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Abstract—In this study, optimal deterministic encoding of a
vector parameter is investigated in the presence of an eaves
dropper. The objective is to minimize the expectation of the
conditional Cramér-Rao bound (ECRB) at the intended receiver
while satisfying an individual secrecy constraint on the man-
squared error (MSE) of estimating each parameter at the
eavesdropper. The eavesdropper is modeled to employ the &ar
MMSE (LMMSE) estimator based on the noisy observation of the
encoded parameter without being aware of encoding. First,he
problem is formulated as a constrained optimization problen in
the space of vector-valued functions. Then, two practicaldution
strategies are developed based on nonlinear individual ending
and affine joint encoding of parameters. Theoretical resuls on
the solutions of the proposed strategies are provided for véous
scenarios on channel conditions and parameter distributios.
Finally, numerical examples are presented to illustrate tle
performance of the proposed solution approaches.

Index Terms—Fisher information matrix (FIM), parameter
estimation, Cramér-Rao bound (CRB), secrecy, optimization.

|I. INTRODUCTION

information leakage to the eavesdropper [5]. Alternagivel
estimation theoretic tools such as mean-squared error {MSE
and Fisher information have recently been used to measure
security performance of communication systems to design
low-complexity, practical and secure systems [11]-[22].
Estimation theoretic security has found applications in a
wide variety of problems. For example, such tools can be
employed in distributed inference networks, where therinfo
mation coming to a fusion center from various sensor nodes
can also be observed by eavesdroppers [12]-[14]. In [1#&], th
secret communication problem is investigated for Gaussian
interference channels in the presence of eavesdroppers for
vector parameters. The problem is formulated to minimize th
total minimum mean-squared error (MMSE) at the intended
receivers while keeping the MMSE at the eavesdroppers above
a certain level, where joint artificial noise and linear m@iag
schemes are used to satisfy the secrecy constraint. In [15],
privacy of households using smart meters is considered in
the presence of adversary parties. The Fisher informason i

Secure transmission of data to an intended receiver §mployed as a metric of privacy for both scalar and multi-
the presence of an eavesdropper has been a crucial prob¥@fiable case and the optimal policies for the utilizatidn o
for communications. Physical layer secrecy is based on thatteries are derived to achieve privacy. In [16], a deentr

idea of exploiting the randomness in wireless channels

iged estimation problem is considered in an insecure sensor

ensure secure communication. In recent years, there has beetwork environment, where each sensor network performs
a renewed interest in the physical layer secrecy with tiséochastic encryption based on the 1-bit quantized versian
advances in wireless communication systems. As the agen@fSy sensor measurement to achieve secret communichtion.
Internet of Things (IoT), smart homes and cities, and wagle[17], the optimal deterministic encoding of scalar pararet
sensor networks with vast amount of nodes has already dyrivis investigated based on the minimization of the expeataifo
ensuring the security of data in such networks appears to beagditional Cramér-Rao bound (ECRB) in order to guarantee
Cha”enging task. Key-based Cryptographic approachd]; Jsic a certain level of estimation accuracy at the intended vecei

[1] and [2] have been employed in many applications to ensuélile keeping the estimation error at the eavesdroppereabov
confidential communication, and they may still be a valuabfcertain level. In [18], a robust parameter encoding amgroa
option and even necessary for certain applications such iggleveloped and the optimization is based on the worst-case

military communications. However, as the management
key generation and distribution can be very challenging

gRB (equivalently, the worst-case Fisher information) loé t
parameter in order to guarantee a certain level of estimatio

heterogeneous and dynamic networks with a vast numberageuracy at the intended receiver. _ _
device connections, cryptographic approaches may no tongeln the estimation theoretic secrecy framework, Fisher in-

be the most suitable solution [3], [4].
Traditionally, information theoretical metrics such astoal

formation and Cramér-Rao bounds provide crucial metics t
evaluate performance of estimators and have been employed

information have been employed to quantify the secrecyldevén various security problems [15]-[18]. Even though the CRB

in physica| |ayer Security over wireless networks [5]_[1o]and the Fisher information for a given value of a parameter
In particular, Wyner proved that when the channel betwe&h interest have very clear interpretations as a measure of
the transmitter and the eavesdropper is a degraded verg§fimation efficiency, they are not directly applicable fie t

of the channel between the transmitter and the intendBayesian framework. In such a case, the expectation of the

receiver, then reliable communication can be achievedowith conditional Cramér-Rao bound (ECRB), can be utilized as
a metric of estimation accuracy, when the prior information

about transmitted parameters is available [23]. The ECRB ha
been employed in various different contexts in the literatu
[24], [25], and utilized as a metric to quantify estimation
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accuracy in security/privacy problems [15], [17]. In paufar, optimal encoding of multiple parameters requires new ey
the ECRB facilitates theoretical investigations for aglig and theoretical investigations as the theoretical aralgsd
intuitive understanding of the parameter encoding probletmols employed in [17] are not able to cover it directly in
and it does not assume any fixed estimator structure in ordemeral. When the encoding function is assumed to be an affine
to be calculated [17]. Also, the MSE of the MAP estimatofunction as a special case, it corresponds to employingeatin
converges to the ECRB in the high SNR region [23]; hencprecoding matrix strategy, which has been employed in uvario
ECRB-based optimization also guarantees optimizing the pstudies to ensure security [11], [12].

formance of certain_practical est_imatprs. Based on allethes |, this work, the objective of encoding design is to minimize
reasons, the ECRB is employed in this study, as well. the ECRB, which is defined as the average of the trace of the
Even though the optimal parameter encoding problem h@gerse Fisher Information Matrix (FIM). The eavesdropper
been investigated for scalar parameters in [17] and [181fros modeled to employ the linear MMSE (LMMSE) estimator
a CRB-based optimization perspective, it is possible thghsed on the noisy observation of the encoded parameter
the channel input can contain multiple parameters in maRyihout being aware of encoding. Compared to other studies
practical scenarios such as [11], [15], [19]-[22]. Estio@Df i the estimation theoretic security literature, the pisgmbfor-
multiple parameters is required in many applications si&h gylation is a novel approach for problems involving mutipl
in localization [26] and joint frequency and phase estiotati harameters. Also, the possible correlations among thetpara
[23]. Secure transmission of multiple parameters has @80 b gters and the correlations in the noise components of ieténd
investigated in the literature for different applicatioaad receiver/eavesdropper are taken into account, which igpot
scenarios. In [19], the filter design with secrecy consteai® pjicable in [17]. First, the optimization problem is fornatid
studied for a multiple-input multiple-output (MIMO) GausB 15 obtain the optimal encoding function for a given target
wiretap channel, where the parameter of interest is a VECIHfSE level based on the assumption that the joint encoding
each component of which is zero mean with a unit variang@proach is applied via a nonlinear encoding function. Base
and is independent of others. In [20], a beamforming schergg this formulation, two special cases of the generic form of
is proposed for a downlink multiuser MIMO  system fOfne encoding function is studied to develop practical ercad
secure communication, where the vector parameter calmes f, the first approach, each element of the vector parameter
unit-energy data symbols of each user. In [21], the binafy encoded individually by a nonlinear scalar function. For
stochastic encryption introduced in [16] is extended to thgis strategy, it is shown that when the transmitted parerset
vector parameter estimation case. Another important ese-Care independent and the channel noise for the eavesdropper
for the secure multiple parameter estimation problem accyg white, the optimization problem decouples into indiatiu
in smart grids/homes and internet of things (10T) syster@$ [2 gc1ar problems, which are investigated in [17]. Then, theec
For example, the vector parameter_ carries the state of tde 9for colored Gaussian noise for the eavesdropper is inastigy
i.e., the voltage angles and magnitudes at each of the bus@sere the optimization problem cannot be decoupled. For
in the scenario of state estimation problem. in a smart-gffe two-parameters case, fundamental insights are prvide
system. In another example, the parameter is the state of #@t the optimal solution of the multiple parameter case by
position and velocity of an autonomous vehicle. In a furthtnsidering the correlation in the noise components, which
example, the parameter represents the pollutant conéientracannot be obtained by studying the single parameter case.
over an entire city in an air monitoring system in a smart,City, the second approach, the encoding function is assumed to
where each individual component of the vector can represgpf an affine function. This method allows for joint encoding,
the pollutant concentration in a certain neighborhood.[22] o simple shuffle and scale of the parameters, which cannot
Based on the preceding motivations, we focus on & secyg tilized in the single parameter case. Therefore, all the
multi-parameter transmission scenario in this study. Biyi  {heoretical analyses related to this approach are newicontr
to [17] and [18], the parameter is encoded using an encodifgiions. For this strategy, first the secrecy requiremerds a
function prior to transmission. It is important to emphasizomitted, and an optimal solution is derived theoreticallyen
that the difference of the multiparameter scenario inge$tid the channel noise for the intended receiver is white. Next,
in thi_s manuscript from the single parameter case studied{{t MSE constraint for the eavesdropper is considered and
[17] is not only based on the number of parameters. In th@yeral theoretical results are provided regarding the fof
encoding of a scalar parameter, a single scalar valuediinctihe optimal affine joint encoder. Finally, numerical exaespl
is utilized as an encoder. In this manuscript, as the pa@me{re provided to investigate various scenarios for bothineat
of interest is a random vector, the encoding function besanengividual encoding and affine joint encoding strategiese T

