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Localization via Visible Light Systems
Musa Furkan Keskin, Ahmet Dundar Sezer, and Sinan Gezici

Abstract—Visible light communication (VLC) is an emerging
paradigm that enables multiple functionalities to be accomplished
concurrently, including illumination, high-speed data communi-
cations, and localization. Based on the VLC technology, visible
light positioning (VLP) systems aim to estimate locations of VLC
receivers by utilizing light emitting diode (LED) transmit ters
at known locations. VLP presents a viable alternative to radio
frequency (RF) based positioning systems by providing inexpensive
and accurate localization services. In this paper, we consider the
problem of localization in visible light systems and provide an
extensive survey of various location estimation techniques, accom-
panied by discussions of their relative merits and demeritswithin
the context of accuracy and computational complexity. In addition,
we investigate a cooperative VLP system architecture in which
VLC receiver units are able to communicate with each other for
the purpose of cooperation, and present a low-complexity, iterative
localization algorithm to demonstrate the benefits of cooperation in
VLP systems. Finally, we investigate optimal strategies for power
allocation among LED transmitters to maximize the localization
accuracy subject to power and illumination constraints.

Index Terms–Localization, visible light communication, visible
light positioning, direct positioning, two-step positioning, parameter
estimation, cooperation, power allocation.

I. I NTRODUCTION

Visible light positioning (VLP) systems have recently attracted
great attention due to their significant capabilities in localization
related applications, especially in indoor scenarios [1],[2]. In
indoor environments, VLP systems, combined with the power
of the light emitting diode (LED) technology, facilitate precise
and accurate localization and provide low-cost solutions for ap-
plications that require compact and effective positioningsystems.
Due to the emerging developments in the LED technology, LEDs
can also be used for communication and localization purposes
besides their primary function of providing illumination [3]–
[5]. The attractive features of LEDs such as long lifespan and
low-power consumption make the LED technology the main
ingredient in a reliable, robust, and efficient illumination system.
In addition to these properties, LEDs have the capability of
switching to different intensity levels at very fast rates;that is,
they can be modulated at frequencies as high as300MHz (much
higher than the conventional lighting systems) and can be used
to transmit data without causing visible flicker [6], [7]. Hence,
LEDs can effectively serve multiple purposes of communication
and localization as well as illumination.

A. Features of Visible Light Systems

In the context of communication and localization, visible
light systems benefit from the desirable properties of the vis-
ible light and its spectrum. Compared to traditional wireless
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systems which employ the cluttered, scarce, and expensive radio
frequency (RF) spectrum, VLP systems utilize the visible light
portion of the electromagnetic spectrum, which is unlicensed
and unregulated [4]. The visible light spectrum with its huge
license free bandwidth facilitates high speed data transmission
and reduces the costs for operators. Besides VLP systems,
visible light communication (VLC) systems complement the RF-
based communication systems and meet the high-capacity traffic
demand for wireless networks by operating in the visible light
spectrum [3], [6], [8].

In addition to its untapped spectrum, the LED based visible
light technology provides some advantages for both VLP and
VLC systems in terms of reliability, robustness, and security
[5], [9]. Compared to the transmitters in conventional RF-based
systems, the power consumption of LEDs can be significantly
lower. Since LEDs are already used for illumination purposes
in indoor environments, they can be incorporated into VLP
and VLC solutions without causing a substantial increase in
the power consumption. In addition, the inherent line-of-sight
(LOS) property of LEDs provides a secure data transmission
for systems in which the transmitter and the receiver directly
communicates via high-frequency visible light channel in a
confined space by ensuring LOS clearance between them. The
fundamental reason behind that feature is the inability of visible
light to penetrate through opaque objects such as walls [10].
That characteristic of the visible light prevents inter-cell inter-
ference issues mostly encountered in RF-based systems and leads
to efficient cell-based communication and localization systems
separated by partitions such as walls [10]. Furthermore, visible
light signals do not interfere with the RF signals in sensitive
electronic devices and consequently they can freely be employed
in applications where RF interference may cause issues for
proper functioning of devices.

Although Global Positioning System (GPS) is commonly
employed in many applications, it suffers from signal blockage
and multipath propagation, which results in poor performance
in indoor environments [11]. For that reason, other RF based
positioning systems are proposed in the literature for indoor
applications [12]–[15]. However, those systems can easilybe
exposed to multipath interference and consequently their local-
ization performance can degrade as the radio signals reaching
a receiver via different multiple paths (e.g., due to reflections
from objects such as walls) complicate the process of estimating
location related parameters from the received signal. On the
other hand, due to the nature of visible light channels, multipath
effects are not as significant in VLP systems as those in RF-
based positioning [8], [16]–[21]. Moreover, the widespread use
of LEDs for illumination constitutes an opportunity to design a
ubiquitous and economical positioning system, which functions
efficiently in indoor environments [22]. In particular, LEDbased
VLP systems can easily be integrated into the existing lighting
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infrastructure (i.e., facilitates the reuse of existing infrastructure)
for the purpose of localization in addition to its essentialfunction
of illumination without usually requiring rewiring. It is also
important to note that VLP systems can be deployed not only
for indoor applications but also for outdoor applications such as
street lights, stop lights, and airport taxi-way lighting [23], [24].
In general, VLP systems can appropriately be employed in any
application where LEDs are utilized.

B. VLP Applications and Design Constraints

VLP systems are used in a broad range of applications
including automated vehicles, location-aware services, and asset
tracking [1], [23], [25]–[27]. The VLP system employed in each
application needs to satisfy different requirements in terms of
various criteria such as cost, reliability, and robustness. As an
example, a VLP system can be installed in a museum and with
the help of such a system, the visitors of that museum can get
information about an exhibit (e.g., a historical artifact)when
they are in front of it. A hand-held device (e.g., a smartphone)
of a visitor can receive the signals transmitted by the LEDs
placed near the exhibit and estimate the current position ofthe
visitor. Then, it decides which exhibit the visitor is interested
in and informs the visitor about the corresponding exhibit.Such
an application may not have a very strict accuracy requirement
for localization. However, there also exist applications in which
highly accurate and precise positioning is required; e.g.,robot
navigation [28]. In order to estimate the position accurately and
precisely, those applications require more advanced algorithms
than those utilized in the museum application, and employ
various techniques to enhance localization performance ofVLP
systems.

The design of VLP systems depends also on some crucial
factors and constraints arising from the primal illumination
purpose of LEDs. The primary function of the LEDs is to provide
energy-efficient and high-quality illumination. For that reason,
any VLP system designed based on LEDs should be suitable for
that purpose and allow the LEDs to operate flawlessly without
any restraints. Also, the signals transmitted by the LEDs ina
VLP system should not cause any visible flicker, and the color
changes in the LEDs should not be detectable by the human eye
during signal transmission. In addition, a practical VLP system
should satisfy lighting level requirements of an illumination
system in which dimming control is a required feature. Lastly, it
is worth noting that the relationship between the applied current
and the light output of an LED is linear only in a limited
dynamic range. Therefore, VLP systems should be designed in
consideration of non-linear characteristics of LEDs, as well [29]–
[32].

C. Localization Techniques in VLP Systems

Similar to RF based positioning systems [33]–[39], VLP
systems consist mainly of two components; namely, transmitters
and receivers. LEDs correspond to the transmitter part of the
VLP system and send the necessary information (e.g., a position
signal or a code) in order for the receiver to determine its own
position in the system. On the receiving side of the VLP system,

two different types of receivers can be employed in general [40]–
[42]; namely, photo detector (PD) and imaging sensor. In both
cases, the received signals (i.e., lights) coming from the LEDs
are used to estimate the localization parameters such as the
relative distance and/or direction of the LED transmitters. Then,
the information gathered from the received signals is analyzed
based on the positioning techniques to figure out the locations
of the receivers. Regarding the types of receivers, the PD is
a low-cost solution for the receiver part of the VLP system
and provides energy efficient and high-rate data communication.
On the contrary, imaging sensors are often more costly and
suitable for applications with low data rate requirements [43].
Recently, with improved cost-performance trade-offs induced by
new CMOS technologies, those sensors can already be found in
smart devices such as smartphones and can readily be employed
in desired applications [43].

In a VLP system, various approaches can be employed for
location estimation, which can mainly be classified into two
groups:direct positioningandtwo-step positioning. In the direct
positioning approach, all the available information gathered from
the received signals is directly exploited to estimate the position
of the receiver without examining position related parameters in
advance. In other words, this approach does not include any
intermediate steps for parameter estimation and can provide
the optimal solution of the localization problem. On the other
hand, the two-step method performs position estimation in two
separate stages. In the first stage, position related parameters
are extracted, which is followed by estimation of the receiver
position in the second stage via various algorithms and methods
based on those parameters. The two-step positioning approach
has a lower complexity than the direct positioning approach
(which requires high data storage and communication capacity);
however, it leads to a suboptimal solution as it does not use the
received signals directly.

Within the context of two-step positioning, the studies in the
literature consider different position related parameters such as
received signal strength (RSS) [40], [44]–[46], time of arrival
(TOA) [47]–[49], time difference of arrival (TDOA) [50]–[52],
and angle of arrival (AOA) [53]–[56]. In VLP systems, RSS is
a common parameter which is employed to gather information
related to the distance and orientation of the VLC receiver with
respect to the LED transmitter. Compared to the time based
parameters such as TOA and TDOA, the RSS parameter can
be estimated in a low complexity manner since synchronization
is not needed. On the contrary, the VLC receiver must be
synchronized with each of the LED transmitters in order to
estimate the distances between itself and the LED transmitters
based on TOA measurements. Regarding the TDOA parameter,
there is no need for synchronization between the VLC receiver
and the LED transmitters but the LED transmitters must be
synchronized among themselves so that the VLC receiver can
estimate the distance difference between itself and each pair of
LED transmitters based on the corresponding TDOA measure-
ment. Lastly, AOA is a promising parameter for VLP systems
and can efficiently be employed in the localization process.
Based on the direction of the received signal, the AOA based
systems can adequately perform localization with the help of
LOS connections between the LED transmitters and the VLC
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receiver.
Although the same types of position related parameters are

employed in both VLP and RF based localization systems, the
information carried by these parameters can be quite different.
In particular, the RSS parameter employed in VLP systems has
significantly higher accuracy than that in RF based systems [1].
The main reason for this is related to the severity of multipath
effects in RF based systems. Namely, RF-based systems suffer
from multipath interference and typically do not have an LOS
path between the transmitter and the receiver. On the contrary,
multipath effects are not as crucial in VLP systems as those in
RF-based ones since VLP systems commonly have LOS paths
between LED transmitters and VLC receivers and the diffuse
components arising from multipath scattering are much weaker
than the LOS component. Similar to the RSS parameter, the AOA
parameter, which is measured based on received power levelsat
PDs, can also provide high accuracy in VLP systems compared
to RF based solutions for the above-mentioned reasons [1]. In
addition, it is important to note that RSS and AOA parameters
provide a low-cost solution for VLP systems to estimate the
position of a VLC receiver accurately since they do not require
synchronization among VLC units. On the other hand, estimation
of TOA and TDOA parameters requires precise synchronization
and highly accurate time measurements, thus rendering these
metrics relatively costly in practical applications.

After the position related parameters are obtained in the first
step of the two-step positioning approach, a VLP system can
apply numerous algorithms and techniques in the second stepto
finalize the localization process. The algorithms and techniques
employed to that aim in the literature can be grouped as follows:
First of all, the proximity based methods perform localization
based on the data obtained from the nearest LED and suits for
applications in which very accurate position information is not
required [57], [58]. Secondly, the geometric methods determine
the position of the VLC receiver by analyzing the position related
parameters such as TOA and AOA in a geometric fashion [59],
[60]. In other words, the extracted information in the first step
is evaluated in the second step with the help of some geometric
processes such as trilateration and triangulation. The statistical
methods, which constitute the third group, benefit from the
statistical distributions of the parameters obtained in the first
step and derive the position estimators in view of those statistical
properties [55], [61]–[64]. Lastly, in the fingerprinting methods,
the estimated parameters based on the online measurements
performed by the VLC receiver are compared with the data in a
previously obtained database and a matching algorithm decides
the position of the VLC receiver in the system [65], [66].

Apart from the algorithms and techniques that can be applied
in the second step of the two-step positioning scheme, alternative
approaches can also be employed to improve the localization
performance of VLP systems [67]–[69]. As in RF based posi-
tioning systems [34], [70]–[72], cooperation among the entities
in a VLP system can enhance the accuracy of localization [67],
[68]. Moreover, the optimal power allocation approaches can
be designed for LED transmitters to enhance the localization
accuracy of the VLP system [69]. In these approaches, the
powers of the LEDs in the system can be set to the optimal levels
instead of operating all the LEDs at the same power level while

taking power and illumination constraints into account during
the design of the system.

D. Summary and Organization

In general, the aim of this paper is to provide an overview
of the position estimation methods for VLP systems. The main
points presented in the manuscript can be summarized as follows:

• We present the state-of-the-art methods for position esti-
mation in visible light systems, which can essentially be
classified as direct and two-step approaches.

