMF if it satisfies

NT
∑

i=1

g[i]Ci(p
J
∗ ) = min

i∈{1,2,...,NT }
Ci(p

J
∗ ) . (19)

Remark 4:The least-favorable PMFg[i] minimizes the
average CRLB among all PMFs defined over the set
{1, 2, . . . , NT } (see Appendix A for the proof).

Scheme 2 considers the minimum CRLB as a performance
metric, which is in fact the average CRLB calculated based
on the least-favorable significance level distribution (from the
jamming standpoint) over the target nodes (i.e, the least-
favorable g[i] according to Definition 3.1). Scheme 2 is
regarded as a conservative approach since it considers the
worst-case scenario (in terms of jamming performance), which
occurs wheng[i] corresponds to the least-favorable PMF. The
formulation of Scheme 2 is provided as follows [13, Eq. (19)]:

maximize
pJ

min
i∈{1,2,...,NT }

Ci(p
J )

subject to 1
TpJ = PT

0 ≤ P J
ℓ ≤ P peak

ℓ , ℓ = 1, 2, . . . , NJ .

(20)

Remark 5: It is noted from Definition 3.1 that Scheme 1
and Scheme 2 become equivalent for the least-favorable PMF
(see Appendix B for the proof).

It should be emphasized thatg[i] represents the relative
significance level of each target node with respect to the other
target nodes; hence, the average CRLB is mainly dependent
on the PMFg[i]. On the other hand, the minimum CRLB is an
absolute metric in the sense that it is not affected by the relative
relations among the target nodes (that is, it is only dependent
on the worst-case scenario). Therefore, it can be concludedthat
the average and minimum CRLBs are not alternatives to each
other; that is, they represent two completely different facets
of a design problem. In general, even ifg[i] is not the same
as the least-favorable PMF, the minimum CRLB being lower
than some level can be intolerable due to design requirements.
To that end, a new scheme, namely the restricted scheme,
is proposed for the aim of maximizing the average CRLB
while keeping the minimum CRLB above a preset level. The
restricted scheme is formulated as follows6:

maximize
pJ

Cavg(p
J )

subject to min
i∈{1,2,...,NT }

Ci(p
J) ≥ α (21)

1
TpJ = PT

0 ≤ P J
ℓ ≤ P

peak
ℓ , ℓ = 1, 2, . . . , NJ

where α is a design parameter preset according to design
requirements. In the restricted scheme, both the average and
the worst-case performances are taken into account, and the
design parameter can be adjusted to determine the effect of
each performance metric on the overall jamming performance.
It should be noted that (21) covers both (18) and (20) as special
cases: The restricted scheme reduces to Scheme 2 ifα takes
its maximum valueα which corresponds to the solution of
(20) (i.e.,α , min

i∈{1,2,...,NT }
Ci(p̄

J), wherep̄J is the solution

of (20)), and reduces to Scheme 1 if the value ofα is lower
than or equal to the valueα corresponding to the solution of
(18) (i.e.,α , min

i∈{1,2,...,NT }
Ci(p

J), wherepJ is the solution

of (18)). The formulation in (21) can be expressed as a linear
programming (LP) problem as is the case for both Scheme 1
and Scheme 2.

Equivalently, the restricted scheme can also be formulated
as follows:

maximize
pJ

λCavg(p
J ) + (1 − λ)min

i
Ci(p

J ) (22a)

subject to 1
TpJ = PT (22b)

0 ≤ P J
ℓ ≤ P

peak
ℓ , ℓ = 1, 2, . . . , NJ (22c)

where0 ≤ λ ≤ 1, similar toα, is specified according to design
requirements [25].7

IV. PROPERTIES OFOPTIMAL SOLUTION FOR RESTRICTED

SCHEME

In this section, the aim is to characterize the optimal solution
for the restricted scheme formulations in (21) and (22). The

6This formulation is similar to that of the restricted Bayes [24], [25], which
includes both Bayesian and minimax problems as special cases.

7The proof of equivalence of the optimization schemes in (21)and (22)
will be provided in Section IV.
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following proposition investigates the characteristics of the
optimal solution of (22) and establishes a link between the
optimal solutions of (18) and (22).

Proposition 4.1:Define a PMFv[i] asv[i] , λ g[i] + (1−
λ) f [i], where f [i] is any valid PMF defined over the set
{1, 2, . . . , NT }. If pJ

∗ is the solution of Scheme 1 forv[i]
and satisfies

NT
∑

i=1

f [i]Ci(p
J
∗ ) = min

i∈{1,2,...,NT }
Ci(p

J
∗ ) , (23)

then it is a solution of (22) forg[i].
Proof: The steps in this proof are similar to those in [25,

Theorem 1]. LetpJ represent any power vector satisfying the
total and peak power constraints. Then,

λCavg(p
J ) + (1− λ) min

i∈{1,2,...,NT }
Ci(p

J) (24)

≤λ

NT
∑

i=1

g[i]Ci(p
J ) + (1− λ)

NT
∑

i=1

f [i]Ci(p
J ) (25)

=

NT
∑

i=1

(λ g[i] + (1− λ) f [i])Ci(p
J ) (26)

≤

NT
∑

i=1

(λ g[i] + (1− λ) f [i])Ci(p
J
∗ ) (27)

=λCavg(p
J
∗ ) + (1 − λ) min

i∈{1,2,...,NT }
Ci(p

J
∗ ) (28)

where the first inequality due to the relation between the
minimum and the average operations,pJ

∗ (the solution of
Scheme 1 forv[i]) is employed to proceed from (26) to (27),
and the condition (23) in the proposition is used to obtain (28)
from (27). Overall, the relation between (24) and (28) indicate
that pJ

∗ is a solution of (22) forg[i].
The optimal solution specified by Proposition 4.1 always

exists since the probability distributions are discrete and de-
fined over a compact set [25], [33]. It can be noted based
on Proposition 4.1 that the solution of (22) can be obtained
by finding a PMFf [i] for which (23) is satisfied for the
power vector corresponding to Scheme 1 forv[i], which has a
closed-form solution [13]. Hence, the solution of the restricted
scheme formulation in (22) reduces to determining a PMF
f [i] such that the conditions in Proposition 4.1 are satisfied.
This proposition also emphasizes the equalizer nature of the
restricted scheme. For example, iff [i] consists of three point
masses ati = 1, 3, and4, it implies based on the proposition
that the CRLBs of target nodes 1, 3, and 4 are equalized to
the minimum CRLB of the whole network.