vector valued function, which generates different oppuitt®s  main contributions in this manuscript can be summarized as
compared to the scalar case during the encoding operatobn sghjows:

as joint encoding of parameters using a nonlinear functien.

a simple example, consider a scenario in which the parametes The optimal encoding of multiple parameters is proposed
involves the coordinates of the location of a target. Then, by utilizing the ECRB metric at the intended receiver and

before sending the true coordinate, a simple shuffle of the a MSE target at the eavesdropper. Two practical encoding
coordinates can create a considerable amount of localizati strategies, nonlinear individual encoding and affine joint

error at the eavesdropper as the eavesdropper is not avedre th encoding, are introduced as possible encoding solutions.
such a secret-key is employed. This means that the problem 0§ For nonlinear individual encoding, it is shown that the



optimization problem can be decoupled into independent H, N,

problems if the channel noise for the eavesdropper is l l

white and parameters are independent. It is also proved 0 £0) G o @) v

that if the prior distribution of a given parameter is sym- o4 ~/

metric on the domain, then the corresponding encoding

function can be limited to decreasing functions. ) o 7
« For affine joint encoding, the optimal encoding function b N

is provided when there is no secrecy constraints and the T T

channel noise for intended receiver is white. H. N.

« Itis shown that the search for the optimal affine encoding
strategy can be converted to a precoding matrix search;
that is, the constant term can be eliminated from the

optimization problem. : . : . .

P P L . where N, is zero-mean Gaussian noise with covariance
The rest of the manuscript is organized as follows: The ORatrix .. which is also independent o, and H, —
ey 1 e

timal encoding problem for multiple parameters is formedat diag{he1, hes, ..., hen)} isanN x N diagonal matrix repre-

in _Segtiqn . The. nonlinear_individual e.nconing strategyda senting the channel between the transmitter and the eapesdr
affine joint .encod|ng str.ategles are studied in Segtlonanﬂ per under a block fading channel model. The intended receive
v, respectlv_ely. Numerical res_ults are pre;ented in Bacd tries to estimate paramet@rbased on observatiori whereas
and concluding remarks are given in Section V. the eavesdropper employs observatiébrior estimating@, as
illustrated in Fig. 1. Note that the eavesdropper is not awar
of encoding; hence, it effectively tries to estimge

In order to measure estimation accuracy at the intended
; X receiver, the expectation of Cramer-Rao bound (ECRB) is em-
to an intended receiver ove¥ channels, andv(6) denotes 5veq similarly to [17]. It is also assumed that the eavepdr
the joint probability density function (PDF) of. A block per employs the LMMSE estimatq@(Z) whose coefficients
fading channel model is assumed such that the instantanegys sqlected to estimat@ = f(9) based onZ. The secrecy
fading coefficient at each channel is independent and dgsy) s achieved when the MSE at the eavesdropper for@&ach

noted by constant,,; for ¢ = 1,2,...,N. As this model s apove a certain threshold. The ECRB for vector parameters
considers a slowly fading channel, it is assumed that the e expressed as [23]

channel coefficients are constant during the transmissfon o

the parameters. In addition to the transmitter and the deén Eo(1(0)™") = / w(8) I(6)"'d6 = ECRB (4)
receiver, there exists an eavesdropper that tries to dstitha A

paramete. The objective is to perform accurate estimatiohere 1(6) represents the Fisher information matrix (FIM),
of the parameter at the intended receiver while keeping tigich is given by

estimation error at the eavesdropper above a certain [&v§l | -

Therefore, vector parametéris encoded by using a vector- 10)=E <<5pY0(.Y|0)> <<9PY|9(.Y|0)) ) ®)
valued encoding functiorf : A — T" before the transmission 00 00

of the parameteft Let 3 € T be the encoded version of the . . .
paramgter which is deﬁfined as vers! with py¢(y|@) representing the conditional PDF ¥f for a

given value off [26]. Also, the error covariance matrix at the
f1(01,02,...,0n) eavesdropper, who is unaware of the encoding, based on the
f2(01,02,...,0n) estimate of the eavesdropp@fZ) and the true value of the
: @) paramete@ is defined as
In(01,02,...,0N)

o , o =~ E((6(2)-0)(B(2)-0)").  ©
Then, the received signal at the intended receiver is egpdes
as The expression in (4) is a matrix with each diagonal element
representing the estimation accuracy limit for an indiata-
Y=H,8+N, 2) rameter. Therefore, to determine the optimal encodingtfanc
whereH, = diag{h, 1, hr2,...,h- Ny} iSanN x N diagonal for the overall vector parameter, the cost function is based
matrix of channel coefficients anl¥, is the N-dimensional the sum of the diagonal elements of the inverse FIM, and the
channel noise which is modeled as a zero-mean Gaussitimal parameter encoding problem is proposed as follows:
random vector with covariance matr®,. and is independent
of 8. On the other hand, the eavesdropper observes Fopt = argmfin/Aw(G) tr{I(6)"*}do

Z-=H,3+N, 3) st. Bee(i)>mi, i=1,2,...,N. (7)

Fig. 1: System model.

Il. PROBLEM FORMULATION

Consider a scenario in whicN-dimensional random vector
parameterd = [¢; 6y---Oy]7 € A is to be transmitted

B=f(O)=

1The encoder is designed for each transmission block anddshewpdated W_here tr{-} denotes the trace o_perat(ﬁlem«(i) is the ith
when the channel realization changes. diagonal element ok, andn; is the MSE target foi9;



at the eavesdropper. In the remainder of this section, the solution of the problem
It is important to emphasize that (7) involves optimizatiom (14) is investigated. To that ent;{I(8)~'} for parameter

in the space of vector-valued functions with multiple irggut 8 is derived for the system model specified by (2) and the error

hence it is difficult to solve in general. In the followingcovariance matrix in (11) is employed. Note that for a fixed

sections, two special cases of the generic form of the engodand channel matribH ., Y is a Gaussian random vector with

function given in (1) are considered as practical solutiomeanu(6) expressed as

approaches.