• We investigate different types of position related parameters
employed in VLP systems, such as RSS, TOA, TDOA, and
AOA, and focus on positioning techniques that utilize those
parameters.

• We discuss the effects of cooperation on the performance of
VLP systems and present an iterative gradient projections
based cooperative localization algorithm, motivated by a
quasiconvex feasibility approach.

• We study the problem of optimal power allocation among
LED transmitters to maximize the localization performance
under practical constraints (e.g., illumination) and illustrate
the resulting accuracy improvements.

The remainder of the paper is organized as follows: Section II
presents position estimation methods for VLP systems. In Sec-
tion III, positioning techniques are discussed in the presence of
cooperation among the entities in a VLP system. Section IV
investigates the optimal power allocation problem for LEDs
in a VLP system in consideration of illumination constraints,
and then provides numerical examples for the solutions of the
optimization problems. Finally, Section V concludes the paper
and addresses some possible directions for future work.

II. POSITION ESTIMATION METHODS

In this section, we discuss various positioning schemes for
VLP systems to present a comprehensive insight on the state-
of-the-art techniques for parameter extraction and position es-
timation (see Fig. 1). In both RF and VLC based systems,
position estimation is performed by exchanging signals between
nodes with known locations (called asanchor/reference nodes)
and nodes whose locations are to be estimated (target/agent
nodes) [37], [61]. (Also, signal exchanges among target nodes
can provide additional location information, which is utilized
in cooperative positioningsystems; see Section III). For VLP
systems, LED transmitters, which have known locations and are
typically attached to the ceiling of a room in indoor scenarios,
function as anchor nodes, and VLC receivers, equipped with
PDs, seek to determine their own locations based on signals
transmitted by LEDs and detected through PDs1,2. Hence, VLC
receivers commonly performself-localization[81] by utilizing
incoming VLC signals and known locations of LEDs that emit
those signals. In the following, we focus on the two well-
known positioning paradigms, namely, direct positioning and
two-step positioning. Direct positioning consists of a single step

1In this paper, PD based VLC receivers are considered for VLP systems.
For imaging sensor based VLP systems, see [41], [42], [73]–[76].

2 The reader is referred to [25], [26], [46], [77]–[80] for some practical
implementations of VLP systems.
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Fig. 1. Classification of localization techniques for VLP systems.

for location estimation while two-step positioning is conducted
in two separate phases [61], [63], [82]–[84], as detailed inthe
following subsections.

A. Direct Positioning

In the direct positioning approach, localization relies ona
single-step estimation procedure that utilizes the entirereceived
waveforms to infer the location of a target node [61], [81],
[82], [85]. As opposed to the conventional two-step approach,
the direct positioning technique exploits the whole received
signals to estimate the location without intermediate steps for
extracting location dependent parameters [61], [82]. The direct
positioning method has successfully been applied to both RF
[82]–[88] and VLC [63], [89] based localization systems. To
investigate the direct positioning approach in VLP systems,
we describe the signal model at a VLC receiver, present the
direct positioning based maximum likelihood (ML) estimators,
and provide performance limits for localization in the following
sections.

1) Received Signal Model:Consider a VLP system with
NL LED transmitters and a VLC receiver. Assuming an LOS
scenario between each LED transmitter and the VLC receiver
[1], [47], the received signal at the PD of the VLC receiver due
to the ith LED transmitter can be expressed as [47]

ri(t) = αiRp si(t− τi) + ηi(t) (1)

for i ∈ {1, . . . , NL} and t ∈ [T1,i, T2,i], whereT1,i and T2,i

determine the observation interval for the signal emitted by
the ith LED transmitter,αi is the optical channel attenuation
between theith LED transmitter and the VLC receiver (αi > 0),
Rp denotes the responsivity of the PD,si(t) is the transmitted
signal of theith LED transmitter, which is nonzero over an
interval of [0, Ts,i], τi is the TOA of the signal emitted by
the ith LED transmitter at the VLC receiver, andηi(t) is zero-
mean additive white Gaussian noise with spectral density level
σ2. To facilitate independent processing of signals coming from
different LED transmitters, a type of multiple access scheme,
such as frequency-division or time-division multiple access [90],

[91], can be employed. Hence, the signals corresponding to
different LED transmitters do not interfere with each otherat
the VLC receiver, and the noise processes,η1(t), . . . , ηNL(t),
become independent.

Let lr = [lr,1 lr,2 lr,3]
T and lit =

[
lit,1 lit,2 lit,3

]T
denote,

respectively, the locations of the VLC receiver and theith LED
transmitter, and

∥∥lr − lit
∥∥ represent the distance between theith

LED transmitter and the VLC receiver. Then, the TOA parameter
in (1) can be modeled as

τi =

∥∥lr − lit
∥∥

c
+∆i (2)

where c is the speed of light, and∆i denotes the time offset
between the clocks of theith LED transmitter and the VLC
receiver. In synchronousVLP systems, where all the LED
transmitters and the VLC receiver are synchronized to a common
clock, ∆i = 0 for i = 1, . . . , NL. In asynchronoussystems,
synchronization exists neither among the LED transmittersnor
between the LED transmitters and the VLC receiver, in which
case∆i’s can be modeled as deterministic unknown parameters.
Finally, for quasi-synchronousVLP systems [92], where the
LED transmitters are synchronized to a common time reference
but are not synchronized with the VLC receiver,∆i = ∆ for
i = 1, . . . , NL.

Based on the Lambertian model [93], the optical channel
attenuationαi in (1) can be expressed as

αi =
(mi + 1)AR cosmi(φi) cos(θi)

2π
∥∥lr − lit

∥∥2 (3)

wheremi is the Lambertian order for theith LED transmitter,
AR is the area of the PD at the VLC receiver, andφi andθi are
the irradiation and the incidence angles, respectively, between
the ith LED transmitter and the VLC receiver [46], [47]. From
the definitions ofφi andθi (see Fig. 2), (3) can be rewritten as

αi = − (mi + 1)AR

[
(lr − lit)

Tni
t

]mi
(lr − lit)

Tnr

2π
∥∥lr − lit

∥∥mi+3 (4)
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Fig. 2. Illustration of configuration parameters in the Lambertian model, where
the cylinder represents theith LED, and the rectangular prism denotes the PD.

wherenr = [nr,1 nr,2 nr,3]
T andni

t =
[
ni
t,1 ni

t,2 ni
t,3

]T
stand

for the orientation vectors of the VLC receiver and theith LED
transmitter, respectively [47], [55].

It is assumed that the parametersAR, Rp, nr, mi, l
i
t, andni

t,
and the transmitted signalssi(t) for i = 1, . . . , NL are known
by the VLC receiver [55], [63].

Remark: It is important to emphasize that the signal model
in VLP systems differs from the one in RF-based localization
systems since the intensity of the electromagnetic waves is
modulated in VLP systems instead of the field of the wave, which
is employed in RF-based localization systems [47]. Therefore,
unlike in RF-based systems, the transmitted signal in VLP
systems cannot be negative. Hence, the design of modulation
techniques to be employed in VLP systems necessitates the
consideration of optical signal properties together with illumi-
nation constraints. In addition to modulation techniques,VLP
and RF-based systems differ in the channel model, as well. In
VLP systems, the optical channel model is considered, which
significantly depends on the orientations of the LED transmitter
and the VLC receiver, and the area of the PD at the VLC
receiver besides the locations of the VLC receiver and the LED
transmitter.

2) Direct Positioning Based ML Estimators:The rationale
behind the use of direct positioning is to estimate the VLC
receiver location,lr, by exploiting all the available information
about lr, i.e., the received signals{ri(t)}NL

i=1 in (1). In this
way, the information loss stemming from intermediate steps(cf.
Section II-B) can be avoided and the location can be estimated
in an optimal manner. In the following, the direct positioning
based ML estimators are investigated for synchronous, quasi-
synchronous, and asynchronous VLP systems.

• Direct Positioning in Synchronous Systems:Since∆i = 0
in (2) for synchronous systems, the ML estimator forlr can
be obtained from (1) as [63]

l̂
DP,syn

r = argmax
lr

NL∑

i=1

αi

∫ T2,i

T1,i

ri(t)si(t− τi)dt

− Rp

2

NL∑

i=1

α2
iE

i
2 (5)

whereEi
2 is the electrical energy ofsi(t), defined as

Ei
2 ,

∫ Ts,i

0

(
si(t)

)2
dt . (6)

The direct estimator in (5) performs a search over all
possible values of the unknown locationlr via its relation
to τi in (2) (with ∆i = 0) and toαi in (4).

• Direct Positioning in Quasi-Synchronous Systems:As the
LED transmitters are synchronized to a common time base
in quasi-synchronous systems, the time offsets in (2) are
the same among the LED transmitters, i.e.,∆i = ∆ for
i = 1, . . . , NL, where∆ is an unknown time offset. Under
this setting, the direct positioning based ML estimator is
given by [94]

(̂l
DP,qsy

r , ∆̂) = arg max
(lr,∆)

NL∑

i=1

αi

∫ T2,i

T1,i

ri(t)si(t− τi)dt

− Rp

2

NL∑

i=1

α2
iE

i
2 (7)

where Ei
2 is as defined in (6). Since the time offset∆

between the receiver and the transmitters is unknown, a
joint search overlr and ∆ must be performed in (7) to
find the optimallr. Note thatαi in (7) depends onlr via
(4), while τi is a function of bothlr and∆ via (2) (with
∆i = ∆ for i = 1, . . . , NL).

• Direct Positioning in Asynchronous Systems:For asyn-
chronous systems, the time offset∆i in (2) is an unknown
parameter. In this case, the ML estimator is obtained as [63]

l̂
DP,asy

r = argmax
lr

NL∑

i=1

(
αiC̃

i
rs − 0.5Rpα

2
iE

i
2

)
(8)

whereEi
2 is given by (6) and

C̃i
rs , max

τi

∫ T2,i

T1,i

ri(t)si(t− τi)dt . (9)

As observed from (8), the direct estimator in asynchronous
systems attempts to determine the location of the VLC
receiver based on its relation with the channel attenuation
factor in (4). This is due to the fact that no information
about lr can be extracted fromτi’s in (2) due to the
unknown time offsets in the asynchronous case. For this
reason, the resulting estimator in (8) employs the correlator
peak in (9) (cf. the integral expression in (5)) and utilizes
the relation oflr to αi’s only.

The direct positioning estimators in (5), (7) and (8) constitute
the optimal estimators (in the ML sense) for the location of the
VLC receiver. However, the direct positioning paradigm may
have several drawbacks, including high computational burden
[63] and excessive data storage and communication concerns.

Remark: In addition to their utilization in VLP systems,
direct localization algorithms have also been widely used for
RF based localization systems in the literature [82]–[88].A
common observation in RF and VLP systems regarding the
performance of direct position estimation is that the improvement
in localization accuracy provided by direct positioning over its
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two-step counterpart3 is particularly significant in the low SNR
regime [63], [82], [83], [85], [86], [88], [94]. The major differ-
ence between these two systems lies in the fact that different
types of signal metrics are employed for position estimation. In
particular, both signal strength based (i.e.,αi) and time based
(i.e., τi and ∆) information are utilized for direct positioning
in synchronous and quasi-synchronous VLP systems, as seen
from (5) and (7). On the other hand, received powers of RF
signals can severely be affected by multipath and shadowing
effects [95]; hence, cannot be used reliably in RF based direct
positioning algorithms. Hence, in general, direct localization
approaches in RF systems consider either synchronous [82]–[85]
or quasi-synchronous [83], [87] scenarios. However, for VLP
systems, direct position estimation can be performed also for
asynchronous scenarios since the Lambertian model in (3) can
accurately characterize the optical channel attenuation [8].

3) Performance Limits:Theoretical performance limits pro-
vide essential guidelines for the design and evaluation of practi-
cal VLP systems. In this part, we present the Cramér-Rao lower
bound (CRLB) on variances of unbiased estimates oflr in syn-
chronous, quasi-synchronous, and asynchronous VLP systems.
The localization accuracy limits characterized by the presented
CRLBs are attainable by the corresponding ML estimators in
(5), (7) and (8) at high SNRs and/or bandwidths [96], [97].

