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On the Optimality of Likelihood Ratio Test for
Prospect Theory Based Binary Hypothesis Testing
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Abstract—In this letter, the optimality of the likelihood ratio
test (LRT) is investigated for binary hypothesis testing problems
in the presence of a behavioral decision-maker. By utilizing
prospect theory, a behavioral decision-maker is modeled to
cognitively distort probabilities and costs based on some weight
and value functions, respectively. It is proved that the LRTmay
or may not be an optimal decision rule for prospect theory based
binary hypothesis testing and conditions are derived to specify
different scenarios. In addition, it is shown that when the LRT is
an optimal decision rule, it corresponds to a randomized decision
rule in some cases; i.e., nonrandomized LRTs may not be optimal.
This is unlike Bayesian binary hypothesis testing in which the
optimal decision rule can always be expressed in the form of
a nonrandomized LRT. Finally, it is proved that the optimal
decision rule for prospect theory based binary hypothesis testing
can always be represented by a decision rule that randomizesat
most two LRTs. Two examples are presented to corroborate the
theoretical results.

Index Terms– Detection, hypothesis testing, likelihood ratio
test, prospect theory, randomization.

I. I NTRODUCTION

In hypothesis testing problems, a decision-maker aims to
design an optimal decision rule according to a certain approach
such as the Bayesian, minimax, or Neyman-Pearson (NP)
[1], [2]. In the presence of prior information, the Bayesian
approach is commonly employed, where the decision-maker
wishes to minimize the average cost of making decisions, i.e.,
the Bayes risk. The calculation of the Bayes risk requires the
knowledge of costs of possible decisions and probabilitiesof
possible events. However, in case of a human decision-maker,
such knowledge may not be perfectly available due to both
limited availability of information and/or complex human be-
haviors such as emotions, loss-aversion, and endowment effect
(see [3] and references therein). The behavior of a human
decision-maker is effectively modeled viaprospect theory,
which utilizes weight and value functions to capture the impact
of human behavior on probabilities and costs [4]. In prospect
theory based hypothesis testing, the aim of a human decision-
maker (also known as behavioral decision-maker) becomes
the minimization of thebehavioral risk, which generalizes the
Bayes risk by transforming probabilities and costs according
to the behavioral parameters of the decision-maker.

Recently, optimal decision rules are investigated in [3] for
binary hypothesis testing problems when decision-makers are
modeled via prospect theory. Two special types of behavioral
decision-makers, namely optimists and pessimists, are con-
sidered, and a known (concave) relation is assumed between
the false alarm and detection probabilities of a decision-
maker. It is shown that the optimal decision rule can achieve
different false alarm and detection probabilities than those
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attained by the Bayes decision rule in the presence of a
behavioral decision-maker. In a related work, a game theoretic
problem is formulated for strategic communications between
a human transmitter and a human receiver, which are modeled
via prospect theory [5]. It is found that behavioral decision-
makers employ the same equilibrium strategies as those for
non-behavioral (unbiased) decision-makers in the Stackelberg
sense.

The aim of this letter is to derive optimal decision rules
for generic behavioral decision-makers in binary hypothesis
testing problems. To that aim, the optimality of the likelihood
ratio test (LRT), which is known to be the optimal decision
rule in the Bayesian framework, is investigated for prospect
theory based binary hypothesis testing. It is proved that the
LRT may or may not be an optimal decision rule for behav-
ioral decision-makers, and conditions are provided to specify
various scenarios. In addition, it is shown that when the LRTis
an optimal decision rule, it corresponds to a randomized LRT
in some cases. This is different from the Bayesian approach
in which the optimal decision rule can always be stated as
a nonrandomized LRT. Finally, the generic solution of the
prospect theory based binary hypothesis testing problem is
obtained; namely, it is proved that the optimal solution can
always be represented by randomization of at most two LRTs.
Two classical examples are used to support the theoretical
results.

