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Abstract—The optimal stochastic signaling based on the joint power constraint and nonequal prior probabilities. In [k
design of prior distribution and signal constellation is investigated  convexity properties of the average probability of error in
under average bit rate and power constraints. First, an optiniza- terms of signal and noise power are investigated for binary-

tion problem is formulated to maximize the average probabiity lued | . | dditi . h | d
of correct decision over the set of joint distribution functions for ~V&/U€d Scalar signals over additiveé noiSe channels under an

prior probabilities and the corresponding constellation ymbols. average power constraint. In [5], similar convexity anafys
Next, an alternative problem formulation, for which the optimal  are performed for constellations with arbitrary shape,egrd
joint distribution is characterized by a randomization among and dimensionality for a maximum likelihood (ML) detector
at most three mass points, is provided, and it is shown that j, a5 AWGN channel. Based on the convexity results in [4]
both formulations share the same solution. Three special cas d 15l th timalitv of det inisti tochastic it
of the problem are investigated in detail. First, in the absace and [3], the op |ma_| y ot de ermlnls_lc or 5 (_)C aslic Sign_g )
of randomization, the optimal prior probability distribut ion is ~can be determined in power constrained digital commurupati
analyzed for a given signal constellation and a closed-form systems.
solution is provided. Second, the optimal deterministic pa The problem of optimal constellation design (signal shap-
of prior probabiliies and the corresponding signal levelsis a4y s also considered in various studies in the literature
considered. Third, a binary communication system with scair h 61-1121 In 6 timal if tellatio
observations is investigated in the presence of a zero-meauldi- suc . as _[ 1-[12]. n [6], optimal nonuniform constellation
tive white Gaussian noise, and the optimal solution is obtaed t0 minimize the union bound on the uncoded symbol error
under practical assumptions. Finally, numerical examplesare rate are investigated in a cooperative relaying schemer]in [
presented to illustrate the theoretical results. It is obseved that g nonuniform constellation design is performed to maximize
the proposed approach can provide improvements in terms of e pit jnterleaved coded modulation (BICM) capacity for
average symbol error rate over the classical scheme for ceain . . . .
SCenarios. the ATSC 3.0 standard. The optimal two dimensional signal
constellation which minimizes the probability of error ovse
circularly symmetric complex AWGN channel under average
power constraints is investigated fdr-ary communication
systems in [8]. In [10], a nonequiprobable signaling scheme
[. INTRODUCTION AND MOTIVATION is described to achieve the asymptotic shaping gain (1.53 dB

In the literature, optimal signaling to minimize the averagin any fixed dimension.
probability of error under various forms of power consttain  In certain scenarios, employing randomization (i.e., Istse
has been studied extensively. For binary communication sji€ signaling) instead of deterministic signals/consiin
tems that operate over zero-mean additive white GaussR@ints can improve the average probability of error perfor-
noise (AWGN) channels subject to power constraints in tgance [4], [13]-[20]. Stochastic signaling relies on thead
form of E{|S;[|?} < A for i = 0,1, the optimal strat- of modeling signalS; corresponding to theéth information
egy is to employ deterministic antipodal signaling at th&ymbol as a random variable instead of a deterministic dyant
power limit at the transmitter and the maximunpasteriori for eachi. In [17], the optimal stochastic signaling is inves-
probability (MAP) decision rule at the receiver [2]. Alter-tigated for a given detector under second and fourth moment
natively, the average power constraint can take the form e@nstraints, and it is shown that the optimal signal for each
Zle mE{||S;][*} < A wherer; represents prior probability information symbol can be represented by a discrete random
of symbol:. In [3], the optimal deterministic signaling with variable with at most three distinct signal levels. In [18ie
such a constraint is investigated in the presence of additipint design of the signals and the detector is investigated
zero-mean Gaussian noise when the optimal MAP receiitd performance improvements over deterministic siggalin
is used at the receiver, and it is shown for coherent systefi€ illustrated for non-Gaussian channels. In [19], optima
that the optimum performance is achieved when the Euclidegi@chastic signaling is studied under an average power con-

distance between the signals is maximized under the giv@iaintin the formofy"? | mE {||S;||?} < Afori = 0,1, and
sufficient conditions for improvability or non-improvaity of
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tion, and it is shown that randomization can improve errdhe corresponding prior probabilities to minimize the agr
performance in some scenarios. probability of symbol error under average bit rate and power
Although the optimal signaling has been investigated faonstraints. First, an optimization problem is formulated
a variety of power constraints and transmission scenariebere the receiver utilizes the optimal MAP decision rule by
in the literature, the prior probabilities are consideredd assuming that it knows the prior probability realizatioratth
fixed quantities, which can be either uniform or non-uniforms currently being used by the transmitter and the constel-
In conventional memoryless digital modulation systems, lation distribution for that prior realization. As this genic
uniform Bernoulli binary sequence is parsed into blocks dbrmulation involves optimization over a space of joint FDF
fixed length and each block is mapped to a symbol in a givam alternative optimization problem, the optimal solutioi
signal constellation. Resulting in equally likely symhdisis which can be expressed as a randomization among at most
procedure (i.e., uniform signaling) maximizes the entropy three mass points, is derived, and it is proved that the malgi
the transmitted symbols, and consequently the average did the alternative problems share the same optimal value.
rate for a given constellation size [21]. In cases where tiNext, three special cases of the original formulation are
power cost of the constellation points also needs to be takewmestigated. First, the optimal prior distribution for &en
into account, a nonuniform signaling scheme that sele@s ttonstellation is derived. Second, the optimal pair of fixed
constellation points with lower power more frequently thapriors and signal levels is considered, and third, a binang
the points with higher power would result in power savingswunication scenario with scalar observations under aaditi
in exchange for a reduced bit rate [22]. In addition, it igero-mean Gaussian noise is investigated. Finally, nuwaleri
known that for a given fixed signaling scheme, the minimumesults are provided for the general formulation and theispe
Bayesian risk (probability of error) is concave over thecgpacases. The main contributions in this paper can be sumndarize
of priors [2]. For example, for a binary communication syste as follows:

employing antipodal signalingS¢ = —So), uniform priors  , For the first time in the literature, the optimal signaling
result in the worst average symbol error rate. Therefora; no problem is proposed by jointly optimizing the signal
uniform signaling can provide improvements for averagererr  constellation and the prior probabilities for transmitted
performance in addition to power savings even though it symbols in the presence of average bit rate and power
reduces the average bit rate. constraints.