• CRLB in Synchronous Systems:The CRLB for localiza-
tion of the VLC receiver in synchronous VLP systems is
expressed as [63]

E
{
‖l̂r − lr‖2

}
≥ trace

{
J−1
syn

}
(10)

wherel̂r represents an unbiased estimate for the locationlr
and the Fisher information matrix (FIM)Jsyn is calculated
from

[Jsyn]k1,k2 =
R2

p

σ2

NL∑

i=1

(
Ei

2

∂αi

∂lr,k1

∂αi

∂lr,k2

+ Ei
1α

2
i

∂τi
∂lr,k1

∂τi
∂lr,k2

− Ei
3αi

(
∂αi

∂lr,k1

∂τi
∂lr,k2

+
∂τi
∂lr,k1

∂αi

∂lr,k2

))

(11)

for k1, k2 ∈ {1, 2, 3}. In (11),∂αi/∂lr,k and∂τi/∂lr,k are,
respectively, the partial derivatives of the channel attenu-
ation in (4) and the TOA parameter in (2) (for∆i = 0)
with respect tolr,k, Ei

2 is given by (6), andEi
1 andEi

3 are
defined as

Ei
1 ,

∫ Ts,i

0

(
s′i(t)

)2
dt (12)

Ei
3 ,

∫ Ts,i

0

si(t)s
′
i(t)dt (13)

with s′i(t) denoting the derivative ofsi(t).
• CRLB in Quasi-Synchronous Systems:In quasi-

synchronous VLP systems, the CRLB for location
estimation of the VLC receiver is expressed as [94]

E
{
‖l̂r − lr‖2

}
≥ trace

{
J−1
qsy

}
(14)

3Please see Section II-B for detailed treatment on two-step positioning
techniques.

where

Jqsy = Jsyn − 1
∑NL

i=1 E
i
1α

2
i

ννT (15)

with Jsyn being given by (11),ν = [ν1 ν2 ν3]
T , and

νk ,
Rp

σ

NL∑

i=1

(
Ei

1α
2
i

∂τi
∂lr,k

− Ei
3αi

∂αi

∂lr,k

)
(16)

for k ∈ {1, 2, 3}.
• CRLB in Asynchronous Systems:For asynchronous VLP

systems, the CRLB is stated as [55], [63]

E
{
‖l̂r − lr‖2

}
≥ trace

{
J−1
asy

}
(17)

where the FIM is calculated from

[Jasy]k1,k2 =
R2

p

σ2

NL∑

i=1

(
Ei

2 −
(Ei

3)
2

Ei
1

)
∂αi

∂lr,k1

∂αi

∂lr,k2

(18)

for k1, k2 ∈ {1, 2, 3}.

It is noted that the transmitted signals,si(t), affect the FIM
expressions in (11), (15) and (18) viaEi

1, Ei
2, andEi

3, and the
contribution of the system geometry to the FIM is through the
∂αi/∂lr,k and∂τi/∂lr,k terms. In addition, the∂τi/∂lr,k terms
do not appear in (18) since the TOA parameter does not provide
location related information in asynchronous systems.

Based on the CRLB expressions, some practical scenarios can
be investigated to gain insights into the localization performance
of VLP systems with varying levels of synchronism. In par-
ticular, the following practical assumptions are considered: (i)
Ei

3 = 0 for i = 1, . . . , NL, which is the case for most practical
pulses4, and (ii) the transmitted signalssi(t) are identical, i.e.,
si(t) = s(t). (In this case, the parameters related to the pulse
shape are the same for all the LED transmitters, i.e.,Ei

1 = E1,
Ei

2 = E2, andEi
3 = E3 for i = 1, . . . , NL.) Then, it follows

from (15) that

Jsyn − Jqsy =
R2

pE1

σ2
ϑϑT (19)

whereϑ = [ϑ1 ϑ2 ϑ3]
T with ϑk ,

∑NL

i=1 α
2
i

∂τi
∂lr,k

/√∑NL

i=1 α
2
i

for k ∈ {1, 2, 3}. From (19), it is clear thatJsyn � Jqsy is always
satisfied sinceE1 is positive by definition, whereJsyn � Jqsy

means thatJsyn − Jqsy is positive semidefinite. Therefore, it
is deduced from (10) and (14) that synchronism between the
LED transmitters and the VLC receiver helps achieve a reduced
CRLB (that is, improved localization performance), as expected.
In addition, based on Parseval’s relation [48]

E1 = 4π2β2E2 (20)

where β denotes the effective bandwidth ofs(t),5 it can be
inferred from (19) that the information gain via synchronism

4Ei
3 is calculated from (13) asEi

3 = (si(Ts,i)2 − si(0)2)/2, which is
zero for practical pulse shapes (e.g., [47, Eq. 3]).

5β is defined asβ =
√

(1/E2)
∫
f2|S(f)|2df with S(f) representing the

Fourier transform ofs(t) [62].
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becomes more significant asβ gets larger. Similar to (19), a re-
lation between the FIMs of quasi-synchronous and asynchronous
systems can be derived as

Jqsy − Jasy =
R2

pE1

σ2

((
NL∑

i=1

α2
iµiµ

T
i

)
− 1
∑NL

i=1 α
2
i

µ̃µ̃T

)

(21)
where µi = [µi,1 µi,2 µi,3]

T , µ̃ ,
∑NL

i=1 α
2
iµi, and µi,k ,

∂τi/∂lr,k. It follows from the Cauchy-Schwarz inequality that
Jqsy � Jasy. Based on (21), similar conclusions to those
related to (19) can be made. Namely, as the effective bandwidth
increases, the accuracy of (quasi-)synchronous positioning im-
proves. This suggests that using LEDs with optical clock rates up
to 120MHz [98], very precise position estimates can be obtained
in (quasi-)synchronous VLP systems. However, for VLP signals
with relatively low effective bandwidths and/or in the presence
of imperfect synchronization, asynchronous VLP systems would
be more preferable due to their low complexity.

B. Two-Step Positioning

As the most prevalent approach for positioning in VLP
systems, the two-step method first extracts position related
parameters from the received VLC signals and then performs
position estimation based on those parameters. Compared to
direct positioning, the two-step approach leads to low compu-
tational complexity as it utilizes only a subset of the available
information (i.e., position dependent parameters) for positioning
instead of the entire received signals [63]. Hence, a certain level
of accuracy is sacrificed for the sake of a reduced computational
burden in two-step positioning. In the following, we first describe
the commonly employed position dependent parameters in the
first step and how to estimate them in an optimal manner. Then,
we present position estimation techniques that employ those
parameters in the second step to obtain an estimate of the VLC
receiver location.

1) Parameter Estimation:Estimation of position dependent
parameters in a VLP system is carried out as the first step of a
two-step positioning method. This part will focus on the most
common parameters used in the first step of VLP algorithms,
including RSS, TOA, TDOA, and AOA, and also present hybrid
algorithms that utilize a combination of those parameters.

a) Received Signal Strength: The RSS estimate (measure-
ment) obtained from the received VLC signal contains positional
information as the channel attenuation factor6 in (4) depends on
the locationlr of the VLC receiver. According to the Lambertian
model in (4), which characterizes the level of attenuation in visi-
ble light channels, the received signal gets weaker as the distance
between the LED transmitter and the VLC receiver increases or
as the displacement vectorlr − l

i
t deviates from the orientation

of the LED transmitter and/or the VLC receiver. In practical
VLP systems, RSS based positioning is a common technique
due to its low-cost hardware implementation that requires no
synchronization, as opposed to TOA based schemes [44]–[46].
In addition, multipath effects in indoor visible light channels are

6In this paper, the RSS parameter refers to the channel attenuation factor
αi sinceαi is nonnegative and the received signal energy is determinedby αi

[63].

not significant as compared to RF propagation, which makes
the Lambertian formula a reliable model for quantification of
channel attenuation [16]–[18], [8, Sec. 3.4.1].7 Therefore, RSS
has been a popular discriminative feature for positioning in
visible light systems [40], [44]–[46], [64], [100]–[103].

For an asynchronous VLP system, the ML estimateα̂i of the
RSS parameterαi corresponding to theith LED transmitter can
be obtained from the received signal in (1) as

α̂i =
C̃i

rs

RpEi
2

(22)

if C̃i
rs ≥ 0 (α̂i = 0 otherwise), wherẽCi

rs andEi
2 are given by

(9) and (6), respectively [63]. From (22), it is observed that the
RSS parameter corresponds to a scaled version of the measured
energy at the VLC receiver as̃Ci

rs represents the peak value of
the correlator output in (9) (obtained by correlating the received
signal with delayed replicas of the transmitted signal). After
obtaining the RSS estimates{α̂i}NL

i=1 in the first step, a two-
step algorithm can use them as an input to the second step to
estimate the VLC receiver location.

Since the orientations of the LED transmitters and the VLC
receiver (denoted byni

t and nr, respectively) affect the RSS
measurement in (4), the estimated RSS value cannot directlybe
translated to a distance estimate in general. However, in certain
practical scenarios, distance information can unambiguously be
obtained from the RSS estimates. For example, consider a VLP
scenario in which the LED transmitters are pointing downwards
(i.e., ni

t = [0 0 − 1]
T ), the VLC receiver is pointing upwards

(i.e., nr = [0 0 1]
T ), and the height of the VLC receiver is

known (that is, the receiver moves on a horizontal plane and
performs two-dimensional localization) [45], [47]–[49],[64],
[100], [101]. Then, the RSS parameter in (4) can be expressed
as

αi =
(mi + 1)ARh

mi+1
i

2πdmi+3
i

(23)

wherehi is the height of theith LED transmitter with respect
to the VLC receiver anddi =

∥∥lr − lit
∥∥ is the distance between

the ith LED transmitter and the VLC receiver. Based on the
relation (23), the distance estimatêdi can be calculated from
the RSS estimatêαi [40], [48], which can then be utilized in
a trilateration algorithm to get the final position estimate[18],
[44], [45], [104].

The accuracy of RSS information can be quantified by theoret-
ical performance limits to explore the best achievable estimation
performance. The CRLB on the variance of an unbiased estimate
α̂i of the RSS parameterαi can be expressed as [63]

E
{
(α̂i − αi)

2
}
≥ Ei

1

Ei
1E

i
2 − (Ei

3)
2

σ2

R2
p

(24)

whereEi
1, Ei

2 andEi
3 are given by (12), (6) and (13), respec-

tively. As noted from (24), the performance of RSS estimation
deteriorates with an increase in the noise level in the received
signal in (1). In addition, as the electrical energyEi

2 of the
transmitted signal increases, the RSS information becomesmore

7Multipath effects can significantly be mitigated by employing calibration
techniques, such as selecting a subset of LEDs and using a dense LED
configuration [99].
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Fig. 3. The square-root of the CRLB expression in (25) versusthe Lambertian
order,mi, for various values of distancedi.

accurate due to more favorable signal-to-noise ratio (SNR)con-
ditions. Moreover, the accuracy of RSS estimates improves for
larger values of the responsivityRp of the PD since responsivity,
defined in terms of amperes per watt, measures the conversion
efficiency of incident optical power to electrical current [93].

For scenarios in which the RSS-distance transformation can
explicitly be performed (as in (23)), the CRLB for RSS based
distance estimation can be obtained as [48], [101]

E
{
(d̂i − di)

2
}
≥ Ei

1

Ei
1E

i
2 − (Ei

3)
2

(
2πσd3i
RpAR

)2

× 1

(mi + 1)2(mi + 3)2

(
di
hi

)2mi+2

(25)

where d̂i denotes an unbiased estimate ofdi. From (25), it is
observed that whendi ≈ hi, that is, when the VLC receiver
is almost directly under the LED, the CRLB decreases with
an increasing Lambertian ordermi since the sensitivity of RSS
to distance becomes more pronounced for larger values ofmi

in such cases. More specifically, considering the fact that the
directivity of an LED is determined by the Lambertian order
(more directive for larger orders), the Lambertian patternin (23)
is more sensitive to distance (or, angle8) around the peak point
of the pattern for higher levels of directivity. On the otherhand,
when di ≫ hi, the accuracy of distance estimation improves
as the Lambertian order decreases since more signal power
can be received at longer distances if the LED is not very
directive. These remarks are illustrated for an example scenario
in Fig. 3, wherehi = 2m, Ei

2 = 2.25 × 10−4 W, Ei
3 = 0,

σ2 = 1.3381×10−22 W/Hz, Rp = 0.4A/W, andAR = 10−4 m2

in (25) (the same parameters as in [48] with a source optical
power of1W).

b) Time of Arrival: The distance between an LED trans-
mitter and a VLC receiver can be calculated based on the

8For two-dimensional scenarios, irradiation angleφi can be converted to
distance bydi = hi/ cosφi, wherehi is the known height of the LED with
respect to the receiver.

time of flight of the signal between the two devices, which
is determined by the TOA parameter as defined in (2). The
primary requirement for the utilization of TOA information
in VLP systems is that the clocks of the LED transmitters
and the VLC receiver must be synchronized [47]. In the case
of synchronization, the VLC receiver can estimate the TOAs
of the incoming signals from multiple LEDs and accomplish
position estimation based on these TOA (equivalently, distance)
estimates. Due to the increased cost of implementation asso-
ciated with clock synchronization, the research on TOA-based
positioning is fairly limited [47]–[49], [63].

The TOA parameter can be estimated from the received VLC
signal in (1) as [48], [63]

τ̂i = argmax
τi

∫ T2,i

T1,i

ri(t)si(t− τi)dt (26)

where τ̂i is the ML estimate of the TOA parameterτi. As
observed from (26), the optimal ML TOA estimation is achieved
by the correlation (matched filter) receiver [105]. That is,the
TOA between the transmitter and the receiver is estimated by
performing correlation of the received VLC signal with delayed
copies of the transmit signal and identifying the location at which
the peak occurs.

