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Optimal Stochastic Signaling under Average Power
and Bit Rate Constraints
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Abstract—The optimal stochastic signaling based on the joint
design of prior distribution and signal constellation is investigated
under average bit rate and power constraints. First, an optimiza-
tion problem is formulated to maximize the average probability
of correct decision over the set of joint distribution functions for
prior probabilities and the corresponding constellation symbols.
Next, an alternative problem formulation, for which the optimal
joint distribution is characterized by a randomization among
at most three mass points, is provided, and it is shown that
both formulations share the same solution. Three special cases
of the problem are investigated in detail. First, in the absence
of randomization, the optimal prior probability distribut ion is
analyzed for a given signal constellation and a closed-form
solution is provided. Second, the optimal deterministic pair
of prior probabilities and the corresponding signal levels is
considered. Third, a binary communication system with scalar
observations is investigated in the presence of a zero-meanaddi-
tive white Gaussian noise, and the optimal solution is obtained
under practical assumptions. Finally, numerical examplesare
presented to illustrate the theoretical results. It is observed that
the proposed approach can provide improvements in terms of
average symbol error rate over the classical scheme for certain
scenarios.

Index Terms—Stochastic signaling, probability of error, prior
probability, bit rate, power constraint.

I. I NTRODUCTION AND MOTIVATION

In the literature, optimal signaling to minimize the average
probability of error under various forms of power constraints
has been studied extensively. For binary communication sys-
tems that operate over zero-mean additive white Gaussian
noise (AWGN) channels subject to power constraints in the
form of E

{

‖Si‖2
}

≤ A for i = 0, 1, the optimal strat-
egy is to employ deterministic antipodal signaling at the
power limit at the transmitter and the maximum aposteriori
probability (MAP) decision rule at the receiver [2]. Alter-
natively, the average power constraint can take the form of
∑2

i=1 πiE
{

‖Si‖2
}

≤ A whereπi represents prior probability
of symbol i. In [3], the optimal deterministic signaling with
such a constraint is investigated in the presence of additive
zero-mean Gaussian noise when the optimal MAP receiver
is used at the receiver, and it is shown for coherent systems
that the optimum performance is achieved when the Euclidean
distance between the signals is maximized under the given
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power constraint and nonequal prior probabilities. In [4],the
convexity properties of the average probability of error in
terms of signal and noise power are investigated for binary-
valued scalar signals over additive noise channels under an
average power constraint. In [5], similar convexity analyses
are performed for constellations with arbitrary shape, order,
and dimensionality for a maximum likelihood (ML) detector
in an AWGN channel. Based on the convexity results in [4]
and [5], the optimality of deterministic or stochastic signaling
can be determined in power constrained digital communication
systems.

The problem of optimal constellation design (signal shap-
ing) is also considered in various studies in the literature
such as [6]–[12]. In [6], optimal nonuniform constellations
to minimize the union bound on the uncoded symbol error
rate are investigated in a cooperative relaying scheme. In [7],
a nonuniform constellation design is performed to maximize
the bit interleaved coded modulation (BICM) capacity for
the ATSC 3.0 standard. The optimal two dimensional signal
constellation which minimizes the probability of error over a
circularly symmetric complex AWGN channel under average
power constraints is investigated forM -ary communication
systems in [8]. In [10], a nonequiprobable signaling scheme
is described to achieve the asymptotic shaping gain (1.53 dB)
in any fixed dimension.

In certain scenarios, employing randomization (i.e., stochas-
tic signaling) instead of deterministic signals/constellation
points can improve the average probability of error perfor-
mance [4], [13]–[20]. Stochastic signaling relies on the idea
of modeling signalSi corresponding to theith information
symbol as a random variable instead of a deterministic quantity
for eachi. In [17], the optimal stochastic signaling is inves-
tigated for a given detector under second and fourth moment
constraints, and it is shown that the optimal signal for each
information symbol can be represented by a discrete random
variable with at most three distinct signal levels. In [18],the
joint design of the signals and the detector is investigated,
and performance improvements over deterministic signaling
are illustrated for non-Gaussian channels. In [19], optimal
stochastic signaling is studied under an average power con-
straint in the form of

∑2
i=1 πiE

{

‖Si‖2
}

≤ A for i = 0, 1, and
sufficient conditions for improvability or non-improvability of
the deterministic signaling scheme given in [3] via stochastic
signaling are derived. In [20], the stochastic signaling idea
is applied in a downlink multiuser communication system. In
particular, the optimal power control scheme is developed such
that each user is allowed to randomize among multiple signal
constellations instead of employing a fixed signal constella-
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tion, and it is shown that randomization can improve error
performance in some scenarios.

Although the optimal signaling has been investigated for
a variety of power constraints and transmission scenarios
in the literature, the prior probabilities are considered as
fixed quantities, which can be either uniform or non-uniform.
In conventional memoryless digital modulation systems, a
uniform Bernoulli binary sequence is parsed into blocks of
fixed length and each block is mapped to a symbol in a given
signal constellation. Resulting in equally likely symbols, this
procedure (i.e., uniform signaling) maximizes the entropyof
the transmitted symbols, and consequently the average bit
rate for a given constellation size [21]. In cases where the
power cost of the constellation points also needs to be taken
into account, a nonuniform signaling scheme that selects the
constellation points with lower power more frequently than
the points with higher power would result in power savings
in exchange for a reduced bit rate [22]. In addition, it is
known that for a given fixed signaling scheme, the minimum
Bayesian risk (probability of error) is concave over the space
of priors [2]. For example, for a binary communication system
employing antipodal signaling (S1 = −S0), uniform priors
result in the worst average symbol error rate. Therefore, non-
uniform signaling can provide improvements for average error
performance in addition to power savings even though it
reduces the average bit rate.

Motivated by these observations, we consider the optimal
signaling problem based on the joint design of prior probabil-
ities and the corresponding constellation symbols such that
the average symbol error rate is minimized under average
bit rate and power constraints. To maintain a general per-
spective/formulation, both the prior probability vector and the
signal constellation are assumed to be random (stochastic)
distributed according to a joint probability density function
(PDF), pΠ,S(π, s). In other words, the transmitter forms an
optimal constellation book in order to transmit each symbol
with the corresponding signal levels and the prior probabilities,
where each constellation can be used with a certain proba-
bility. This procedure can be regarded as a generalization of
constellation randomization. In the literature, there exist some
studies that utilize randomized signal constellations in various
communication scenarios [23]–[27]. For example, in [23], for
a spatial multiplexing scenario under block fading channels,
the signal constellation is rotated by using a pseudorandom
sequence for each transmitted vector. Performance gains via
randomized constellations can be obtained both in coded
frame-error rate [23] and outage probability [24]. In [25]–[27],
random rotations and phase shifts are employed to increase the
transmission diversity. Also, in [20], the optimal randomization
of constellations is investigated for each user in a multiuser
setting under power constraints. However, these studies do
not take into account the prior probability distribution in
their formulation (i.e., assume that it is fixed), and only
utilize randomization in signal levels to achieve improvement
according to a certain performance criterion.