_Motivated by these observations, we consider the optimal, |t is shown that the optimal performance is achieved by a
signaling problem based on the joint design of prior probabi  randomization among at most three signal constellations
ities and the corresponding constellation symbols such tha ith the corresponding associated deterministic prior
the average symbol error rate is minimized under average probability vectors.
bit rate and power constraints. To maintain a general per-, A closed form expression of the optimal deterministic
spective/formulation, both the prior probability vecterdathe prior probability distribution for a given constellatios i
signal constellation are assumed to be random (stochastic) derived.
distributed according to a joint probability density fuect . The optimal solution for the special case of binary
(PDF), pris(m,s). In other words, the transmitter forms an  communications over an AWGN channel with scalar ob-
optimal constellation book in order to transmit each symbol  servations is obtained under certain practical assumgtion
with the corresponding signal levels and the prior profiis) The rest of the paper is organized as follows: The optimal

where each constellation can be used with a certain prods,ajing problem is formulated and form of the solution is

bility. This procedure can be regarded as a generalizaion g, iqed in Section 1. Special cases of the general fortiaria
constellation randomizatiarin the literature, there exist SOMe, o giscussed in Section IIl. Numerical results are present
studies that utilize randomized signal constellationsarious

) : ; in Section 1V and concluding remarks are given in Section V.
communication scenarios [23]-[27]. For example, in [28}, f

a spatial multiplexing scenario under block fading chasnel
the signal constellation is rotated by using a pseudorandom
sequence for each transmitted vector. Performance gains viConsider ani/-ary communication system with dimen-
randomized constellations can be obtained both in cod&@nal observations collected at the receiver over anrarpit
frame-error rate [23] and outage probability [24]. In [2#], additive noise channel. The discrete-time baseband dguoiva
random rotations and phase shifts are employed to increasegignal after downconversion, matched filtering, and samgpli
transmission diversity. Also, in [20], the optimal randaation at the symbol rate can be represented as

of c_onstellations is investigat_ed for each user in a mLé_n'us Y =S, +N, ic{0,1,....M—1} L
setting under power constraints. However, these studies do

not take into account the prior probability distribution inwhereS; is the transmitted signal vector foth constellation
their formulation (i.e., assume that it is fixed), and onlgymbol andN denotes the noise vector that is assumed to
utilize randomization in signal levels to achieve improwsrh be independent o8;. Prior probabilities of the symbols are

Il. FORMULATION AND OPTIMAL SIGNALING

according to a certain performance criterion. denoted byIl := [IIy, IIy,..., IIp;—1], which belongs to
In this paper, we consider aif-ary communication system the standardM — 1)—simplex denoted witAM—1 = {r :
with n dimensional observations. Our goal is to obtain thgfiglm = landm; > 0forall:}. We recall that the

optimal joint distribution of the constellation symbolsdan standard simplex is a compact and convex set. Our goal is



to obtain the optimal distribution for the prior probahds is in general difficult to solve. In the following, an uppe
and the transmitted symbols that maximize the probability on the objective function of (P1) is obtained by interchaggi
correct decision at the receiver subject to constraintshen tmaximum and expectation operations, and the form of the
average transmit power and the average bit rate. To this esdlution is characterized for the resulting problem. Thien,
the prior probability vectoFI and the transmitted symbdig’s is shown that the original problem has the same solution as
are assumed to be random with a joint distribution denotditat of the one based on the upper bound. To this aim, consider
by pris(w,s) whereS := [So, S1, ..., Sm-1] € RM" the following objective function:
represents the signal constellation. The average trapawier
constraint and the average bit rate per symbol constragt ar P. :=E {/ max {m pn(y — Si)}dy} , (5

R

given by n i€{0,1,....M—1}
Mol where the expectation is taken with respect to the joint
E Z HiHSinz < A, ) PDF pn’s.(ﬂ"s)' Then,_ based on (P1) and (5), an alternative
= optimization problem is formulated as
and

E 11, —-S;)t d
max {An,ie{o,ﬁéﬁ,f_l}{ ply =S} -‘f}

M-—1
subject to E{ Z HZHSlHi} <A

=0

M-1
E{— Znilogni}ZR, (3)
=0

respectively. In (2) and (3), the expectations are takein wit IV
re_spect _to the jon?t. PDBm,s(m,s). It is noted that fpr a ]E{— Z e long} >R
given prior probability vectorr and a signal constellatios, _
the optimal detector at the receiver corresponds to the MAP =0 o
decision rule [2, Theorem 2.7.3]. More specifically, formegi ~ Re€mark 1. The formulation in (P2) corresponds to the
observationy, the MAP decision rule selects symbiolsuch Scenario in which the receiver a_lnd the_ transmitter are fully
that k = argmax;c (o1, 1y mi0i(y), Wherep;(y) denotes coordma.ted qbo_ut the transmission pollcy: More speclfical
the conditional PDE of the observation when titie symbol the receiver is informed of the constellation and the corre-
is transmitted. The transmitter and the receiver are assunf@0nding prior probability vector employed at the trangenit
to be in coordination so that the receiver knows which prigt @ny given instant. Hence, the optimal decision rule can
probability vector is currently being used by the transemitt P& implemented at the receiver. For example, in a slotted
Accordingly, the average probability of correct decisieanc Communication scenario, this can be realized by assigning
be expressed as each slot with a designated prior distribution and a signal
constellation, and allocating the number of slots corradjg

P.:=FE {/  max (1L E{pn(y — Si) | H}}dy} . to that realization in proportion to its weight in the joinDP.

Rn ¢€{0,1,....M~1} The optimization problem in (P2) can be expressed in a

(4)  more compact form. To this end, define the random veXtor

where the outer expectation is taken with respect to tia follows:
marginal PDF off1, that is,pr1(7), and the inner expectation . . .
is taken with respect to the E:o)nditional PDF ®fgiven IT, X =L 8] =M, T, Har-1, So, 81, Snr]

(P2)

i.e., psjm(s|m). Then, the following optimization problem is ©)
proposed: where X € AM~-1 x RMn Then, (P2) can equivalently be
expressed as
E ILE —S;)|IL; {d
s {/R o, ATE{pn(y = S:) 1T} } y} max E{F(X)}
M—1 . Px
subject to E{ Z HZHSle} <A subject toE {G(X)} < A
i=0 E{H(X)} >R (7)
M—-1 .
E{— Sy logHZ} >R (p1) With
i=0

ni€{0,1,...,M—1}
-1

where the optimization is over the joint PDig s (7, s). Note

F(X):= / max {IL; pn(y — Si) }dy,
R
that in (P1), focusing on the objective function Iif is taken M