The CRLB for distance estimation based on TOA information
in synchronous VLP systems is stated as [47], [48]

E
{
(d̂i − di)

2
}
≥ Ei

2

Ei
1E

i
2 − (Ei

3)
2

(
σc

Rp αi

)2

(27)

whered̂i represents an unbiased estimate of distancedi between
the ith LED transmitter and the VLC receiver, andc is the
speed of light. It is noted from (27) that the accuracy of TOA
estimation increases with the SNR (cf. the signal model in (1)).
In addition, forEi

3 = 0, the lower bound in (27) reduces for
larger effective bandwidths via (20). As opposed to the TOA
based method, the effective bandwidthsβi’s have no effects on
the CRLB of RSS based distance estimation in (25) forEi

3 = 0.
Therefore, synchronous VLP systems exploiting high-bandwidth
LEDs offer the potential of high accuracy distance estimation.

c) Time Difference of Arrival: TDOA based positioning
exploits the differences between the distances from multiple LED
transmitters to the VLC receiver. The TDOA parameter can be
obtained by taking the difference of two TOA measurements
corresponding to two different LEDs as

∆τ̂ij = τ̂i − τ̂j (28)

where∆τ̂ij denotes the TDOA estimate between theith andjth
LEDs, andτ̂i is the TOA estimate for theith LED as in (26).
Considering the TOA model in (2), the TDOA parameter in the
noiseless case can be modeled as follows:

∆τij =

∥∥lr − lit
∥∥

c
−
∥∥lr − l

j
t

∥∥
c

+∆i −∆j . (29)

In the presence of synchronization among the LED transmitters
(i.e., ∆i = ∆ for i ∈ {1, . . . , NL}), the TDOA information in
(29) characterizes the difference in the TOA values belonging
to the two LEDs since the constant time offsets are removed
via subtraction. Hence, utilizing TDOA measurements requires
that the LED transmitters are synchronized to a common time
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reference [106]. However, as opposed to TOA based positioning,
no synchronization is required between the LED transmitters
and the VLC receiver, thereby making TDOA a relatively less
expensive method for VLP systems [106].

Besides the TDOA estimation method in (28), the cross-
correlation of the two received signals can be performed to
estimate the TDOA parameter as follows [50], [51]:

∆τ̂ij = argmax
∆τij

∫ T2,ij

T1,ij

ri(t)rj(t+∆τij)dt (30)

whereT1,ij andT2,ij specify the complete observation interval
corresponding to the signals emitted by theith andjth LEDs.
Another method for measuring the range differences between
LEDs is to utilize different carrier frequencies for the transmit
signalssi(t) belonging to different LEDs [26], [52], [107]. In
this way, phase differences between the received signals can be
converted to distance differences [52]. Moreover, TDOA canalso
be calculated by using the same carrier frequency with different
phase shifts forsi(t)’s [108].

d) Angle of Arrival: The information regarding the AOA
of VLC signals incident upon the PD of the VLC receiver can be
exploited to determine the position of the VLC receiver. Specifi-
cally, with the knowledge of the positions and the orientations of
LED transmitters, the AOA (i.e., the incidence angle) of a signal
arriving at a PD yields a unique angle of departure (AOD) (i.e.,
the irradiation angle) from the LED that emits that signal. In the
ideal case of noiseless AOA/AOD estimation, the intersection
point of the lines extending from multiple LEDs in the directions
of the corresponding AOD estimates would coincide with the
location of the VLC receiver [55], [60], [109]. Hence, VLP
systems can take advantage of the AOA parameter for location
estimation.

One way to estimate the AOA parameter is via the LED con-
nectivity information, which can be acquired by deploying multi-
LED visible light access points (VAPs) in an indoor scenario
[55], [60]. Each VAP can be designed to contain multiple LED
transmitters with very narrow field of views, whose orientations
are adjusted such that every point in the room gathers a signal
only from a single LED [60, Fig. 1]. For such a configuration,
the receiver is connected to a single LED of each VAP, which
characterizes the AOA information gathered from that VAP via
the orientation of the designated LED.

Another method for AOA estimation is to use an array of
PDs in the VLC receiver [53], [54], [110], [111]. For instance,
the differences in RSS measurements at the PDs arranged in a
circular layout on the VLC receiver can be utilized to estimate
the AOA of the signal at the receiver [53]. It is also possible
to use a uniform linear array (ULA) of PDs to determine the
direction of arrival of the VLC signal via a beamforming vector
[54], [110]. To increase the sensitivity of received powersat
PDs to the direction of signal arrival, a reasonable approach is
to employ aperture-based receivers where an opaque aperture
containing a hole is placed on top of each PD in a circular array
[56], [111]. In such configurations, the holes on the apertures
are shifted from the location of PDs towards the center of the
circular array [111, Fig. 1] to enlarge the relative differences in
the measured signal powers at PDs, resulting in more accurate
AOA estimates.

Similar to array configurations, the VLC receiver structures in-
volving multiple PDs with different orientations can be employed
to obtain AOA information from the received signals [109],
[112]–[115]. Using a corner-cube structure that involves three
PDs with orthogonal detector planes, AOA estimation can be
performed by measuring the difference in signal powers received
at the PDs [109], [115]. Similarly, multiple tilted PDs on a VLC
receiver can reveal information about the direction of arrival of
incoming signals via the differences of RSS measurements atthe
PDs [112]–[114].

e) Hybrid Approaches: In addition to parameter estimation
methods that utilize only a single property of received VLC
signals (e.g., TOA, RSS, or AOA), there exist hybrid schemes
that aim to estimate position dependent parameters throughjoint
utilization of several signal attributes [48]. Such hybridap-
proaches are likely to produce more accurate first-step parameter
estimates compared to conventional techniques by blendingthe
benefits of each signal characteristic into a unified estimation
framework.

As discussed previously, both TOA and RSS measurements
can provide information for distance estimation in VLP systems.
Hence, an ML based distance estimator that incorporates infor-
mation from both time delay (i.e., TOA) and optical channel
attenuation (i.e., RSS) parameters can be designed to improve
the accuracy of ranging in a synchronous scenario [48]. For such
an estimator, the information obtained from the TOA parameter
gets more significant as the effective bandwidth of the signal
increases. For small effective bandwidths (around for1MHz or
lower), the additional information from the TOA parameter be-
comes negligible compared to the information obtained fromthe
RSS parameter; hence, synchronism does not provide significant
performance benefits in such scenarios (since RSS can also be
estimated in asynchronous systems) [48].

2) Position Estimation:As the second step of a two-step
positioning algorithm, the position estimation proceduretakes
as input the position related parameters from the first step and
outputs the estimated position of the VLC receiver. In this part,
we discuss four different classes of position estimation methods;
namely, proximity based methods, geometric methods, statistical
methods, and fingerprinting/mapping methods.

a) Proximity Based Methods: Proximity based position
estimation depends simply on connectivity information andthus
has the advantage of being computationally efficient. In a prox-
imity based positioning scheme, the VLC receiver extracts from
the received signals the identification data of the nearest LED9

and relays it to a central database, which transmits the LED
position information corresponding to that identificationback to
the receiver [1], [57], [58], [116]. As an alternative approach,
LED transmitters may broadcast their positions instead of their
identities, which circumvents the need for communicationswith
the database [1], [58]. As the result of this process, the VLC
receiver acquires the location of the closest LED, which provides
a rough location information (i.e., the receiver lies in thearea
spanned by the field of view of the specified LED transmitter).

9If the receiver can determine the identity of multiple LED transmitters,
meaning that the receiver is connected to multiple LEDs or that the receiver is
able to decode the signals coming from multiple LEDs, then itselects the one
with the largest RSS value as the nearest LED [106].
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Therefore, the accuracy of proximity based positioning is pri-
marily affected by how dense the LEDs are deployed over the
ceiling of the indoor environment in which the receiver operates
[64].

Proximity based localization is particularly useful for ap-
plications where accuracy requirements are not strict, such as
asset tracking in hospitals and location-aware services inart
galleries [1]. However, certain applications, such as mobile robot
navigation, may require more precise location informationthan
that provided by the proximity based method [1]. In order
to alleviate this problem, angular information obtained from
auxiliary sensors can be combined with the proximity based
information to refine the coarse position estimates [117]. In
addition, a biconvex lens can be inserted under each LED
luminary containing multiple LED transmitters to improve the
accuracy of proximity based positioning by providing angular
diversity [118].

b) Geometric Methods: Geometric techniques exploit the
geometric interpretations of the first-step parameter estimates to
obtain the position of the VLC receiver. In the following, we
elaborate on how geometric properties of measurements related
to distance (TOA/RSS), angle (AOA), and distance difference
(TDOA) can be utilized for localization.

• Distance Based Geometric Localization:In geometric po-
sition estimation, a distance estimate between an LED
transmitter and the VLC receiver, which can be derived
from TOA and/or RSS measurements10, delineates a sphere
around the LED transmitter corresponding to possible loca-
tions of the VLC receiver. Based on distance measurements
from four (three) LEDs in three (two) dimensional posi-
tioning, the VLC receiver is able to estimate its location
as the intersection point of four (three) spheres (circles),
a process which is called trilateration. As an example, for
two dimensional VLP systems where the height of the VLC
receiver is known, consider the following noiseless model
for distance measurements betweenNL LED transmitters
and the VLC receiver:

(lr,1 − lit,1)
2 + (lr,2 − lit,2)

2 = (d̂hori )2, i = 1, 2, . . . , NL

(31)
wherelr,k and lit,k denote, respectively, thekth component
of the position vector of the VLC receiver and theith LED
transmitter, and̂dhori is the horizontal distance measurement
between the VLC receiver and theith LED transmitter11.
After some algebraic manipulations, (31) can be expressed
as

Ax = b (32)

wherex = [lr,1 lr,2] is the unknown horizontal location of
the VLC receiver, and the entries ofA ∈ R

(NL−1)×2 and

10As mentioned in Section II-B1, an RSS measurement can be translated to
a distance estimate only under certain conditions.

11d̂hori is obtained byd̂hori =
√

(d̂i)2 − h2
i where d̂i is the distance

measurement between theith LED transmitter and the VLC receiver andhi

is the known height of the transmitter with respect to the receiver.

b ∈ R
(NL−1)×1 are given, respectively, by [44], [45], [59]

Ai,k = li+1
t,k − l1t,k (33)

bi =
(d̂hor1 )2 − (d̂hori+1)

2 + (li+1
t,1 )2 + (li+1

t,2 )2

2

− (l1t,1)
2 + (l1t,2)

2

2
(34)

for i ∈ {1, 2, . . . , NL − 1} and k ∈ {1, 2}. In the prac-
tical case of noisy distance measurements, the linear least
squares (LLS) estimatêx of x can be obtained as [44], [45],
[59]

x̂ = (ATA)−1ATb . (35)

• Angle Based Geometric Localization:In addition to dis-
tance based geometric positioning, there also exist localiza-
tion techniques that leverage the geometric implications of
angle measurements to estimate the position of the VLC
receiver [55], [60]. The set of possible locations of the
VLC receiver based on an AOA measurement from an
LED transmitter lies on a straight line passing through
the LED. Then, two AOA measurements can be used to
specify the location of the VLC receiver as the intersection
point of the two lines defined by these measurements in the
ideal case. To express the geometric relations in a formal
manner, consider a two dimensional localization scenario
in which the noiseless AOA estimatêϕi related to theith
LED transmitter is expressed as [60]

tan ϕ̂i =
lr,2 − lit,2
lr,1 − lit,1

, i = 1, 2, . . . , NL (36)

Then, based on (36), the following linear relation can be
obtained [60]:

Ax = b (37)

wherex = [lr,1 lr,2] denotes the VLC receiver location,
andA ∈ R

NL×2 andb ∈ R
NL×1 consist of the following

elements:

Ai,1 = sin ϕ̂i (38)

Ai,2 = − cos ϕ̂i (39)

bi = lit,1 sin ϕ̂i − lit,2 cos ϕ̂i (40)

for i ∈ {1, 2, . . . , NL}. Similar to (35), in the case of noisy
measurements, the LLS estimatex̂ of the unknown location
x can be calculated as

x̂ = (ATA)−1ATb . (41)

• Distance Difference Based Geometric Localization:In the
absence of measurement noise, a TDOA measurement spec-
ifies the difference of distances from the VLC receiver to
two LED transmitters, and implies that the receiver must be
located on a hyperbola the focus of which is the closest LED
transmitter (considering a two dimensional VLP scenario
with a known receiver height) [106]. Hence, it is possible
to determine the position of the VLC receiver using two
TDOA measurements, which yield a unique intersection
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point of the two respective hyperbolas under certain condi-
tions [81]. To formulate the TDOA based localization, the
following TDOA measurement model is adopted via (29):

∆τi1 =

∥∥lr − lit
∥∥−

∥∥lr − l1t
∥∥

c
, i = 2, . . . , NL (42)

where the first LED is selected as the reference. In the
presence of noisy TDOA measurements∆τ̂i1 obtained by
(28), the unknown locationlr can be estimated by the
following nonlinear least squares (NLS) estimator [119]:

l̂r = argmin
lr

NL∑

i=2

(∆τi1 −∆τ̂i1)
2 (43)

where the dependence of∆τi1 on lr, expressed in (42), is
used for finding the optimal location in (43). Apart from
the NLS estimator, the TDOA based geometric techniques
involving linear and quadratic equations can also be em-
ployed for localization [33].

c) Statistical Methods: Statistical positioning methods
make use of the statistical properties of the parameter measure-
ments obtained in the first step to design position estimators.
Contrary to geometric techniques, which lack mathematicalrigor
and depend solely on insights derived from the localization
geometry, statistical techniques constitute a methodicalway of
position estimation and thus can provide asymptotic optimal-
ity/performance guarantees [81]. For instance, the ML position
estimators in [55], [63], [64], [102] can asymptotically achieve
the CRLB as the SNR increases. In the following, we first
present a generic formulation for position estimation based on
a statistical measurement model and then introduce statistical
estimators employed in synchronous, quasi-synchronous, and
asynchronous VLP systems.