Remark 1: Note that the closed-form expression ®B,., Z’“’l ?Ezlg
can be derived in the following way (similarly to the derieat 1u(0) = H, B = ™2 /2172 (15)
for the scalar case in [17]). The LMMSE estimaia(Z) is :
expressed a§(Z) = AZ + b, whereA andb are chosen to he.N fN(ON)
minimize £ g| 18(2) - 8| ) as the eavesdropper is unawarg g coyariance matrix,.. Accordingly, each element df(6)
of the encoding, and are given by can explicitly be written as [27]
-1
T (. (0.
A=z (HZeH! +2.) . ® iz = = () (L) as)
and ' ’
where [£.']; ; denotes the(i, j)th element ofX;'. Note
b= (I - AHe) E(ﬂ)’ (9) that if (%] £ hrﬂ' df:i(efl), then [I(O)]ZJ = o0 [Zfl]m,
with thus, the FIM can simply be expressed d%6) =
diag{ay, g, ...,an}X; 'diag{a, as,...,ax}. Therefore,

Y5z = E((,@ - EB))(Z - E(Z)T)). (10) the following expression is obtained:

N 2

=Y iz @D
2

i=1 hori fz/(91)2

Based on (8)—(10)%.,- can be obtained as tr{I(0)'} = Z

e = ZpRES — R0 — 55 RIS + T
T where f/(0;) denotes the derivative of;(;). Note that (17)
T ((E(B) N E(O)) (E(B) N E(O)) ) ’ (11) implies that even though the effective noise is not necégsar
where white, tr{I(0)~'} can still be written as the sum of individual
. . scalar inverse Fisher information corresponding to déffer
=E(BB") - E(B)EB)", parameters. Then, the cost function in (14) becomes
Spe0 = E(B86") — E(B)E®6)", N 2

( by pbo b o2
Yo =E(00") —E0)E(0)T, / / / h” f( 3 —————df1dbs . ..dOy
R—H! (H.ZsH] + Ee)f1 H.. (12) b b b,f 1
/ / / ———>———dbdby...dON
[1I. NONLINEAR INDIVIDUAL ENCODING i(el)
In this section, the proposed problem in Section Il is in- Z h/ ’

vestigated for an encoding approach such that each panamete £

6; is encodedndividually by a nonlinear scalar function such o
that It is observed that the overall cost function is actually the

sum of individual ECRB values for any generig¢6). Based

(6:) Wdei- (18)

h (zl) on (11) and (18), one can calculate the cost function and the
B2 fO) = f2 (' 2) _ (13) constraints in (14) for any givem(0), 3 and channel statistics.
: In the following, two specific scenarios are investigated in
In(On) more detail.

Furthermore, as motivated in [17], the parameter space and
the intrinsic constraints on each encoding functjp(@;) are A- Independent Parameters & White Gaussian Noise for

specified as follows: Eavesdropper
o 0; €la;b; fori=1,2 ... N. We first consider the scenario in which the channel noise
o Bi=fi(6;) € las,b;] fori=1,2,... N. is zero-mean white Gaussian for the eavesdroppbat is,
« f; is a continuous and one-to-one function. 3, = diag{02,025,...,07 5} and the parameter§;’s, are
Under these assumptions, the optimal encoding problem'"}‘ije‘pe”dent of each other with marginal d|str|b%|ons dedo
(7) can be written as by w;(0;) fori=1,2,..., N. (Note thatw(0) = [[;_, wi(6;)

in this scenario.) Under th|s setting, the following proitios

01),..., 2Note that there is no further assumption on the noise statifor the
. intended receiver, as it does not effect the constraint Aedcbst function
s.t. 26”( ) >, 1=1,2,...,N. (14) according to (11) and (17).



reveals that the optimization problem be decoupled int@indwe suppose thak. is a symmetric, positive definite matrix
pendent scalar problems. which is not necessarily diagonal. Due to the independence

Proposition 1: If the parameters are independent and thef parametersXg, Xz ¢ and X4 take diagonal forms as in
channel noise for the eavesdropper is white Gaussian, the @ection Ill-A. Then, theth diagonal elemenE,.,...(i) of X.,.,
timization problem in(14) can be decoupled into independentan be written as

problems as follows: Sonn(i) = hii%(% 90y + Var(6:)

b.
. i 1 2

ot = argmin / (00 53 0 T (E(f(6) - B() (29)

st Berr(i) > ;s 112 ...,N. (19) where V; and C; are as defined previously. Alse; is the

ith diagonal element of matrixD + X.)~!, whereD =
where diag{h? ;V1,h2,Va,...,hZ yVn}. Note thaty; depends on
) h2Vi (Vi — 2C;) 5 H,. and the encoding functioyf. Due to the cross terms in
Terp(i) = B2V, + 1 + Var(0:) + (E(fi(0:) — E(6:))” the constraints, the optimization problem cannot be deleaup

(20) anymore, hence it should be solved using (14) based on (17)
and (23). However, it is possible to derive some theoretical
Vi= V“T(fi(ei))_’ Ci = Cou(fi(0:),0:) and hi = hei/0ci-  yresults about the form of the solution in the considered
Proof: ~ First, ~we focus on the  ermorgeenario. Lemma 1 generalizes Proposition 3 in [17] for the
covariance  matrix X..,.. Note that Xg multivariable case.
diag{vlvv%v"'vVN} with Vi_ = Var(fi(6:)), Lemma 1 Suppose that the eavesdropper employs the
Ypo = dlag{cvaQ’.""ON} with C; = Cov(fi(0i),0:)  |inear MMSE estimator andw; (f;) is symmetric around
and 3¢ = diag{Var(61),Var(6s),....,Var(0n)} (4, 15,)/2. Then, for any given encoding functigité) which
due to the mdegendence Ofei’sh' Also, R = consists of continuous and strictly increasing encodimgfu
dlag{h VT s T Nz{},ﬂa } due tions f;(6;), there exists a corresponding encoding function
to the mdependence 09 s and the white Gaussian s(8) consisting of continuous and strictly decreasing encoding
noise assumption for the eavesdropper. Therefoftenctionss;(6;) that yields the same ECRB at the intended

Serr = diag{Xerr (1), Berr(2), ..., Berr(N)}, where receiver with a higher MSE for the individual parameters at
R2V(V; — 2C;) ) the eavesdropper.
Yerr (i) = W + Var(6;) + (E(f:(6:)) — E(6;)) Proof: By using the arguments in [17], we consider two
i (21) encoding functiong;(6;) ands;(6;) = fi(a; +b;—0;), where
0; € [a;,b;] and f;(6;) is a continuous and monotonically
and h; = hc;/o.;. Based on (18) and (21), the generiéncreasing function. Since’(6;) = —f!(a; + b; — 6;) by
optimization problem in (14) reduces to definition and due to the symmetry in;(6;), both encodlng
N o b, functions result in the samer{I(0)~'}, which is given
f. —arg min Z UM-Q/ wi(ei)#d& in (17). Furthermore, as shown in [17¢jov(f;(0;),0;) >
g fofarenfn S hei® Ja, fi(0:)? Cou(s;(6;),6;) and two encoders yield the same variance and
st Bepr(i) >m;, i=1,2,...,N. (22) expectation for the encoded version of the parameter. Also,