In this paper, we consider anM -ary communication system
with n dimensional observations. Our goal is to obtain the
optimal joint distribution of the constellation symbols and

the corresponding prior probabilities to minimize the average
probability of symbol error under average bit rate and power
constraints. First, an optimization problem is formulated,
where the receiver utilizes the optimal MAP decision rule by
assuming that it knows the prior probability realization that
is currently being used by the transmitter and the constel-
lation distribution for that prior realization. As this generic
formulation involves optimization over a space of joint PDFs,
an alternative optimization problem, the optimal solutionof
which can be expressed as a randomization among at most
three mass points, is derived, and it is proved that the original
and the alternative problems share the same optimal value.
Next, three special cases of the original formulation are
investigated. First, the optimal prior distribution for a given
constellation is derived. Second, the optimal pair of fixed
priors and signal levels is considered, and third, a binary com-
munication scenario with scalar observations under additive
zero-mean Gaussian noise is investigated. Finally, numerical
results are provided for the general formulation and the special
cases. The main contributions in this paper can be summarized
as follows:

• For the first time in the literature, the optimal signaling
problem is proposed by jointly optimizing the signal
constellation and the prior probabilities for transmitted
symbols in the presence of average bit rate and power
constraints.

• It is shown that the optimal performance is achieved by a
randomization among at most three signal constellations
with the corresponding associated deterministic prior
probability vectors.

• A closed form expression of the optimal deterministic
prior probability distribution for a given constellation is
derived.

• The optimal solution for the special case of binary
communications over an AWGN channel with scalar ob-
servations is obtained under certain practical assumptions.

The rest of the paper is organized as follows: The optimal
signaling problem is formulated and form of the solution is
provided in Section II. Special cases of the general formulation
are discussed in Section III. Numerical results are presented
in Section IV and concluding remarks are given in Section V.

II. FORMULATION AND OPTIMAL SIGNALING

Consider anM -ary communication system withn dimen-
sional observations collected at the receiver over an arbitrary
additive noise channel. The discrete-time baseband equivalent
signal after downconversion, matched filtering, and sampling
at the symbol rate can be represented as

Y = Si +N, i ∈ {0, 1, . . . ,M − 1} (1)

whereSi is the transmitted signal vector forith constellation
symbol andN denotes the noise vector that is assumed to
be independent ofSi. Prior probabilities of the symbols are
denoted byΠ := [Π0, Π1, . . . , ΠM−1], which belongs to
the standard(M − 1)−simplex denoted with∆M−1 = {π :
∑M−1

i=0 πi = 1 andπi ≥ 0 for all i}. We recall that the
standard simplex is a compact and convex set. Our goal is
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to obtain the optimal distribution for the prior probabilities
and the transmitted symbols that maximize the probability of
correct decision at the receiver subject to constraints on the
average transmit power and the average bit rate. To this end,
the prior probability vectorΠ and the transmitted symbolsSi’s
are assumed to be random with a joint distribution denoted
by pΠ,S(π, s) whereS := [S0, S1, . . . , SM−1] ∈ R

Mn

represents the signal constellation. The average transmitpower
constraint and the average bit rate per symbol constraint are
given by

E

{

M−1
∑

i=0

Πi

∥

∥Si

∥

∥

2

2

}

≤ A, (2)

and

E

{

−
M−1
∑

i=0

Πi logΠi

}

≥ R, (3)

respectively. In (2) and (3), the expectations are taken with
respect to the joint PDFpΠ,S(π, s). It is noted that for a
given prior probability vectorπ and a signal constellations,
the optimal detector at the receiver corresponds to the MAP
decision rule [2, Theorem 2.7.3]. More specifically, for a given
observationy, the MAP decision rule selects symbolk such
that k = argmaxi∈{0,1,...,M−1}πipi(y), wherepi(y) denotes
the conditional PDF of the observation when theith symbol
is transmitted. The transmitter and the receiver are assumed
to be in coordination so that the receiver knows which prior
probability vector is currently being used by the transmitter.
Accordingly, the average probability of correct decision can
be expressed as

Pc := E

{
∫

Rn

max
i∈{0,1,...,M−1}

{

Πi E
{

pN(y − Si) |Π
}}

dy

}

,

(4)

where the outer expectation is taken with respect to the
marginal PDF ofΠ, that is,pΠ(π), and the inner expectation
is taken with respect to the conditional PDF ofS given Π,
i.e., pS|Π(s|π). Then, the following optimization problem is
proposed:

max
pΠ,S

E

{
∫

Rn

max
i∈{0,1,...,M−1}

{

ΠiE
{

pN(y − Si) |Π
}}

dy

}

subject to E

{

M−1
∑

i=0

Πi

∥

∥Si

∥

∥

2

2

}

≤ A

E

{

−
M−1
∑

i=0

Πi logΠi

}

≥ R (P1)

where the optimization is over the joint PDFpΠ,S(π, s). Note
that in (P1), focusing on the objective function, ifΠ is taken
to be a fixed deterministic probability vector, then the problem
reduces to the optimal stochastic signaling problem with the
corresponding MAP detector employed at the receiver [18].
On the other hand, if the constellationS is fixed, then the
problem simplifies to finding the optimal randomization over
multiple MAP detectors [16].

As (P1) involves optimization in the space of joint PDFs, it

is in general difficult to solve. In the following, an upper bound
on the objective function of (P1) is obtained by interchanging
maximum and expectation operations, and the form of the
solution is characterized for the resulting problem. Then,it
is shown that the original problem has the same solution as
that of the one based on the upper bound. To this aim, consider
the following objective function:

Pc := E

{
∫

Rn

max
i∈{0,1,...,M−1}

{

πi pN(y − Si)
}

dy

}

, (5)

where the expectation is taken with respect to the joint
PDF pΠ,S(π, s). Then, based on (P1) and (5), an alternative
optimization problem is formulated as

max
pΠ,S

E

{
∫

Rn

max
i∈{0,1,...,M−1}

{

Πi pN(y − Si)
}

dy

}

subject to E

{

M−1
∑

i=0

Πi

∥

∥Si

∥

∥

2

2

}

≤ A

E

{

−
M−1
∑

i=0

Πi logΠi

}

≥ R (P2)

Remark 1: The formulation in (P2) corresponds to the
scenario in which the receiver and the transmitter are fully
coordinated about the transmission policy. More specifically,
the receiver is informed of the constellation and the corre-
sponding prior probability vector employed at the transmitter
at any given instant. Hence, the optimal decision rule can
be implemented at the receiver. For example, in a slotted
communication scenario, this can be realized by assigning
each slot with a designated prior distribution and a signal
constellation, and allocating the number of slots corresponding
to that realization in proportion to its weight in the joint PDF.