• Generic Formulation:Consider the following measurements
obtained by the VLC receiver in the parameter estimation
step (i.e., the first step) of a two-step positioning approach
[61]:

χ = ω(lr) + ζ (44)

with χ = [χ1 . . . χNL ]
T , ω(lr) = [ω1(lr) . . . ωNL(lr)]

T ,
and ζ = [ζ1 . . . ζNL ]

T , where χi denotes the first-step
parameter measurement corresponding to theith LED trans-
mitter,ωi(lr) is the true value of the parameter related to the
ith LED transmitter, which depends on the locationlr of the
VLC receiver, andζi is the noise for theith measurement.
For example,ωi(lr) may represent the TOA parameter in
(2), the RSS parameter in (4), the TDOA parameter12 in
(29), or the AOA parameter in (36). Assuming that the
probability density function (PDF) of the noise vectorζ
is given byfζ(·), the conditional PDF of the measurement
vectorχ given lr can be expressed as [61]

fχ(χ | lr) = fζ(χ− ω(lr)) . (45)

Based on the availability of prior information onlr, several
statistical estimators can be investigated. In the absence

12In the case of TDOA measurements, the number of measurementsthat carry
information reduces toNL − 1 since the first LED is selected as the reference
for TDOA calculations (see (42)).

of prior information, the ML estimator, which maximizes
the likelihood of observations in (45), can be employed to
estimatelr [62]:

l̂
ML

r = argmax
lr

fχ(χ | lr) . (46)

If the prior information onlr is available, Bayesian esti-
mators can be used for position estimation. Denoting the
prior PDF of lr by π(lr), the two well-known Bayesian
estimators, namely, the maximuma posteriori probability
(MAP) estimator and the minimum mean square error
(MMSE) estimator, can be obtained, respectively, as [62]

l̂
MAP

r = argmax
lr

fχ(χ | lr)π(lr) (47)

l̂
MMSE

r = E{lr |χ} . (48)

• ML Position Estimation in Synchronous VLP Systems:For
synchronous VLP systems, both TOA and RSS parameters
can be calculated in the first step and employed for position
estimation in the second step. First, the asymptotic charac-
teristics of the TOA and RSS estimates are discussed, which
provides a basis for designing ML position estimators.
Let τ , [τ1 . . . τNL ]

T and τ̂ , [τ̂1 . . . τ̂NL ]
T , whereτi

is the true value of theith TOA parameter in (2) (with
∆i = 0) and τ̂i is the ith TOA estimate in (26). Similarly,
let α , [α1 . . . αNL ]

T and α̂ , [α̂1 . . . α̂NL ]
T , whereαi

and α̂i denote, respectively, the true value of theith RSS
parameter in (4) and theith RSS estimate in (22). Assuming
thatEi

3 = 0 for i = 1, . . . , NL (see (13)), the TOA estimates
τ̂ and the RSS estimateŝα can be modeled as independent
Gaussian random vectors in the high SNR regime (i.e., for
α2
iR

2
pE

i
2 ≫ σ2; cf. (1) and (6)) as follows [63]:

τ̂ ∼ N (τ ,Στ ) (49)

α̂ ∼ N (α,Σα) (50)

where

Στ = diag

({
σ2

R2
pα

2
iE

i
1

}NL

i=1

)
(51)

Σα = diag

({
σ2

R2
pE

i
2

}NL

i=1

)
(52)

with diag(·) denoting the diagonal matrix,N (µ,Σ) rep-
resents the Gaussian distribution with mean vectorµ and
covariance matrixΣ, and Ei

1 and Ei
2 are given by (12)

and (6), respectively. It is noted that (49) and (50) result
from the asymptotic unbiasedness and efficiency properties
of ML estimation [62]. Next, from (49) and (50), the ML
estimator for lr based on the first-step TOA and RSS
estimates{τ̂i, α̂i}NL

i=1 is obtained as [63]

l̂
TS,syn

r = argmin
lr

NL∑

i=1

(
Ei

1α
2
i (τ̂i − τi)

2
+ Ei

2 (α̂i − αi)
2
)

− 2σ2

R2
p

NL∑

i=1

logαi (53)

where the optimallr is searched via the relations ofτi and
αi with lr, as defined, respectively, in (2) (with∆i = 0) and
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(4). In the high SNR regime, the last term in (53) becomes
negligible as compared to the others andαi in the first term
is approximately equal tôαi via (50). Hence, the estimator
in (53) can be simplified to [63]

l̂
TS,syn

r = argmin
lr

NL∑

i=1

(
Ei

1α̂
2
i (τ̂i − τi)

2 + Ei
2 (α̂i − αi)

2
)

(54)

which is an NLS estimator. It is shown in [63, Prop. 2] that
the NLS estimator in (54) is asymptotically optimal, i.e.,
attains the CRLB in (10) at high SNRs.

• ML Position Estimation in Quasi-Synchronous VLP Sys-
tems: Since the LED transmitters and the VLC receiver
are not synchronized in quasi-synchronous VLP systems,
TOA measurements cannot directly be utilized in the
second step of a two-step estimator. However, by virtue
of synchronization among the LED transmitters, TDOA
measurements can be employed along with RSS measure-
ments to design an ML estimator forlr. Choosing the first
LED as the reference, let∆τ , [∆τ21 . . . ∆τNL1]

T and
∆τ̂ , [∆τ̂21 . . . ∆τ̂NL1]

T , where∆τi1 and∆τ̂i1 denote,
respectively, the true value of theith TDOA parameter
in (42) and theith TDOA estimate in (28). Then, for
Ei

3 = 0, i = 1, . . . , NL, the TDOA and RSS measurement
vectors are independent and distributed asymptotically (at
high SNRs) as [94]

∆τ̂ ∼ N (∆τ ,Σ∆τ ) (55)

α̂ ∼ N (α,Σα) (56)

whereΣα is as in (52) and

Σ∆τ =
σ2

R2
pα

2
1E

1
1

1+ diag

({
σ2

R2
pα

2
iE

i
1

}NL

i=2

)
(57)

with 1 denoting the all-ones matrix. Then, the ML estimate
of lr based on the TDOA estimates∆τ̂ and the RSS
estimateŝα can be written as [94]

l̂
TS,qsy

r = argmin
lr

(υ̂−υ)TΣ−1(υ̂−υ)+log |Σ∆τ | (58)

where υ̂ ,

[
∆τ̂T α̂T

]T
, υ ,

[
∆τ T αT

]T
, and Σ ,

Diag (Σ∆τ ,Σα) with Diag(·) denoting the block diagonal
matrix. The cost function in (58) depends on the unknown
location lr via υ, Σ∆τ , andΣ.

• ML Position Estimation in Asynchronous VLP Systems:
Since time-based information cannot be obtained in asyn-
chronous VLP systems, only the RSS measurements can
be utilized for the second step of the two-step position
estimation. Then, the ML estimator forlr based on the RSS
measurements can be written as [63]

l̂
TS,asy

r = argmin
lr

NL∑

i=1

wi(α̂i − αi)
2 (59)

whereαi is the true value of the RSS parameter associated
with the ith LED transmitter and depends onlr via (4),
α̂i is the RSS estimate for theith LED transmitter, which

is obtained by (22), and the weighting coefficientswi are
defined as [63]

wi = Ei
2 −

(Ei
3)

2

Ei
1

· (60)

The proposed weighting coefficient in (60) is determined
according to the reliability of each RSS estimate. Therefore,
wi is inversely proportional to the CRLB for estimatingαi

from the received signalri(t), as observed from (24). As
demonstrated in [63, Prop. 4], the two-step estimator in
(59) is equivalent to the direct estimator in (8) forEi

3 = 0.
Thus, the two-step estimator is the optimal ML estimator
in asynchronous VLP systems for practical pulse shapes.
d) Fingerprinting/Mapping Methods: A fingerprinting

method for position estimation generally consists of two phases,
namely, the offline phase and the online phase. In the offline
phase, a database is constructed by gathering measurementsover
a grid of reference points in an indoor environment [65], [66].
Each entry of the database stores the location of the specified
reference point and the parameter estimates (e.g., RSS, TOA,
TDOA, AOA, or a combination of them) associated with the
LED transmitters obtained at that location [65], [66]. In the
online phase, the vector of parameter estimates measured by
the VLC receiver is compared with the database to decide on
the location of the receiver according to a proximity measure
between the online measurement vector and the offline pre-stored
database [17], [65], [66]. In addition, a decision rule thatmaps
the online feature/measurement vector to a location in the scene
can be devised using machine learning techniques, such ask
nearest neighbor (k-NN), neural networks, and random forest
[120]. Hence, based on the training database containing offline
parameter measurements, a fingerprinting/mapping method can
learn a classifier through which online measurements are mapped
to corresponding locations in the room.

One of the most common parameters employed in fingerprint-
ing methods for VLP systems is the RSS parameter [28], [65],
[66], [120]–[126] since it does not require synchronization as in
the case of TOA and TDOA measurements, and it can simply
be measured via a single PD at the receiver as opposed to
AOA measurements. Another parameter that can be preferred
for fingerprinting is the extinction ratio, which refers to the
difference between the received powers corresponding to bit-0
and bit-1 transmissions [127].

Given a comprehensive offline database with densely placed
reference points, fingerprinting/mapping techniques are capable
of producing more accurate location estimates as compared to
geometric positioning methods [65]. The primary disadvantage
of fingerprinting techniques over geometric, statistical,and prox-
imity based position estimation methods is that they involve the
process of building and maintaining an offline training database,
which aggravates the computational complexity in dynamic
scenes [81].

III. C OOPERATIVE V ISIBLE L IGHT POSITIONING

As shown by numerous studies in the literature, cooperation
among target nodes (i.e., nodes with unknown positions) canen-
hance performance of RF based localization systems [34], [70]–
[72], [128]–[133]. Similarly, cooperation among VLC unitsin a
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Fig. 4. Illustration of a cooperative VLP system with three VLC units (e.g.,
robots). The white cylinders on the ceiling and at the VLC units represent the
LEDs, and the red rectangular prisms denote the PDs.

VLP system can be useful for achieving improved localization
performance compared to the case in which VLC units gather
signals only from the LED transmitters at known positions. In
this section, we investigate a new VLP system architecture that
facilitates communications among VLC units for the purposeof
cooperative localization and discuss an iterative algorithm based
on gradient projections to estimate locations of VLC units.

A. System Model

In a cooperative VLP system, there existL0 LED transmitters
with known locations and orientations (i.e., anchor/reference
nodes), andNV VLC units that are to be located (i.e.,
agent/target nodes). The location of theℓth LED transmitter is
denoted byyℓ and its orientation vector is given byn(0)

T,ℓ for
ℓ ∈ {1, . . . , L0}. Each VLC unit not only receives signals from
the LED transmitters at known locations but also communicates
with other VLC units in the system for cooperation purposes
[67]. Therefore, VLC units consist of both LEDs and PDs;
namely, there existLi LEDs andKi PDs at theith VLC unit
for i ∈ {1, . . . , NV }. The unknown location of theith VLC unit
is represented byxi, wherei ∈ {1, . . . , NV }. For thekth PD
at the ith VLC unit, the location is denoted byxi + ai,k and
the orientation vector is given byn(i)

R,k, wherek ∈ {1, . . . ,Ki}.
Similarly, for the ℓth LED at theith VLC unit, the location is
represented byxi+bi,ℓ and the orientation vector is denoted by
n
(i)
T,ℓ, whereℓ ∈ {1, . . . , Li}. The displacement vectors,ai,k ’s

andbi,ℓ’s, are known design parameters of the VLC units [67].
In addition, the orientation vectors for the LEDs and PDs at
the VLC units are assumed to be known since they can be
determined by the VLC unit design and/or via auxiliary sensors
such as gyroscopes [55], [67], [134]. To distinguish the LED
transmitters at known locations from the LEDs at the VLC units,
the former are called as the LEDson the ceilingin the remainder
of this section (see Fig. 4).

In the cooperative VLP system, each PD communicates with
a subset of all the LEDs in the network. For this reason, the

following connectivity sets are defined to specify the connections
between the PDs and the LEDs [67]:

S
(i,j)
k =

{
ℓ ∈ {1, . . . , Li} | ℓth LED of ith VLC unit is

connected tokth PD of jth VLC unit
}
,

k ∈ {1, . . . ,Kj}, i ∈ {0, 1, . . . , NV }, j ∈ {1, . . . , NV }. (61)

Namely,S(i,j)
k represents the set of LEDs at theith VLC unit

that are connected to thekth PD at thejth VLC unit. It is noted
that the LEDs on the ceiling are considered as the zeroth VLC
unit in order to develop a unified formulation. In other words,
“VLC unit 0” is a hypothetical VLC unit withL0 LEDs (at
known locations) and zero PDs. Hence, indexi starts from zero
in (61).