2
to be a fixed deterministic probability vector, then the peat G(X) = Z HiHSin ’
reduces to the optimal stochastic signaling problem with th l:f{ .
corresponding MAP detector employed at the receiver [18]. o - _ _
On the other hand, if the constellatigh is fixed, then the H(X) = - Z: [I; log IT;
problem simplifies to finding the optimal randomization over ’ 0_ ) o
multiple MAP detectors [16]. where the expectations are taken with respect to the joint

PDF of the constellation points and prior probabilities de-
As (P1) involves optimization in the space of joint PDFs, ihoted bypx (). Note that there are also implicit constraints



in (7), that is, px(x) > 0 vx € AM-1 x RM" and s;), ands; = [s;o, Sj1,.--, Sjm—1). When this PDF is
Jani-1ypun Px(x)dx = 1 must be satisfied. In (7)F(x) employed, (P1) reduces to (P2). However, since this is just
with x = [, s] can be viewed as the probability of correct special case for the solution of (P1), one obtditis> P;.
decision when a fixed deterministic constellatioris used Therefore, it is concluded that* = PJ. [
for the transmission ofi/ symbols whose prior probabilities Remark 2: It should be noted that employing a signaling
are specified byr and the corresponding MAP detector ischeme with nonuniform priors results in variable-rateadat
employed at the receiver. transmission since the number of bits transmitted during a
Optimization problems in the form of (7) have been studiegignaling interval is a random variable. Hence, it is susbép
in the literature [14], [16]-[20]. IfF'(x) is continuous and the to buffer over- or underflow for a fixed-rate source as well as
components ok belong to finite closed intervals, then the optisynchronization loss due to channel errors causing imserti
mal solution of (7) can be expressed as a randomization am@wgl deletion of bits in the decoded data. In practice, ne@r op
at most three points, which follows from Carethéodorysah mal nonuniform signaling schemes can be designed by parsing
rem [13], [28]. Therefore, instead of searching over thecgpaa binary data stream into the codewords of the variabletteng
of all PDFs, we can restrict the search for the optimal sofuti prefix code designed using the Huffman algorithm and then
to a family of PDFs in the forr@;f;’(pt(x) = Zj?:l \jd(x—x;) mapping them onto the points of the given constellation.

where§ denotes the Dirac delta functiol,’ , \; = 1 and ~ Remark 3 By following the transmission protocol
A; >0 V. Based on this result, the optimization problem i§xplained in Remark 1, the randomization idea can

(7) can be simplified to be implemented based op¥‘(x). It is interesting to
5 note that if the transmitted symbols are observed over
a long duration, it would be as if the transmission

ax Z)\jF(Xj) . e .
{A1,22,A3,X1,X2,X3} is performed over a larger deterministic constellation

Jj=1 R
X = [M71,0,--05 MTLM—15---5A3T1,05 «.-5 AT M—1,

3 3
. _ _ _ _ 81,05---,81,M—1,---,83,0,---,83,Mm—1). By introducing cer-

subject to;)\JG(XJ) =4 ;)\JH(XJ) = B, tain protocols between the transmitter and the receiver to

3 implement the M-ary communication system based a&n

Z A =1, A A2, Az >0 8) (while satisfying the average bit rate (d_efl_neq for theary
= system) and power constraints), the optimization problam c
) be regarded as a search of the optimal deterministic veéctor
where F'(.), G(.), and H(.) are as defined befores; = owever, both the randomization idea formulated in thisguap

(7,00 Mjas- o Tja—15 Sj00 Sj15--- »Sjm—1] @nd 855 1S o this alternative approach are actually equivalent andlavo
the ith symbol in the jth signal constellation. Next, theyield the same system performance.

following proposition is presented.
Proposition 1. Given the same average power constraint
A, bit rate constraint R, and the noise PDFpn(-), the

optimization problems iP1)and (P2) have the same optimal A- Optimal Deterministic Prior Distribution for Given Con-
value. stellation

Ill. SPECIAL CASES

Proof: Denote the optimal values of the optimization In this section, we provide a closed-form solution for the
problems in (P1) and (P2) aB* and the P|, respectively. optimal deterministic prior distribution for a given signa
We first establish?* < Pf. For any given joint distribution constellation. Consider a communication system in whieh th

PILS, transmitter emits a sequence of symbols drawn independentl
from a fixed constellatior) = {so,...,sp—1} C RM™.
E {/ . max {HiE{pN(y -S) |1‘[}} dy} The (deterministic) prior probability vector of the sigadb
Rn €{0,1,....M—1} denoted bysw. Under these assumptions, the optimization

< _ Q. problem can be formulated as (cf. (7))
= {]E {/]R ie{oﬁgéﬁhl}{m ply =S80} dy ‘ H}}

max F(m)

—E I, —S)ld 9 meat
{/Rn ie{o,{l,l.?.tﬁw—l}{ pn(y ) y} © subject toH (w) > R
where the inequality follows by interchanging the order of Gmr) <A (10)
the inner maximization and expectation operators and the
equality is due to the law of total expectation. Hence, undethere F(w) = / oA 1}{7@ pn(y — s;i)}dy,
R, 1€{0,1,.... M—

the same feasible set of joint PDFs, the optimal values M1 n - M—1
the objective functions in problems (P1) and (P2) satis&!/(”) =i~ millsill®, andH(m) = —3 ;" mi logy ().
P* < PI. Next, we show that?* > Pi. Consider the '/e 'écall thatil () is a concave function of and attains a
jo(int_PDlg for the form of the gptir_nal ‘solution of (p2),Maximum value oflog, M in the case of uniform signaling,
ie., pos(ms) = 37 )\}p(j) (m,s) with p(j) (m,8) = ie.,, whenm, = 1/M for all ¢ = 0,...,M — 1 [29,
@D ) e LS Theorem 2.7.3]. On the other har@(~) is a linear function
Pt (7)Pgm(s|m), where pyy(w) = d(m — @), 7; = of xr and () is a convex function ofr, which follows from
[T5.00 Tj1s--ey TjM—1], pg‘)n(shr) = pgj(s|m;) = d(s — the fact that the minimum Bayes error is a concave function



of = over the standard simplex [2, Section II.C]. In (10), it iSunction corresponding to the optimization problem in (is3)
required that the constellation must be able to support the Mo1 M1

average powed, i.e., A > A, whereA,;, is the power of . _ P (S — ) .

a minimum-power point irf2. Additionally,0 < R < R(A)is Limws 1, 2,) ; miFeildi) = m (; milogy(ms) + R)
needed for feasibility, wher&(A) is the maximum average M-1 M—1

bit rate that can be attained under the average symbol power +s <A _ Z 7Ti”Sin) Ty (Z - 1) .
constraintA [22]. i=0 i=0