The optimization problem in (P2) can be expressed in a
more compact form. To this end, define the random vectorX

as follows:

X := [Π, S] = [Π0, Π1, . . . ,ΠM−1, S0, S1, . . . ,SM−1]
(6)

whereX ∈ ∆M−1 × R
Mn. Then, (P2) can equivalently be

expressed as

max
pX

E {F (X)}

subject toE {G(X)} ≤ A

E {H(X)} ≥ R (7)

with

F (X) :=

∫

Rn

max
i∈{0,1,...,M−1}

{

Πi pN(y − Si)
}

dy ,

G(X) :=

M−1
∑

i=0

Πi

∥

∥Si

∥

∥

2

2
,

H(X) := −
M−1
∑

i=0

Πj logΠi ,

where the expectations are taken with respect to the joint
PDF of the constellation points and prior probabilities de-
noted bypX(x). Note that there are also implicit constraints
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in (7), that is, pX(x) ≥ 0 ∀x ∈ ∆M−1 × R
Mn and

∫

∆M−1×RMn pX(x)dx = 1 must be satisfied. In (7),F (x)
with x = [π, s] can be viewed as the probability of correct
decision when a fixed deterministic constellations is used
for the transmission ofM symbols whose prior probabilities
are specified byπ and the corresponding MAP detector is
employed at the receiver.

Optimization problems in the form of (7) have been studied
in the literature [14], [16]-[20]. IfF (x) is continuous and the
components ofx belong to finite closed intervals, then the opti-
mal solution of (7) can be expressed as a randomization among
at most three points, which follows from Carethéodory’s theo-
rem [13], [28]. Therefore, instead of searching over the space
of all PDFs, we can restrict the search for the optimal solution
to a family of PDFs in the formpopt

X
(x) =

∑3
j=1 λjδ(x−xj)

whereδ denotes the Dirac delta function,
∑3

j=1 λj = 1 and
λj ≥ 0 ∀j. Based on this result, the optimization problem in
(7) can be simplified to

max
{λ1,λ2,λ3,x1,x2,x3}

3
∑

j=1

λjF (xj)

subject to
3
∑

j=1

λjG(xj) ≤ A,

3
∑

j=1

λjH(xj) ≥ R,

3
∑

j=1

λj = 1, λ1, λ2, λ3 ≥ 0 (8)

where F (.), G(.), and H(.) are as defined before,xj =
[πj,0, πj,1, . . . πj,M−1, sj,0, sj,1, . . . , sj,M−1] and sj,i is
the ith symbol in the jth signal constellation. Next, the
following proposition is presented.

Proposition 1: Given the same average power constraint
A, bit rate constraintR, and the noise PDFpN(·), the
optimization problems in(P1)and (P2)have the same optimal
value.

Proof: Denote the optimal values of the optimization
problems in (P1) and (P2) asP ∗

c and theP †
c , respectively.

We first establishP ∗
c ≤ P †

c . For any given joint distribution
pΠ,S,

E

{
∫

Rn

max
i∈{0,1,...,M−1}

{

Πi E
{

pN(y − Si) |Π
}}

dy

}

≤ E

{

E

{
∫

Rn

max
i∈{0,1,...,M−1}

{

Πi pN(y − Si)
}

dy

∣

∣

∣

∣

Π

}}

= E

{
∫

Rn

max
i∈{0,1,...,M−1}

{

Πi pN(y − Si)
}

dy

}

(9)

where the inequality follows by interchanging the order of
the inner maximization and expectation operators and the
equality is due to the law of total expectation. Hence, under
the same feasible set of joint PDFs, the optimal values of
the objective functions in problems (P1) and (P2) satisfy
P ∗
c ≤ P †

c . Next, we show thatP ∗
c ≥ P †

c . Consider the
joint PDF for the form of the optimal solution of (P2),
i.e., pΠ,S(π, s) =

∑3
j=1 λjp

(j)
Π,S(π, s) with p

(j)
Π,S(π, s) =

p
(j)
Π

(π)p
(j)
S|Π(s|π), where p

(j)
Π

(π) = δ(π − πj), πj =

[πj,0, πj,1, . . . , πj,M−1], p
(j)
S|Π(s|π) = pS|Π(s|πj) = δ(s −

sj), and sj = [sj,0, sj,1, . . . , sj,M−1]. When this PDF is
employed, (P1) reduces to (P2). However, since this is just
a special case for the solution of (P1), one obtainsP ∗

c ≥ P †
c .

Therefore, it is concluded thatP ∗
c = P †

c . �

Remark 2: It should be noted that employing a signaling
scheme with nonuniform priors results in variable-rate data
transmission since the number of bits transmitted during a
signaling interval is a random variable. Hence, it is susceptible
to buffer over- or underflow for a fixed-rate source as well as
synchronization loss due to channel errors causing insertion
and deletion of bits in the decoded data. In practice, near opti-
mal nonuniform signaling schemes can be designed by parsing
a binary data stream into the codewords of the variable-length
prefix code designed using the Huffman algorithm and then
mapping them onto the points of the given constellation.

Remark 3: By following the transmission protocol
explained in Remark 1, the randomization idea can
be implemented based onpopt

X
(x). It is interesting to

note that if the transmitted symbols are observed over
a long duration, it would be as if the transmission
is performed over a larger deterministic constellation
x̂ = [λ1π1,0, . . . , λ1π1,M−1, . . . , λ3π1,0, . . . , λ3π3,M−1,
s1,0, . . . , s1,M−1, . . . , s3,0, . . . , s3,M−1]. By introducing cer-
tain protocols between the transmitter and the receiver to
implement theM -ary communication system based on̂x
(while satisfying the average bit rate (defined for theM -ary
system) and power constraints), the optimization problem can
be regarded as a search of the optimal deterministic vectorx̂.
However, both the randomization idea formulated in this paper
or this alternative approach are actually equivalent and would
yield the same system performance.

III. SPECIAL CASES

A. Optimal Deterministic Prior Distribution for Given Con-
stellation

In this section, we provide a closed-form solution for the
optimal deterministic prior distribution for a given signal
constellation. Consider a communication system in which the
transmitter emits a sequence of symbols drawn independently
from a fixed constellationΩ = {s0, . . . , sM−1} ⊂ R

Mn.
The (deterministic) prior probability vector of the signals is
denoted byπ. Under these assumptions, the optimization
problem can be formulated as (cf. (7))

max
π∈∆M−1

F (π)

subject toH(π) ≥ R

G(π) ≤ A (10)

where F (π) =

∫

Rn

max
i∈{0,1,...,M−1}

{

πi pN(y − si)
}

dy,

G(π) =
∑M−1

i=0 πi||si||2, andH(π) = −∑M−1
i=0 πi log2(πi).

We recall thatH(π) is a concave function ofπ and attains a
maximum value oflog2 M in the case of uniform signaling,
i.e., when πi = 1/M for all i = 0, . . . ,M − 1 [29,
Theorem 2.7.3]. On the other hand,G(π) is a linear function
of π andF (π) is a convex function ofπ, which follows from
the fact that the minimum Bayes error is a concave function
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of π over the standard simplex [2, Section II.C]. In (10), it is
required that the constellationΩ must be able to support the
average powerA, i.e.,A ≥ Amin, whereAmin is the power of
a minimum-power point inΩ. Additionally, 0 ≤ R ≤ R̃(A) is
needed for feasibility, wherẽR(A) is the maximum average
bit rate that can be attained under the average symbol power
constraintA [22].