II. PROBLEM FORMULATION AND THEORETICAL RESULTS

Consider a binary hypothesis testing problem in the pres-
ence of a behavioral decision-maker [3]. The hypotheses are
denoted byH0 andH1, and the prior probabilities are given
by π0 = P(H0) and π1 = P(H1). The observation of the
decision-maker isr ∈ Γ, whereΓ represents the observation
space. Observationr has conditional distributionsp0(r) and
p1(r) underH0 andH1, respectively. The behavioral decision-
maker employs a decision ruleφ(r) to determine the true
hypothesis, whereφ(r) corresponds to the probability of
selectingH1; that is,φ : Γ → [0, 1].

As in [3], the rationality of the decision-maker is modeled
via prospect theory [4], [6] in this work. In prospect the-
ory, loss aversion, risk-seeking and risk-aversion behaviors
of humans are characterized, where a behavioral decision-
maker cognitively distorts the probabilities and costs based
on some known weight functionw(·) and value functionv(·),
respectively [4], [6], [7]. Then, the classicalBayes riskfor
binary hypothesis testing becomes the followingbehavioral
risk for prospect theory based binary hypothesis testing [3]:

f(φ) =
1

∑

i=0

1
∑

j=0

w
(

P(Hi selected&Hj true)
)

v(cij) (1)

wherecij is the cost of deciding in favor ofHi when the true
hypothesis isHj [1]. It is noted that the behavioral risk in (1)
reduces to the Bayes risk forw(p) = p andv(c) = c.
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The aim of the decision-maker is to find the optimal decision
rule φ∗ that minimizes the behavioral risk in (1); that is; to
solve the following optimization problem:

φ∗(r) = argmin
φ

f(φ) (2)

To that aim, the following relation can be utilized first,
P(Hi selected&Hj true) = πj P(Hi selected | Hj true),
and (1) can be written as

f(φ) = g(x) + h(y) (3)

g(x) = w(π0(1− x))v(c00) + w(π0x)v(c10) (4)

h(y) = w(π1(1− y))v(c01) + w(π1y)v(c11) (5)

wherex =
∫

Γ φ(r)p0(r)dr and y =
∫

Γ φ(r)p1(r)dr are the
false alarm and detection probabilities, respectively [3]. Then,
the following proposition states the (non-)optimality of the
LRT under various conditions.

Proposition 1: Suppose that the weight functionw(·) is
monotone increasing.

Case (a): Ifv(c10)v(c00) < 0 or v(c11)v(c01) < 0, then the
LRT is a solution of(2).

Case (b): Ifv(c10)v(c00) ≥ 0 and v(c11)v(c01) ≥ 0, then
the LRT may or may not be a solution of(2).

Proof: Case (a):Consider the scenario in whichv(c10) >
0 and v(c00) < 0. Let φ′ denote an arbitrary decision
rule, which achieves false-alarm probabilityx′ and detection
probability y′. Then, defineφ∗

1 as an LRT given by

φ∗
1(r) =











0 , if p1(r) < η p0(r)

γ , if p1(r) = η p0(r)

1 , if p1(r) > η p0(r)

(6)

whereη ≥ 0 andγ ∈ [0, 1] are chosen such that the detection
probability ofφ∗

1 is equal toy′. Then, similar to the proof of
the Neyman-Pearson lemma [1, p. 24], the following relation
can be derived based on (6):

∫

Γ

(

p1(r) − η p0(r)
)

(φ∗
1(r) − φ′(r)) dr ≥ 0 . (7)

From (7), η(x∗ − x′) ≤ y∗ − y′ is obtained, wherex∗ and
y∗ represent the false-alarm and detection probabilities ofφ∗

1,
respectively. Since the detection probability ofφ∗

1 is set to
y′ and η ≥ 0, it is concluded thatx∗ ≤ x′. Hence, for
any decision ruleφ′, the LRT in (6) achieves an equal or
lower false alarm probability for the same level of detection
probability. This means that the use of the LRT can reduce
g(x) in (4) (as v(c10) > 0, v(c00) < 0, and w(·) is
monotone increasing) without changing the value ofh(y) in
(5). Therefore, it is deduced that no other test can achieve a
lower behavioral risk (see (3)) than the LRT in (6).1