3. is a positive definite matrix andD has positive entries.
Note that the constraints are independent of each other arikrefore,(D + X.)~ is also a positive definite matfxand
each element of the sum in the objective function has ng - ( always holds. Combining these results and via (23), it
effect on the others. Therefore, the optimization problem cis obtained that a larger MSE for parameferi.e., ..., (i),
be decoupled and eadhican be optimized individually, where can be achieved by employing(6;) instead off;(6;) while
the decoupled problems can be expressed as in (19). B keeping the ECRB the same. ]
Remark 2: The optimization problem in (19) has been |emma 1 has an important practical implication that the
investigated in [17] in detail and the results and the sotuti search space for the Opt|ma| encoding function for tte
methods proposed in that study can directly be applied garameter can be restricted to strictly decreasing funstio
the vector parameter problem, when the channel noise {gken the sufficient condition given in the lemma is satisfied.
the eavesdropper is white Gaussian and the parameters Ngge that Lemma 1 can be applied 4f has a symmetric
independent of each other. Also, when the parameters are gigtribution on its domain. Some examples of continuous
independent, the constraints given in (14) include crosase symmetric distributions on a bounded interval satisfyihg t
even if the eavesdropper has white Gaussian noise; therefebndition include uniform distribution, beta distributiavith
the optimization problem needs to be solved based on (14) fdth parameters of /2, and raised cosine distribution.
correlated parameters. 1) Two-Parameter CaseN = 2): In this part, we in-
vestigate the case oV = 2; that is, 8 = [0;,605]".
B. Independent Parameters & Colored Gaussian Noise Vetherefore, the channel nois. for the eavesdropper can

tors
3Since Ee is a positive definite symmetric matrix, it can be expressed

In this part, we again assume that the parameters ates. = Zk 1>\kv,€v{ and sinceD is diagonal, (D + X¢)~! =

independent of each other, i.e(0) = vazl w;(0;); however, >i_, vak can be obtained.



be mod

e2led as zero-mean Gaussian with covariance matnd the correlation between eavesdropper’s noise compmnen
oe,
p

., = [ 1 FQ’ . For this particular casey; in (23) can Finally, we note that a similar derivation and analysis can b

o O¢2 performed forX,,..(2) based ony, and (23).
explicitly be written as

hz,sz +cr§_,2 (24) IV. AFFINE JOINT ENCODING STRATEGY

e (h2: Vi + 02 ) (h2 Vo + 02 ,5) — p? In this section, the encoding operation is assumed to be an
@ﬁine function. Namely, the vector paramegeis encoded by
using anN x N precoding matrixP and anN-dimensional
constant vector prior to transmission such thg= PO +r.
Under this assumption, the optimal parameter encoding-prob
Serr(1) =X E(|B1 — 01%) lem can be expressed as follows:

1= ((E(B1) — E(01))? + Var(6, 25
+( )(( (ﬂ) ( )) + ( )) ( ) [Popt’ropt]:arg%g}\/;\w(e) tT{I(O)_l}dO

and v, can be obtained by replacing the numerator in (2
with h2 V1 4 02 ;. After some manipulationE,,(1) can be
derived as

where
- h2V, st Ber(i)>m, i=1,2,...,N. (26)
RV + 1 —1a(p) As in the previous section, the parameter space is specified
with asb; € [a;,b;], fori = 1,2,..., N for this strategy. If we
9, o definea £ min{ay,as,...an} andb £ max{by,bs,...bxn},
ro(p) = peloea then 6; € [a,b], for i = 1,2,...,N. In this section, it is
h§,2V2 + 03,2 assumed that the generalized domain of the parameters, i.e.

and iy = he1 /o1 [a,b], needs to be preserved after the encoding operation;

It is possible to gain practical intuition about the behavid€Nce, it is assumed tha; € [a,0], for i = 1,2,..., N.
of the optimal encoding function as a closed-form expressiJh'S condition can be guaranteed if the sum of the absolute

for $.,+(1) (and S.,.(2)) is available. There are severalvalues of the_ elements in each row &t is Ie;s than or
important observations related to (25). equal tol. This can formally be expressed p®”e;||; < 1

. For a fixedrs(p), if we let 2 — oo, then%,,.(1) ~ [0 J =1,2,..., N, wheree;’s are standard basis vectdrs.
E(|81—6:]2); hence, it is maximized wheB (|31 —61]?) Finally, the precoding matrixP is taken to be full rank
is maximized. This mode can be called as ttagiance (invertible).

maximizing modeas in [17]. If we leth? — 0, then Inthe_ re_maint_jer of this_ section,thcle solution of the prc_)blem
S (1) & (E(B1) — E(01))? + Var(6,); therefore, it is in (_26) is |nvest|g_ated. First-{I(0)~*} for param_etere is
maximized if 3; — ay or By — by. This mode can be derived for 'Fhe given s_ystem model and e_ncodlng strategy.
called as thevariance minimizing modEL7]. Note thatY is a Gaussian random vector le[h mqa@) =

« For a fixedh; (and relevant parameters fég), as p? H.p = H,P0 + HTT, and covariance matrix, for fixed
increasesrs(p) and A also increase. According to (25),P, r and channel matri¥f .. Therefore, each element 6{6)

if X is small enough, the encoder is in the variancg?" explicitly be written as
minimizing mode; however, as increases and becomes dp(6) T M)
large enough, maximizindZ(|3; — 61]?) becomes the [1(0))i; = (—de- ) %, (—de- )
priority. As p increases, after a certain threshold, which I, ‘O '
can be denoted as), the mode of operation can change =p; H,%, H.p, (27)
and the encoder can get into the variance maximizinghere p, denotes theith column of precoding matrixP.
mode wherp > po. Accordingly, the FIM can be expressed as
Note that in the analysis abovk? can be viewed as T 1
the signal-to-noise ratio (SNR) for the channeléfto the I(9)=P H.%, H,P
eavesdropper. As the SNR of this channel increases, the =P'DP (28)
distortion dge to encoding is transmitted to the eavesdafopQN ereD 2 H,> ' H,. Note thatD and I(8) are positive
more effectively and the main factor to create a large MSE v

the eavesdropper is the distortion to the parameter viadéngo 8ef|n|tez invertible and symmetric matrices. Alsli_,e) IS not
: X S .~ a function of 8. Therefore, the objective function in (26)
in the variance maximizing mode. Also, whén — 0, this

means that the channel is very noisy; hence, the only im‘ormsallrm)lncIeS 0

tion available to the eavesdropper through its observatitme / 0 -1 { T 71}
: tr{I(6 dg =tr{ (P'DP . 29
mean of the encoded version of the parameter. Therefore, the Aw( ) ¢r{1(0)"'} " ( ) (29)
encoder tries to ensure that the mean of the encoded versighe that the objective function depends only Bnand the

is away from the true mean. Note that in practice, even if thnstant factor in the encoding operation does not effect its
SNR values are not necessarily in absolute limits, we céin S{jajue. Furthermore, if the zero-mean Gaussian random noise

observe the aforementioned behavior in the encoding fomsti N, in the received signal has independent components, then
(see Figs. 3 and 5). Hence, it can be concluded that the form

of encoding function depends on the parameters of the channé||x||; 2 "X | |z;| is called thel; norm of vectorx.