We consider a scenario in which RSS measurements per-
formed by the PDs are employed for estimating the unknown
locations of the VLC units, i.e.,x1, . . . ,xNV

. Let P (i,j)
ℓ,k repre-

sent the RSS measurement at thekth PD of thejth VLC unit due
to the transmission from theℓth LED at theith VLC unit. From
the Lambertian formula [93],P (i,j)

ℓ,k can be stated as follows:

P
(i,j)
ℓ,k =

m
(i)
ℓ + 1

2π
P

(i)
T,ℓ cos

m
(i)
ℓ (φ

(i,j)
ℓ,k ) cos(θ

(i,j)
ℓ,k )

A
(j)
k(

d
(i,j)
ℓ,k

)2

+ η
(i,j)
ℓ,k (62)

for j ∈ {1, . . . , NV }, k ∈ {1, . . . ,Kj}, i ∈ {0, 1, . . . , NV } \ j
andℓ ∈ S

(i,j)
k , where the distanced(i,j)ℓ,k is given by

d
(i,j)
ℓ,k =

∥∥d(i,j)
ℓ,k

∥∥ (63)

with

d
(i,j)
ℓ,k ,

{
xj + aj,k − xi − bi,ℓ , if i 6= 0

xj + aj,k − yℓ , if i = 0
. (64)

In (62),m(i)
ℓ is the Lambertian order for theℓth LED at theith

VLC unit, A(j)
k is the area of thekth PD at thejth VLC unit,

P
(i)
T,ℓ is the transmit power of theℓth LED at theith VLC unit,

φ
(i,j)
ℓ,k is the irradiation angle at theℓth LED at theith VLC unit

with respect to thekth PD at thejth VLC unit, andθ(i,j)ℓ,k is the
incidence angle for thekth PD at thejth VLC unit related to
the ℓth LED at theith VLC unit. The noise component,η(i,j)ℓ,k ,

is modeled by a random variable with a generic PDFf
(j,k)
η (·).

Supposing the use of a certain multiplexing scheme (e.g., time
division multiplexing among the LEDs at the same VLC unit
and on the ceiling, and frequency division multiplexing among
the LEDs at different VLC units or on the ceiling),η(i,j)ℓ,k ’s are
assumed to be independent for all different(j, k) pairs and for
all ℓ and i [67], [104], [106]. From (63) and (64), the RSS
measurements in (62) can also be expressed as follows [67]:

P
(i,j)
ℓ,k = α

(i,j)
ℓ,k + η

(i,j)
ℓ,k (65)

where

α
(i,j)
ℓ,k , −m

(i)
ℓ + 1

2π
P

(i)
T,ℓA

(j)
k

(
(d

(i,j)
ℓ,k )Tn

(i)
T,ℓ

)m(i)
ℓ (d

(i,j)
ℓ,k )Tn

(j)
R,k

∥∥d(i,j)
ℓ,k

∥∥m(i)
ℓ

+3
·

(66)
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Remark: The proposed system model for cooperative VLP
applications relies on one-shot position estimation that utilizes
the parameter values of a given configuration to estimate the
locations of VLC units at a given time instant. In VLP scenarios
with mobile VLC units, certain parameters, such as locations
and orientations of VLC units, are highly time-varying and need
to be updated at each decision/estimation step. For instance, the
displacement vectorsai,k and bi,ℓ depend on the orientation
vectorsn(i)

R,k andn
(i)
T,ℓ, respectively. Hence, the values ofai,k

andbi,ℓ can be updated at each time step using the new values
of n(i)

R,k andn(i)
T,ℓ (e.g., via rotation matrices). For the proposed

localization framework, it is assumed that the current values of
all localization related parameters are known and thus can be
employed for position estimation at the current time step.

B. Localization Algorithms

Let the vector of unknown parameters be represented asx ,[
xT
1 . . . xT

NV

]T
, which has a size of3NV × 1. The aim is to

estimate the elements ofx based on the RSS measurements in
(62) (equivalently, in (65)). To this aim, various approaches can
be considered, as discussed in the following.

1) Centralized Approach: In this approach, all the
RSS measurements are processed at a central unit to
estimate the locations of the VLC units jointly. LetP
denote a vector consisting of all the measurements in
(65). Namely, the elements ofP are expressed as follows:{{{

{P (i,j)
ℓ,k }

ℓ∈S
(i,j)
k

}
i∈{0,1,...,NV }\{j}

}
k∈{1,...,Kj}

}
j∈{1,...,NV }

.

Then, the ML estimate ofx based onP is given by [62]

x̂ML = argmax
x

f(P |x) (67)

wheref(P |x) denotes the conditional PDF ofP givenx, i.e.,
the likelihood function. For example, if the noise PDFf (j,k)

η (·)
follows a Gaussian distribution with zero-mean and a variance
of σ2

j,k, then the ML estimate in (67) can be obtained from (65)
as follows [67]:

x̂ML = argmin
x

NV∑

j=1

Kj∑

k=1

1

σ2
j,k

NV∑

i=0,i6=j

∑

ℓ∈S
(i,j)
k

(
P

(i,j)
ℓ,k − α

(i,j)
ℓ,k

)2

(68)

whereα(i,j)
ℓ,k is calculated from (66) via (64).

The problem in (67) has high computational complexity since
it requires a search over a3NV dimensional space. Therefore,
it may not be employed in practical applications. Hence, decen-
tralized approaches with lower complexity can be considered, as
discussed next.

2) Decentralized Approach:Since the objective function in
(67) is in general nonconcave with respect to the vector of
unknown locationsx via (64) and (66) (e.g., nonconvexity of the
objective function in (68)), the problem in (67) cannot be solved
to global optimality using standart convex optimization methods.
In addition, obtaining globally optimal solutions of (67) via
global optimization tools may lead to an excessive computational
burden, especially as the number of VLC units increases [68].
Therefore, we formulate the problem of cooperative localization
as afeasibility problemand propose a low-complexity iterative

algorithm that can be implemented in a decentralized manner
to solve the feasibility problem [68]. In the following, we first
present the problem formulation and then introduce the proposed
cooperative localization algorithm [68].

a) Formulation of Feasibility Problem: In feasibility prob-
lems, the aim is to find a point that satisfies certain constraints
without having to optimize an objective function, as opposed
to optimization problems [135]. Hence, the computational com-
plexity of feasibility-seeking techniques can be significantly
lower than that of optimization methods, which makes feasibility
modeling an attractive approach for dealing with nonconvex
problems. In this part, we present the formulation of the fea-
sibility problem that is intended to approximate the problem of
cooperative localization as defined by the ML estimator in (67).

Based on the measurement model in (65), an RSS observation
at a PD can be modeled as

P̂r = Pr + η (69)

wherePr denotes the true value of the RSS parameter (as in
(66)) andη is the measurement noise. To facilitate the feasibility
based formulation, it is assumed that the noise PDFfη(·) satisfies
fη(η̄) = 0 ∀η̄ > 0, i.e., the RSS measurement errors are negative
(P̂r ≤ Pr).13,14 Then, using the Lambertian model in (66), a
genericLambertian functiong : RD → R with respect to the
unknown PD locationx ∈ R

D satisfies15

g(x;y,nT ,nR,m, γ) ≤ 0 (70)

where

g(x;y,nT ,nR,m, γ) , γ −
[
(x− y)TnT

]m
(y − x)TnR∥∥x− y
∥∥m+3 ,

(71)

y denotes the location of the LED,nT andnR are the orientation
vectors of the LED and PD, respectively,m is the Lambertian
order of the LED, andγ is defined asγ = P̂r

Pt

2π
(m+1)A with Pt

and A denoting, respectively, the transmit power of the LED
and the area of the PD. Invoking the negative error assumption
and using (70), the location of the PD belongs to the following
feasible set (referred to as theLambertian set):

L =
{
x ∈ R

D
∣∣∣ g(x;y,nT ,nR,m, γ) ≤ 0

}
. (72)

Regarding communications between the LEDs on the ceiling and
the VLC units, the Lambertian set forkth PD of thejth VLC

13We can always subtract a constant value from the obtained RSSmea-
surement to satisfy the assumption of negative measurementnoise [136], [137].
For PDFs having finite support, this value can be chosen asη̂ = sup{η̄ ∈
R
∣∣ fη(η̄) > 0}. For PDFs having infinite support, such as Gaussian, we can

set η̂ = inf{η̄ ∈ R
∣∣ ∫ η̄

−∞
fη(ǫ)dǫ ≥ 1−̟} for some small probability̟ to

approximately satisfy the assumption.
14In terms of convergence properties, Algorithm 1, which is proposed later

in this section, has a theoretical convergence guarantee under the assumption
of negative errors (see [68, Section V] for convergence analysis). Although no
convergence guarantee can be provided for Algorithm 1 in thecase of both
positive and negative errors (e.g., Gaussian noise), numerical simulations reveal
that the iterations generated by Algorithm 1 are able to converge to true locations
asymptotically as the SNR increases.

15D is the dimension of localization in the cooperative VLP scenario. For
example, when the height of the VLC receiver is known as in [47], [48], [100],
[101], two-dimensional localization is performed, i.e.,D = 2. However, in
general,D = 3.
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unit based on the signal emitted by theℓth LED on the ceiling
for ℓ ∈ S

(0,j)
k is given by (referred to as thenoncooperative

Lambertian sets):

C(0,j)
ℓ,k =

{
z ∈ R

D
∣∣∣ g̃(j)ℓ,k(z) ≤ 0

}
(73)

whereg̃(j)ℓ,k(z) is defined as

g̃
(j)
ℓ,k(z) , g

(
z;yℓ − aj,k,n

(0)
T,ℓ,n

(j)
R,k,m

(0)
ℓ , γ

(0,j)
ℓ,k

)
(74)

andγ
(i,j)
ℓ,k =

P
(i,j)
ℓ,k

P
(i)
T,ℓ

2π

(m
(i)
ℓ

+1)A
(j)
k

for i ∈ {0, 1, . . . , NV } via (65)

and (66). Similarly, regarding communications among the VLC
units, the Lambertian set for thekth PD of thejth VLC unit
based on the signal emitted by theℓth LED of the ith VLC
unit for ℓ ∈ S

(i,j)
k is given by (referred to as thecooperative

Lambertian sets)

C(i,j)
ℓ,k =

{
z ∈ R

D
∣∣∣ g(i,j)ℓ,k (z,xi) ≤ 0

}
(75)

for i ∈ {1, 2, . . . , NV }, whereg(i,j)ℓ,k (z,xi) is defined as

g
(i,j)
ℓ,k (z,xi) , g

(
z;xi + bi,ℓ − aj,k,n

(i)
T,ℓ,n

(j)
R,k,m

(i)
ℓ , γ

(i,j)
ℓ,k

)
.

(76)

Then, the problem of cooperative localization in VLP systems
is equivalent to identifying a point inside the intersection of
Lambertian sets as defined in (73) and (75). Assuming that the
Lambertian function in (71) is quasiconvex16, the quasiconvex
feasibility problem(QFP) can be formulated as follows [138],
[139]:

Problem 1. Let x , (x1, . . . ,xNV
). The feasibility problem

for cooperative localization of VLC units is expressed as

find x ∈ R
DNV

subject to xj ∈ Υj, j = 1, . . . , NV (77)

where

Υj =

Kj⋂

k=1

NV⋂

i=0

⋂

ℓ∈S
(i,j)
k

C(i,j)
ℓ,k (78)

with C(i,j)
ℓ,k being given by(73) and (75).

QFPs constitute a class of feasibility problems in which the
functions characterizing the constraint sets (e.g., the Lambertian
function in (71) and the associated constraint set in (72)) are
quasiconvex [139]. In the next part, an iterative decentralized
algorithm is introduced to solve the QFP in (77). To gain an
intuition on the geometry of Problem 1, a noncooperative VLP
system and its cooperative version are illustrated along with the
corresponding Lambertian sets in Fig. 5.

16For the case of a known PD height and perpendicular LED orientation,
i.e., x3 is known andnT = [0 0 − 1]T in (71), the Lambertian function in
(71) is quasiconvex [68]. For the general case in which the LED orientation is
arbitrary and/or the height of the PD is unknown, we can obtain a quasiconvex
approximation of the Lambertian function in (71) [68].
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Fig. 5. (a) A noncooperative VLP system with four LED transmitters on ceiling
and two VLC units, where VLC-1 gathers signals from LED-1 and LED-2,
and VLC-2 from LED-3 and LED-4. The noncooperative Lambertian sets for
VLC-1 and VLC-2 are represented by green and blue regions, respectively.
(b) Cooperative version of the VLP system in Fig. 5(a), wherethe VLC units
cooperate for improved localization performance. Green and blue dotted lines
represent, respectively, the cooperative Lambertian setscorresponding to VLC-
1 and VLC-2. Incorporating cooperative Lambertian sets into the localization
geometry narrow the region of intersection of Lambertian sets, thereby yielding
more accurate location estimates [68].

b) Decentralized Algorithm: In this part, we present a
decentralized algorithm based on iterative gradient projections
to solve Problem 1. The motivation behind the use of gradient
projections is to reach the intersection region of the constraint
setsC(i,j)

ℓ,k in (78) by moving in the opposite direction of the

gradients of the functions̃g(j)ℓ,k(·) in (74) andg(i,j)ℓ,k (·,xi) in (76)
[140]. First, we present the definition of the gradient projection
operator.