Now suppose thatv(c10) < 0 and v(c00) > 0, and again
let φ′ denote an arbitrary decision rule, which achieves false-
alarm probability x′ and detection probabilityy′. In this
scenario, defineφ∗

2 as an LRT that is stated as

φ∗
2(r) =











0 , if p1(r) > β p0(r)

κ , if p1(r) = β p0(r)

1 , if p1(r) < β p0(r)

(8)

whereβ ≥ 0 andκ ∈ [0, 1] are chosen such that the detection
probability of φ∗

2 is equal toy′. Then, it can be shown that
∫

Γ

(

β p0(r) − p1(r)
)

(φ∗
2(r) − φ′(r)) dr ≥ 0 (9)

1The existence of (6) can be proved similarly to the proof of the Neyman-
Pearson lemma [1, pp. 24-25].

which leads toβ(x∗ − x′) ≥ y∗ − y′. Therefore,x∗ ≥ x′ is
obtained asy∗ = y′ andβ ≥ 0. Hence, for any decision rule
φ′, the LRT in (8) achieves an equal or higher false alarm
probability for the same level of detection probability. This
implies that no other test can achieve a lower behavioral risk
than the LRT in (8) sincev(c10) < 0, v(c00) > 0, andw(·) is
monotone increasing (see (3)–(5)).

For v(c11) < 0 and v(c01) > 0, similar arguments can be
employed to show that for any arbitrary decision ruleφ′ with
false-alarm probabilityx′ and detection probabilityy′, an LRT
in the form of (6) can be designed to achieve the same false-
alarm probability but an equal or higher detection probability.
Sincev(c11) < 0 andv(c01) > 0 in this scenario,h(y) can be
reduced without affectingg(x). Therefore, no other test can
achieve a lower behavioral risk than the LRT.

For v(c11) > 0 and v(c01) < 0, it can be shown that for
an arbitrary decision ruleφ′ with false-alarm probabilityx′

and detection probabilityy′, an LRT in the form of (8) can
be designed to achieve the same false-alarm probability but
an equal or lower detection probability. Sincev(c11) > 0
andv(c01) < 0, h(y) can be reduced without affectingg(x).
Hence, no other test can achieve a lower behavioral risk than
the LRT.

Case (b):It suffices to provide examples in which the LRT
is and is not a solution of (2). First, consider a scenario in
which the weight function is given byw(p) = p for p ∈ [0, 1].
Then, the behavioral risk becomes the classical Bayes risk (by
defining v(cij)’s as new costs). Hence, the optimal decision
rule is given by the LRT [1, pp. 6-7], which is in the form
of (6) or (8). Next, for an example in which the LRT is not a
solution of (2), please see Section III-A. �

Proposition 1 reveals that when the probabilities are dis-
torted by a behavioral decision-maker, the LRT may lose its
optimality property for binary hypothesis testing when both
v(c10)v(c00) ≥ 0 and v(c11)v(c01) ≥ 0 are satisfied. It is
also noted that having at least one ofv(c10)v(c00) < 0 or
v(c11)v(c01) < 0 is a sufficient condition for the optimality
of the LRT.

The signs of thev(cij) terms are determined depending on
whether the behavioral decision-maker perceives the cost of
choices as detrimental or profitable. In particular, if selecting
Hi whenHj is true is perceived as detrimental (profitable),
then v(cij) ≥ 0 (v(cij) ≤ 0) [3]. Therefore, perceptions
of a decision-maker can affect the optimality of the LRT in
prospect theory based binary hypothesis testing. (For example,
in strategicinformation transmission, various cost perceptions
can be observed depending on utilities of decision-makers [8].)