1) Proposed Solution:The proposed approach for solving
the optimization problem in (10) is to first characterize the
form of the solution for an arbitrary detector at the receiver and
then to apply the optimal MAP decision rule. To that aim, we
consider a generic detector at the receiver specified by the deci-
sion functionsδ := (δ0, . . . , δM−1). Upon the reception of an
observationy, the receiver decides in favor of the hypothesis
thatsi is transmitted with probabilityδi(y), whereδi(y) ≥ 0
and

∑M−1
i=0 δi(y) = 1 for all y ∈ R

n. For a given detector
δ and signaling probabilitiesπ, the average correct decision
probability is expressed asPc(π, δ) =

∑M−1
i=0 πiPc,i(δi),

where Pc,i(δi) denotes the average probability of correct
decision given thatsi is transmitted, i.e.,

Pc,i(δi) = Ei {δi(Y )} =

∫

Rn

δi(y)pi(y)dy

=

∫

Rn

δi(y)pN(y − si)dy (11)

Next, we present the following lemma.

Lemma 1: For a given detector specified by the decision
functions{δi}Mi=1, the following signaling distribution

π∗
i = exp

(

−λ1||si||2 + λ2Pc,i(δi)
)

/Z(λ1, λ2), (12)

for i = 0, . . . ,M − 1, whereλ1, λ2 ≥ 0 and Z(λ1, λ2) =
∑M−1

i=0 exp
(

−λ1||si||2 + λ2Pc,i(δi)
)

, maximizes the average
probability of correct decision under constraints on average
bit rate and average symbol power.

Proof: For a given detector, the problem in (10) takes the
following form:

max
π

M−1
∑

i=0

πiPc,i(δi)

subject to−
M−1
∑

i=0

πi log2(πi) ≥ R (13a)

M−1
∑

i=0

πi||si||2 ≤ A, (13b)

M−1
∑

i=0

πi = 1, πi ≥ 0, i = 0, . . . ,M − 1 (13c)

Notice that Slater’s conditions hold for the optimization prob-
lem in (13). More explicitly, the optimization in (13) is convex
and forR < log2 M , the non-affine inequality constraint in
(13a) is strictly satisfied withπi = 1/M, i = 0, . . . ,M − 1.
Hence, strong duality holds and Karush-Kuhn-Tucker (KKT)
conditions are necessary and sufficient [30]. The Lagrangian

function corresponding to the optimization problem in (13)is

L(π; γ1, γ2, ν) =

M−1
∑

i=0

πiPc,i(δi)− γ1

(

M−1
∑

i=0

πi log2(πi) +R

)

+γ2

(

A−
M−1
∑

i=0

πi||si||2
)

+ ν

(

M−1
∑

i=0

πi − 1

)

.

(14)

Taking the derivative with respect toπi and equating to zero
yields

π∗
i = 2− log2 e+(Pc,i(δi)−γ2||si||2+ν)/γ1 . (15)

Applying the condition
∑M−1

i=0 πi = 1 and reparameterizing
with λ1 = (γ2/γ1) ln 2 andλ2 = (ln 2)/γ1, we get

π∗
i = exp

(

−λ1||si||2 + λ2Pc,i(δi)
)

/Z(λ1, λ2) (16)

whereZ(λ1, λ2) =
∑M−1

i=0 exp
(

−λ1||si||2 + λ2Pc,i(δi)
)

and
λ1, λ2 ≥ 0 follows from the dual feasibility condition, i.e.,
γ1, γ2 ≥ 0. �

The parametersλ1 andλ2 govern the trade-off among the
average probability of correct decision, the average bit rate,
and the average symbol power. For fixedλ2, asλ1 is increased,
the inner constellation points (i..e, those with low power)are
selected more frequently than the outer constellation points
(i.e., those with high power). On the other hand, for fixedλ1,
asλ2 is increased, constellation points yielding lower symbol
error probability are selected more frequently than those with
higher error rates.1 In addition, constellation points that have
the same power and the same error probability are selected
equally likely. Lastly, we note that the signaling distribution
that maximizes the average bit rate under the average symbol
power constraint (equivalently, minimizes the average power
for a fixed bit rate) can be obtained by substitutingλ2 = 0
and solving forλ1 from the power constraint [22]. In light of
the lemma, the following proposition characterizes the optimal
signaling distribution that solves the optimization in (10).

Proposition 2: For any givenR as the upper bound on
the average symbol power that is supported by a given
constellationΩ and R ≤ R̃(A) as the lower bound on the
average bit rate, wherẽR(A) is the maximum average bit rate
that can be attained under an average symbol power constraint
A, the solutionπ∗ = (π∗

0 , . . . , π
∗
M−1) to (10) satisfies the

following equation (i.e., a fixed point):

π∗
i =

exp
(

−λ∗
1||si||2 + λ∗

2Pc,i(δ
∗
i )
)

∑M
j=1 exp

(

−λ∗
1||sj ||2 + λ∗

2Pc,j(δ∗j )
)

(17)

for i = 0, . . . ,M − 1, where δ∗ = {δ∗i }M−1
i=0 is the MAP

detector corresponding to the optimal signaling distribution
π∗, i.e.,

δ∗i (y) = 1, if i = argmax
k∈{0,...,M−1}

π∗
k pk(y) (18)

and δ∗i (y) = 0 otherwise, fori = 0, . . . ,M − 1 and every

1In general, a lower symbol error probability can be achievedby selecting
a fewer number of constellation points that are farther apart from each other
(e.g., at the vertices of the constellation). In the limit asλ2 → ∞, this would
result in degenerate signaling (i.e.,πi = 1 for somei ∈ {1, . . . ,M} yielding
zero bit rate.)



6

y ∈ R
n. The optimal parametersλ∗

1 and λ∗
2 are obtained as

follows:
Case 1: Letλ∗

1 = 0 andλ∗
2 ≥ 0 be a solution to

−
M−1
∑

i=0

πi(λ2) log2(πi(λ2)) = R (19)

whereπ(λ2) = (π0(λ2), . . . , πM−1(λ2)) satisfiesπi(λ2) =
exp(λ2Pc,i(δi))

/(
∑M

j=1 exp(λ2Pc,j(δj))
)

, i = 0, . . . ,M − 1

and δ = {δi}M−1
i=0 is the MAP detector corresponding to

π(λ2). Then,{π∗(λ∗
2), λ

∗
2} together withλ∗

1 = 0 is optimal if
the constraint on the average symbol power is satisfied, i.e.,

M−1
∑

i=0

π∗
i (λ

∗
2)||si||2 ≤ A , (20)

else if (20) fails, go to Case 2.
Case 2: Letλ∗

1 > 0 andλ∗
2 ≥ 0 be a solution to

−
M−1
∑

i=0

πi(λ1, λ2) log2(πi(λ1, λ2)) = R,

M−1
∑

i=0

πi(λ1, λ2)||si||2 = A (21)

whereπ(λ1, λ2) = (π0(λ1, λ2), . . . , πM−1(λ1, λ2)) satisfies

πi(λ1, λ2) =
exp

(

−λ1||si||2 + λ2Pc,i(δi)
)

∑M
j=1 exp (−λ1||sj ||2 + λ2Pc,j(δj))

(22)

and δ = {δi}M−1
i=0 is the MAP detector corresponding to

π(λ1, λ2). Then,{π∗(λ∗
1, λ

∗
2), λ

∗
1, λ

∗
2} is optimal.

