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Abstract—In this letter, the optimality of the likelihood ratio  attained by the Bayes decision rule in the presence of a
test (LRT) is investigated for binary hypothesis testing ppblems  pehavioral decision-maker. In a related work, a game thigore
in the presence of a behavioral decision-maker. By utilizig —ropjem is formulated for strategic communications betwee

prospect theory, a behavioral decision-maker is modeled to h t itt dah . hich deled
cognitively distort probabilities and costs based on some eight & Numan transmitler and a human receiver, which are moaele

and value functions, respectively. It is proved that the LRTmay Via prospect theory [S]. It is found that behavioral deatsio

or may not be an optimal decision rule for prospect theory basd  makers employ the same equilibrium strategies as those for
binary hypothesis testing and conditions are derived to spafy  non-behavioral (unbiased) decision-makers in the Staekgl
different scenarios. In addition, it is shown that when the LRT is sense.

an optimal decision rule, it corresponds to a randomized ddsion . . . . . .
rule in some cases; i.e., nonrandomized LRTs may not be optiah The aim of this letter is to derive optimal decision rules

This is unlike Bayesian binary hypothesis testing in which he for generic behavioral decision-makers in binary hypathes
optimal decision rule can always be expressed in the form of testing problems. To that aim, the optimality of the likeldd

a nonrandomized LRT. Finally, it is proved that the optimal ratio test (LRT), which is known to be the optimal decision
decision rule for prospect theory based binary hypothesisesting e in the Bayesian framework, is investigated for prospec

can always be represented by a decision rule that randomizest . . . .
most two LRTs. Two examples are presented to corroborate the (N€Ory based binary hypothesis testing. It is proved that th

theoretical results. LRT may or may not be an optimal decision rule for behav-
Index Terms- Detection, hypothesis testing, likelihood ratio ioral decision-makers, and conditions are provided to ifpec
test, prospect theory, randomization. various scenarios. In addition, it is shown that when the iSRT

an optimal decision rule, it corresponds to a randomized LRT

. INTRODUCTION _ L .
in some cases. This is different from the Bayesian approach

In hypothesis testing problems, a decision-maker aims {o\yhich the optimal decision rule can always be stated as
design an optimal decision rule according to a certain @HT0 5 nonrandomized LRT. Finally, the generic solution of the
such as the Bayesian, minimax, or Ney_man-Pearson ( rospect theory based binary hypothesis testing problem is
[1], [2]. In the presence of prior information, the Bayesialained: namely, it is proved that the optimal solution can
approach is commonly employed, where the decision-makgy, ays pe represented by randomization of at most two LRTS.
wishes to minimize the average cost of makmg deC|s[ons, I-$wo classical examples are used to support the theoretical
the Bayes risk The calculation of the Bayes risk requires the,¢ jis.
knowledge of costs of possible decisions and probabilifes
possible events. However, in case of a human decision—r,nal!é‘r PROBLEM FORMULATION AND THEORETICAL RESULTS
such knowledge may not be perfectly available due to bothConsider a binary hypothesis testing problem in the pres-
limited availability of information and/or complex humae-+ €ence of a behavioral decision-maker [3]. The hypotheses are
haviors such as emotions, loss-aversion, and endowmeat efflenoted by, and#,, and the prior probabilities are given
(see [3] and references therein). The behavior of a hum@w 7o = P(Ho) and m = P(#:). The observation of the
decision-maker is effectively modeled viarospect theory decision-maker is- € I', wherel" represents the observation
which utilizes weight and value functions to capture theagtp Space. Observation has conditional distributiong,(r) and
of human behavior on probabilities and costs [4]. In prospeie: () under#, and#,, respectively. The behavioral decision-
theory based hypothesis testing, the aim of a human decisiotaker employs a decision rulg(r) to determine the true
maker (also known as behavioral decision-maker) becont@gothesis, wherep(r) corresponds to the probability of
the minimization of thebehavioral risk which generalizes the selecting#,; that is,¢ : I' — [0, 1].