The following corollary shows that the formulations in (21)
and (22) of the restricted scheme are equivalent to each other,
and forms a formal link between them.

Corollary 4.2: Under the conditions in Proposition 4.1,pJ
∗

solves the optimization problem in (21) when the design
parameter satisfiesα = min

i∈{1,2,...,NT }
Ci(p

J
∗ ).

Proof: The proof follows similar steps to those in [25,
Corollary]. For anypJ satisfying the constraints in (21),
Proposition 4.1 implies the following inequality:

λCavg(p
J) + (1− λ) min

i∈{1,2,...,NT }
Ci(p

J)

≤λCavg(p
J
∗ ) + (1− λ) min

i∈{1,2,...,NT }
Ci(p

J
∗ ). (29)

It is given that min
i∈{1,2,...,NT }

Ci(p
J
∗ ) = α, thus the inequality

min
i∈{1,2,...,NT }

Ci(p
J ) ≥ α with (29) results inCavg(p

J
∗ ) ≥

Cavg(p
J).

Corollary 4.2 establishes a formal link between parameters
λ andα; that is, for anyλ, α can be calculated through the
equation in the corollary. More specifically, the optimization
problem in (22) is solved for a givenλ and the optimal solution
pJ(λ) is inserted into the equation min

i∈{1,2,...,NT }
Ci(p

J(λ)) =

α to obtainα for a givenλ.
In the following proposition, it is shown that the optimal

solution of the restricted scheme is the solution of Scheme 1
for the least-favorable PMFv[i] among a family of PMFs [25,
Theorem 2]. This result reveals an important property of the
PMF v[i] as defined in Proposition 4.1, for which Scheme 1
is to be solved in order to obtain the optimal solution of the
restricted scheme.

Proposition 4.3:Under the conditions in Proposition 4.1,
v[i] = λ g[i] + (1 − λ) f [i] minimizes the average CRLB
among all PMFs in the form of̃v[i] = λ̃ g[i] + (1 − λ̃) f̃ [i]
for λ̃ ≥ λ, wheref̃ [i] is any valid PMF defined over the set
{1, 2, . . . , NT }. Equivalently,

NT
∑

i=1

v[i]Ci(p
J
∗ ) ≤

NT
∑

i=1

ṽ[i]Ci(p
J
+) (30)

for any ṽ[i] described above, wherepJ
∗ and pJ

+ are the
solutions of Scheme 1 forv[i] and ṽ[i], respectively.

Proof: See Appendix C.
It is noted that whenλ = 0, the restricted scheme in (22) is

equivalent to Scheme 2 and the family of PMFs among which
f [i] minimizes the average CRLB becomes the set of all PMFs
defined over the set{1, 2, . . . , NT } (ṽ[i] represents the set of
all valid PMFs by taking̃λ = 0). Therefore, as a special case of
Proposition 4.3, it can be deduced that Scheme 2 is equivalent
to Scheme 1 ifg[i] is the least-favorable PMF among all PMFs
defined over the set{1, 2, . . . , NT }, which is in compliance
with Remark 5.

Next, the characteristics of the average CRLB of the re-
stricted scheme is investigated with respect to the changesin
α. Let pJ

r , pJ
1 , andpJ

2 denote the solutions of the restricted
scheme, Scheme 1, and Scheme 2, respectively. Also, let
α , min

i∈{1,2,...,NT }
Ci(p

J
1 ) and α , min

i∈{1,2,...,NT }
Ci(p

J
2 )

define the minimum CRLBs of Scheme 1 and Scheme 2,
respectively. In particular,α is the maximum value thatα can
take due to the definition of Scheme 2; that is, whenα = α,
the restricted scheme reduces to Scheme 2. For0 ≤ α ≤ α, the
constraint on the minimum CRLB in (21) becomes ineffective,
which results in that the restricted scheme reduces to Scheme 1
for 0 ≤ α ≤ α. Accordingly,Cavg(p

J
r ) is constant and equal

to Cavg(p
J
1 ) for 0 ≤ α ≤ α. Therefore, in practice,α is an

element of the closed interval[α, α]; that is,α ∈ [α, α]. The
following proposition characterizes the behavior of the average
CRLB of the restricted scheme with respect toα ∈ [α, α].

Proposition 4.4:The average CRLB of the restricted
scheme,Cavg(p

J
r (α)), is a strictly decreasing and concave

function ofα for α ∈ [α, α].
Proof: See Appendix D.

The following corollary, which is obtained based on Propo-
sition 4 in [13], Proposition 4.1, and Corollary 4.2, presents
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a closed-form solution for the restricted scheme under certain
conditions onλ andPT .

Corollary 4.5: Let ζn for n ∈ {1, 2, . . . , NJ} be defined as
follows:

ζn ,
rk
(

|γkb|
2 − |γkn|

2
)

∑NT

i=1 g[i]ri (|γin|2 − |γib|2) + rk (|γkb|2 − |γkn|2)
(31)

where k is the target node that uniquely has the minimum
CRLB in the absence of jamming andb is given by

b = arg max
ℓ∈{1,2,...,NJ}

|γkℓ|
2. (32)

Also, defineζ̃ as
ζ̃ = min

n∈J
ζn (33)

where the setJ is given by

J =
{

n ∈ {1, 2, . . . , NJ}
∣

∣

∣
n 6= b andζn ≥ 0

}

. (34)

Then, 0 ≤ λ ≤ ζ̃ corresponds toα = α if the total power
limit satisfiesPT ≤ P

(k)
T , whereP

(k)
T is described in [13,

Eq. 22] (assuming thatP peak
b ≥ PT ). In other words, when

0 ≤ λ ≤ ζ̃, the restricted scheme and Scheme 2 become
identical for PT ≤ P

(k)
T . In addition, the solution of both

schemes under the conditions0 ≤ λ ≤ ζ̃ andPT ≤ P
(k)
T is to

allocate all the power to jammer nodeb.
Proof: In Proposition 4.1, considerf [i] asf [i] = δ[i−k],

whereδ[·] denotes the unit sample (impulse) function; hence,
the correspondingv[i] is given byv[i] = λ g[i]+ (1−λ) δ[i−

k]. If the inequalityPT ≤ P
(k)
T holds, then the condition in

(23) is satisfied byf [i], according to Proposition 4 in [13], in
which case the power vectorpJ

∗ that allocates all the power
to jammer nodeb is the solution of Scheme 2. On the other
hand, the power vectorpJ

∗ , which is the solution of Scheme 2
and satisfies (23), is the solution of Scheme 1 forv[i] if the
index of the first largest element of vectorw =

∑NT

i=1 v[i]di

is b, which occurs when the following condition holds:

b = argmax
n∈{1,2,...,NJ}

(

λ

NT
∑

i=1

g[i]ri|γin|
2 + (1− λ)rk|γkn|

2

)

.