Proof: Please see Appendix A.
Since the optimal signaling distributionπ(λ1, λ2) is a

continuous function ofλ1 andλ2, an iterative bisection search
algorithm can be employed to solve for the values ofλ1 and
λ2 that satisfy the equality constraints in (19) and (21).

B. Joint Design of Optimal Deterministic Priors and Con-
stellation Points

In this section, we formulate the problem of jointly de-
signing optimal deterministic signal constellation and the
corresponding prior probabilities of the constellation symbols.
Namely, instead of searching for the optimal PDF as specified
by the general problem in (8), we try to find the single point
x = [π, s0, . . . , sM−1] ∈ ∆M−1 ×R

Mn that maximizes the
average probability of correct decision under average trans-
mission power and bit rate per symbol constraints. Therefore,
the optimization problem can be formulated as (cf. (7))

max
x∈∆M−1×RMn

F (x)

subject toH(x) ≥ R

G(x) ≤ A (23)

where F (x) =

∫

Rn

max
i∈{0,1,...,M−1}

{

πi pN(y − si)
}

dy,

G(x) =
∑M−1

i=0 πi||si||2, andH(x) = −∑M−1
i=0 πi log2(πi).

Notice that if the signal constellations = {s0, . . . , sM−1} ⊂
R

Mn is fixed inx, then the problem in (23) reduces to that in

(10). As the solution is known for the prior distribution fora
givens, average power constraintA, and bit rate constraintR
based on Proposition 2, one can actually perform the optimiza-
tion over the signal constellations only. Letπ∗(s) denote the
optimal prior distribution for the signal constellations, which
can be obtained according to Case 1 or Case 2 in Proposition 2.
Then, (23) becomes

max
s∈RMn

∫

Rn

max
i∈{0,1,...,M−1}

{

π∗
i (s) pN(y − si)

}

dy. (24)

Note that for somes ∈ R
Mn, the reduced problem of optimal

prior distribution may not be feasible for givenA and R;
hence,π∗(s) may not exist. In that case, one can simply set
the objective function in (24) to take the value−∞.

Remark 4: Let xopt denote the optimal solution to (23).
Then,H(xopt) = R. This immediately follows from the form
of the solution toπ∗ given in Proposition 2.

C. Binary Communication over AWGN Channel

In this section, we investigate the special case of a binary
communication system with scalar observations, corruptedby
a zero-mean Gaussian noise with varianceσ2. In this case, we
getX = [Π0, Π1, S0, S1], whereΠ0 = 1−Π1. It is assumed
that for any given realizationX = xi, G(xi) ≤ A holds; that
is, an individual power constraint is imposed for each pair
of constellation set and the corresponding prior probability
vector.

In the absence of the bit rate constraint, it is well-known that
for given prior probabilities(π0, π1), the optimal constellation
symbols that minimize the probability of error, in the presence
of the MAP detector and average power constraintA, are
S0 = −

√
A/α and S1 = α

√
A with α =

√

π0/π1 when
the noise distribution is Gaussian [19]. To this end, when
there exist average power and bit rate constraints on the
signal, the optimization over the distribution ofX, can be
reduced to an optimization over the distribution ofΠ1, since
the optimal signal constellation is well-defined for any given
prior realization. This implies that the average power constraint
can be omitted, as it always holds with equality. Therefore,
let pΠ1(π1) denote the PDF of priorΠ1 corresponding to
symbolS1. Then, the problem can be expressed in terms of
minimization of the probability of error as follows:

min
pΠ1

E (f(Π1)) subject to E (h(Π1)) ≥ R, (25)

with f(π1) ,

∫ ∞

−∞
min

{

π1 pN(y − α
√
A), (1 − π1) pN (y +

√
A/α)

}

dy andh(π1) , −π1 log π1 − (1 − π1) log(1 − π1),
where the expectations are taken with respect topΠ1(π1) and
pN (y) = (1/

√
2πσ2 ) e−y2/2σ2

. For the Gaussian noise, the
optimal MAP detector is a single threshold detector. Then,
f(π1) can be expressed as

f(π1) = π1

∫ τ(π1)

−∞
pN (y − α

√
A) dy

+ (1− π1)

∫ ∞

τ(π1)

pN(y +
√
A/α) dy (26)
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where τ(π1) = 0.5
√
A(α − 1/α) + 2σ2 ln(α)√

A(α+1/α)
with α ,

√

(1− π1)/π1 [2]. Note that both f(π1) and h(π1) are
symmetric aroundπ1 = 0.5; thus, we can restrict the values
of prior π1 to the interval[0, 0.5]. In this region,h(π1) is a
monotone concave function ofπ1; hence, its inverse function
exists. Let h−1 denote the inverse entropy function with
h−1 : [0, 1] → [0, 0.5] andh−1(r) = π1 whenh(π1) = r for
r ∈ [0, 1] andπ1 ∈ [0, 0.5]. Note thatf(π1) can be rewritten
as

f(π1)

= π1 Q

(

α
√
A− τ(π1)

σ

)

+ (1− π1)Q

(√
A/α+ τ(π1)

σ

)

= π1 Q

(

γ
α2 + 1

2α
− 2 lnα

γ (α+ 1/α)

)

+ (1 − π1)Q

(

γ
α2 + 1

2α
+

2 lnα

γ (α+ 1/α)

)

(27)

whereγ ,
√
A/σ. Note thatf depends only onγ and π1.

Based on the preceding definitions, the following results are
presented.

Property 1: g(r) is a strictly convex function on[0, 1] for
γ > γth ≈ 0.166.

Derivation: Please see Appendix B.
Lemma 2: Let g(r) = f o h−1(r). Then,g(r) is monotone

increasing on[0, 1] for γ > 0.
Proof: Please see Appendix C.

Property 2: Under individual power constraintA on each
pair of signal constellations and the corresponding prior prob-
ability vector, for a given average bit rate constraintR and
γ > γth ≈ 0.166, the optimal prior probability distribution
for a binary communication system with an additive Gaussian
noise channel does not involve randomization and can be
specified aspoptΠ1

(π1) = δ(π1 − h−1(R)). The correspond-
ing optimal constellation can be specified as(S0, S1) =
(−

√
A/α, α

√
A) with α ,

√

π0/π1 and π1 = h−1(R).
Derivation: It is first noted thatg(r) is monotone increas-

ing and strictly convex whenγ > γth ≈ 0.166. Under the con-
straint thath(π1) ≥ R, we haveh−1(R) = argmaxπ1 f(π1)
due to monotonicity. Assume that there exists a PDFpoptΠ1

such thatE {h(Π1)} ≥ R and E {f(Π1)} < g(R) =
f o h−1(R). Let T = h(Π1) and Π1 = h−1(T ). Then,
E
{

f o h−1(T )
}

= E {g(T )} < g(R). Since g is a strictly
convex function,g(E {T }) < E {g(T )}. In addition, asg
is a monotone increasing function,E {T } < R must hold.
However,E {T } = E {h(Π1)} < R results in a contradiction,
which implies that the argument in the property holds, i.e.,
poptΠ1

(π1) = δ(π1 − h−1(R)). �

Remark 5: Note that if γ < γth ≈ 0.166, g(r) is convex
except over a short interval of low bit rates. Hence, in most
of the practical scenarios, the result of Property 2 is expected
to still hold.