Bayes risk by transforming probabilities and costs acemydi As in [3], the rationality of the decision-maker is modeled
to the behavioral parameters of the decision-maker. via prospect theory [4], [6] in this work. In prospect the-

Recently, optimal decision rules are investigated in [3] f®ry, loss aversion, risk-seeking and risk-aversion bedravi
binary hypothesis testing problems when decision-makers & humans are characterized, where a behavioral decision-
modeled via prospect theory. Two special types of behalviofgaker cognitively distorts the probabilities and costseldas
decision-makers, namely optimists and pessimists, are c&f some known weight functiom(-) and value function(-),
sidered, and a known (concave) relation is assumed betwéespectively [4], [6], [7]. Then, the classic@layes riskfor
the false alarm and detection probabilities of a decisioRinary hypothesis testing becomes the followinghavioral
maker. It is shown that the optimal decision rule can achietigk for prospect theory based binary hypothesis testing [3]:
different false alarm and detection probabilities thansto
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The aim of the decision-maker is to find the optimal decisiomhich leads to3(z* — ') > y* — y'. Thereforea™ > 2’ is
rule ¢* that minimizes the behavioral risk in (1); that is; toobtained ag/* = ¢’ and 8 > 0. Hence, for any decision rule

solve the following optimization problem: ¢', the LRT in (8) achieves an equal or higher false alarm
¢*(r) = argmin f(¢) (2) probability for the same level of detection probability.igh
¢ implies that no other test can achieve a lower behaviorkl ris

To that aim, the following relation can be utilized firstynan the LRT in (8) since(c1o) < 0, v(coo) > 0, anduw(-) is
P(H; selected & H; true) = m; P(H; selected | H; true), monotone increasing (see (3)—(5)).

and (1) can be written as For v(e11) < 0 andv(cpr) > 0, similar arguments can be

f() = g(@) + h(y) (3)  employed to show that for any arbitrary decision relewith
g(x) = w(m (1 — x))v(coo) + w(mox)v(cio) (4) false-alarm probability’ and detection probability’, an LRT
h(y) = w(m (1 —y))v(cor) + w(my)v(crr) (5) in the form of (6) can be designed to achieve the same false-

wherex = [ ¢(r)po(r)dr andy = [.é(r)p: (r)dr are the alarm probability but an equal or higher detection prohghbil

false alarm and detection probabilities, respectively T3jen, Sigcevgql): 0 anf?l}(;m) >0 inhthisfscenariohéy) can be
the following proposition states the (non-)optimality dfet 'educed without affecting(x). Therefore, no other test can
LRT under various conditions. achieve a lower behavioral risk than the LRT.

Proposition 1: Suppose that the weight functian(-) is ~ For v(ci1) > 0 andwv(co1) < 0, it can be shown that for
monotone increasing. an arbitrary decision rulg’ with false-alarm probability:’
Case (a): lfv(cio)v(coo) < 0 o v(cry)v(cor) < 0, then the @nd detection probability’, an LRT in the form of (8) can
LRT is a solution of(2). be designed to achieve the same false-alarm probability but
Case (b): Ifv(cio)v(coo) > 0 and v(cip)v(cor) > 0, then an equal or lower detection probability. Sm@écu)_ >0
the LRT may or may not be a solution (). andwv(cpr) < 0, h(y) can be reduced without affectingx).

Proof: Case (a)Consider the scenario in whiakic;,) > Hence, no other test can achieve a lower behavioral risk than

0 and v(coy) < 0. Let ¢/ denote an arbitrary decisionthe LRT. _ _ o
rule, which achieves false-alarm probability and detection  Case (b)lt suffices to provide examples in which the LRT

probability y’. Then, definep; as an LRT given by is and is not a solution of (2). First, consider a scenario in
0, if pr(r) < npolr) which the Welght_ funct_|0n is given by (p) = p_forp € [0, 1]_.
65 (r) = v, if pi(r) = npolr) ) Thgn_, the beh,aworal risk becomes the cIassma[Bayesb;_slf (
! b 0 defining v(c;;)’'s as new costs). Hence, the optimal decision
L, if pi(r) > npo(r) rule is given by the LRT [1, pp. 6-7], which is in the form
wheren > 0 and~ € [0, 1] are chosen such that the detectioof (6) or (8). Next, for an example in which the LRT is not a
probability of ¢7 is equal toy’. Then, similar to the proof of solution of (2), please see Section IlI-A. [
the Neyman-Pearson lemma [1, p. 24], the following relation proposition 1 reveals that when the probabilities are dis-
can be derived based on (6): torted by a behavioral decision-maker, the LRT may lose its