(35)
Since the expression in (35) is an affine function ofλ for each
n ∈ {1, 2, . . . , NJ} and b = argmaxn∈{1,2,...,NJ} rk|γkn|

2,
thebth index ofw has the highest value until the first intersec-
tion of the line corresponding tob and any of the remaining
lines corresponding ton ∈ {1, 2, . . . , NJ} \ b. Therefore, if
0 ≤ λ ≤ ζ̃, where ζ̃ is given by (33), then the solution of
Scheme 1 forv[i] is to allocate all the power to jammer node
b corresponding to the largest element ofw. This implies,
according to Proposition 4.1, that the solution that assigns all
the power to jammer nodeb is also the solution of the restricted
scheme. Hence, allocating all the power to jammer nodeb is
the solution for both the restricted scheme and Scheme 2 for
0 ≤ λ ≤ ζ̃ if PT ≤ P

(k)
T .

Corollary 4.5 implies that ifζ̃ ≥ 1, then the restricted
scheme and Scheme 2 are identical for any value of the
design parameterλ in (22) if PT ≤ P

(k)
T . It is concluded

from (31), (33), and (34) that̃ζ ≥ 1 occurs whenb =
argmaxn∈{1,2,...,NJ}

∑NT

i=1 g[i]ri|γin|
2.

In the following proposition (which is based on Proposi-
tion 5 in [13] and the minimax theorem), the numbers of
target and jammer nodes which are effective in the solution of
the restricted scheme (i.e., (22)) are specified. Proposition 5
in [13] presents only the number of jammer nodes that
determine the solution of Scheme 2. Based on the minimax
theorem, the following proposition enhances this propertyby
also specifying the number of target nodes that are involved
in the solution of the restricted scheme.

Proposition 4.6:Suppose thatri defined in (14) is finite
for eachi. Then, in the absence of peak power constraints,
the solution of the restricted scheme is determined by at most
NT jammer nodes, whereNT is the number of target nodes.
In addition,f [i] in Proposition 4.1 contains at mostNJ point
masses, which implies that the solution of Scheme 2 (i.e., the
restricted scheme forλ = 0) is determined by at mostNJ

target nodes, whereNJ is the number of jammer nodes.
Proof: In the absence of the peak power constraint,

(22c) becomes ineffective; hence, (22) can be reformulated
as follows:

maximize
p̃J∈ANJ

min
f̃∈ANT

PT (λ g + (1− λ) f̃ )TD p̃J (36)

where p̃J
, pJ/PT , 1

T p̃J = 1, and p̃J � 0; 1
T f̃ = 1

and f̃ � 0; D , [d1 d2 · · ·dNT
]T ; and finally g ,

[g[1] g[2] · · · g[NT ]]
T . From the foregoing constraints oñpJ

and f̃ , it is clear that setAm is given by

Am =
{

h ∈ R
m
∣

∣ h � 0 and1Th = 1
}

(37)

for m ∈ {NJ , NT }, which is compact and convex. It should
also be noted that the objective function in (36) is an affine
function of f̃ for a fixed p̃J , and a linear function of̃pJ for
a fixed f̃ . Hence, the minimax theorem [34] can be applied
to (36), implying that (36) is equivalent to the following
optimization problem:

minimize
f̃∈ANT

max
p̃J∈ANJ

PT (λ g + (1− λ) f̃ )TD p̃J (38)

which can also be expressed as follows:

minimize
f̃∈ANT

max
p̃J∈ANJ

(p̃J )TDT (λ g + (1 − λ) f̃)PT . (39)

For a given p̃J ∈ ANJ
, the objective function in (36) is

minimized forf̃ = ek, wherek = argmini∈{1,2,...,NT } d
T
i p̃

J

and ei denotes the vector whoseith element is1 and other
elements are0. Hence, the possible set of values that can be
assumed bỹf in (36) contains onlyNT elements. In a similar
way, the maximizer of the objective function in (39) for a
given f̃ ∈ ANT

is provided by a vector of the formei, which
confines the number of possible values ofp̃J toNJ . Therefore,
applying the steps followed in the proof of Proposition 5
in [13] to (36), it is concluded that the solution of the restricted
scheme is determined by at mostNT jammer nodes. Similarly,
applying those same steps to (39), it is concluded thatf [i] in
Proposition 4.1 contains at mostNJ point masses, which also
implies that the solution of the restricted scheme forλ = 0
(i.e., Scheme 2) is determined by at mostNJ target nodes.
(When λ = 0, the solution of Scheme 1 forv[i] = f [i] is
also the solution of the restricted scheme, which is identical
to Scheme 2.)

Proposition 4.6 yields an essential result for determining
the optimal jammer power allocation strategies under the
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restricted scheme. It is noted from Proposition 4.6 that the
optimal jammer power vector contains at mostNT non-zero
elements, which facilitates the elimination of the solutions
that allocate non-zero power to more thanNT jammer nodes.
Hence, the solution space for power vectors is significantly
reduced based on Proposition 4.6, especially for scenarios
where the number of target nodes is considerably lower than
that of jammer nodes. In addition, the set of PMFsf [i]
that satisfy the conditions in Proposition 4.1 is reduced by
constraining the search for feasible PMFs to only those having
at mostNJ non-zero elements. Therefore, for wireless network
configurations containing fewer jammer nodes than target
nodes (for which Proposition 5 in [13] does not help reduce
the solution space of Scheme 2), Proposition 4.6 facilitates
the solution of the restricted scheme, which relies on finding
a PMF f [i] as defined in Proposition 4.1. Furthermore, the
solution of Scheme 2 (the restricted scheme forλ = 0) is
also the solution of Scheme 1 forf [i], wheref [i] satisfies the
condition in (23). Hence, based on Remark 5, it is stated that
the least-favorable PMF contains at mostNJ point masses.