Remark 1: In most experimental studies, the weight function
is observed to behave in a monotone increasing manner
[9], [10]; hence, the assumption in the proposition holds
commonly.

It is well-known that the optimal decision rule can al-
ways be expressed in the form of a nonrandomized LRT for
Bayesian hypothesis testing [1]. In other words, according
to the Bayesian criterion (which aims to minimize (1) for
w(p) = p and v(c) = c), the optimal decision rule is to
compare the likelihood ratio against a threshold and to choose
H0 or H1 arbitrarily whenever the likelihood ratio is equal to
the threshold (i.e., randomization is not necessary). However,
for prospect theory based hypothesis testing, randomization
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can be required to obtain the optimal solution (i.e., the solution
of (2)) in some scenarios. This is stated in the following.

Remark 2: Suppose that the solution of(2) is in the form
of an LRT; that is,(6) or (8). Then, in some cases, the
optimal decision rule may need to be randomized with the
randomization constant being in the open interval(0, 1).

To justify Remark 2, considerw(p) = p and v(c) = c in
(1); that is, the Bayesian framework. Then, a nonrandomized
LRT (i.e., (6) withγ ∈ {0, 1} or (8) withκ ∈ {0, 1}) is always
an optimal solution of (2) [1]. Next, consider the example in
Section III-B, where the optimal solution is in the form of (6)
with γ ∈ (0, 1) (see (15)); hence, no nonrandomized decision
rules can be a solution of (2) in certain scenarios.

Finally, the optimal decision rule is specified for prospect
theory based binary hypothesis testing in the general case.To
that aim, the problem in (2) is stated, based on (3)-(5), as

(x∗, y∗) = argmin
(x,y)∈S

g(x) + h(y) (10)

whereS denotes the set of achievable false alarm and detection
probabilities for the given problem, andx∗ andy∗ represent,
respectively, the false alarm and detection probabilitiesat-
tained by the optimal decision rule in (2). Once the problem in
(10) is solved, any decision rule with false alarm probability
x∗ and detection probabilityy∗ becomes an optimal solution.
The following proposition states that the optimal solution
can always be represented by a decision rule that performs
randomization between at most two LRTs.

Proposition 2: The solution of (2) can be expressed as
a randomized decision rule which employsφ∗

1 in (6) with
probability (y∗−y∗2)/(y

∗
1 −y∗2) andφ∗

2 in (8) with probability
(y∗1−y∗)/(y∗1−y∗2), wherey∗1 (y∗2) is the detection probability
of φ∗

1 (φ∗
2) when its false alarm probability is set tox∗, and

x∗ and y∗ are given by(10).
Proof: Consider the optimization problem in (10), the

solution of which is denoted by(x∗, y∗). It is known thatS
is a convex set in[0, 1] × [0, 1] [2, p. 33].2 Sinceφ∗

1 in (6)
attains the maximum detection probability for any given false
alarm probability (as discussed in the proof of Proposition1),
the upper boundary ofS is achieved byφ∗

1. Similarly, the
lower boundary ofS is achieved byφ∗

2 in (8) as it provides
the minimum detection probability for any given false alarm
probability. Design the parameters ofφ∗

1 in (6) andφ∗
2 in (8)

such that their false alarm probabilities become equal tox∗,
and lety∗1 andy∗2 represent their corresponding detection prob-
abilities. Due to the previous arguments,y∗1 ≥ y∗ ≥ y∗2 holds.
Chooseν = (y∗ − y∗2)/(y

∗
1 − y∗2) and randomizeφ∗

1 andφ∗
2

with probabilitiesν and1−ν, respectively. Then, the resulting
randomized decision rule attains a detection probability of y∗

and a false alarm probability ofx∗. Therefore, it becomes the
solution of (10); hence, the optimal decision rule according to
(2). �

Proposition 2 implies that the optimal decision rule for
prospect theory based binary hypothesis testing can be ex-
pressed in terms of the LRT in (6) (ify∗ = y∗1), the LRT in
(8) (if y∗ = y∗2), or their randomization (ify∗ ∈ (y∗1 , y

∗
2)). It

should be noted that the randomization of two LRTs is not in
the form of an LRT in general. Hence, the LRT may or may
not be an optimal decision rule, as stated in Proposition 1.