(14)
1) Proposed SolutionThe proposed approach for solvin T_aking the derivative with respect to, and equating to zero
the optimization problem in (10) is to first characterize th¥elds v _ o logs e+ (Pos(80)—nallsil 24) /1
form of the solution for an arbitrary detector at the receaed =200 o ! . (15)

then to apply the optimal MAP decision rule. To that aim, WRpplying the conditionzj.\fo’l 7 = 1 and reparameterizing
consider a generic detector at the receiver specified byetbie d ;i A = (2/7) In2 ané;\g = (In2)/n, we get
sion functionsd := (do, ..., 0 —1). Upon the reception of an
observationy, the receiver decides in favor of the hypothesis ~ m; = exp (—Aul[si||*> + A2 Pei(6:)) /Z (A1, A2) (16)
that s; is transmitted with probability;(y), whered;(y) > 0 I
and SZM% 5ily) = P f (v) red;(y) whereZ (A, Ao) = SM o exp (—Mi|sil]? + A2 P..i(8;)) and
i—o 9i(y) = 1for all y € R™. For a given detector i A

- A .. A1, Ay > 0 follows from the dual feasibility condition, i.e.,

é and signaling probabilities, the average correct decision <0 -

e o B M-1_ p /¢ Y1572
probability is expressed a&.(w,8) = Zi:o. .WZP“(M’ The parametera; and \; govern the trade-off among the
where P, ;(6;) denotes the average probability of correct - . .

- ; ) : . average probability of correct decision, the average b, ra
decision given thas; is transmitted, i.e.,

and the average symbol power. For fixed as); is increased,

_ _ the inner constellation points (i..e, those with low powerg
P.i(0;) =E; {6:;(Y)} = 0i(y)pi(y)d . .
(%) {0:(¥)} R (W)p:(y)dy selected more frequently than the outer constellationtpoin
_ ‘ ‘ (i.e., those with high power). On the other hand, for fixad
~ Jgn di(ylpn(y —si)dy  (11) as \, is increased, constellation points yielding lower symbol

error probability are selected more frequently than thoik w
higher error rate$.In addition, constellation points that have

Lemma 1: For a given detector specified by the decisiortwhe same power and the same error probability are selected

. M . ) . S equally likely. Lastly, we note that the signaling distriioun
functions{d; };—,. the following signaling distribution that maximizes the average bit rate under the average symbol

T =exp (—A[8i]|* + Ao P.i(8:)) /Z (M, A2), (12) power constraint (equivalently, minimizes the average grow

, for a fixed bit rate) can be obtained by substitutig = 0

foerilz 0,..., M — 12’ where Ay, Ay > 0 _an_d Z(M,A2) = gpg solving for\; from the power constraint [22]. In light of

Dli—g €XP (=Mallsill” + )\.21.36,1-(51-)), maximizes the averageihe |emma, the following proposition characterizes thémgt

probability of correct decision under constraints on avg#a gignaling distribution that solves the optimization in Y10

bit rate and average symbol power. Proposition 2: For any givenR as the upper bound on

the average symbol power that is supported by a given

Proof: For a given detector, the problem in (10) takes thgonstellation©2 and R < R(A) as the lower bound on the

Next, we present the following lemma.

following form: average bit rate, wher&(A) is the maximum average bit rate
M-1 that can be attained under an average symbol power constrain
max Y miPei(5;) A, the solutionm* = (n%,...,7%,_,) to (10) satisfies the
TS0 following equation (i.e., a fixed point):
M-1 * 12 * (5*
subject to — > 7;logy(mi) > R (13a) = P (=ATllsall® + A3 P (67)) (17)
i=0 > j=1 exp (= A7[85]12 + A5 P (67))
M-1
. * s\ M—1 ;
Z mil|s:l% < A, (13b) fori =0,....,M —1, where§” = {o; i.:01 is the MAP
et detector corresponding to the optimal signaling distribat
M—1 ™, i.e.,
» m=1m>0i=0,...,M-1 (13c) ) =1, if i— argmax mipe(y)  (18)
=0 ke{0,...,M—1}

Notice that Slater’'s conditions hold for the optimizatiaolp-
lem in (13). More explicitly, the optimization in (13) is coex
and for R < log, M, the non-affine inequality constraint in in general, a lower symbol error probability can be achiebpdselecting
(13a) is strictly satisfied withr; = l/M i=0 M—1 a fewer number of constellation points that are farther tafpam each other

. ’ R ) .g., at the vertices of the constellation). In the limitas— oo, this would
Henc_e_* strong duality holds and K_a'_’USh'KUhn'TUCker (KKTﬁisult in degenerate signaling (i.&; = 1 for some: € {1, ..., M} yielding
conditions are necessary and sufficient [30]. The Lagrangizero bit rate.)

and ¢} (y) = 0 otherwise, fori = 0,...,M — 1 and every



y € R™. The optimal parametera; and )\ are obtained as (10). As the solution is known for the prior distribution far

follows: givens, average power constrair, and bit rate constrain®

Case 1: Let\; = 0 and A5 > 0 be a solution to based on Proposition 2, one can actually perform the opdimiz
M1 tion over the signal constellatianonly. Let 7*(s) denote the
Z mi(A2) logy(mi(\2)) = R (19) optimal prior distribution for the signal constellatisnwhich

can be obtained according to Case 1 or Case 2 in Proposition 2.
Then, (23) becomes

i=

where w(\2) = (7T0( 2)y. .., Ta—1(A2)) satisfiest; (M) =
exp(AaPe,i (0 /(; j=1 CXP )‘2P07(6 ))),i:O,...7M.—1 max / ~max  {m;(s) pn(y —si) jdy.  (24)
and 6 = {§;}}1," is the MAP detector corresponding to ~ s€R" Jr, i€{0,1,....M~1}

m(A2). Then,{=~ (/\2 A3} together withA7 = 0 is optimal if  Note that for some € RM™, the reduced problem of optimal
the constraint on the average symbol power is satisfied, 'eprlor distribution may not be feasible for giveA and R;

M-1 hence,x*(s) may not exist. In that case, one can simply set
Z 7r ()| ]si]|? < A, (20) the objective function in (24) to take the valuex.
i=0 Remark 4: Let z°P* denote the optimal solution to (23).
else if (20) fails, go to Case 2. Then, H (z°P') = R. This immediately follows from the form
Case 2: Let\; > 0 and A5 > 0 be a solution to of the solution torr* given in Proposition 2.
M—1
- Z Ti(A1, A2) logy (13 (A1, A2)) = R, C. Binary Communication over AWNGN Channel
=0 M1 In this section, we investigate the special case of a binary