V. EXTENSION OFRESTRICTEDSCHEME

In this section, the restricted scheme is extended to cover
more generic scenarios by utilizing the framework in [25].
Based on their significance levels, the target nodes can be
grouped into subsetsΛ1, . . . ,ΛM with a decreasing order of
significance levels (i.e., subsetΛ1 contains the target nodes
with the highest significance levels), whereΛ1 ⊂ Λ2 ⊂
· · · ⊂ ΛM = {1, 2, . . . , NT }. Then, the restricted scheme
formulation in (21) can be extended as follows [25]:

maximize
pJ

Cavg(p
J )

subject to min
i∈Λk

Ci(p
J ) ≥ αk , k = 1, . . . ,M (40)

1
TpJ = PT

0 ≤ P J
ℓ ≤ P peak

ℓ , ℓ = 1, 2, . . . , NJ

where α1 > · · · > αM are the design parameters. The
formulation in (40) corresponds to an LP problem, as well. In
addition, it can be shown that the full total power utilization
property also holds for this extended scheme (cf. Lemma 3
in [13]). The following proposition characterizes the solution
of (40), which can be obtained by following the steps in the
proofs of Proposition 4.1 in Section IV and Theorem 4 in [25]:

Proposition 5.1:Define a PMFv[i] as v[i] , λ0 g[i] +
∑M

k=1 λk fk[i] with λk ≥ 0 and
∑M

k=0 λk = 1, wherefk[i] is
any valid PMF defined over setΛk. If pJ

∗ is the solution of
Scheme 1 forv[i] and satisfies
∑

i∈Λk

fk[i]Ci(p
J
∗ ) = min

i∈Λk

Ci(p
J
∗ ) = αk, k = 1, . . . ,M

then it solves the optimization problem in (40).

VI. A LTERNATIVE SCHEME

The general objective of jammer networks is to degrade
the localization performance of target nodes with respect to a
performance measure. In Section III and Section IV, optimal
jammer power allocation strategies have been investigatedto
maximize a certain function of the CRLBs of target nodes.
However, for some localization systems, it may be more crit-
ical to maximize the number of disabled (deactivated) target

nodes than to maximize their average or minimum CRLB,
where a target node is assumed to be disabled when its CRLB
exceeds a predefined level (i.e., when its localization accuracy
becomes useless for the considered application). For instance,
in military applications, the effectiveness of the jammingsys-
tem may depend on the number of deactivated enemy targets.
Therefore, in this section, a new scheme is proposed with the
aim of maximizing the number of disabled target nodes in
a wireless localization system under average and peak power
constraints. The proposed power allocation scheme optimizes
a jamming performance metric that is different from the one in
(21) and can be more critical in practice for certain localization
scenarios. LetΛ denote any subset of{1, 2, . . . , NT }, and|Λ|
represent the size of subsetΛ. Then, the proposed scheme is
formulated as follows:

maximize
pJ

|Λ|

subject to min
i∈Λ

Ci(p
J) ≥ t (41)

1
TpJ ≤ PT

0 ≤ P J
ℓ ≤ P peak

ℓ , ℓ = 1, 2, . . . , NJ

Λ ⊆ {1, 2, . . . , NT }

where t is the predefined level for disabling a target node
(i.e., a target node with a CRLB larger thant is regarded as
disabled).

For convenience, let the resulting minimum CRLB of the
target nodes in a network operating according to Scheme 2
be named as the max-min CRLB in accordance with the
formulation of Scheme 2 in (20). The following definition
introduces a new parameter that will facilitate the solution
of (41).

Definition 6.1: Let Λk with k ∈ {1, 2, . . . , NT} be the
subset consisting ofk target nodes which constitute the sub-
network achieving the maximum max-min CRLB among all
possible subnetworks withk target nodes. Then,tk is defined
as the corresponding max-min CRLB.

Based on Definition 6.1, it should be noted thatt1 is the
maximum achievable CRLB for an individual target node in
the whole network; hence,t1 is the maximum value whicht
can take in practice (i.e., the maximum number of disabled
target nodes is zero whent > t1). The following corollary
demonstrates the monotonicity oftk with respect to the
number of target nodesk.

Corollary 6.2: Fork ∈ {1, 2, . . . , NT −1}, tk is larger than
or equal totk+1, wheretk is as defined in Definition 6.1.

Proof: Let Sk be the set of allk-element subsets of
{1, 2, . . . , NT }. Then, assuming that the power vectorpJ

satisfies the total and peak power constraints,

tk+1 = max
Γ∈Sk+1

max
pJ

min
i∈Γ

Ci(p
J) (42)

= min
i∈Λk+1

Ci(p
J
∗ ) (43)

≤ max
Γ∈Gk

min
i∈Γ

Ci(p
J
∗ ) (44)

≤ max
Γ∈Gk

max
pJ

min
i∈Γ

Ci(p
J ) (45)

≤ max
Γ∈Sk

max
pJ

min
i∈Γ

Ci(p
J ) = tk (46)

wherepJ
∗ is the optimal power vector in (42) andGk denotes

the set of allk-element subsets ofΛk+1.
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Next, the following proposition specifies the solution of
(41):

Proposition 6.3: In the case oftk+1 < t ≤ tk for k =
1, 2, . . . , NT (where tNT+1 is defined as zero), the solution
of (41) is the same as that of Scheme 2 obtained for the
subnetwork consisting of all the target nodes in subsetΛk, and
the corresponding number of disabled target nodes is equal to
k.

Proof: Consider the case oftk+1 < t ≤ tk. The proof
is based on showing that the maximum value of|Λ| in (41)
must be smaller thank + 1 and that there exists a subsetΛ
consisting ofk target nodes which satisfy the constraints in
(41). Assume that the size of subsetΛ is given to be equal
to k + 1. Then, based on the definitions ofΛk+1 and tk+1,
it is concluded that the maximum value the minimum CRLB
mini∈Λ Ci(p

J ) can take is equal totk+1, which is achieved
by pJ corresponding to the solution of Scheme 2 obtained
for the subnetwork consisting of all the target nodes in subset
Λk+1. This means that the size ofΛ must be lower thank+1
in order formini∈ΛCi(p

J) ≥ t to hold. Next, consider subset
Λk whose size isk by definition. Then, from the definitions of
Λk and tk, the minimum CRLBmini∈Λk

Ci(p
J) achievestk

with pJ corresponding to the solution of Scheme 2 obtained
for the subnetwork consisting of all the target nodes in subset
Λk.