IV. N UMERICAL RESULTS

In this section, numerical results are provided for the
proposed signal constellation and/or prior distribution design
problems. First, the optimal stochastic signaling is investigated

under average power and bit rate constraints based on the
generic formulation in (8) and performance comparisons are
conducted with respect to the alternative strategies proposed in
Section III. In the examples, binary (M = 2) and quaternary
(M = 4) communication systems with one dimensional ob-
servations (n = 1) are considered, and the following Gaussian
mixture noise is employed:

pN (y) =
1√

2π σL

L
∑

l=1

e−
(y−µl)

2

2σ2 (28)

whereL = 4, µ1 = −1.5, µ2 = −0.5, µ3 = 0.5, andµ4 =
1.5.

The strategies evaluated in the examples are given below:
Optimal prior (deterministic): This strategy corresponds

to the solution of (10). In this case, it is assumed that the
constellation is fixed and the signals are specified ass0 =
−
√
A and s1 =

√
A when M = 2. Note that forM = 2,

the optimal prior distribution should satisfy the average bit
rate constraint with equality according to Proposition 2. For
M = 4, the fixed constellation signal points are specified as
s =

[−3√
5
, −1√

5
, 1√

5
, 3√

5

]

with A = 1.
Optimal joint (deterministic): This strategy is obtained as

the solution of (23), which yields the optimal deterministic
prior probability and signal constellation vectors jointly.

Optimal joint (stochastic): This strategy corresponds to the
solution of (8), which provides the optimal distribution for the
prior probability and signal constellation vectors jointly.

In the first example, the binary signaling is used with
A = 1.2 and R = 0.8812 = h(0.3), and the average
probability of error is calculated for various values ofA/σ2.
It is observed from Fig. 1 that the jointly optimal stochastic
design achieves the best performance, as expected, since it
covers the other strategies as special cases. On the other
hand, the optimal deterministic priors strategy yields theworst
performance as it does not optimize the signal constellation
vector together with the priors. The performance difference
between various strategies becomes less significant in the low
SNR regime. However, whenA/σ2 > 12 dB, one can notice
the improvements over deterministic signaling via stochastic
signaling.

Next, performance of the proposed strategies is investigated
for M = 4. The power constraint is set asA = 1, and the
same Gaussian mixture noise is employed as in the previous
example. The average probabilities of error are calculated
for the proposed strategies whenR = 1.9 and R = 2.
Recall thatR = 2 corresponds to the use of equal priors
for the constellation points. From Fig. 2, it is seen that
employing a lower bit rate constraint improves the average
probability of error performance for all the strategies. The best
performance is again achieved via stochastic signaling, and the
performance gap between the optimal joint stochastic signaling
and the optimal joint deterministic signaling becomes larger
for R = 1.9.

In order to observe behaviors of different strategies for
varying bit rate constraints, SNR is fixed asA/σ2 = 24 dB
and the average probabilities of error are plotted versusR.
From Fig. 3, it is noted that the optimal joint stochastic and
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Fig. 1: Pe versusA/σ2 for M = 2 with A = 1.2 andR =
0.8812 for different strategies.
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Fig. 2: Pe versusA/σ2 for M = 4 under Gaussian mixture
noise withA = 1.

deterministic approaches have the same solutions for low bit
rate constraints (R < 1.35) and stochastic signaling improves
the performance of deterministic signaling for medium and
high R values as it allows randomization among different
transmission policies (prior and signal constellation sets).
Also, the sharp increase in the average probability of error
aroundR = 1.35 andR = 1.85 is due to the fact that the
effective noise has a multi-modal PDF.

Next, performance of the proposed strategies is investigated
in the presence of zero-mean Gaussian noise forM = 4. From
Fig. 4, it is observed forR = 2 that the optimal joint deter-
ministic and stochastic solutions have the same performance
(with the fixed constellation ofs =

[−3√
5
, −1√

5
, 1√

5
, 3√

5

]

), and
the performance of the optimal prior solution is slightly worse.
For R = 1.9, the optimal joint deterministic and stochastic
approaches still achieve equal error probabilities, whichare

R (bits)
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P
e
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100
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Fig. 3:Pe versusR for M = 4 under Gaussian mixture noise
with A = 1 andA/σ2 = 24 dB.
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Fig. 4:Pe versusA/σ2 for M = 4 under Gaussian noise with
A = 1, R = 2 andR = 1.9.

significantly lower than those in the case ofR = 2. On the
other hand, the reductions in the error probabilities whenR
is reduced from2 to 1.9 are very small for the optimal prior
solution. This small performance difference reduces further as
A/σ2 increases.

Finally, we consider the 8-PAM modulation scheme to
further evaluate the performance of the optimal deterministic
prior design framework. The constellation is normalized to
have unit average symbol power with respect to uniform
signaling, i.e.,Ω = {±1/

√
21,±3/

√
21, ±5/

√
21,±7/

√
21}.

It is assumed that the received symbols are subject to zero-
mean additive white Gaussian noise with varianceσ2, and
consequently, the SNR is defined asSNR = −10 log10(σ

2).
In Fig. 5, we depict the correct decision performance of
the proposed optimal signaling scheme as a function of the
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Fig. 5: Correct decision performance of the proposed method
subject to constraints on the average bit rate and the av-
erage symbol power for an 8-point constellationΩ =
{±1/

√
21,±3/

√
21,±5/

√
21,±7/

√
21}.

constraintA on the average symbol power for different values
of the average bit rate constraintR ∈ {1, 1.5, 2, 2.5} when
SNR = 10 dB. The marker shown at the leftmost end of
each curve corresponds to the signal distribution that yields the
minimum average symbol power under the specified constraint
on the average bit rate. For eachR ∈ {1, 1.5, 2, 2.5}, it
is seen from the figure that the correct decision probability
increases towards a limiting value as the constraint on the
average symbol power is relaxed. Since we employ a fixed
constellation, the maximum value of the correct decision
probability is limited by the chosen value of average bit
rate constraint even if the constraint on the average symbol
power is large. Nevertheless, the proposed solution yields
the optimal signaling distribution that maximizes the correct
decision probability under constraints on the average bit rate
and the average symbol power for the given constellation.

In order to compare the performance of the proposed
scheme with that of the uniform signaling scheme, the correct
decision probability of the conventional quaternary(M = 4)
signaling with equally likely symbols is also depicted in Fig. 5
(see the solid black line). The conventional constellationfor
M = 4 is constructed asΩ4(A) =

√
A × {±1/

√
5,±3/

√
5}

to yield an average symbol power value equal toA. It should
be noted that asA increases, the minimum distance between
the constellation points inΩ4(A) increases, and hence, the
correct decision probability improves steadily towards one. It
is seen from Fig. 5 that the proposed approach (see the dash-
dot black line corresponding toR = 2) yields higher correct
decision performance with respect to the uniform quaternary
signaling over the rangeA ∈ (0.18, 1.28) while delivering
an average bit rate of2 bits per transmitted symbol. As an
example, forA = 0.51, nonuniform signaling over the 8-
point constellationΩ according to the signaling distribution

π = (0.0588, 0.0084, 0.3043, 0.0186, 0.4272, 0.0143, 0.16424,
0.0041) attains a correct decision probability score approx-
imately equal to0.832 whereas the conventional uniform
signaling overΩ4(0.51) delivers 0.766. Hence, another ad-
vantage of the proposed scheme is that the correct decision
performance can be improved with nonuniform signaling over
a higher order constellation while satisfying the same average
bit rate and average symbol power with those of a uniform
signaling scheme over a lower order constellation.