Definition 1. The gradient projection operatorGλ
f : RD →

R
D onto the zero sublevel set of a continuously differentiable
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function f : RD → R is given by [141]

Gλ
f (x) = x− λ

f+(x)
∥∥∇f(x)

∥∥2∇f(x) (79)

where λ is the relaxation parameter,∇ is the gradient op-
erator, andf+(x) denotes the positive part, i.e.,f+(x) =
max{0, f(x)}.

Based on Definition 1, we present the proposed algorithm,
namely, the cooperative gradient projections (CGP), in Algo-
rithm 1. The algorithm consists of the following three phases,
which are executed for each VLC unit (say, thejth VLC unit)
either in parallel or in a sequential manner:

• Projection Onto Intersection of Halfspaces:In order to
keep thenth iterate x

(n)
j inside the region where the

noncooperative Lambertian functions defined in (74) are
all quasiconvex,x(n)

j is projected onto the intersection of
the halfspaces in (82), which are derived from the non-
cooperative Lambertian sets17,18. The quasiconvexity of a
Lambertian function guarantees that the gradient projection
operator forces the iterates to get closer to the Lambertian
set associated with that function.

• Parallel Projection Onto Lambertian Sets:In this step, the
current point x̃(n)

j , which is the output of the previous
step, is projected onto each noncooperative and cooperative
Lambertian set via the gradient projection operator in (79).
Then, the resulting projections are weighted in (83) to
obtain the next iteratex(n+1)

j . The cooperative Lambertian
sets as defined in (75) are constructed from the most recent
position information of the other VLC units (i.e.,x(n)

i or
x
(n+1)
i for i 6= j depending on the order of position updates,

as shown in (83)).
• Updating Relaxation Parameters:The relaxation parame-

tersλ(n)
j for thejth VLC unit at thenth iteration, which are

used in the gradient projection operator, are updated using
the Armijo step size selection rule in [68, Algorithm 2].

We note that Algorithm 1 can be implemented in a decen-
tralized manner via a gossip-like procedure among the VLC
units [142]. In an asynchronous scenario, each VLC unit can
sequentially update its position via the iterative step in Al-
gorithm 1 and broadcast the resulting position informationto
neighboring (connected) VLC units. For the synchronous variant
of Algorithm 1, VLC units can update their locations in parallel
and share the updated locations with their neighbors.

To illustrate the performance of the proposed cooperative
localization algorithm, we consider a VLP scenario in a room
of size 10 × 10 × 5m3 consisting ofL0 = 4 LED transmitters
on the ceiling andNV = 2 VLC units, whose locations are
given by y1 = [1 1 5]

T m, y2 = [1 9 5]
Tm, y3 = [9 1 5]

Tm,
y4 = [9 9 5]

Tm, x1 = [2 5 1]
Tm, and x2 = [6 6 1.5]

Tm.
The LEDs on the ceiling are pointing downwards, i.e.,n

(0)
T,ℓ =

[0 0 − 1]
T for ℓ ∈ {1, 2, 3, 4}. Each VLC unit contains two

PDs and one LED, whose offsets with respect to the center of the
VLC unit are set toai,1 = [0 − 0.1 0]Tm, ai,2 = [0 0.1 0]Tm,

17The reader is referred to Section III and Section IV in [68] for a thorough
discussion.

18Please see [68, Algorithm 1] for the definition ofPΓj
(·) in (80).

Algorithm 1 Cooperative Gradient Projections (CGP)

Initialization: Choose an arbitrary initial point
(

x
(0)
1 , . . . ,x

(0)
NV

)

∈

R
DNV .

Iterative Step: Given thenth iterate
(

x
(n)
1 , . . . ,x

(n)
NV

)

∈ R
DNV

for j = 1, . . . , NV do
Projection Onto Intersection of HalfspacesΓj by [68, Algo-

rithm 1]:

x̃
(n)
j = PΓj

(

x
(n)
j

)

(80)

where the intersection of halfspaces is given by

Γj =

Kj
⋂

k=1

⋂

ℓ∈S
(0,j)
k

Ω̃
(j)
ℓ,k (81)

with

Ω̃
(j)
ℓ,k ,

{

x ∈ R
D

∣

∣

∣
(yℓ − aj,k − x)Tn

(j)
R,k ≥ 0

}

. (82)

Parallel Projection Onto Lambertian Sets:

x
(n+1)
j =

Kj
∑

k=1

[

∑

ℓ∈S
(0,j)
k

κ̃
(j)
ℓ,kG

λ
(n)
j

g̃
(j)
ℓ,k

(x̃
(n)
j )

+

NV
∑

i=1,i6=j

∑

ℓ∈S
(i,j)
k

κ
(i,j)
ℓ,k G

λ
(n)
j

g
(i,j)
ℓ,k

(·,x
(n̂)
i

)
(x̃

(n)
j )

]

(83)

wheren̂ = n for i > j, n̂ = n+1 for i < j and the weights satisfy

Kj
∑

k=1







∑

ℓ∈S
(0,j)
k

κ̃
(j)
ℓ,k +

NV
∑

i=1,i6=j

∑

ℓ∈S
(i,j)
k

κ
(i,j)
ℓ,k






= 1 (84)

and κ̃(j)
ℓ,k ≥ 0, κ(i,j)

ℓ,k ≥ 0, ∀i, ℓ, k.
end for
Stopping Criterion:

∑NV
j=1

∥

∥x
(n+1)
j − x

(n)
j

∥

∥

2
< δ for someδ > 0.

Relaxation Parameters:The relaxation parametersλ(n)
j are updated

using the Armijo rule in [68, Algorithm 2].

and bi,1 = [0.1 0 0]
Tm for j = 1, 2. The orientation vectors

of the PDs and the LEDs on the VLC units are given as
follows: n(1)

R,1 = [0.3 − 0.1 1]
T , n(2)

R,1 = [0.2 0.4 1]
T , n(1)

R,2 =

[0.8 0.6 0.1]T , n(2)
R,2 = [−0.7 0.2 0.1]T , n(1)

T,1 = [0.9 0.4 0.1]T ,

andn
(2)
T,1 = [−0.8 0.1 0.1]

T . In addition, the connectivity sets

are determined asS(i,j)
1 = ∅, S(i,j)

2 = {1} for i, j ∈ {1, 2}, i 6=
j for the cooperative measurements andS(0,1)

1 = {1, 2, 3},
S
(0,2)
1 = {2, 3, 4} and S

(0,j)
2 = ∅ for j ∈ {1, 2} for the

noncooperative measurements. Furthermore, the area of each PD
is taken as1 cm2 and the Lambertian order of all the LEDs is
set tom = 1. The noise componentη(i,j)ℓ,k in (62) is assumed
to be a zero-mean Gaussian random variable with a variance of
σ2
j,k, which is calculated using Table I and Eq. (6) in [143].

The simulation results are averaged over500 different noise
realizations. In the simulations, a two-dimensional localization
scenario is considered, i.e., the VLC units have known heights.
The initial x-y location of each VLC unit in Algorithm 1 is
selected as the same as that of the closest LED connected to
that VLC unit.

Fig. 6 shows the average localization error of the VLC units
versus the transmit power of the LEDs on the ceiling achieved
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Fig. 6. Average localization error of VLC units with respectto the transmit power
of LEDs on ceiling for Algorithm 1 (CGP) along with the ML estimator and
the CRLB. Cooperation among VLC units provides non-negligible performance
benefits at low-to-medium LED powers.

by Algorithm 1 and the ML estimator in (68), together with
the CRLB in [68, Eq. 11], in both the noncooperative and
cooperative scenarios. It is observed that cooperation among
VLC units can provide significant localization performancegains
(62 cm and39 cm improvements for100mW and316mW op-
tical powers, respectively, via the CGP Algorithm). In addition,
the proposed algorithm converges to true VLC unit locationsas
the SNR, i.e., the transmit power of the LEDs, increases. As ob-
served from the results in the high SNR regime, the decentralized
approach (Algorithm 1) and the centralized approach (the ML
estimator in (68)) can attain similar localization performance,
while the former has a much lower computational complexity
than the latter.

IV. OPTIMAL POWER ALLOCATION FOR LEDS UNDER

ILLUMINATION CONSTRAINTS

In VLP systems, a typical approach is to set LED transmission
powers to the same constant level (e.g., [44], [45], [55], [102],
[144]), which can be adjusted according to trade-offs among
several parameters such as power consumption, localization
performance, illumination concerns, and LED lifetime. However,
depending on positions and orientations of LED transmitters
and VLC receivers, localization accuracy can be improved by
optimizing transmit powers of LEDs under certain practical
considerations [69]19. In this section, we formulate the prob-
lem of optimal power allocation for LEDs in VLP systems
in the presence of some practical constraints related to power
consumption and illumination requirements. In addition, based
on illustrative examples, we demonstrate the improvementsin
localization performance that can be achieved via the optimal
power allocation approach over uniform power allocation.

19Power allocation has been investigated for RF based wireless localization
networks in [145]–[150].

A. Optimization Variables

Let the transmit signalsi(t) for the ith LED transmitter be
expressed as

si(t) =
√
Pi s̃i(t) (85)

for i = 1, . . . , NL, whereNL is the number of LED transmitters,
Pi is a parameter that determines the transmit power, ands̃i(t) is
a fixed base signal that satisfies

∫ Ts,i

0
(s̃i(t))

2dt/Ts,i = 1, with
Ts,i denoting the period ofsi(t). Then, theoptical power of
si(t) can be calculated as [47]

Eopt
i =

∫ Ts,i

0
si(t)dt

Ts,i

=
√
Pi Ẽ

opt
i (86)

where

Ẽopt
i ,

∫ Ts,i

0
s̃i(t)dt

Ts,i

(87)

is a fixed quantity representing the optical power ofs̃i(t). The
electrical powerof the ith LED is proportional toPi [93], i.e.,

Eelec
i ∝

∫ Ts,i

0
(si(t))

2dt

Ts,i

= Pi . (88)

The goal of this section is to optimize the electrical powersof
the LEDs by adjusting{Pi}NL

i=1 to achieve improved localization
accuracy.

B. VLP System Constraints

The aim of power allocation in VLP systems is to optimize
the power vectorp , [P1 . . . PNL ]

T ∈ R
NL subject to practical

constraints so that the localization performance is maximized. In
an LED power optimization scheme, the following constraints
can be considered:

1) Individual Power Constraints:In order to provide efficient
electrical-to-optical conversion, the LED output power must be
proportional to the input drive current, which is possible if the
LED transmission power operates in the linear regime [29]–
[32]. In addition, high drive currents may have adverse effects
on the LED lifetime by inducing self-heating [143]. Therefore,
the minimum and peak power constraints for LEDs must be
incorporated, resulting in the following constraint set:

P1 , {p∈ R
NL : plb � p � pub} (89)

whereplb ∈ R
NL andpub ∈ R

NL represent, respectively, the
lower and upper bounds on the power vectorp.

2) Total Power Constraint:As VLP systems must operate
under a specific power budget, there is a certain upper limitPT

for the total electrical power of LEDs [32], [93], [151], [152].
Also, the necessity for preventing damage to human eyes leads
to a limitation on the total power consumption [32]. Hence, the
resulting constraint set can be defined as follows:

P2 , {p∈ R
NL : 1Tp ≤ PT} . (90)

where1 denotes the all-ones vector.
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3) Individual Illumination Constraints:In addition to power
constraints, VLP system designers must also take into account
illumination constraints to keep the brightness level at specified
locations in the room above a certain threshold for proper indoor
lighting [9], [22], [32], [153]. The illuminance (lm/m2, lx),
defined as the luminous flux (lm) per unit area [154], can be
used as a measure of brightness. Then, utilizing [22, Eq. 3],
[154, Eq. 16.3] and (86), the horizontal illuminance at location
x due to theith LED is obtained as

Ii
ind(x, Pi) =

√
Pi φi(x) (91)

where

φi(x) ,
(mi + 1)κiẼ

opt
i

2π

[
(x− lit)

Tni
t

]mi
(lit,3 − x3)∥∥x− lit

∥∥mi+3 (92)

with Ẽopt
i being given by (87) andκi denoting the luminous

efficacy (lm/W) of the ith LED, defined as the optical power
to luminous flux conversion efficiency [154]. Based on (91), the
total illuminance at locationx generated by all the LEDs can be
calculated as [155]

Iind(x,p) =
NL∑

i=1

Ii
ind(x, Pi) =

NL∑

i=1

√
Pi φi(x). (93)

Then, the set that specifies the individual illumination constraints
can be constructed as

P3 , {p∈ R
NL : Iind(xℓ,p) ≥ Ĩℓ, ℓ = 1, . . . , L} (94)

whereL is the number of locations at which the illuminance
constraint is to be satisfied, and̃Iℓ is the illuminance constraint
defined for locationxℓ.