It is noted that the solution of (41) does not have to be
unique; that is, there can be more than one solution for the
problem in (41). In Proposition 6.3, only one of the solutions
is specified.

VII. S IMULATION RESULTS

In this section, the proposed schemes are investigated
through simulations. Parameterλij in (9) is computed by
λij = 100N0‖xi − yj‖

−2/2 based on the free space propa-
gation model presented in [15], and the peak power limits are
assigned asP peak

ℓ = 10, ∀ ℓ. Also, |γiℓ|2 in (10) is modeled as
|γiℓ|

2 = ‖xi−zℓ‖
−2, and the total powerPT is normalized as

P̄T = 2PT /N0 [14]. In addition,N0 is taken as2, and LOS
connections to all the anchor nodes are assumed for each target
node.

In the following subsections, three different localization sce-
narios are considered to corroborate the theoretical derivations
obtained for the proposed optimization schemes. Specifically,
we provide examples for the restricted scheme properties in
Proposition 4.1, Corollary 4.2, Proposition 4.4, Corollary 4.5,
and Proposition 4.6, and for the alternative scheme properties
in Corollary 6.2 and Proposition 6.3. The first scenario in-
cludes a network configuration where jammer nodes are placed
inside the convex hull of anchor nodes. In the second scenario,
jammer nodes are located outside the convex hull of anchor
nodes to explore the theoretical results under various network
configurations. Finally, the purpose of the third scenario is to
validate the sparsity property of the optimal power allocation
vector as demonstrated in Proposition 4.6.

A. Scenario 1: Jammers Inside the Convex Hull of Anchors

For the first set of simulations, a network consisting of six
anchor nodes, five target nodes, and three jammer nodes is con-
sidered, where the node locations are as illustrated in Fig.1.
The PMFg[i] is defined asg[1] = 0.4, g[2] = g[4] = 0.1, and
g[3] = g[5] = 0.2.

−10 −5 0 5 10

−10
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10

 

 
Anchor node
Target node
Jammer node

x [m]

y
[m

]

Target 1

Target 2

Target 3

Target 4

Target 5

Jammer 1

Jammer 2

Jammer 3

Fig. 1. The network considered in the simulations, where theanchor node
positions are[−10 0], [−5 − 5

√
3], [−5 5

√
3], [5 5

√
3], [5 − 5

√
3], and

[10 0]m., the target node positions are[−8 2], [−2 − 3], [3 4], [5 − 5] and
[8 − 2]m., and the jammer node positions are[−6 1], [1 − 6], and [6 5]m.

1) Restricted Scheme:In Fig. 2, the average CRLB of
the restricted scheme is plotted againstα for various values
of the normalized total power̄PT , whereα ∈ [α, α]. It is
observed that the average CRLB is a strictly decreasing and
concave function ofα for α ∈ [α, α] in accordance with
Proposition 4.4. Also, the edge points of the curves in Fig. 2
are marked as Scheme 1 and Scheme 2 since the restricted
scheme converges to Scheme 1 forα = α and to Scheme 2 for
α = α (see the paragraph before Proposition 4.4). Moreover,
the average CRLB achieved by the restricted scheme and the
values ofα andα become larger as the total power increases,
which agrees with the CRLB expression in (13) and the
definitions ofα andα.

In Fig. 3, the average and minimum CRLBs of the restricted
scheme are illustrated versusλ for various values of the
normalized total power̄PT . From the figure, it is seen that an
increase inλ can result in an increase in the average CRLB
and a decrease in the minimum CRLB, which means that asλ
increases the restricted scheme converges to Scheme 1 whereas
it converges to Scheme 2 asλ decreases; this is in fact the
role assigned toλ, which is specified by (22). In addition, it
is observed that larger average and minimum CRLBs can be
attained for higher values of the total power, as implied by the
CRLB expression in (13). Furthermore, it is noted from Fig. 3
that there can exist discontinuities in the average and minimum
CRLBs, which occur due to the changes in the nature of
the optimal power allocation strategies of the jammer nodes.
However, it can be shown that the objective function in (22)
(which is the combination of the average and the minimum
CRLBs) is continuous with respect toλ.

In Fig. 4, the average and minimum CRLBs of Scheme 1,
Scheme 2, and the restricted scheme (forλ = 0.3) are plotted
versus the normalized total power. The figure emphasizes
the main characteristic of the restricted scheme; namely, the
restricted scheme can provide a trade-off between Scheme 1
and Scheme 2: An increase in the minimum CRLB can be
provided at the expense of a decrease in the average CRLB,
or vice versa. Also, in compliance with the definitions of
Scheme 1, Scheme 2, and the restricted scheme, the maximum
and the minimum gaps between the average and the minimum
CRLBs are, respectively, achieved by Scheme 1 and Scheme 2
for all P̄T . Thus, it can be concluded that the restricted
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TABLE I
ALLOCATED POWERS TO JAMMER NODES FOR THE RESTRICTED SCHEME

FOR THE SCENARIO INFIG. 1.

λ = 0.2 λ = 0.6
P̄T P̄ J

1
P̄ J
2

P̄ J
3

P̄ J
1

P̄ J
2

P̄ J
3

3 0 1.0488 1.9512 3 0 0
6 0.2533 2.7419 3.0049 6 0 0
9 0.5283 4.4222 4.0495 9 0 0
12 0.8033 6.1025 5.0942 10 0.7117 1.2883
15 1.0783 7.7828 6.1389 10 2.5532 2.4468
18 1.3533 9.4631 7.1836 10 4.3947 3.6053
21 3.5789 10 7.4211 10 6.2362 4.7638
24 6.7206 10 7.2794 10 8.0777 5.9223
27 9.8622 10 7.1378 10 9.9192 7.0808

scheme trades off the complexity for a decrease or an increase
in the gap between the average and the minimum CRLBs.
Furthermore,P (k)

T and ζ̃ in Corollary 4.5 are calculated as
P

(k)
T = 1.2914 and ζ̃ = 0.4761, which, according to Corol-

lary 4.5, indicates that the restricted scheme and Scheme 2
are identical forPT ≤ 1.2914 andλ ≤ 0.4761. As observed
from Fig. 4, the restricted scheme forλ = 0.3 and Scheme 2
achieve the same minimum CRLB forPT ≤ 1.2914, which
complies with Corollary 4.5. In Table I, the optimal power
allocation strategies corresponding to the restricted schemes
(for λ = 0.2 andλ = 0.6) are presented for various values of
P̄T for the scenario in Fig. 1. It is observed that the optimal
power allocation strategy can assign power to one, two, or
all three jammer node(s) in different scenarios. In addition,
it is observed that as the total power limit increases further,
the peak power limit starts becoming effective. As a result,it
is noted that the optimal jamming policy may vary depending
on the specific network configuration, the choice of the design
parameterλ in (22a), the total power limit in (22b), and the
peak power limit in (22c).