Z w0, Ao)[s]]2 = A (21) communication syst_em WIFh scqlar opservatlon_s, corrupted
a zero-mean Gaussian noise with varianéeln this case, we

getX = [Iy, Iy, So, Si1], wherellp = 1—T1;. It is assumed

that for any given realizatioX = x;, G(x;) < A holds; that

1=0
wherem (A1, A2) = (mo(A1, A2), ..., mar—1(A1, A2)) satisfies

exp (_)\1||3i||2 + )\2Pc,i(§i)) is, an individual power constraint is imposed for each pair
mi(A1, A2) = =37 5 (22)  of constellation set and the corresponding prior probigbili
> =1 exp (= Adl|s;[[2 + A2 P (6;)) vector.

and 6 = {5;}}1,"! is the MAP detector corresponding to Inthe absence of the bit rate constraint, it is well-knowat th
(A1, A2). Then,{m* (A}, \3), A}, A5} is optimal. for given prior probabilitiegm, 71 ), the optimal constellation
Proof: Please see Appendix A. symbols that minimize the probability of error, in the prese
Since the optimal signaling distributionr(\;, \;) is a of the MAP detector and average power constraintare
continuous function of; and),, an iterative bisection searchSo = —vA/a and S; = av/A with o = \/m/m when
algorithm can be employed to solve for the values\pfand the noise distribution is Gaussian [19]. To this end, when

)Xo that satisfy the equality constraints in (19) and (21). there exist average power and bit rate constraints on the
signal, the optimization over the distribution &, can be

. . . L . reduced to an optimization over the distributionIdf, since
B, qut Deggn of Optimal Deterministic Priors and Con'the optimal signal constellation is well-defined for anyeagiv
stellation Points prior realization. This implies that the average power t@iirst

In this section, we formulate the problem of jointly decan be omitted, as it always holds with equality. Therefore,
signing optimal deterministic signal constellation and thelet pp, (7;) denote the PDF of prioill; corresponding to
corresponding prior probabilities of the constellatiom$pls. symbol S;. Then, the problem can be expressed in terms of
Namely, instead of searching for the optimal PDF as specifigtinimization of the probability of error as follows:
by the general problem in (8), we try to find the single point
x =[m, So,..., spy_1] € AM~1 x RMn that maximizes the
average probability of correct decision under averagestran -
mission power and bit rate per symbol constraints. Theegfoyith f(7,) £ / min{m pn(y — aVA), (1 —m)pn(y +
the optimization problem can be formulated as (cf. (7))

min E(f(II;)) subjectto E (h(II;)) > R, (25)

pmy

\/Z/oz)}dy andihoarl) 2 _mlogm — (1 —m)log(l —my),

N g{afiRMn F(z) where the expectations are Eaken with respeqgtfo(7;) and
subject toH (z) > R pn(y) = (1/V2m02) e ¥ /29", For the Gaussian noise, the
- optlmal MAP detector is a smgle threshold detector. Then,
Gz) < 4 (23) f(m1) can be expressed as
= ) - s 7(m1)
where F(xz) = /Rn ie{o,{?%wf {mi pnly — si)}dy, flm) =m / pn(y —aVA) dy
G(z) = Y05 mil|sill®, and H(w) = — 32005 m; logs (). o
Notice that if the signal constellation= {sq,...,sp-1} C +(1— 771)/ pn(y + \/Z/a) dy (26)
RM" is fixed inz, then the problem in (23) reduces to that in 7(m1)



where 7(m1) = 0.5vVA(a — 1/a) + % with & £ under average power and bit rate constraints based on the

/(1 —m)/m [2]. Note that both f(m;) and h(m;) are generic formulation in (8) and performance comparisons are
symmetric aroundr; = 0.5; thus, we can restrict the valuesconducted with respect to the alternative strategies gegpm

of prior m; to the interval[0,0.5]. In this region,h(m) is a Section lll. In the examples, binar®{ = 2) and quaternary
monotone concave function af: hence, its inverse function (M = 4) communication systems with one dimensional ob-
exists. Leth~! denote the inverse entropy function withservations{ = 1) are considered, and the following Gaussian

h=1:10,1] = [0,0.5] andh=L(r) = m whenh(m) = r for Mixture noise is employed:

r € [0,1] andm; € [0,0.5]. Note thatf(w;) can be rewritten 1 Lo wwp?
as = — e 20° 28
f(m) whereL = 4, iy = —1.5, o = —0.5, uz = 0.5, and uy —
o Q avA—1(m) F1-m)Q VA/a+1(m) 1.5.
o o The strategies evaluated in the examples are given below:
a?+1 21n o Optimal prior (deterministic): This strategy corresponds
=mQ|y a et 1/a) to the solution of (10). In this case, it is assumed that the
21 2] constellation is fixed and the signals are specifieds@as=
+(1-m)Q (7 a + na ) (27) —VA ands; = VA when M = 2. Note that forM = 2,
2a v(a+1/a) the optimal prior distribution should satisfy the average b

wherey £ \/A/o. Note thatf depends only ony and ;. rate constraint with equality according to Proposition ar F
Based on the preceding definitions, the following results af/ = 4, the fixed constellation signal points are specified as

_[=3 -1 1 3 H —
presented. s=[Z%, =, & 75} with A = 1.
Property 1. g(r) is a strictly convex function ofo, 1] for Optimal joint (deterministic): This strategy is obtained as
v > v, ~ 0.166. the solution of (23), which yields the optimal determirgsti
Derivation Please see Appendix B. prior probability and signal constellation vectors joyntl
Lemma 2: Let g(r) = foh~'(r). Then,g(r) is monotone  Optimal joint (stochastic): This strategy corresponds to the
increasing on[0, 1] for v > 0. solution of (8), which provides the optimal distributiorr fine
Proof: Please see Appendix C. prior probability and signal constellation vectors joyntl
Property 2: Under individual power constraini on each In the first example, the binary signaling is used with
pair of signal constellations and the corresponding pricolp A4 = 1.2 and R = 0.8812 = h(0.3), and the average

ability vector, for a given average bit rate constraiftt and probability of error is calculated for various values 4fo?2.