2Therefore, (10) becomes a convex optimization problem ifg(x) is a convex
function ofx andh(y) is a convex function ofy.

By deriving the optimal decision rules for prospect theory
based hypothesis testing, we provide theoretical performance
bounds for behavioral (human) decision-makers. As humans
may not implement these optimal rules exactly in practice, we
can evaluate how close to optimal they perform.

Remark 3: Randomized decision rules generalize deter-
ministic decision rules and can outperform them in certain
scenarios (e.g., [1, pp. 27–29], [11], [12]).

III. E XAMPLES AND CONCLUSIONS

In this section, two classical problems in binary hypothesis
testing are investigated from a prospect theory based perspec-
tive. For the weight function, the following commonly used
model in prospect theory is employed [6], [9], [10]:

w(p) =
pα

(pα + (1 − p)α)1/α
, p ∈ [0, 1] andα > 0 (11)

whereα is a probability distortion parameter of the decision-
maker. The model in (11) is supported via various experiments
and it can capture risk-seeking and risk-aversion attitudes of
human decision-makers in different scenarios [6], [9], [10].

A. Example 1: Location Testing with Gaussian Error

Suppose observationr is a scalar random variable dis-
tributed asN (µi, σ

2) under hypothesisHi for i ∈ {0, 1},
whereN (µi, σ

2) denotes a Gaussian random variable with
meanµi and varianceσ2. For this hypothesis testing problem,
the LRTs in (6) and (8) can be stated as follows:

φ∗
1(r) =

{

0 , if r < τ

1 , if r ≥ τ
, φ∗

2(r) =

{

1 , if r < τ̃

0 , if r ≥ τ̃
. (12)

The corresponding false alarm and detection probabilitiescan
be obtained, respectively, asx = Q

(

τ−µ0

σ

)

andy = Q
(

τ−µ1

σ

)

for the first LRT in (12) and asx = Q
(

µ0−τ̃
σ

)

and y =

Q
(

µ1−τ̃
σ

)

for the second LRT in (12).
It is well-known that the LRT is the optimal decision rule

according to the Bayesian criterion [1, pp. 11-12]. To show
that it may not always be optimal in the prospect theory based
framework, consider the optimal decision rule that is specified,
based on Proposition 2, as follows:

φ∗(r) = ν φ∗
1(r) + (1− ν)φ∗

2(r) (13)

whereν = (y∗ − y∗2)/(y
∗
1 − y∗2) ∈ [0, 1] is the randomization

parameter. It is noted thatφ∗ in (13) covers the decision rules
in (12) (i.e., the LRTs) as special cases forν = 0 or ν = 1.

Let µ0 = 0, σ = 1, α = 2 in (11), andπ0 = π1 = 0.5
(i.e., equal priors). In addition, consider the following per-
ceived costs:v(c00) = 0.5, v(c10) = 1.2, v(c01) = 1, and
v(c11) = 0.8. Then, according to Proposition 1-Case (b), the
LRT may or may not be an optimal solution in this scenario.
To observe this fact, consider the minimization problem of
the behavioral risk over the LRTs in (12) and denote the
corresponding minimum behavioral risk asf∗

LRT (i.e., the
solution of (2) over the decision rules in (12)). Similarly,let
f∗
opt represent the minimum behavioral risk achieved by (13),

which actually corresponds to the global solution of (2) due
to Proposition 2. In Fig. 1,f∗

LRT andf∗
opt are plotted versus

µ1.3 The figure reveals that the LRT is not an optimal solution

3In the considered example,f∗

LRT
corresponds to the minimum behavioral

risk achieved by the first rule in (12) since the second rule yields higher
minimum behavioral risks for all values ofµ1.
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Fig. 1. Minimum behavioral risk versusµ1 for the LRT in (12) and the
optimal decision rule in (13) in the Gaussian location testing example.