D becomes a diagonal matrix with itsh diagonal element insertingXg = P3yPT and Y30 = PXy. Note that only
being given byh?2 /o2 ., whereo?, is the variance of théth the last term in (11) depends an As only the diagonal
noise component idV,.. ' terms are taken into consideration for the secrecy tartedsy,
The following proposition provides an optimal solutiorcan explicitly be calculated. The following lemma is prosd
to the affine joint encoding problem without any secrecsegarding the relationship betweéh.,.. and» for any given
constraints for a diagondD. P andw(0).
Proposition 22 AssumeD is a diagonal matrix. In the
absence of secrecy constraints on the eavesdropper, angdig | emma 2 When the eavesdropper employs the linear
permutation matriX is an optimal solution. Furthermore, any MMSE estimator, theix,,.. (i), (i.e., theith diagonal element
other precoding matrix with a different form is not optimalof 33,,,) for the encoding operatio8 = P8 + r is a convex

Proof: In the absence of secrecy constraints, the opfunction ofr;, i.e., theith element of- for a fixed P.
mization problem can be formulated as

P, = it PTpDpP) ! Proof: Consider the expression fd.,,. in Remark 1
pt = ATE RN {( ) } (see (11) and (12)). It is noted that only the last term in (11)
st. |[PTejlly <1, j=1,2,...N. (30) depends omr, which can be written as

Then, a lower bound for any given feasil#ecan be obtained ((E(B) E(9))(E(B) - E(e))T) =
as follows: I

tr{(PTDP)fl}:tr{(Pleflpr)} (P-T)E0)E®)" (P-1)" +7E(@®)" (P-1)

+(P-1)E@)r" +rrT. (33)
2
= HP_ID_I/ZHF For a givenP, the contribution of (33) (i.e., the last term of
N Yerr) 10 2o (2), denoted ag (i), can be calculated as
= —||m;||? 31 2
25, il ey o) = (r+p0EO) - E6)) . @4
where M £ P~! m; is the jth column of M and D = wherepgr) is theith row of P. As the other terms ok,

. T 2 .
diag{A1, A2, ..., An}. Note thatPM =1, thUSp;- 'm; =1 does not depend on (see (11)) and’%(;) =2 > 0, the
for j = 1,2,...N, and p.(.") = €e!'P is the jth row of convexity claim in the lemma holds. [ |
P. As the sum of the absolute values of the elements in
each row cannot be greater than||p§’)||2 < |\p§-7)|\1 < 1L As a result of Lemma 2%, (i) is maximized either at

Also, via Cauchy-Schwarz inequality, it can be obtained thamin or pmaz \here ™" and r7"o are, respectively, the
1 = |p§-r)7”nj|2 < I\pjT)H%IIij%; hence, aSHP;”Hz < 1, lowest and highest possible valuesrgffor a given P, while

|lm;ll2 > 1for j =1,2,...,N. Therefore, ensuring that théth element ofP@ + r, i.e., 3;, is in [a, b].
. 0.1 05
N N For example, if¢,,02 € [0,1] and P = [ } then
— 1 1 ple, 1,92 P ’
w{(PTDP) '} =Y —mil3=> — (32 0 —08
— )\ = Aj 0<r <04and0.8 <ry <1 to ensures, Bz € [0,1].

J=1 i i
. . . Therefore,r7*" = 0, r** =1, r5*"" = 0.8 and r§*** =1
for any given feasibleP. Note that this lower bound can ex-,; this particular example. Among/" or "% the one
. o . . . (T) o . . : 3 7 ! . i

actly be attained whejvn[|» = 1, whichimplies||p,”’[l2 = 1 that yields a higheE.,.,.(i) can be selected. As the objective
for(rgam Optlm«’zll) solution. Also, due to the rel";(\igoh = function in (26) does not depend enit can freely be selected
lp; "Ml < lp;’lln < 1forj = 1,2,....N, [[p; "2 = to maximize=.,.(i) for a givenP; therefore, it is sufficient
Hp;-T)Hl = 1. This is satisfied if and only ibg’”) contains an to search over precoding matrices for the optimal strategy.
element with a value of-1 or —1 and the rest of its elements
are zero. Due to the rank constraint, e@éﬁ should have the  Corollary 1: Suppose that eavesdropper's noise has inde-
non-zero element at a different location and this is satisfigendent components, amtj = w;0; + r; for somei # j. If
if an_d only if the precoding matrix is a signed permutatiosjther of E(6;) or E(6;) is equal toa%rb, then, the sign ofv;
matrix. B does not effecE.,., (7).

Proposition 2 reveals that if there is no secrecy constraint
for a given diagonaD, then a signed permutation matrix can  prgof: We prove the statement for the caseft;) =
be used as the optimal precoding matrix. _ _(a+b)/2, as it can be shown fdE(6;) = (a+b)/2 in a similar

Next, the optimal affine joint encoding problem is Cons'df'ashion. First, we note tha&, .. — () + 52 sych thats()
ered in the presence of secrecy constraints. The errorieovaL, ocents the first four terms of the sum in (11) (,mg)r
ance matrix3.,, in the constraint of (26) can be calculateqianntes the last term. Under the condition in the corollary,
based on the procedure in Remark 1. Specifically, it can laje,s appear in the form ofv2's in the diagonals o ()

. . . . . err:*

obtained by using the equations given in (11) and (12) aﬂ‘lﬂerefore, the sign ofs; does not have any effect Oﬁg)r
2) 2) (.

5A signed permutation matrix is defined as a matrix whose exawand For Egr)r' it g = wiej;’ Tis thgn we know that(?) (1) =

column has exactly one non-zero entry, which can be either-1.0 (ri +w;E(6;) — E(6:))°. As =2

err
err

(1) is maximized either at



r™in or % due to Lemma 2, we have 18

b—a 9 ' ' —Q- Total, he‘1 =1.2
=)0 = max { (*5° + (B0 - 1) | 6] “o- 0,h,, =12
a—>b 2 =0-- 0 h,, =12
( 9 +a(E(0;) — a)) } 14r Total, h, , =1
q - 0.1
for w; = a > 0 and 1.2+ 1 e
) , o —em= 0,0, =1
=)0 = max { (*5° - alE(0) - 0)) 5
L
F=FFExg~~—-
a—>b 2 r (=¥
(45 - a0) -0)'} 08
. 06
for w; = —a < 0. Note that thex(?) (i) expressions are
exactly the same for both sign options for as long agw;| 0.4F =0 Bug: @ AN
does not change. ThereforE,,, (i) does not depend on the Al TP ~ e A PN
sign of w;. [ ] 02 ‘ ‘ 6—o-6869
Lemma 3: Suppose the encoding matriR has the form 0 0.2 0.4 0 0.6 0.8

of P = WiW,, where W, = diag{wl,wg,...w]v} is
a diagonal matrix andW, is a permutation matrix. Then,

-1 . Lo B

tr{ (PTDP) } does not depend on the signs of the el{_lg. 3 il'(;tal and individual ECRB values verspdor he; = 1 and
. e, 1 — 1.4.

ments inP.

Proof: Note that if P = W W, then
(36). However, for smallV's, it can be solved and provides a

T -1 _ T -1
tr { (P°DP) } =t { (W2 W\ DW,W2) } practical limit for the secrecy level that can be satisfiethwuit
= tr{wgwlpflwlwz} increasing the ECRB values of the case without any secrecy

= tr{W,WIW., D 'w} concerns.
= tr (WD W 1)
V. NUMERICAL RESULTS

N ~

d;

= Zw—é (35) In this section, numerical results are provided for both
j=1 " strategies proposed in Section Il and Section IV.