4) Average Illumination Constraint:Another constraint re-
lated to illumination is the average illuminance over the room,
which needs to be maintained at a certain level for satisfying
average brightness requirements. The average illuminanceover
a horizontal regionA in the room can be calculated as

Iavg(p) =
NL∑

i=1

√
Pi

∫
A φi(x)dx

|A| (95)

where |A| is the volume ofA. Then, the related constraint set
is given by

P4 , {p∈ R
NL : Iavg(p) ≥ Ĩavg} (96)

whereĨavg denotes the average illuminance constraint.

C. Optimal Power Allocation for LEDs

The accuracy of localization in VLP systems can be quantified
by the CRLB on the variance of an unbiased estimatel̂r for the
position of the VLC receiverlr, which can be expressed as [69]

E
{
‖l̂r − lr‖2

}
≥ trace

{
J−1(p)

}
(97)

whereJ(p) is the FIM given by

J(p) = (I3 ⊗ p)TΓ . (98)

In (98),⊗ denotes the Kronecker product,I3 is a 3× 3 identity
matrix, andΓ ∈ R

3NL×3 is a known matrix that is independent
of p and depends on VLP system parameters [69]20.

For LED power optimization, the CRLB is chosen as the
optimization metric for evaluating the localization performance
since it can be achieved asymptotically by the ML location
estimator as the SNR and/or effective bandwidth increases [97].
Hence, considering the system constraints in Section IV-B,
the optimal power allocation problem for LED transmitters is
formulated as

minimize
p

trace
{
J−1(p)

}
(99a)

subject to p ∈ P (99b)

whereP ,
⋂4

i=1 Pi. The aim of (99) is to derive the opti-
mal LED power distribution that minimizes the CRLB for the
localization of a VLC receiver under power and illumination
constraints. As the optimization problem in (99) is convex due
to the convexity of the objective function in (99a) and of the
constraint sets in (89), (90), (94), and (96) [69], the optimal
solution can be obtained efficiently by employing standard tools
of convex optimization, e.g., interior-point methods [156].

A related problem of interest is to minimize the total power
consumption subject to a prescribed level of localization accu-
racy, which can formally be stated as

minimize
p

1Tp (100a)

subject to trace
{
J−1(p)

}
≤ ε (100b)

p ∈ Ps (100c)

wherePs , P1∩P3∩P4 andε represents the maximum tolerable
CRLB level for the localization of the VLC receiver. Similarto
(99), the problem in (100) is convex.

In the problem formulations (99) and (100), optimizing the
power vectorp requires the knowledge ofΓ in (98), which
involves parameters such as the location and orientation ofthe
VLC receiver [69]. In most practical VLP scenarios, those pa-
rameters cannot perfectly be estimated (e.g., due to localization
and tracking errors, and gyroscope measurement errors), which
may lead to unsatisfactory power allocation results. Therefore,
we also need to consider robust power allocation formulations
in the presence of uncertainties in VLP system parameters. To
that aim, letl̂r be the estimated location of the VLC receiver,
given as

l̂r = lr + elr (101)

wherelr is the true location andelr is the error vector. Assuming
a spherical uncertainty set for the location errors [157], [158],
i.e.,

elr ∈ Elr , {e ∈ R
3 : ‖e‖ ≤ δlr} , (102)

whereδlr denotes the maximum error in the location of the VLC
receiver, the robust counterpart of the power allocation problem
in (99) under location uncertainties can be formulated as

minimize
p

max
elr∈Elr

trace
{(

(I3 ⊗ p)T Γ(̂lr − elr)
)−1
}

(103)

subject to p ∈ P
20The CRLB expression in (97) and (98) is also valid for scenarios in which

the VLC receiver is connected to a subset of all the LEDs in theVLP system.
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with Γ(̂lr−elr) corresponding to the matrixΓ in (98) evaluated
at lr = l̂r − elr . The goal of robustness in (103) is to minimize
the worst-case CRLB over the uncertainty regionElr in (102)
using the estimated location̂lr. Similar formulations to that
of (103) can be developed for handling the uncertainty in
other parameters (e.g., orientation of the VLC receiver), as well
[69]. By exploiting the characteristics of the objective function,
efficient iterative algorithms can be designed to solve (103) (see
[69, Section V] for details).

It is worth noting that as in both of the optimization problems
in (99) and (100), the CRLBs in VLP systems are different
from those in RF-based systems since the system model in VLP
scenarios has significant differences compared to the one inRF-
based systems, as discussed in Section II-A1. In addition to
the CRLB definitions, the constraint sets in (99) and (100) are
also different as they include individual and average illumination
constraints, which are not considered in the design of RF-based
localization systems.

D. Simulation Examples

To illustrate the benefits of optimal allocation of LED powers
in VLP systems, we consider a simple localization scenario
as depicted in Fig. 7, where there exist four LED transmitters
(NL = 4) on the ceiling of a room of size5× 5× 2.5 m3 and a
VLC receiver trying to localize itself based on signals transmitted
by the LEDs. The locations of the LED transmitters and the VLC
receiver are given byl1t = [1 1 2.5]T m, l2t = [1 4 2.5]T m,
l
3
t = [4 1 2.5]

T
m, l4t = [4 4 2.5]

T
m, and lr = [2 0.5 1]

T
m.

The LED transmitters have perpendicular orientations, i.e., ni
t =

[0 0 − 1]
T for i = 1, . . . , NL, while the orientation of the VLC

receiver is given bynr = [−0.2241 − 0.1294 0.9659]T , which
corresponds to an elevation angle of15◦ and an azimuth angle
of 210◦. Regarding the illumination requirements, we determine
four locations for the individual illumination constraints, which
are specified byx1 = [1.5 1.5 1.5]

T
m, x2 = [1.5 3.5 1.5]

T
m,

x3 = [3.5 1.5 1.5]
T
m, andx4 = [3.5 3.5 1.5]

T
m.

For the LED transmitters, the Lambertian order is set tomi =
3 and the luminous efficacy isκi = 60 lm/W for i = 1, . . . , NL

[153]. Also, the area of the PD at the VLC receiver is taken
asAR = 0.64 cm2, the responsivity of the PD is set toRp =
0.4 mA/mW, and the spectral density level of the noise isσ2 =
8.5641 × 10−23 W/Hz [47]. The base transmit signal̃si(t) in
(85) is modeled as [47]

s̃i(t) =
2

3
(1− cos (2π t/Ts,i)) (1 + cos(2πfc,it)) (104)

for i = 1, . . . , NL and t ∈ [0, Ts,i], where fc,i is the center
frequency andTs,i denotes the observation interval21 . For the
signal model in (104),̃Eopt

i in (87) is obtained as̃Eopt
i = 2/3.

For the simulations, an asynchronous VLP system is considered
with fc,i = 10 i MHz and Ts,i = 1 µs for i = 1, . . . , NL.
In addition, the lower and upper bounds on the LED optical
powers are set as1 W and 10 W, which, based on (86) and
(87), correspond to power limits ofplb,i = 2.25 andpub,i = 225
for i = 1, . . . , NL for the constraint setP1 in (89).

21 The constant factor2/3 is included for satisfying
∫ Ts,i

0 (s̃i(t))2dt/Ts,i =
1, as mentioned in Section IV-A.

0 1 2 3 4 5

Room Width (m)

0

1

2

3

4

5

R
oo

m
 D

ep
th

 (
m

)

LED Transmitter
VLC Receiver
Illumination Constraint Locations

Fig. 7. VLP scenario with four LED transmitters and a VLC receiver, shown
in two-dimensions.
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Fig. 8. CRLB of (99a) versusPT/NL for uniform and optimal power allocation
strategies, where the average and individual illuminationconstraints are taken as
Ĩavg = Ĩℓ = 20 lx for ℓ = 1, 2, 3, 4.

In Fig. 8, the square-root of the CRLBs achieved by the
optimal power allocation strategy of (99) and the uniform
strategy are plotted with respect toPT/NL, which determines
the average electrical power limit. The illumination constraints
are set as̃Iavg = Ĩℓ = 20 lx for ℓ = 1, 2, 3, 4. It is deduced
from Fig. 8 that the optimal power allocation approach can
provide significant improvements in localization performance
over the uniform strategy. For low power budgets, the problem
in (99) becomes infeasible due to the illumination constraints.
On the other hand, for sufficiently highPT, the optimal and
uniform strategies become equivalent as they both assign the
peak powers (i.e.,pub) to the LEDs. In addition, Fig. 9 shows
the CRLBs of the optimal and uniform strategies corresponding
to (99) for a constant average power limitPT/NL = 40 as the
illuminance limits Ĩavg and Ĩℓ vary. It is observed that the
accuracy improvement via power optimization gets higher asthe
illumination constraints become less stringent, as expected.
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Fig. 9. CRLB of (99a) versus the illuminance limit for uniform and opti-
mal power allocation strategies, where the average power constraint is set to
PT/NL = 40.
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In the second example, we investigate the optimal value of
(100a), which determines the total electrical power consumption,
against the desired CRLB level

√
ε in (100b) under various

illumination requirements. The results are shown in Fig. 10,
where the y-axis is calculated asP ⋆

T/NL with P ⋆
T denoting

the optimal value of the objective function in (100a). It is
observed that substantial power saving gains can be obtained via
the optimal approach as compared to the conventional uniform
approach. Also, the optimal strategy coincides with the uniform
strategy for sufficiently high values of the desired CRLB level
due to the illumination constraints. In summary, given a desired
level of localization accuracy in a VLP system, the proposed
optimal approach can provide a much more power efficient
solution than the uniform approach.

V. CONCLUSIONS ANDFUTURE RESEARCHDIRECTIONS

As a key enabler for low-cost and high-accuracy indoor
wireless localization services, the VLP technology constitutes a
vital ingredient of next-generation location-aware applications.

Therefore, it is imperative, for both researchers in the academia
and practical system designers in the industry, to acquire a
meticulous understanding of the fundamental trends in position
estimation via visible light signals and their impacts on the
performance of VLP systems under various operation envi-
ronments. In this paper, we have considered the problem of
localization in visible light systems and provided a surveyof
the state-of-the-art techniques by taking into account thetwo
main research strands. Starting with a received signal model for
VLC signals, we have presented the direct positioning approach
utilized in synchronous, quasi-synchronous, and asynchronous
VLP systems, and provided the performance benchmarks that
can be used as guidelines for system design engineers. Then,
we have considered the two-step approach to localization, which
consists of parameter estimation/extraction and positionestima-
tion steps. Regarding parameter estimation, we have investigated
the properties of the widely used first-step parameters in VLP
systems, such as RSS, TOA, TDOA, and AOA, and discussed the
estimation methods (e.g., the ML estimates of these parameters)
and hardware-related requirements imposed by specific types of
parameters (e.g., multiple PDs at the VLC receiver for the case
of AOA, and synchronization for the case of TOA and TDOA).
For the position estimation step, proximity based methods,geo-
metric methods, statistical methods, and fingerprinting methods
have been reviewed, with an emphasis on statistical position
estimators as they provide a mathematically rigorous framework
for position estimation, which provides asymptotic performance
guarantees.

In addition, we have devised a cooperative VLP system
architecture that utilizes communications among VLC receiver
units to improve the accuracy of localization via cooperation. A
cooperative localization algorithm that is amenable to distributed
implementation has been proposed to illustrate the improvements
in localization performance via the use of cooperation among
the VLC units. Finally, we have considered optimal LED power
allocation strategies to maximize the localization accuracy of
VLC receivers subject to power and illumination constraints.
The problem of optimal power allocation has been shown to
be formulated as a convex program, on the basis of which the
optimal power vectors have been derived efficiently to showcase
the performance benefits over the conventional uniform power
allocation approach.

Although significant improvements are being made for VLP
systems in the literature, there are still some issues whichhave
not adequately been addressed and should be investigated in
future work. A recent study in the literature has shown that
omitting multipath reflections in VLP systems may considerably
reduce the accuracy of localization in certain indoor environ-
ments [99]. For that reason, VLP systems should be designed in
consideration of multipath propagation. In a similar context, the
common algorithms and methods in the literature do not consider
the situation when the LOS between the LED transmitter and
the VLC receiver is lost; that is, when an LOS blockage occurs.
Regarding this issue, the approaches for VLP systems should
be adapted for the case of LOS blockage. In addition, the VLP
systems should be invulnerable to various interference sources
such as sunlight and other lighting systems. Moreover, most
VLP systems cannot be treated separately from illumination
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systems, and consequently the design of such systems requires
the consideration of not only localization performance butalso
illumination constraints. Furthermore, in scenarios withmobile
entities, temporal cooperation can be utilized by taking into
account the previous state information of a VLC receiver in the
design of VLP algorithms in order to achieve robust localization
results. Overall, in view of these challenges and remarks, fully
integrated superior designs can be developed for VLP systems
in the future.
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