_ ) b >0, optimality property for binary hypothesis testing when ot
/F(p 1(r) = npo(r) (91(r) —F () dr 2 0. (7) w(e10)v(con) > 0 and v(en )o(cor) > 0 are satisfied. It is
From (7),n(z* —2’) < y* — ¢ is obtained, wherec* and also noted that having at least one wf)v(cog) < 0 or
y* represent the false-alarm and detection probabilities;of v(cq1)v(co1) < 0 is a sufficient condition for the optimality
respectively. Since the detection probability ©f is set to of the LRT.
y" andn > 0, it is concluded thatz* < z'. Hence, for  The signs of thes(c;;) terms are determined depending on
any decision rule¢’, the LRT in (6) achieves an equal onyhether the behavioral decision-maker perceives the dost o
lower false alarm probability for the same level of detettiochoices as detrimental or profitable. In particular, if st
probability. This means that the use of the LRT can reduge, when 7, is true is perceived as detrimental (profitable),
g(z) in (4) (@sv(cio) > 0, v(coo) < 0, and w(:) IS then v(cij) > 0 (v(ey) < 0) [3]. Therefore, perceptions
monotone increasing) without changing the valueh0§) in  of a decision-maker can affect the optimality of the LRT in
(5). Therefore, it is deduced that no other test can achlevq,,@spect theory based binary hypothesis testing. (For pkam
lower behavioral risk (see (3)) than the LRT in (6). ~in strategicinformation transmission, various cost perceptions
Now suppose that(cig) < 0 andv(coo) > 0, and again can be observed depending on utilities of decision-mal@rs [
let ¢’ denote an arbitrary decision rule, which achieves false- pamark 1: In most experimental studies, the weight function

alarm probability " and detection probability. In this s opserved to behave in a monotone increasing manner
scenario, defing; as an LRT that is stated as [9], [10]; hence, the assumption in the proposition holds

0, if pi(r) > Bpo(r) commonly.
¢5(r) = k&, if pi(r) = Bpo(r) (8) It is well-known that the optimal decision rule can al-
1, if pi(r) < Bpo(r) ways be expressed in the form of a nonrandomized LRT for

where3 > 0 and+ € [0, 1] are chosen such that the detectioff@yésian hypothesis testing [1]. In other words, according

robability of ¢% is equal toy’. Then, it can be shown that to the Bayesian criterion (which gims to _m_inimize (;) for
P y of o3 g Y w(p) = p andv(c) = c¢), the optimal decision rule is to

(Bpo(r) —pi(r)) (¢5(r) — ¢'(r))dr >0 (9) compare the likelihood ratio against a threshold and to skoo
Ho or H; arbitrarily whenever the likelihood ratio is equal to

1The existence of (6) can be proved similarly to the proof ef eyman- the threshold ("e" randomization is UOt ne(_:essary)' Hewe .
Pearson lemma [1, pp. 24-25]. for prospect theory based hypothesis testing, randorizati
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can be required to obtain the optimal solution (i.e., thetsmh By deriving the optimal decision rules for prospect theory

of (2)) in some scenarios. This is stated in the following. based hypothesis testing, we provide theoretical perfooma
Remark 2: Suppose that the solution ¢®) is in the form bounds for behavioral (human) decision-makers. As humans

of an LRT,; that is,(6) or (8). Then, in some cases, themay not implement these optimal rules exactly in practice, w

optimal decision rule may need to be randomized with ttoan evaluate how close to optimal they perform.

randomization constant being in the open intery@l1). Remark 3: Randomized decision rules generalize deter-
To justify Remark 2, considew(p) = p andwv(c¢) = ¢ in  ministic decision rules and can outperform them in certain

(1); that is, the Bayesian framework. Then, a nonrandomizedenarios (e.g., [1, pp. 27-29], [11], [12]).

LRT (i.e., (6) with~y € {0,1} or (8) withx € {0, 1}) is always

an optimal solution of (2) [1]. Next, consider the example in IIl. EXAMPLES AND CONCLUSIONS

Section 11I-B, where the optimal solution is in the form of) (6 In this section, two classical problems in binary hypotkesi

with v € (0,1) (see (15)); hence, no nonrandomized decisidesting are investigated from a prospect theory based gersp

rules can be a solution of (2) in certain scenarios. tive. For the weight function, the following commonly used
Finally, the optimal decision rule is specified for prospechodel in prospect theory is employed [6], [9], [10]:

theory based binary hypothesis testing in the general dase. pe

that aﬁm, the problgmﬁ) (2) is stated,gbased ogn (3)-(5), as w(p) = o+ (1= pyeyize P € 0,1 anda >0 (11)