WhereW1 = Wl_l = dz’ag{l/wl, 1/’[1}2, ceey 1/’UJN} and dAj

. . . —1 T _ .

is the jth diagonal elemer_1t oD™". As tr{(P D.P) '}is A Nonlinear Individual Encoding

the sum of squares, the signswfs do not effect its valud ) S )
Corollary 1 and Lemma 3 imply that if the encoder applies In all the_ numerical examples fothhe individual encoding

the method of simple shuffle and scale, then the sign of tAategy.6 is modeled a®) = [0, 0.]", where bothd, and

scaling factor does not matter in terms of the cost and aisgect?2 are uniformly distributed ir{0, 1] and are independent of

of the optimization. Therefore, optimal scaling factors cgéach other. The channel parameters for the intended receive

.. . . . — — 2 _ 2 _
be assumed to be positive without loss of generality, whi@f€ t@ken to bé., = h., = 2 ando;, = 0., = 1.
reduces the search space. As the conditions in Lemma 1 are satisfied, the optimal

encoding functions are searched among decreasing fusction

Remark 3: By Proposition 2, we know that whe® is ) : o
a diagonal matrix, permutation matrices (withl or —1 as For the first example, the eavesdropper fading coefficients
fre taken as. o = 1.5 and h.; € {1,1.2}. The channel

nonzero elements) are optimal precoding matrices. Als®, A

optimal precoder belongs to this family of matrices up to 3°'S€ for the _eavesdropper IS mode_led as zero-mean mul_tl-

certain secrecy target levell for each parameter. In othervariate Gaa2u55|a2 random variable with the covariance ratri

words, if the secrecy target for a given parameter is larg®. = ;’1 52| where o2, = 0z, = 1. The target
. . . 2

than #f, th(_an the objective W|I_I be Iar_ger and the Opt'maéecrecy levels greh = no = 0.15. In order to solve the

precoder will not be a permutation matrix anymore. The eXaghtimization problem in (14), the approximation methods

value ofy' can be found by solving the following optimizationgescribed in [17] can be used. In this study, the piecewise

problem: linear approximation method is employed. Namely, for each
7' =maxmin S, (i) @36) fil60), Az £ filai + BAG) — fi(a; + (k= 1AG) is
Pep i defined, and the optimization is performed overN vari-

where P denotes the set of permutation matrices with ables; that is, the increments/decrements for each pagamet
or —1 as non-zero elements ar.,,, is as given in (11). (Az(® = [Axg”,Ax;”,...,Ang] fori = 1,2,...,N) are

Note that there are’v N! elements irP; therefore, asV gets obtained. For the numerical resultl] is taken to be50 and
larger, it gets challenging to solve the optimization pesblin  Global Optimization Toolbox of MATLAB is used.



heg =1,hea =15 M 72 heg =1.2,hea =15 M 72
p=20 0.0769 | 0.0702 p=20 0.0744 | 0.0702
p=0.3 0.0764 | 0.0692 p=0.3 0.0738 | 0.0692
p=0.5 0.0754 | 0.0670 p=0.5 0.0723 | 0.0671
p=0.7 0.0730 | 0.0621 p=0.7 0.0692 | 0.0625
p=0.9 0.0660 | 0.0478 p=0.9 0.0605 | 0.0497

TABLE I: Maximum secrecy target level values fér and 6, when f;(0;) = 6; for i = 1, 2.

is no mode change. On the other hand, the characteristics of
f1(61) change when increases, and it gets into the variance
maximizing mode fop € {0.2,0.5,0.9}. Also, both encoding
functions are linearf;(6;) = 1 —#6;, for p = 0.9, yielding the
same ECRB.

For the second examplé,.; = 1.2, ho = 1.5, o—él =
0272 =1 andp = 0.3. The target secrecy level ey, is fixed
to ben, = 0.15, and the target secrecy level for is increased
starting from0.1. In Fig. 4, the total and individual ECRB
values forf; and 6, are plotted for varioug); values. Note
that the change in the secrecy targetfprdoes not have any
significant effect on the ECRB performance é&af However,
the ECRB forf; and the total ECRB increase exponentially as
71 increases. The reason of this can be deduced from Fig. 5.
In Fig. 5, the optimal encoding functions féf; and ., are
given forn; € {0.1,0.15,0.2,0.25}. It is observed that when

g, m = 0.1, f1(01) = 1—60,. Whens; = 0.15, f1(6,) operates in
_ _ _ _ the variance maximizing mode, and fgr = 0.2 and0.25, it
Fig. 3: The optimal encoding functions fah and 6> for p = s ijn the variance minimizing mode. Note that:asincreases,

{0,0.2,0.5,0.9} whenhe,; = 1.2. f1(61) approaches ta. (Note that asf;(6;) — 1, the ECRB

goes tooo). Also, note that the encoding function fég is

In Fig. 2, the total and individual ECRB values fér and nsensitive to changes ini; that is, f>(62) does not change
6, are plotted for variou values. It is observed that asin- €VeN th_oughyl increases, and it is the same for all values of
creases, the total and individual ECRB values decreasehwhift N this example.
implies that the correlation between the noise components oln order to demonstrate the advantages of the proposed
the eavesdropper for each parameter is useful for our desgjrcoding scheme, the solution based on [17] is selected as
purposes. Also, the ECRB fa@y decreases very slightly until a benchmark scheme, and a direct performance comparison
a certain value opy (i.e., po ~ 0.2 and0.6 for h.; = 1.2 and between the optimal solution based on NIE and the solution
1, respectively), and then a sharper decrease in the ECRBo#&sed on [17] is provided in Fig. 6. Note that the individ-
observed. This is due to the fact that the encoding mode f¢al encoding functions are obtained independently for each
6, changes as explained in Section 11I-B1. Another intergstirelement of the vector parameter in the benchmark scheme
observation is that foh.; = 1.2, the total and individual as [17] provides a solution method for scalar problems. In
ECRB for ¢, is lower than that in the case df.; = 1 this scenario, the ECRB is plotted versysfor the solution
and the ECRB fom, stays almost the same. The reason fdrased on [17] and NIE whep = 0.4 andp = 0.8 and the
having a lower total ECRB for a largér. ; is the fact that parameters are set fo.; = 1, heo = 1.5, andn; = 0.15.
the eavesdropper is unaware of encoding; hence, the distortNote that the solution based on [17] is the same for both
due to the encoding function is transmitted more effecgivep values, as it does not take into account. It is observed
to the eavesdropper. Also, for larger valuespofthne ECRB that NIE has better performance than the solution based on
values for both parameters converge to each other. [17], and the performance gap dramatically increases when t

In Fig. 3, the optimal encoding functions fér andd, are noise components have high correlation in this scenaries Th
presented forp € {0,0.2,0.5,0.9} when h.; = 1.2. This is intuitive as optimizing the encoders in a joint manner asak
figure explains some of the behaviors observed in Fig. 2. Fegnse in a correlated environment. However, if the coroelat
example, wherp = 0, f1(61) is in the variance minimizing is decreased, the performance of NIE will converge to that of
mode andf(62) is in the variance maximizing mod&As p the solution based on [17] as proven in Proposition 1. Naie th
increases, the changes fa(f,) are not significant and therethis can be observed in Fig. 2 as well. The performance of NIE

and the solution based on [17] would be samedfer 0, and as

°Practically, in the variance minimizing mode, the encodgectively , increases, ECRB of NIE starts to decrease in Fig. 2, however

decreases the transmitted signal power to hide the pargneetd in the . .
the solution based on [17] would stay constant, yielding @ no

variance maximizing mode, it has a two-legglantizer-likebehavior to ensure >V . ] ! J|
secrecy. negligible performance difference especially in scersaviith
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- NIE, p=0.8
==¥-= NIE, p =0.4
= S0l. based on [17] (p = 0.4, 0.8)

ECRB
ECRB

0.1 0.15 0.2 0.25

Fig. 4: Total and individual ECRB values versgs. . ", .
Fig. 6: Total ECRB values versug for different approaches.