V. CONCLUSION

In this paper, we have jointly optimized for the distribution
of the signal constellation and the corresponding prior prob-
ability vector in order to minimize the average probabilityof
error subject to constraints on average bit rate and average
symbol power. Considering the prior probability vector as a
part of the design leads to an extra degree of freedom com-
pared to conventional stochastic signaling. Since the possible
use of nonequal priors can reduce the average bit rate, we
have imposed constraints on the average bit rate and power
in the proposed formulation. The original formulation requires
optimization over a space of joint PDFs, which is hard to solve
in general. For this reason, we have first derived an alternative
optimization problem, and proved that its solution achieves
the same optimal value as that of the original problem. The
advantage of the alternative formulation is that the optimal
solution can be represented as a randomization among at most
three different mass points; hence, it can be solved efficiently.
After the general formulation, we have investigated three
special cases focusing on the optimization of deterministic
prior probabilities for a given fixed constellation, the optimal
deterministic joint design of prior probabilities and constella-
tion points and, a classical binary communication system with
scalar observations under AWGN. Finally, numerical results
have been presented for both the general formulation and the
special cases.

A theoretical framework is presented in this paper for
enhanced digital modulation by optimizing the prior proba-
bilities and the corresponding signal constellation underav-
erage power and bit rate constraints. The idea of utilizing a
flexible average bit rate (nonequal priors) to improve error
performance can be applied to most digital communication
systems, as the considered system model assumes a generic
M -ary communication system under an additive noise channel,
e.g., AWGN and flat fading channels with perfect channel
estimation. Furthermore, the stochastic signaling approach
can provide further improvements over deterministic signaling
especially under additive non-Gaussian noise such as the
Gaussian mixture. The effects of multiuser or co-channel
interference and impulsive noise in communication systems
can be modeled as Gaussian mixture noise [17]. Therefore,
randomization of digital modulation can be an option to
improve the average probability of error under such conditions.
As a future work, we aim to extend this study to multi-
user scenarios with varying average bit rate constraints and
reliability targets, and design the modulation strategiesin a
non-orthogonal multiple access setting.



10

APPENDIX A
PROOF OFPROPOSITION2

It is noted from (10) that the objective function is convex
with respect toπ while the constraints specify a closed
bounded convex feasible set forπ. We recall that the max-
imum of a convex function over a closed bounded convex
set is achieved at anextremepoint, i.e., a point in the set
that is not a convex combination of any other points in the
set [28, Section 32]. Consequently, an interior maximum is
not possible. Furthermore, the maximum cannot occur on an
interior point of a flat face or straight edge if the boundary
of the feasible set contains such regions as may be the case
in this problem due to the presence of linear power and
(M − 1)−simplex constraints. Now, from (10), it is seen
that the feasible set is the intersection of the closed bounded
convex set defined by{π ∈ ∆M−1 : H(π) ≥ R} with
the half-space{π ∈ R

n : E(π) ≤ A}. Therefore, an
extreme point of the feasible set has to be on the boundary
of the set{π ∈ ∆M−1 : H(π) ≥ R}, i.e., the average bit
rate constraint must be satisfied with equality and we get
{π ∈ ∆M−1 : H(π) = R}. Then, the optimization problem
in (10) can be expressed as

max
π,δ

M−1
∑

i=0

πiPc,i(δi)

s.t.
M−1
∑

i=0

πi||si||2 ≤ A, (29a)

−
M−1
∑

i=0

πi log2(πi) = R (29b)

π ∈ ∆M−1 andδ(y) ∈ ∆M−1 ∀y ∈ R
n (29c)

where the optimal MAP detector is replaced with an optimiza-
tion over the set of all valid detectors for ease of analysis.
The Lagrangian function corresponding to the optimization
problem in (29) is given by

L(π, δ; γ, µ) =

M−1
∑

i=0

πiPc,i(δi) + γ

(

A−
M−1
∑

i=0

πi||si||2
)

− µ

(

M−1
∑

i=0

πi log2(πi) +R

)

(30)

Recall the following KKT conditions:

• Stationarity:
(π, δ) = argmax

π∈∆M−1,δ(y)∈∆M−1

L(π, δ; γ, µ),

• Primal feasibility:
∑M−1

i=0 πi||si||2 ≤ A and
−
∑M−1

i=0 πi log2(πi) = R,
• Dual feasibility:γ ≥ 0,
• Complementary slackness:γ(

∑M−1
i=0 πi||si||2 −A) = 0.

If there exist(π∗, δ∗, γ∗, µ∗) that satisfy the KKT conditions,
then the duality gap is zero (i.e., the upper bound is achieved),
and π∗, δ∗ and γ∗, µ∗ are primal and dual optimal, respec-
tively [30].

Lemma 1 gives the form of the optimal signaling distri-
bution for a fixed detectorδ. On the other hand, for a fixed

signaling distributionπ, the optimal detector is given by the
MAP decision rule. Combining these results yields the relation
given in (17) of Proposition 2 after reparameterizing with
λ1 = (γ/µ) ln 2 and λ2 = (ln 2)/µ. It should be noted that
the functional relation in (17) is in the form off(π) = π

since the MAP detector denoted byδ = {δi}M−1
i=0 in (17)

depends on the signaling distributionπ. Noting thatf(·) is a
continuous mapping from the(M − 1)−simplex to itself, i.e.,
f : ∆M−1 → ∆M−1, it follows from Brouwer Fixed Point
Theorem thatf (·) has a fixed point [31], i.e., there exists
π∗ ∈ ∆M−1 such thatf(π∗) = π∗.

This result can be combined with the other KKT con-
ditions (i.e., primal feasibility, dual feasibility, and comple-
mentary slackness) to jointly solve for the optimal values
of {λ1, λ2} in (17). Consequently, we get the following
two cases stated in the Proposition 2: (Case 1)λ1 = 0
(corresponding toγ = 0) together with

∑M−1
i=0 πi||si||2 ≤ A

and −
∑M−1

i=0 πi log2(πi) = R; and (Case 2)λ1 > 0 (cor-
responding toγ > 0) together with

∑M−1
i=0 πi||si||2 = A

and −∑M−1
i=0 πi log2(πi) = R. From (17), it is seen that

π∗ is a continuous function of the parametersλ1 and λ2.
Consequently,H(π∗) andE(π∗) are continuous functions of
λ1 and λ2. Furthermore, we havelimλ1→∞ E(π∗) = Amin

for fixed λ2.