v > v ~ 0.166, the optimal prior probability distribution It is observed from Fig. 1 that the jointly optimal stochasti

for a binary communication system with an additive Gaussiafesign achieves the best performance, as expected, since it
noise channel does not involve randomization and can bevers the other strategies as special cases. On the other

specified aSp(r’ﬁt(m) = §(my — h'(R)). The correspond- hand, the optimal deterministic priors strategy yieldswiuest
ing optimal constellation can be specified &Sy, S1) = performance as it does not optimize the signal constetiatio
(—VA/a, aVA) with a £ \/mo/m and ;= h~1(R). vector together with the priors. The performance diffeeenc

Derivatior It is first noted thag(r) is monotone increas- between various strategies becomes less significant irotie |
ing and strictly convex whefy > 4, =~ 0.166. Under the con- SNR regime. However, whed /o2 > 12dB, one can notice
straint thath(m;) > R, we haveh™!(R) = argmax,, f(71) the improvements over deterministic signaling via stotihas
due to monotonicity. Assume that there exists a = signaling.
such thatE{A(l;)} > R and E{f(Il;)} < g(R) =  Next, performance of the proposed strategies is investifjat
foh ™ (R). Let T = h(I,) and I, = h~'(T). Then, for M = 4. The power constraint is set ab = 1, and the
E{foh ' (T)} = E{g(T)} < g(R). Sinceg is a strictly same Gaussian mixture noise is employed as in the previous
convex function,g(E{T'}) < E{g(T)}. In addition, asg example. The average probabilities of error are calculated
is a monotone increasing functiof,{7} < R must hold. for the proposed strategies wheéd = 1.9 and R = 2.
However,E{T} = E{h(Il;)} < R results in a contradiction, Recall thatR = 2 corresponds to the use of equal priors
which implies that the argument in the property holds, i.efor the constellation points. From Fig. 2, it is seen that
P(r)[plt(ﬂl) =d(m —h™'(R)). B employing a lower bit rate constraint improves the average

Remark 5: Note that ify < v, ~ 0.166, g(r) is convex probability of error performance for all the strategiese Hest
except over a short interval of low bit rates. Hence, in mogkrformance is again achieved via stochastic signaling iz
of the practical scenarios, the result of Property 2 is etg@ec performance gap between the optimal joint stochastic Siima
to still hold. and the optimal joint deterministic signaling becomes éarg
for R =1.9.
IV. NUMERICAL RESULTS In order to observe behaviors of different strategies for
In this section, numerical results are provided for thearying bit rate constraints, SNR is fixed asc? = 24dB
proposed signal constellation and/or prior distributiagsidn and the average probabilities of error are plotted verBus
problems. First, the optimal stochastic signaling is itigeged From Fig. 3, it is noted that the optimal joint stochastic and



100 T T T T T T T

10°

10t

a®107?

10°°

—%—Optimal prior (deterministic)

=9~ Optimal joint (deterministic) imal joi stic)

=©-Optimal joint (stochastic) = = = Optimal joint (deterministic)
| |

Optimal joint (stochastic)

10 | | | | Optimal prior (deterministic)

10 § ' '

8 10 12 14 5 16 18 20 22 12 1.3 1.4 15 16 1.7 1.8 1.9 2
Alg“ (dB) R (bits)
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0.8812 for different strategies.

Fig. 3: P, versusR for M = 4 under Gaussian mixture noise
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Fig. 2: P. versusA/o? for M = 4 under Gaussian mixture
noise withA = 1. Fig. 4: P. versusA/o? for M = 4 under Gaussian noise with
A=1,R=2andR=1.9.

deterministic approaches have the same solutions for low bi

rate constraintsi{ < 1.35) and stochastic signaling improvessignificantly lower than those in the case Bf= 2. On the

the performance of deterministic signaling for medium ansther hand, the reductions in the error probabilities wiien

high R values as it allows randomization among differeris reduced fron2 to 1.9 are very small for the optimal prior

transmission policies (prior and signal constellationsket solution. This small performance difference reduces ards

Also, the sharp increase in the average probability of errdr/o? increases.

aroundR = 1.35 and R = 1.85 is due to the fact that the Finally, we consider the 8-PAM modulation scheme to

effective noise has a multi-modal PDF. further evaluate the performance of the optimal deterrtinis
Next, performance of the proposed strategies is investigaprior design framework. The constellation is normalized to

in the presence of zero-mean Gaussian noiséfor 4. From have unit average symbol power with respect to uniform

Fig. 4, it is observed foR = 2 that the optimal joint deter- signaling, i.e.Q = {+1/+/21,+3/v21, £5//21,+7/v/21}.

ministic and stochastic solutions have the same performarntis assumed that the received symbols are subject to zero-

(with the fixed constellation of = [\7—%, ;—%, %, %}) and mean additive white Gaussian noise with variamde and

the performance of the optimal prior solution'is slightlyra®. consequently, the SNR is defined $8R = —101log;,(c?).

For R = 1.9, the optimal joint deterministic and stochastidn Fig. 5, we depict the correct decision performance of

approaches still achieve equal error probabilities, whach the proposed optimal signaling scheme as a function of the



7 = (0.0588,0.0084, 0.3043, 0.0186,0.4272, 0.0143, 0.16424,
0.0041) attains a correct decision probability score approx-
--------------- imately equal t00.832 whereas the conventional uniform
/ signaling over{4(0.51) delivers0.766. Hence, another ad-
vantage of the proposed scheme is that the correct decision
performance can be improved with nonuniform signaling over
i a higher order constellation while satisfying the same ayer
bit rate and average symbol power with those of a uniform
signaling scheme over a lower order constellation.
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Probability of Correct Decision (P C)

—R=1
o7l - = R=-15 i V. CONCLUSION
TTTR=2 In this paper, we have jointly optimized for the distributio
0.65 f R=25 1 > . ) :
—— Conventional (M=4) of the signal constellation and the corresponding priobpro
061 - 1 ability vector in order to minimize the average probability
‘ ‘ ‘ error subject to constraints on average bit rate and average
% 05 1 15 2 symbol power. Considering the prior probability vector as a
Average Symbol Power Constraint (A) (watts) part of the design leads to an extra degree of freedom com-