B. Affine Joint Encoding
In this part, we investigate the affine joint encoding strat-

0.9F < S e, ) ! ! :
Sso e SO N o, egy and obtain the optimal precoding mattk to satisfy
08T \\ “"’\\ " certain secrecy constraints. In all the numerical exampgles
'~ .
07} AN S is modeled as9 = [0, 6,]7, and 6; and 0, are assumed
0| ‘l \\ to be independent of each other with,6: € [0,1]. Also,
o 1 the channel parameters for the intended receiver are taken
T 05f 1 to be h,.; = h,2 = 2. The precoding matrix is expressed
0.4+ ' . as P = |P P21 Note that|pyi| + [pi2] < 1 and
‘\ D21 D22 o
03Ff . 1 Ip21| + |p22| < 1 should be satisfied to ensuge, 32 € [0, 1].
ozl S | The strategies considered in the numerical results are gise
T follows:
o1r RN « Affine Joint Encoding (AJE): This approach refers to
0 : : : : the solution of the optimization problem in (26).
0 0.2 0.4 0.6 0.8 1

« Nonlinear Individual Encoding (NIE): This approach
i refers to the solution of the optimization problem in (14).
« Affine Individual Encoding (AIE): This is a simplified

Fig. 5: The optimal encoding functions f@h and 6, for n € version of the AJE approach. In particular, precoding
{0.1,0.15,0.2,0.25} andnz = 0.15. matrix P has the form ofP = W W, whereW; =
diag{w,ws,...,wy} is a diagonal matrix an@V, is
a permutation matrix. The AIE approach can further be
medium and high correlation in the noise components. grouped as follows:

Finally, the maximum estimation error values at the the 1) AIE without permutation: This refers to special
eavesdropper are given in Table | when the parameters are case withW, = 1. For N = 2, we assumez =
directly sent to the channel without any encoding, ifgf;) = p21 = 0.

g; for i = 1,2, to further emphasize the importance of 2) AIE with permutation: This refers to the scenario
the encoding operation. If there exists no eavesdroppets, n with W, # 1. For N = 2, we assumei; = pas =
applying any encoding is a logical option, as the encoding 0.

operation can cause a loss in receiver’s estimation acgurac We provide five different examples to investigate the affine
However, under secrecy constraints, lack of encoding cgmint encoding strategy numerically. In the examples,edidht
compromise the security, and a limited error can be causealues for eavesdropper’s fading coefficients and priotridis

at the eavesdropper. It is observed from Table | that theitions ford; andf, are used in order to show the advantages
achievable target error levels are aroumd7 or lower for and disadvantages of certain encoding strategies over each
the simulation parameters considered in this study; howevether in terms of their performance and to corroborate the
larger error values are possible if NIE is applied as illatgtd theoretical results provided in the manuscript. For thet firs
in the examples. four examples, the channel noise for the eavesdropper @&nd th
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—O— AJE —O— AJE, w(9,) =20,

—+— AIE w. perm./ AIE w. perm. (+), w(6,) =26,
= =X= - AIE w/o perm. ¥
p sse=free AIE wio perm., w(6,) =26, 4

6 -'-I'-" AlE w. perm. 1 6 = 4 = AIE wlo perm. (+), W(6,) =20, I; $
NIE ! —O— AJE, W(0,) =705 15,
4 5 | ==¥== AIE w. perm./ AIE w. perm. (+), w(0,) =763 ;l.::'.
wensdeen AIE wio perm., w(6,) =765 *f :::
= % = AIE wlo perm. (+), w(0,) =76 L¢ ::"
4 ’ *

ECRB

OO 1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24
7 m
1

) ] Fig. 8: Total ECRB versusg; for different approaches.
Fig. 7: Total ECRB versus; for different approaches.

71 values. AIE without permutation with positive coefficients

intended receiver is taken to be zero-mean Gaussian randdgfids the worst performance in this case, as well. Note that
variables with independent components of unit varianee, i.Corollary 1 and Lemma 3 can be applied in this example
3. = 3, = L In the first exampled; andé. are assumed to for AIE with permutation strategy. As/(¢1) = 1/2, and

be uniformly distributed and the secrecy target for the sdco€avesdropper’s noise is white, Corollary 1 and Lemma 3
parametery,, is set to be).15. Also, the eavesdropper fadingimply together that for the AIE with permutation strategy,
coefficients are taken ds,; = 1.2 andh. » = 1.5. In Fig. 7, the matrix elements can be restricted to be positive without
the total optimal ECRB values fat; and 6, are plotted for loss of generality. Therefore, it is not a coincidence thHE A
variousn; values. It is observed that NIE provides improve®ith permutation and AIE with permutation with positive
performance compared to the affine encoding options for tifigefficients yield the same performance in this example.
scenario. Also, the optimal AJE solution is the same as theFor the third examplef; is assumed to be uniformly
optimal AIE without permutations and they perform slightlydistributed and the distribution @ is taken to bew(62) =
better than AIE with permutations. 463. The secrecy targets for both parameters are sétite

For the second example, we investigate affine encoditiy Fig. 9, the total optimal ECRB values fat; and 6,
strategies in more detail. The simulation parameters aze ffe plotted for varioush. values whenh., = 1.5. It
same as the first example except that the distributiof,d§ IS observed that the performance of AIE with permutation
taken to bew(f,) = 20, andw(6,) = 76S. The secrecy target and AIE with permutation with positive coefficients are the
for the second parametep,, is set t00.15. In Fig. 8, the total same asE(61) = 1/2 for this example, as well. Their
optimal ECRB values fo#; and6, versusy, are plotted for Performance stays constant/as, increases. The performance
various affine encoding strategies. For AIE with and witho@ AIE without permutation is initially worse than that of &l
encoding strategies, we also study the case in which tWéh permutation; however, it improves &s; increases and
coefficients of the matrix are restricted to be positive drigl t Performs better whet.; > 2.57. AIE without permutation
is illustrated in the legend of Fig. 8 with (+) next to the nam#ith positive coefficients yields the worst performanced &s
of the corresponding strategy, e.g., AIE w/o perm. (+). Whdrformance gets even worse /as; increases. The different
w(f) = 765, the solutions for the optimal AJE, AIE with per-responses of the strategies to the increase gfare due to the
mutation and AIE with permutation with positive coefficient fact that the structure at.,. varies as the encoding strategy
are the same and vyield the best performance, whereas Aftanges. The optimal AJE solution is the same as AIE with
without permutation with positive coefficients gives thersto Permutation wherk.; < 2.57 and it is same as AIE without
performance. AIE without permutation provides a moderaR€rmutation wherk,; > 2.57.
performance except fon; < 0.11, where it also provides For the fourth example, the distribution @ is taken
the optimal performance. When(6,) = 20, AIE with per- to be w(6,) = 26; and the distribution of; is given by
mutation and AIE with permutation with positive coefficientw(62) = 465. The secrecy target for the second parameter,
have the same performance, and they perform better than As$Eset t00.2. In Fig. 10, the total optimal ECRB values for
without permutation whery; > 0.111; however, AIE without 6; and 6, are plotted for various); values. It is observed
permutation is better when; < 0.111. The optimal AJE that whenrn; < 0.225, the best performance is obtained
solution achieves the minimum of these three strategiefl atlay employing NIE; however, aften; > 0.225, the optimal



Parameters m 72
hei =1.2,he2=15w(0) =1, w(l) =1 0.0744 | 0.0702
he,l = 1.2, h€72 = 1.5,’[1}(6‘1) = 1,w(92) = 292 0.0744 0.0494
he1=12hes=15w(0)=1,w(f) =705 | 0.0744 | 0.0118
heq =1,heo = 1.5,w(f1) =1, w(hs) = 403 0.0769 | 0.0252
hei=3,he2=15w(0)=1,w(02) = 463 0.0476 | 0.0252
hei =5,he2 = 1.5,w(f1) =1, w(hs) = 403 0.0270 | 0.0252
he1 =10,he2 = 1.5, w(01) = 1,w(02) = 463 0.0089 | 0.0252
hei =1.2,hes = 1.5,w(f1) = 261, w(f2) = 463 | 0.0514 | 0.0252
The parameters of Fig. 11 0.0531 | 0.0191

TABLE II: Maximum secrecy target level values féf and9, whenP =1 andr = 0

N A
...... A |
P! AALT |
AAde
15| _ -
i : ==~f== AIE w. perm. / AIE w. perm. (+)
R R = % = AIE w/o perm.
w RS <l AIE wio perm.(+)
X
1t I -
1
1
e ot *
0 | | | I
0 2 : 6 | |

Fig. 9: Total ECRB versué. ; for different approaches.