in this example for large values ofµ1 as the optimal decision
rule in (13) achieves strictly lower behavioral risks in that
region. For example, forµ1 = 1.5, the minimum behavioral
risks achieved by the LRT and the optimal decision rule are
0.2864 and 0.2545, respectively, which are obtained by the
following decision rules:

φ∗
LRT(r) =

{

0 , if r < 1.164

1 , if r ≥ 1.164

φ∗(r) = 0.627

{

0 , if r < 0.4461

1 , if r ≥ 0.4461
+ 0.373

{

1 , if r < −0.4461

0 , if r ≥ −0.4461

Sinceφ∗(r) above cannot be expressed in the form of an LRT
(cf. (12)), the LRT is not optimal forµ1 = 1.5. On the other
hand, forµ1 < 0.55, the LRT becomes an optimal solution, as
observed from Fig. 1. Hence, it is concluded that the LRT need
not always be an optimal solution to the Gaussian location
testing problem in the prospect theory based framework, which
is in compliance with Proposition 1-Case (b).

B. Example 2: Binary Channel

Suppose bit0 or bit 1 is sent over a channel, which flips biti
with probabilityλi for i ∈ {0, 1}. Therefore, when biti is sent
(i.e., underHi), observationr is equal toi with probability
1−λi and equal to1−i with probabilityλi, wherei ∈ {0, 1}.
For this problem, the likelihood ratio,L(r) = p1(r)/p0(r),
becomes equal toλ1/(1− λ0) for r = 0 and(1− λ1)/λ0 for
r = 1. Then, the LRT comparesL(r) against a thresholdη to
make a decision as in (6).4 Assuming thatλ0 + λ1 < 1, the
nonrandomized LRT(i.e., deterministic LRT) can be expressed
as follows depending on the value ofη:

If η < λ1/(1− λ0): φ
det
LRT(r) = 1 , r ∈ {0, 1}

If η > (1− λ1)/λ0: φdet
LRT(r) = 0 , r ∈ {0, 1}

If λ1/(1− λ0) ≤ η ≤ (1− λ1)/λ0: φdet
LRT(r) =

{

1 , r = 1

0 , r = 0

The possible set of false alarm probability (x) and detection
probability (y) pairs that can be achieved viaφdet

LRT consists
of (x = 1, y = 1), (x = 0, y = 0), and(x = λ0, y = 1− λ1).
On the other hand, therandomized LRTis obtained as

4The LRT in the form of (8) is also considered; however, it is not discussed
in the text for brevity as it is not optimal for the parameter setting employed
in the example.
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Fig. 2. Behavioral risk versus false alarm probability,x, for randomized LRT
and nonrandomized LRT in the binary channel example.

If η < λ1/(1− λ0): φrnd
LRT(r) = 1 , r ∈ {0, 1}

If η > (1 − λ1)/λ0: φrnd
LRT(r) = 0 , r ∈ {0, 1}

If λ1/(1− λ0) < η < (1− λ1)/λ0: φrnd
LRT(r) =

{

1 , r = 1

0 , r = 0

If η = λ1/(1− λ0): φ
rnd
LRT(r) =

{

1 , r = 1

γ , r = 0

If η = (1 − λ1)/λ0: φrnd
LRT(r) =

{

γ , r = 1

0 , r = 0

whereγ ∈ [0, 1] is the randomization constant. The possible
set of false alarm probability and detection probability pairs
achieved viaφrnd

LRT can be characterized by the following
function (ROC curve) [1]:

y =

{

1−λ1

λ0

x , if 0 ≤ x ≤ λ0

(1− λ1) +
λ1

1−λ0

(x− λ0) , if λ0 < x ≤ 1
. (14)