In order to derive the mean jamming performance when the
jammer nodes are randomly placed over an area of interest,
simulations are carried out for the network in Fig. 1. In the
simulations, the anchor and target nodes have fixed positions
whereas the jammer nodes are uniformly distributed over a
disk centered at the original jammer positions with a radius
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TABLE II
PARAMETER tk AND ALLOCATED POWERS TO JAMMER NODES FOR THE

ALTERNATIVE SCHEME FOR THE SCENARIO INFIG. 1.

P̄T = 11 P̄T = 22
k tk P̄ J

1
P̄ J
2

P̄ J
3

tk P̄ J
1

P̄ J
2

P̄ J
3

5 0.8002 0 6.1117 4.8883 0.9799 2 10 10
4 0.9088 0.4782 9.7938 0.7280 1.0103 3.8493 10 8.1507
3 0.9319 0.7288 0.2712 10 1.0533 2 10 10
2 1.0242 1.3392 0 9.6608 1.1015 10 2 10
1 2.3421 10 1 0 2.3980 10 10 2

of 1 m, as shown in Fig. 1. Fig. 5 illustrates the average
and the minimum CRLBs averaged over1000 Monte Carlo
cycles for Scheme 1, Scheme 2, and the restricted scheme for
λ = 0.3. Similar to the fixed configuration used in Fig. 4,
Fig. 5 highlights the compromising nature of the restricted
scheme. In addition, it is observed that random deployment
of jammer nodes serves as a smoothing mechanism for the
CRLB curves of all the schemes due to the averaging effect.

2) Alternative Scheme:The alternative scheme proposed
in Section VI is investigated in Fig. 6 for the scenario in
Fig. 1. The figure plots the number of disabled target nodes
versust for various values of normalized total power̄PT . It
is observed from the figure that the number of disabled target
nodes decreases ast increases, which is in agreement with
Proposition 6.3. Also, the jamming performance measured
with respect to the alternative scheme in (41) can be improved
by increasing the total power, which is highly intuitive. For
P̄T = 11, it is calculated thatΛ4 = {1, 2, 4, 5},Λ3 = {1, 3, 5},
Λ2 = {1, 3} and Λ1 = {1}; and for P̄T = 22, it is
calculated thatΛ4 = {1, 2, 3, 5}, Λ3 = {1, 3, 5}, Λ2 = {1, 3}
and Λ1 = {1}. In Table II, the optimal power allocation
strategies for the alternative scheme are presented along with
the corresponding values oftk for various values ofP̄T for
the scenario in Fig. 1. It is noted that some jammer nodes
are ineffective in certain scenarios (e.g., fork = 1, 2, 5 and
P̄T = 11) while all the jammer nodes are assigned nonzero
powers in other scenarios (e.g., fork = 3, 4 andP̄T = 11). In
addition, the monotonicity property oftk with respect tok, as
shown in Corollary 6.2, can be seen from Table II.

B. Scenario 2: Jammers Outside the Convex Hull of Anchors

Secondly, the network illustrated in Fig. 7 is considered.
Unlike the previous scenario, the jammer nodes are located
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Fig. 7. The network considered in the simulations, where theanchor node
positions are[−10 0], [−5 − 5

√
3], [−5 5

√
3], [5 5

√
3], [5 − 5

√
3], and

[10 0]m., the target node positions are[−8 0], [−5 − 1], [0 5], [4 2] and
[7 4]m., and the jammer node positions are[−10 5], [0 10], and [10 5]m.

outside the convex hull of the anchor nodes. The PMFg[i] for
this scenario is defined asg[1] = g[2] = 0.1, g[3] = g[4] =
0.2, andg[5] = 0.4.

1) Restricted Scheme:In Fig. 8, the average CRLB versus
α is plotted for the restricted scheme for various values of
the normalized total power̄PT . In Fig. 9, the average and
the minimum CRLBs of the restricted scheme are illustrated
againstλ for various values of the normalized total power
P̄T . In Fig. 10, the average and the minimum CRLBs of
Scheme 1, Scheme 2, and the restricted scheme (forλ = 0.5)
are illustrated versus the normalized total power. From the
figure, it is observed that the restricted scheme (forλ = 0.5)
is identical to Scheme 2 for̄PT ≤ 9.75 and identical to
Scheme 1 forP̄T ≥ 19.28. For all of these figures, similar
observations to those for the network in Fig. 1 are made.
Table III presents the optimal power allocation strategies
corresponding to the restricted schemes (forλ = 0.2 and
λ = 0.8) for various values ofP̄T for the scenario in Fig. 7.
The values ofP (k)

T , ζ̃, and b in Corollary 4.5 are calculated
as P

(k)
T = 7.3787, ζ̃ = 0.2830, and b = 1. As seen from

Table III, the optimal strategy forλ = 0.2 is to allocate all
the power to jammer nodeb = 1 for PT = 3 andPT = 6,
which is in compliance with Corollary 4.5. In addition, the
individual target CRLBs corresponding to the optimal power
vector for P̄T = 27 and λ = 0.2 in Table III are obtained
as [0.6498 0.6498 0.8076 0.7547 2.0239]. Consider the PMF
v[i] = λg[i] + (1 − λ)f [i] where λ = 0.2, f [i] = 0.5
for i = 1, 2 and f [i] = 0 otherwise. Then, the solution of
Scheme 1 in (18) forv[i] is given bypJ

∗ = [10 7 10]
T , which

satisfies (23) in Proposition 4.1 and constitutes a solutionof
the restricted scheme in (22) forg[i], in compliance with
Proposition 4.1. Also, it is noted thatf [i] contains2 point
masses (i.e., the solution of Scheme 2 is determined by2
target nodes), which is in accordance with Proposition 4.6.
Moreover, choosing the design parameter of the problem in
(21) asα = mini∈{1,2,...,NT } Ci(p

J
∗ ) = 0.6498, the solution

of (21) is given bypJ
∗ , which agrees with Corollary 4.2.