In light of the observations above, we next show that the
optimal values{λ∗

1, λ
∗
2} can be obtained by considering the

two cases stated in Proposition 2. In Case 1, the optimal
π∗ needs to satisfy (17) withλ1 = 0. Note that if λ2 = 0
is selected, (17) results in uniform signaling, which yields
H(π∗) = log2(M). On the other hand, asλ2 tends to infinity,
it is seen that degenerate signaling withπi = 1 andπk = 0
for all k 6= i is a solution of (17) and has zero bit rate.
From continuity ofH(π∗) with respect toλ2, it follows that
there existsλ̂2 ≥ 0 such thatH(π∗(λ̂2)) = R is satisfied
for any R ∈ [0, log2(M)] while we keepλ1 = 0. Hence, a
solution {π∗(λ̂2), λ̂2} in (19) is guaranteed. If the solution
also satisfies (20) (i.e.,E(π∗(λ̂2)) ≤ A), then all the KKT
conditions are satisfied; hence, the solution characterized by
Case 1 is optimal. If (20) fails (i.e.,E(π∗(λ̂2)) > A),
we proceed with Case 2. In this case, we first note that
since limλ1→∞ E(π∗) = Amin for any λ2 and E(π∗) is
a continuous function ofλ1, there exists a corresponding
λ1(λ2), i.e., λ1 as a function ofλ2, such thatE(π∗) = A
for A ≥ Amin. On the other hand, we can always find a
value of λ2 such thatH(π∗) = R is achieved by the pair
{λ1(λ2), λ2} for R ≤ R̃(A). To see this, assumeH(π∗) < R
and notice that lettingλ2 = 0 in (17) yields the signaling
distribution that maximizes the average bit rate under the
power constraint, i.e., a bit rate of̃R(A) is attained. Since both
λ1(λ2) andH(π∗) are continuous functions ofλ2, there exists
a pair{λ1(λ2), λ2} that givesH(π∗) = R andE(π∗) = A.
Hence, the optimization problem given in (21) is feasible, i.e.,
a solution{π∗, λ∗

1, λ
∗
2} in (21) exists. This implies that all

the KKT conditions are satisfied and the optimal signaling
distribution is characterized by Proposition 2.
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Fig. 6: s(r) versusr for various values ofγ.

APPENDIX B
DERIVATION OF PROPERTY1

Let ĥ(r) = h−1(r) ∈ [0, 0.5]. Then, dg(r)dr = f ′(ĥ(r))ĥ
′

(r).
Note thatĥ(r) is a monotone increasing and convex function
of r. It is first noted that d

2g(r)
dr2 = f

′′

(ĥ(r))(ĥ
′

(r))2 +

f ′(ĥ(r))(ĥ
′′

(r)). Since h(π1) is a one-to-one function on
π1 ∈ [0, 0.5], we haveĥ

′

(r) = 1/h
′

(ĥ(r)). Hence, we obtain
the following relation:

d2g(r)

dr2
=

f
′′

(ĥ(r))h
′

(ĥ(r)) − f ′(ĥ(r))h
′′

(ĥ(r))

(h′(ĥ(r))3
(31)

,
s(r)

(h′(ĥ(r))3
· (32)

Note that the denominator of (31) is always positive as the
binary entropy function is monotone increasing and concave
on [0, 0.5]. Let s(r) denote the numerator of (31). Then, the
aim is to determine whens(r) > 0 to explore the convexity
of g(r). Fig. 6 showss(r) versusr for various γ settings.
The numerical investigation reveals thats(r) is positive for
large values ofγ; however, whenγ < γth, it is negative in
a certain interval ofr values. This can be seen more clearly
in Fig. 7, where the dark (black) region indicates the area
in which s(r) ≤ 0. In addition, we provide Fig. 8 which
illustrates d2g(r)

dr2 for various values ofγ. It is interesting to
note that whenγ < γth ≈ 0.166, g(r) is not convex for a
certain interval of bit rates with small values.

APPENDIX C
PROOF OFLEMMA 2

In order to prove monotonicity, we need to show thatf ′(π1)
is positive forπ1 ∈ [0, 0.5]. In the proof,p , π1 andα ,
√

(1− p)/p are used for convenience. By definingu(p) ,

Fig. 7: The dark area shows the region in whichs(r) < 0.
Outside this region,g(r) is convex.
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Fig. 8: g
′′

(r) = d2g(r)
dr2 versusr.

γ
2 (α + 1

α ) − ln α
γ
2 (α+

1
α
)

andv(p) , γ
2 (α + 1

α ) +
ln α

γ
2 (α+

1
α
)
, (27)

can be rewritten asf(p) = pQ(u(p))+(1−p)Q(v(p)). Then,

f ′(p) = Q(u(p)) + pQ′(u(p))u′(p)−Q(v(p))

+ (1− p)Q′(v(p)) v′(p) . (33)

In (33), Q′(p) = − 1√
2π

e−p2/2 and explicit formulas are

required for u′(·) and v′(·). Note that u′(p) = du
dα

dα
dp =

ũ(α)α
′

(p) by the chain rule. Similarly,v′(p) = dv
dα

dα
dp =

ṽ(α)α
′

(p), whereα
′

(p) = −1

2p
√

p(1−p)
. Hence,

ũ(α) =
γ

2

(

1− 1

α2

)

− (1 + 1
α2 )− lnα (1− 1

α2 )
γ
2 (α + 1

α )
2

(34)
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and

ṽ(α) =
γ

2

(

1− 1

α2

)

+
(1 + 1

α2 )− lnα (1 − 1
α2 )

γ
2 (α+ 1

α )
2

. (35)

For p ∈ [0, 0.5),2 we haveα > 1. Then,u(p) < v(p) and
Q(u(p)) − Q(v(p)) > 0 for any givenγ, andα > 1 as the
Q-function is monotone decreasing. Thus,f ′(p) in (33) can
be lower bounded as follows:

f ′(p) > pQ′(u(p))u′(p) + (1 − p)Q′(v(p)) v′(p) (36)

=
1

√

8π p(1− p)

(

e−u(p)2/2ũ(α) + e−v(p)2/2ṽ(α)α2
)

.

Thus, it suffices to show that e−u(p)2/2ũ(α) +
e−v(p)2/2ṽ(α)α2 > 0. Then,

γ

2

(

α+
1

α

)2
(

e−u(p)2/2ũ(α) + e−v(p)2/2ṽ(α)α2
)

= e
u(p)2

−2

(

γ2

4
(1 − 1

α2
)(α +

1

α
)2 + lnα(1 − 1

α2
)− (1 +

1

α2
)

)

+ e
v(p)2

−2

(

γ2

4
(1− 1

α2
)(α+

1

α
)2

− lnα(1− 1

α2
) + (1 +

1

α2
)

)

α2 , c(α). (37)

Therefore, it is sufficient to determine ifc(α) is positive. The
c(α) term can be decomposed as

c(α) =

(

e−
u(p)2

2 + α2e−
v(p)2

2

)(

1− 1

α2

)(

γ2

4
(α+

1

α
)2
)

+
(

e−u(p)2/2 − α2e−v(p)2/2
)

(

lnα(1 − 1

α2
)− (1 +

1

α2
)

)

.

(38)

However, it can be shown thate−u(p)2/2 − α2e−v(p)2/2 = 0
after insertingu(p) andv(p) into the expression. Furthermore,
all the terms in the first line of (38) are strictly positive for any
γ > 0 andα > 1. This shows thatf ′(p) > 0 for p ∈ [0, 0.5);
hence it is a monotone increasing function.
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