Let λ0 = 0.25, λ1 = 0.1, π0 = π1 = 0.5 (i.e., equal priors),
and α = 0.7 in (11). In addition, consider the following
perceived costs:v(c00) = −3, v(c10) = 1.5, v(c01) = −0.2,
and v(c11) = −1.5. Then, based on Proposition 1-Case (a),
the LRT is an optimal solution in this scenario. However, in
this example, the LRT must employ randomization to achieve
the solution of (2), as stated in Remark 2. To illustrate this,
Fig. 2 presents the behavioral risks (see (3)-(5)) achievedby
φdet
LRT and φrnd

LRT with respect to the false alarm probability,
x. It is observed that the nonrandomized LRT yields the three
points marked with circles in the figure, the minimum of which
corresponds to a behavioral risk of−1.504. On the other
hand, the randomized LRT achieves the minimum possible
behavioral risk of−1.542 (corresponding to the solution of
(2)) by employing the following decision rule:

φrnd,∗
LRT (r) =

{

0.3632 , r = 1

0 , r = 0
(15)

The false alarm and detection probabilities ofφrnd,∗
LRT are

given by 0.0908 and 0.3269, respectively, which are not
achievable without randomization. Therefore, it is deduced
that the solution of (2) may be in the form of a randomized
LRT, which has strictly lower behavioral risk than the optimal
nonrandomized LRT, as claimed in Remark 2.

An interesting direction for future work is to specify con-
ditions under which randomization is necessary for LRTs, as
mentioned in Remark 2.



5

REFERENCES

[1] H. V. Poor, An Introduction to Signal Detection and Estimation. New
York: Springer-Verlag, 1994.

[2] B. C. Levy, Principles of Signal Detection and Parameter Estimation.
New York: Springer Science & Business Media, 2008.

[3] V. S. S. Nadendla, S. Brahma, and P. K. Varshney, “Towardsthe design
of prospect-theory based human decision rules for hypothesis testing,”
in 54th Annual Allerton Conference on Communication, Control, and
Computing, Sep. 2016, pp. 766–773.

[4] D. Kahneman and A. Tversky, “Prospect theory: An analysis of decision
under risk,”Econometrica, vol. 47, no. 2, pp. 263–291, 1979.

[5] V. S. S. Nadendla, E. Akyol, C. Langbort, and T. Basar, “Strategic
communication between prospect theoretic agents over a Gaussian
test channel,”CoRR, vol. abs/1708.04956, 2017. [Online]. Available:
http://arxiv.org/abs/1708.04956

[6] A. Tversky and D. Kahneman, “Advances in prospect theory: Cumulative
represenation of uncertainty,”Journal of Risk and Uncertainty, vol. 5,
pp. 297–323, 1992.

[7] N. C. Barberis, “Thirty years of prospect theory in economics: A review
and assessment,”Journal of Economic Perspectives, vol. 27, no. 1, pp.
173–196, 2013.

[8] S. Saritas, S. Gezici, and S. Yuksel, “Binary signaling under subjective
priors and costs as a game,” inIEEE Conference on Decision and
Control (CDC), Fontainebleau, Miami Beach, FL, USA, Dec. 17–19
2018. [Online]. Available: https://arxiv.org/abs/1804.01357

[9] R. Gonzales and G. Wu, “On the shape of the probability weighting
function,” Cognitive Psychology, vol. 38, no. 1, pp. 129–166, 1999.

[10] D. Prelec, “The probability weighting function,”Econometrica, vol. 66,
no. 3, pp. 497–527, 1998.

[11] M. E. Tutay, S. Gezici, and O. Arikan, “Optimal detectorrandomization
for multiuser communications systems,”IEEE Transactions on Commu-
nications, vol. 61, no. 7, pp. 2876–2889, July 2013.

[12] B. Dulek and S. Gezici, “Detector randomization and stochastic signal-
ing for minimum probability of error receivers,”IEEE Transactions on
Communications, vol. 60, no. 4, pp. 923–928, Apr. 2012.