Fig. 5: Correct decision performance of the proposed methggred 0 conventmn_al stochastic signaling. Since th_e|plass
. . . use of nonequal priors can reduce the average bit rate, we
subject to constraints on the average bit rate and the av-

erage symbol power for an 8-point constellatish — ave imposed constraints on the average bit rate and power

in the proposed formulation. The original formulation reqa
{£1/V21, £3/v21, £5/ V21, £7/v21}. optimization over a space of joint PDFs, which is hard to solv

in general. For this reason, we have first derived an altimmat

optimization problem, and proved that its solution achéeve
constraintA on the average symbol power for different valueghe same optimal value as that of the original problem. The
of the average bit rate constraiit € {1,1.5,2,2.5} when advantage of the alternative formulation is that the optima
SNR = 10 dB. The marker shown at the leftmost end o§plution can be represented as a randomization among at most
each curve corresponds to the signal distribution thadgigie three different mass points; hence, it can be solved effigien
minimum average symbol power under the specified constrajifter the general formulation, we have investigated three
on the average bit rate. For eadh € {1,1.5,2,2.5}, it special cases focusing on the optimization of determmisti
is seen from the figure that the correct decision probabiliptior probabilities for a given fixed constellation, the ol
increases towards a limiting value as the constraint on theterministic joint design of prior probabilities and ctei-
average symbol power is relaxed. Since we employ a fix@@n points and, a classical binary communication systeth wi
constellation, the maximum value of the correct decisiogtalar observations under AWGN. Finally, numerical result
probability is limited by the chosen value of average biiave been presented for both the general formulation and the
rate constraint even if the constraint on the average symiglecial cases.
power is large. Nevertheless, the proposed solution yieldsp theoretical framework is presented in this paper for
the Optlmal Signaling distribution that maximizes the eotr enhanced d|g|ta| modulation by opt|m|z|ng the prior proba_
decision probability under constraints on the averagedit r pilities and the corresponding signal constellation unaker
and the average symbol power for the given constellation. erage power and bit rate constraints. The idea of utilizing a

In order to compare the performance of the proposdiéxible average bit rate (nonequal priors) to improve error

scheme with that of the uniform signaling scheme, the corrgmerformance can be applied to most digital communication
decision probability of the conventional quaterngfy = 4) systems, as the considered system model assumes a generic
signaling with equally likely symbols is also depicted igFb M -ary communication system under an additive noise channel,
(see the solid black line). The conventional constellafimn e.g., AWGN and flat fading channels with perfect channel
M = 4 is constructed a84(A) = VA x {£1/+/5,+3/v/5} estimation. Furthermore, the stochastic signaling apgroa
to yield an average symbol power value equaltolt should can provide further improvements over deterministic sligiga
be noted that asl increases, the minimum distance betweeespecially under additive non-Gaussian noise such as the
the constellation points if24(A4) increases, and hence, theGaussian mixture. The effects of multiuser or co-channel
correct decision probability improves steadily towardg.oit interference and impulsive noise in communication systems
is seen from Fig. 5 that the proposed approach (see the dasinn be modeled as Gaussian mixture noise [17]. Therefore,
dot black line corresponding t& = 2) yields higher correct randomization of digital modulation can be an option to
decision performance with respect to the uniform quatgrnamprove the average probability of error under such coodi
signaling over the rangel € (0.18,1.28) while delivering As a future work, we aim to extend this study to multi-
an average bit rate d bits per transmitted symbol. As anuser scenarios with varying average bit rate constraints an
example, forA = 0.51, nonuniform signaling over the 8- reliability targets, and design the modulation strategies
point constellation2 according to the signaling distributionnon-orthogonal multiple access setting.
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APPENDIXA signaling distributionsr, the optimal detector is given by the
PROOF OFPROPOSITION2 MAP decision rule. Combining these results yields the atat

iven in (17) of Proposition 2 after reparameterizing with

.It is noted from (10) that the objec.tive functi.on is conve = (v/u)In2 and s = (In2)/p. It should be noted that
with respect tor while the constraints specify a close he functional relation in (17) is in the form of () = =

bounded convex feasible set far. We recall that the max- i, .o the MAP detector denoted by = {6:}M51 in (17)

imum of a convex function over a closed b_our_1ded CONV&§epends on the signaling distributian Noting that£(-) is a
set is achieved at antremep(_)lnt, i.e., a point |n_the _set continuous mapping from the\/ — 1)—simplex to itself, i.e.,
that is not a convex combination of any oth_er pomt_s in th C AM=1 5 AM-1 it follows from Brouwer Fixed Point
set [28, Sectlon 32]. Consequentlyf an interior maximum 3§, . rem thatf(-) has a fixed point [31], i.e., there exists
not possible. Furthermore, the maximum cannot occur on an - AM-1 g;ch thatf (r*) = 7*.

interior point of a flat face or straight edge if the boundary
of the feasible set contains such regions as may be the case
in this problem due to the presence of linear power and This result can be combined with the other KKT con-
(M — 1)—simplex constraints. Now, from (10), it is seerflitions (i.e., primal feas_ib_ility, dual feasibility, an_d)mple—
that the feasible set is the intersection of the closed bedndnentary slackness) to jointly solve for the optimal values
convex set defined bywr € AM-! . H(x) > R} with Of {A1, A2} in (17)_. Consequent_ly, we get the following
the half-space{m € R™ : E(x) < A}. Therefore, an WO cases _stated in the Proposﬂyon 21\:{7(1Case/\1): 0
extreme point of the feasible set has to be on the boundégprresponding toy = 0) together with} _;~ millsil]* < A

of the set{mw € AM~1 . H(x) > R}, i.e., the average bit and — 317" m;log,(m;) = R; and (Case 2)\; > 0 (cor-
rate constraint must be satisfied with equality and we geasponding toy > 0) together with > M " 7;||s;||> = A

{m € AM=1 . H(x) = R}. Then, the optimization problemand — > " m;log,(r;) = R. From (17), it is seen that
in (10) can be expressed as 7* is a continuous function of the parameters and \s.
M—1 ConsequentlyH (w*) and E(=*) are continuous functions of
max Z 7 Poi(67) A1 and Ao. Furthermore, we havéimy, oo E(7*) = Amin
™ = ' for fixed \s.
M-1
sty mllsil]* < 4, (29a)  |n light of the observations above, we next show that the
=0