(z*,y*) = argmin g(z) + h(y) (10) wherea is a probability distortion parameter of the decision-
(z.y)es maker. The model in (11) is supported via various experisient

whereS denotes the set of achievable false alarm and detectind it can capture risk-seeking and risk-aversion attguafe
probabilities for the given problem, and andy* represent, human decision-makers in different scenarios [6], [9],][10
respectively, the false alarm and detection probabilités
tained by the optimal decision rule in (2). Once the problem A. Example 1: Location Testing with Gaussian Error
(10) is solved, any decision rule with false alarm probapili  gyppose observation is a scalar random variable dis-
" and detection probability” becomes an optimal solution.yihyted asA/(;,02) under hypothesis{; for i € {0,1},
The following proposition states that the optimal solutioyhere A/(y;,02) denotes a Gaussian random variable with
can always be represented by a decision rule that perforjgan,,; and variance2. For this hypothesis testing problem,

randomization between at most two LRTs. the LRTs in (6) and (8) can be stated as follows:
Proposition 2: The solution of(2) can be expressed as £ 1 i -

a randomized decision rule which employ$ in (6) with “(r) = 0, hr<t psry=24 " ST )

probability (y* —y3)/(y; —y3) and ¢ in (8) with probability L, ifr>7 0, ifr>7

(vi —v*)/(yT —ys3), wherey; (y3) is the detection probability The corresponding false alarm and detection probabilitias

of ¢ (¢5) when its false alarm probability is set tg", and be obtained, respectively, as= Q(%) andy = Q(%)

z* andy* are given by(10). for the first LRT in (12) and ax = Q(“27) andy =
Proof: Consider the optimization problem in (10), thEQ(m_f‘T') for the second LRT in (12). 7

solution of which is denoted byz™, y*). 'tz is known thatS " {5 well-known that the LRT is the optimal decision rule

is a convex set ir0, 1] x [0, 1] [2, p. 33]” Since ¢} in (6) according to the Bayesian criterion [1, pp. 11-12]. To show

attains the maximum detection probability for any giverséal i, it may not always be optimal in the prospect theory based

alarm probability (as discussed in the proof of Proposiidn amework, consider the optimal decision rule that is sjped;
the upper boundary of is achieved byg;. Similarly, the p5sed on Proposition 2, as follows:

lower boundary ofS is achieved byys in (8) as it provides X X X
the minimum detection probability fgr any given false alarm o°(r) = v i(r) + (1 —v)3(r) (13)
probability. Design the parameters 6f in (6) and¢; in (8) wherev = (yv* — v3)/(yi —v3) € [0,1] is the randomization
such that their false alarm probabilities become equat*to parameter. It is noted that* in (13) covers the decision rules
and lety] andy; represent their corresponding detection probin (12) (i.e., the LRTS) as special cases foe= 0 or v = 1.
abilities. Due to the previous argumengs,> y* > y; holds. let yo = 0,0 =1, a« = 2 in (11), andmy = m = 0.5
Chooser = (y* — y3)/(yi — y3) and randomizep; and ¢5 (i.e., equal priors). In addition, consider the followingrp
with probabilitiesr and1—wv, respectively. Then, the resultingceived costsw(cog) = 0.5, v(c19) = 1.2, v(co1) = 1, and
randomized decision rule attains a detection probability™c v(c;;) = 0.8. Then, according to Proposition 1-Case (b), the
and a false alarm probability of*. Therefore, it becomes theLRT may or may not be an optimal solution in this scenario.
solution of (10); hence, the optimal decision rule accogdm To observe this fact, consider the minimization problem of
(2). B the behavioral risk over the LRTs in (12) and denote the
Proposition 2 implies that the optimal decision rule fogorresponding minimum behavioral risk &gy (i.e., the
prospect theory based binary hypothesis testing can be estution of (2) over the decision rules in (12)). Similargt
pressed in terms of the LRT in (6) (if = y7), the LRT in £ represent the minimum behavioral risk achieved by (13),
(8) (if y* = y3), or their randomization (iy* € (y7,v5)). It which actually corresponds to the global solution of (2) due
should be noted that the randomization of two LRTs is not & Proposition 2. In Fig. 1f; and fon are plotted versus
the form of an LRT in general. Hence, the LRT may or may, 3 The figure reveals that the LRT is not an optimal solution
not be an optimal decision rule, as stated in Proposition 1.

3In the considered exampl¢{ o corresponds to the minimum behavioral
2Therefore, (10) becomes a convex optimization problegt:f) is a convex risk achieved by the first rule”in (12) since the second rukldgi higher
function of z and h(y) is a convex function of;. minimum behavioral risks for all values @f; .
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Fig. 1. Minimum behavioral risk versug; for the LRT in (12) and the
optimal decision rule in (13) in the Gaussian location testxample.
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Fig. 2. Behavioral risk versus false alarm probabilityfor randomized LRT
and nonrandomized LRT in the binary channel example.