2) Alternative Scheme:The alternative scheme is illustrated
in Fig. 11 for the scenario in Fig. 7. The figure shows the
number of disabled target nodes versust for various values
of normalized total power̄PT . For bothP̄T = 14 and P̄T =
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TABLE III
ALLOCATED POWERS TO JAMMER NODES FOR THE RESTRICTED SCHEME

FOR THE SCENARIO INFIG. 7.

λ = 0.2 λ = 0.8
P̄T P̄ J

1
P̄ J
2

P̄ J
3

P̄ J
1

P̄ J
2

P̄ J
3

3 3 0 0 0 0 3
6 6 0 0 0 0 6
9 8.1195 0 0.8805 0 0 9
12 9.9048 0 2.0952 0 2 10
15 10 0 5 0 5 10
18 10 0 8 0 8 10
21 10 1 10 1 10 10
24 10 4 10 4 10 10
27 10 7 10 7 10 10
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Fig. 11. Alternative schemes (for̄PT = 14 and P̄T = 17) versust for the
scenario in Fig. 7.

17, it is calculated thatΛ4 = {1, 3, 4, 5}, Λ3 = {3, 4, 5},
Λ2 = {3, 5} andΛ1 = {5}. Based on the above results and
those presented in Section VII-A2, it should be noted that
whether the relationΛk ⊂ Λk+1 holds or not depends on the
total power constraint and the specific network configuration,
which determines the individual target CRLBs and thus the
subnetwork that leads to the maximum max-min CRLB (see
Definition 6.1). In addition, Table IV illustrates the optimal
power allocation strategies for the alternative schemes along
with the corresponding values oftk for various values of̄PT

for the scenario in Fig. 7.

C. Scenario 3: Sparsity of the Optimal Solution

In the final example, the number of jammer nodes that are
effective in the solution of the restricted scheme is investigated
for different normalized power levels. A network consisting of
six anchor nodes, three target nodes, and five jammer nodes
is considered, where the network configuration is shown in
Fig. 12. The target significance levels are set asg[1] = 0.5,

TABLE IV
PARAMETER tk AND ALLOCATED POWERS TO JAMMER NODES FOR THE

ALTERNATIVE SCHEME FOR THE SCENARIO INFIG. 7.

P̄T = 14 P̄T = 17
k tk P̄ J

1
P̄ J
2

P̄ J
3

tk P̄ J
1

P̄ J
2

P̄ J
3

5 0.6172 10 2.7504 1.2496 0.6298 10 7 0
4 0.6244 10 1.4173 2.5827 0.6355 10 6.2243 0.7757
3 0.7020 0 4.8846 9.1154 0.7276 0 7 10
2 0.7858 1.7376 10 2.2624 0.8021 2.9458 10 4.0542
1 1.9571 0 4 10 1.9909 0 7 10
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Fig. 13. Number of nonzero elements in the optimal solution of the restricted
scheme for various values of̄PT versusλ for the scenario in Fig. 12.

g[2] = 0.3, andg[3] = 0.2. In Fig. 13, the number of nonzero
elements in the optimal jammer power vector corresponding to
the restricted scheme againstλ is illustrated for various values
of P̄T . As seen from Fig. 13, the optimal solution contains
at mostNT = 3 jammer nodes forP̄T = 2 and P̄T = 8,
which is in compliance with Proposition 4.6 since the peak
power constraint (P peak

ℓ = 10, ∀ ℓ) is not effective forP̄T = 2
and P̄T = 8. However, when the peak power constraint is
incorporated by settinḡPT = 20, the solution of the restricted
scheme is determined by more than three jammer nodes for a
certain range of values ofλ. Therefore, it can be concluded that
the optimal jammer power vector is sparse for sufficiently low
values ofP̄T (i.e., when the peak power constraint becomes
ineffective).

VIII. C ONCLUDING REMARKS

In this paper, the restricted scheme has been proposed to
investigate optimal power allocation strategies for jammer
nodes in a wireless localization system. The restricted scheme
aims to maximize the average CRLB of target nodes while
keeping the minimum CRLB above a predefined level under

average and peak jammer power constraints. Through theoreti-
cal analyses, the restricted scheme has been shown to establish
a trade-off between the two extreme cases – maximization
of the average and the minimum CRLBs. Then, a closed-
form solution has been derived under certain conditions on
the design parameter that adjusts the trade-off. In addition,
it has been proved that the average CRLB of the restricted
scheme is a strictly decreasing and concave function of the
constraint on the minimum CRLB level. Furthermore, it has
been demonstrated that the optimal solution of the restricted
scheme involves at mostNT jammer nodes, whereNT is
the number of target nodes, and that the optimal solution of
the minimum CRLB maximization scheme corresponds to at
most NJ target nodes, whereNJ is the number of jammer
nodes. In order to cover more generic scenarios, an extension
to the restricted scheme has been proposed, where target
nodes are assigned to subsets depending on their significance
levels and the tolerable CRLB level is set differently for each
subset in the formulation. In addition to the restricted scheme,
an alternative scheme has been proposed, where the number
of disabled target nodes is considered as the optimization
criterion. Extensive simulations carried out for various wireless
network configurations have exemplified the theoretical results
and illustrated the trade-off characteristics of the restricted
scheme.

Theoretical and numerical results obtained in this study
provide important insights into the design of efficient jamming
algorithms in practical scenarios. For instance, the sparsity
property of the optimal jammer power vector leads to a
significant simplification of the solution for wireless networks
containing fewer target nodes than jammer nodes. In addition,
the proposed power allocation criterion puts forward a new
and generalized framework for power/resource optimization
and thus can be employed in different problems, such as
the problem of power allocation among anchor nodes for
CRLB minimization of target nodes, where the objective is
to minimize the average CRLB while keeping the maximum
CRLB below a predefined threshold.