optimal values{\i, A5} can be obtained by considering the
Nl two cases stated in Proposition 2. In Case 1, the optimal
B Z milogy(mi) = R (290) 7+ needs to satisfy (17) with, — 0. Note that if \s — 0
=0 M1 M1 N is selected, (17) results in uniform signaling, which ygeld
me AT andd(y) € AT Vy e R (29¢) [ (x*) = log,(M). On the other hand, as tends to infinity,
where the optimal MAP detector is replaced with an optimizd- is seen that degenerate signaling with= 1 and r, = 0
tion over the set of all valid detectors for ease of analysi®r all & # i is a solution of (17) and has zero bit rate.
The Lagrangian function corresponding to the optimization"om continuity of 7 (z*) with respect to\,, it follows that
problem in (29) is given by there existsh, > 0 such thatH (w*(A2)) = R is satisfied
M1 M1 for any R € [0,log,(M)] while we keepA; = 0. Hence, a
L(m, 87, 1) = Z miPi(6) + [ A— Z il 82 solution {7*(A2), A2} in (19) is guaranteed. If the solution
o P e pord ne also satisfies (20) (i.,eE(w*(A\2)) < A), then all the KKT
M1 conditions are satisfied; hence, the solution charactbrtize
—u <Z i 1Og2(m)+R> (30) Case 1 is opt?mal. If (20) fails_(i.e.E(r*()\Q)) > A),
= we proceed with Case 2. In this case, we first note that
since limy, o0 F(7*) = Amin for any Ao and E(x*) is
) ) a continuous function of\;, there exists a corresponding
« Stationarity: A1(X2), i.e., A1 as a function of\,, such thatE(n*) = A
(m,8) = GAMaﬁrlg;lE;ﬁAMilL(ﬂa&%H)’ for A > Anm. On the other hand, we can always find a
. At VY value of A2 such thatH(w*) = R is achieved by the pair
» Primal _feasibility: Yimo mllsil® < A and {AM1(A2), Ao} for R < R(A). To see this, assumé (r*) < R
—2 = Tilogy(mi) = R, and notice that letting\, = 0 in (17) yields the signaling
« Dual feasibility:y > 0, M1 ) distribution that maximizes the average bit rate under the
o Complementary slackness(} ;" m;||si|[* — A) = 0. power constraint, i.e., a bit rate &{(A) is attained. Since both
If there exist(7*, 6, ~v*, u*) that satisfy the KKT conditions, \;(\;) and H (*) are continuous functions o, there exists
then the duality gap is zero (i.e., the upper bound is achigvea pair {\;(\2), A2} that givesH (w*) = R and E(n*) = A.
and 7*,6* and ~v*, u* are primal and dual optimal, respecHence, the optimization problem given in (21) is feasible,, i
tively [30]. a solution{z*, A7, A5} in (21) exists. This implies that all
Lemma 1 gives the form of the optimal signaling distrithe KKT conditions are satisfied and the optimal signaling
bution for a fixed detectod. On the other hand, for a fixed distribution is characterized by Proposition 2.

Recall the following KKT conditions:
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Fig. 6: s(r) versusr for various values ofy.

APPENDIXB
DERIVATION OF PROPERTY1
Let i(r) = h='(r) € [0,0.5]. Then, % — ¢/(h(r))R ().

Note thath(r) is a monotone increasing and convex functio
2 "o, ~v

of r. It is first noted that%g) = f (h(r)(h (r)? +

f'(h(r))(R" (r)). Since h(m) is a one-to-one function on

m € [0,0.5], we haveh (r) = 1/h’(h(r)). Hence, we obtain
the following relation:

’

dg(r) _ " (h(r)) h'(h(r)) = f'(h(r) h" (h(r)) (31)
ar? (' (h(r))?

s __s) 32

(1 ((r))? 52

Note that the denominator of (31) is always positive as tt
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binary entropy function is monotone increasing and conca ¢ (bits) o
on [0,0.5]. Let s(r) denote the numerator of (31). Then, the B )
aim is to determine wher(r) > 0 to explore the convexity Fig. 8: ¢ (r) = 27 versusr.
of g(r). Fig. 6 showss(r) versusr for various~y settings.
The numerical investigation reveals th&t) is positive for
large values ofy; however, wheny < -, it is negative in
a certain interval of- values. This can be seen more clear! 1 o A o L o
in Fig. 7, where the dark (black) region indicates the aredl@ +3) — Z(atl) andv(p) = (a+3) + T(at+1) (27)
in which s(r) < 0. In addition, we provide Fig. 8 which can be rewritten ag(p) = p Q(u(p))+(1-p) Qv (pﬁ Then,
|Ilustratesdd9;) for various values ofy. It is interesting to F1(0) = Qud)) + p Q' (up)) ' (p) — Qu(p))
note that wheny < ~, = 0.166, g(r) is not convex for a 1 / p 33
certain interval of bit rates with small values. + (1 =p) Q) v'(p)- (33)
In (33), Q'(p) = —\/% e~?°/2 and explicit formulas are
A c required foru’(-) and o'(-). Note thatu'(p) = 444& =
PPENDIX a(a)a’ (p) by the chain rule. Similarlyy’(p) = dede —
PROOF OFLEMMA 2 6((03(1, ((;’; wiereo/ B szc(é’) do dp
’ 2p\/p(1-p)” '
In order to prove monotonicity, we need to show tffidtr; ) 1 1
is positive form; € [0,0.5]. In the proof,p £ 7, anda £ () 7 <1 — i) ) _lnof (- gr) (34)
(1 —p)/p are used for convenience. By definingp) = 2 a? sla+3)?



(7]

a7)

o(a)

(35)

oy 1 (1+2%)—Ina(1-
—‘<1‘_>+ 8]

2 a? La+1)?

For p € [0,0.5),> we havea > 1. Then,u(p) < v(p) and
Q(u(p)) — Q(v(p)) > 0 for any giveny, anda > 1 as the
Q-function is monotone decreasing. Thy3(p) in (33) can
be lower bounded as follows:

El
[10]

F'(p) > pQ'(ulp) v (p) + (1 — p) Q'(v(p)) v' (p) (36) [
— L (w20 4 et @R 25(0)0?

Vot (¢ e+ @0) pa

Thus, it suffices to show thate “®*/2G(a) + (13]

e®*/25(a)a? > 0. Then,

2 [14]
gl <a N l) (70 22(a) + €0 25(a)a?)
(6%

2 2 15
L RS SN Iy IR RS I
—e (4(1 a2)(a—|—a) +Ina(l a2) (1+a2)

2

v)? [y 1 1 [16]
+e 2 Z(l - —)(a+ 5)2
1 1 54 17)
—lna(l—ﬁ)—i-(l—i—?))a £ c(a). (37)

o . o o 18
Therefore, it is sufficient to determinedf«) is positive. The ol

¢(«) term can be decomposed as

)(o-2) ()
(o702 g2 @)/2) <lna(1 ~ ai) ~ 1+ ai)
(38)

v()?
2

4 (p)?
cla) = <e1 4 ale”

[20]

[21]

However, it can be shown that “(»)°/2 — q2e=v®)?*/2 — (o [22]
after insertingu(p) andv(p) into the expression. Furthermore,
all the terms in the first line of (38) are strictly positive fny 23]
~v > 0 anda > 1. This shows thaif’(p) > 0 for p € [0,0.5);

hence it is a monotone increasing function. [24]
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