E}gT(T) =1,re {07 1}
If 7> (1—X)/Ao: ¢iep(r) =0, r€{0,1}

in this example for large values @f as the optimal decision If n < A;/(1 — \):
rule in (13) achieves strictly lower behavioral risks in ttha
region. For example, fop; = 1.5, the minimum behavioral

risks achieved by the LRT and the optimal decision rule ar, -~ -~ . grnd 1, r=1
0.2864 and 0.2545, respectively, which are obtained by theﬁ At/ = o) < < (1= A1)/ dot Orier(r) = {O, r=0
following decision rules: ) )
) r=
bt () = 40 17 <1164 If 7 =21 /(1 = Xo): oTir(r) = {7 r 0
LRIV 7)1, if r > 1.164 '
, r=1
0, if r < 0.4461 1, if r < —0.4461 If n= (1= X1)/Xo: ofigp(r) = g r 0

¢*(r) = 0.627 { , +0.373 { ,
> 0. > —0. . N :
L, if r 2 04461 0,ifr=-0 4461wherew € [0,1] is the randomization constant. The possible

Sinceq* (r) above cannot be expressed in the form of an LRSet of false alarm probability and detection probabilityrpa

(cf. (12)), the LRT is not optimal fop,; = 1.5. On the other achieved viagrgy can be characterized by the following

hand, fory; < 0.55, the LRT becomes an optimal solution, agunction (ROC curve) [1]:

observed from Fig. 1. Hence, it is concluded that the LRT need =M, f0<a <)\
. . . . _ o ’ >4 > A0

not always be an optimal solution to the Gaussian location ¥ = (14)

A1 o : :
testing problem in the prospect theory based frameworkGhvhi (I-M)+ 5@ —A), fro<z<

is in compliance with Proposition 1-Case (b).

B. Example 2: Binary Channel

Suppose bid or bit 1 is sent over a channel, which flips bit
with probability \; for i € {0, 1}. Therefore, when bit is sent
(i.e., under#;), observation- is equal toi with probability
1—X\; and equal td — i with probability \;, wherei € {0, 1}.
For this problem, the likelihood ratial.(r) = p1(r)/po(r),
becomes equal t&; /(1 — \g) for r =0 and (1 — A1)/, for
r = 1. Then, the LRT comparek(r) against a thresholg to
make a decision as in (8)Assuming that\, + \; < 1, the

Let \g = 0.25, \; = 0.1, 7 = m; = 0.5 (i.e., equal priors),
and o« = 0.7 in (11). In addition, consider the following
perceived costsv(coo) = —3, v(c10) = 1.5, v(co1) = —0.2,
andwv(c11) = —1.5. Then, based on Proposition 1-Case (a),
the LRT is an optimal solution in this scenario. However, in
this example, the LRT must employ randomization to achieve
the solution of (2), as stated in Remark 2. To illustrate,this
Fig. 2 presents the behavioral risks (see (3)-(5)) achidyed

det - and ¢i3¢. with respect to the false alarm probability,
x. It is observed that the nonrandomized LRT yields the three
points marked with circles in the figure, the minimum of which
corresponds to a behavioral risk ef1.504. On the other

nonrandomized LRTi.e., deterministic LRT) can be expressethand, the randomized LRT achieves the minimum possible

as follows depending on the value of
If n<Xi/(1—X): ¢fn(r) =1, re{0,1}
If > (1—X\)/Ao: dip(r) =0, 7€ {0,1}

1 0/(1=d0) <1 < (1= M)/ o 6fn(r) = {3’ '

The possible set of false alarm probability) @nd detection
probability (/) pairs that can be achieved vig<i,. consists
of (z=1,y=1), (x =0,y =0), and(z = Ao,y =1 — \y).
On the other hand, theandomized LRTis obtained as

4The LRT in the form of (8) is also considered; however, it i$ discussed
in the text for brevity as it is not optimal for the parametettisg employed
in the example.

behavioral risk of—1.542 (corresponding to the solution of
(2)) by employing the following decision rule:

rnd, 0.3632,
LRT (r) = 0

The false alarm and detection probabilities f};" are
given by 0.0908 and 0.3269, respectively, which are not
achievable without randomization. Therefore, it is deduce
that the solution of (2) may be in the form of a randomized
LRT, which has strictly lower behavioral risk than the opdim
nonrandomized LRT, as claimed in Remark 2.

An interesting direction for future work is to specify con-
ditions under which randomization is necessary for LRTs, as
mentioned in Remark 2.

r=1

r=20 (15)
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