APPENDIX

A. Average CRLB Minimization Property of Least-Favorable
PMF

Let g[i] and g̃[i] denote, respectively, the least-favorable
PMF and any valid PMF defined over the set{1, 2, . . . , NT }.
Also, let pJ

∗ andpJ
+ represent the solutions of Scheme 1 for

g[i] and g̃[i], respectively. Then,

NT
∑

i=1

g[i]Ci(p
J
∗ ) = min

i∈{1,2,...,NT }
Ci(p

J
∗ ) ≤

NT
∑

i=1

g̃[i]Ci(p
J
∗ )

≤

NT
∑

i=1

g̃[i]Ci(p
J
+) (47)

where the equality is due to (19), the first inequality is by
definition, and the last inequality follows from the fact that
pJ
+ is the solution of Scheme 1 for̃g[i]. The overall inequality

in (47) indicates that the least-favorable PMF minimizes the
average CRLB among all PMFs. �
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B. Equivalence of Scheme 1 and Scheme 2

Assume thatg[i] is the least-favorable PMF and thatpJ
∗ is

the solution of Scheme 1 forg[i]. Then,

min
i∈{1,2,...,NT }

Ci(p
J
∗ ) =

NT
∑

i=1

g[i]Ci(p
J
∗ ) ≥

NT
∑

i=1

g[i]Ci(p
J)

≥ min
i∈{1,2,...,NT }

Ci(p
J ) (48)

for any power vectorpJ satisfying the total and peak power
constraints. Hence,pJ

∗ is also the solution of Scheme 2.�

C. Proof of Proposition 4.3

The steps of the proof are similar to those in [25, Theorem
2]. Namely,

NT
∑

i=1

v[i]Ci(p
J
∗ )

=λ

NT
∑

i=1

g[i]Ci(p
J
∗ ) + (1− λ)

NT
∑

i=1

f [i]Ci(p
J
∗ ) (49)

=λCavg(p
J
∗ ) + (1 − λ) min

i∈{1,2,...,NT }
Ci(p

J
∗ ) (50)

≤ λ̃ Cavg(p
J
∗ ) + (1 − λ̃) min

i∈{1,2,...,NT }
Ci(p

J
∗ ) (51)

≤ λ̃

NT
∑

i=1

g[i]Ci(p
J
∗ ) + (1− λ̃)

NT
∑

i=1

f̃ [i]Ci(p
J
∗ ) (52)

=

NT
∑

i=1

(

λ̃ g[i] + (1 − λ̃) f̃ [i]
)

Ci(p
J
∗ ) (53)

=

NT
∑

i=1

ṽ[i]Ci(p
J
∗ ) ≤

NT
∑

i=1

ṽ[i]Ci(p
J
+) (54)

where (50) follows from (23), (51) follows from the inequality
λ̃ ≥ λ and thatCavg(p

J
∗ ) ≥ mini∈{1,2,...,NT } Ci(p

J
∗ ), (52)

is due to the relation between the minimum and the average
operators, and (54) follows from thatpJ

+ is the solution of
Scheme 1 for̃v[i]. Hence, (30) in Proposition 4.3 is obtained.
�

D. Proof of Proposition 4.4

The proof is constructed based on similar arguments to those
in [25, Lemma]. First, the concavity ofCavg(p

J
r (α)) is proved.

From the definition of the restricted scheme in (21), it can be
concluded thatCavg(p

J
r (α)) is a non-increasing function ofα.

The new power vectorpJ is defined as a randomization of two
power vectors corresponding to the solutions of the restricted
scheme forα1 andα2:

pJ , κpJ
r (α1) + (1− κ)pJ

r (α2) (55)

where 0 ≤ α1 ≤ α2 ≤ α and 0 < κ < 1. From the
definition ofpJ , it is clear thatpJ satisfies both the total and
peak power constraints. The following relation on the average
CRLB corresponding topJ is obtained via (15) and (55):

Cavg(p
J) = κCavg(p

J
r (α1)) + (1− κ)Cavg(p

J
r (α2)). (56)

Similarly, for the minimum CRLB corresponding topJ ,

min
i∈T

Ci(p
J ) ≥κmin

i∈T
Ci(p

J
r (α1)) + (1− κ) min

i∈T
Ci(p

J
r (α2))

≥κα1 + (1− κ)α2 , (57)

whereT = {1, 2, . . . , NT }. Let α = min
i∈T

Ci(p
J ) andα∗ =

κα1 + (1− κ)α2, thenα ≥ α∗ is concluded from (57). This
results in

Cavg(p
J
r (α

∗)) ≥Cavg(p
J
r (α)) (58)

≥Cavg(p
J) (59)

=κCavg(p
J
r (α1)) + (1− κ)Cavg(p

J
r (α2))

(60)

which proves the concavity ofCavg(p
J
r (α)), where (58)

follows from the non-increasing property ofCavg(p
J
r (α)),

(59) is due to the definition of the restricted scheme with
α = min

i∈T
Ci(p

J ), and (60) follows from (56).

Next, the strictly decreasing property ofCavg(p
J
r (α)) is

proved. To that end, the following equality is first shown to
hold for α ∈ (α, α):

min
i∈T

Ci(p
J
r (α)) = α. (61)

Assume thatmin
i∈T

Ci(p
J
r (α)) > α, and definepJ , κpJ

1 +

(1 − κ)pJ
r (α), where 0 < κ < 1 is selected so that

min
i∈T

Ci(p
J) ≥ α (it is clear thatpJ satisfies the average

and peak power constraints). The existence of such aκ can
be proved as follows:

min
i∈T

Ci(p
J) =min

i∈T

(

κdT
i p

J
1 + (1− κ)dT

i p
J
r (α)

)

(62)

≥κmin
i∈T

dT
i p

J
1 + (1− κ)min

i∈T
dT
i p

J
r (α) (63)

=κmin
i∈T

Ci(p
J
1 ) + (1− κ)min

i∈T
Ci(p

J
r (α))

(64)

where (62) and (64) follows from (15). Sincemin
i∈T

Ci(p
J
1 ) =

α < α and min
i∈T

Ci(p
J
r (α)) > α, there existsκ ∈ (0, 1)

such that the expression in (64) is equal toα. Hence, the
proof for the existence ofκ is completed. From the definition
of Scheme 1, the average CRLB corresponding topJ

1 is
larger than that corresponding topJ

r (α) for α ∈ (α, α),
which implies thatCavg(p

J ) > Cavg(p
J
r (α)), leading to

a contradiction with the definition of the restricted scheme.
(Note thatpJ satisfies the constraints in (21).) Thus, (61)
must hold. Finally, letα < α1 < α2 < α, and assume
that Cavg(p

J
r (α1)) = Cavg(p

J
r (α2)). Then, pJ

r (α1) is also
the solution of the restricted scheme forα2, which requires
thatmin

i∈T
Ci(p

J
r (α2)) = α1, which in turn contradicts with the

fact thatmin
i∈T

Ci(p
J
r (α2)) = α2. Therefore,Cavg(p

J
r (α1)) >

Cavg(p
J
r (α2)) must hold. �
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