AJE solution, which has the same performance as AIE
permutation, starts to yield the best performance. Thisvs
that the simple flip and scale approach may be better
the individual nonlinear encoding function strategy intai
scenarios. AIE without permutation performs slightly we
than NIE. AIE with/without permutation with positive co
ficients do not achieve a good performance in this scel
As the conditions given in Corollary 1 are no longer satis
there is a significant performance gap between the of
AIE solutions and the AIE solutions which are restricte
positive coefficients.

In all the four examples, we have observed that the op
AJE solution has the form of one of the AIE solutic
However, this does not have to be the case in all scenaric
the fifth example provides such an example. In this exai
eavesdropper’s fading coefficients are takenhas = 0.8
and h.o = 1.25. The channel noise for the eavesd
per is modeled as zero-mean multivariate Gaussian ra
Ug,l Pe ]

03,2 ’

variable with the covariance matrix, p
e
whereo?, = o2, = 1 andp. = —0.5 and the channel

noise for the eavesdropper is also modeled as zero-mean

30

—O— AJE
=== AIE w. perm.

AIE w. perm. (+)
==3-= AIE w/o perm.
sl AIE w0 perm. (+)

NIE

45T
s Rt e

351
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w

—O6—AJE
=36 AIE w/o perm.
=== AIE w. perm.
NIE
= < = Sol. based on [17]

—

g

0.4

0.45 0.5

0.55

Fig. 11: Total ECRB versus, for different approaches.
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multivariate Gaugsian random variable with the covarian&A. As M increases, lower ECRB values can be obtained.

matrix ¥, = Ir,1 p; , whereo2, = o2, = 1 and Howev_er, i_t i_ncreases_the search (_jimensi_on_ angithe conlyulexi
Pr Or2 . ’ ’ For affine joint encoding, the original optimization proflén

pr = 0.7. 'I.'he. dls_tr|but|on .0f91-|s taken to bew(f:) = 26, (26) requires a search ovét andr, yielding a search space

and the distribution off is given by w(6s) = 503. The qyer N2y N variables. However, it is shown in Lemma 2 that

secrecy target for the first parametey, is set to be.4, and it js enough to calculat@ for optimal encoding reducing the

the total optimal ECRB values fah; and 6, are plotted for ¢na-e toN?2 variables.

variouss, values. In Fig. 11, it is observed that the optimal” opsther important factor related to the computational com-

AJE solution is better than both the optimal AIE with angheyity of encoder optimization is the number of multipkica

W|thout_permutat|on_ soluuon;. For example, yvh@n: 0'35’, tions at the calculation of the cost and objective functifmns

the optimal precoding matrix for the AIE with permutauorbiven candidate encoder. For NIE, both the objective and cos

solution is ~0 (;807 _0'3787 , yielding an objective value functions require a calculation of aN dimensional integral.

of 1.5012. On the other hand, the optimal precoding matrik€t X _denote the terms in the Riemann sum for a given step
i 0 0.48 o size. Then, the objective function requi@$N X' ) multiplica-

for the AJE strategy is| _ c-oc () 9430(* YiElDING @n  tions. To calculat&.,.., each of£s andX s ¢ needsO(N2X)

objective value ofl.4008.” Therefore, it is possible that jointand E(8) needs O(NX) calculations. Then, the overall
encoding of parameters can outperform individual encodiggMplexity to calculate (11) becomeé{N2X)+O(N?). For
depending on the channel and parameter statistics. It &s aﬁJ.E t_he complexny of calculating the cost function and the
observed that NIE and the solution based on [17] have alm@&jective function are bott(N?). Therefore, AJE has lower
the same performance, and even though they are better tR@fPutational complexity especially W is not very large.
AIE without permutation, they perform worse than AIE withfHowever, if N is large, then the optimal matrix calculation
permutation and AJE. This implies that, in this particulsf@n become more costly than the NIE algorithm. Note that
scenario, the main source of performance improvement isAdE i @ type of a precoding based encoding strategy; hence
exploit the fact that there are multiple elements in the mectit has @ comparable complexity to the beamforming strasegie
by shuffling the order of the elements or even jointly encgdirin the literature, which are employed in different problems
them rather than individual encoding via a nonlinear funeti ~ AS & special case of AJE, AIE is also considered in the
Therefore, there might be cases in which it is not very aiticnumerical examples. If AIE without permutation is employed
to take the correlation in noise components into account i€ search space reducesXofrom N2, and the complexity
NIE, as the performance improvement can be negligible. ©f the cost and objective function calculations also desgsa
The maximum secrecy target levels with no encoding afelatively. For AIE with permutation, the search spac#is 1,
provided for this encoding scheme as well; that 13,= I where the extra variable indicates the permutation ordete N
andr = 0 in Table Il for all the considered scenarios. Ithat whenV increases, the possible values for the permutation

is observed that the achievable secrecy levels are muchr loREJer increases very quickly. However, it is always possibl
than those of the AJE scheme. It is also interesting to nate tiRrune the size of this set to a practical maximum size, and to
ash.  increases, the secrecy levels decrease in Table II. TRl¥00se the permutation order from it.

is because of the fact that the channel of the eavesdropfser ge

better and the error performance improves when the origingl general Observations

parameter is transmitted. Such an issue does not occur if the ) ) ] ] .
optimal AJE is applied, and this can even be turned into We have investigated the optimal encoding of multiple

an advantage according to Fig. 9 due to the secret encod@rameters for secure communication for the two proposed

Also, for the parameters of Fig. 11, the maximum error leveR§actical encoding approaches. For the NIE scheme, it is
for 6, and @, are0.0531 and 0.0191, respectively; however observed that as the correlation between eavesdroppéss no
the optimal AJE can reach; = 0.4 and 7, = 0.55 (and COmponents increases, the total ECRB cost decreases for a

possibly more) according to the fifth example. This shows t/$ven target secrecy level implying that such a correlaton
clear advantage of the proposed schemes as compared to4§6ful for the parameter encoding task. It is also obseiva t

utilizing any encoder in the presence of an eavesdropper. the encoding function is in either the variance minimizing o
maximizing mode depending on the channel quality and the

correlation values of the parameter. In the second part, the
_ o ~affine joint and individual encoding schemes are compared
One of the main factors determining the computationglith each other for various parameter distributions. It is
complexity of the proposed algorithms is the dimension @pserved that in many scenarios, the solution of the AJE
the space in which the search is performed. When we use §t#ieme is in the form of the AIE solution, which can be with or
piecewise linear approximation (PWL) method to obtain thgithout permutations. This implies that individually eriiog
optimal solution for nonlinear individual encoding, theseh each parameter can be good enough to solve the optimization
is performed overM N variables as described in Sectiorproblem in most cases. However, it is important to emphasize
; _ _ , , __that this is not a theory as it is possible to find counter
The corresponding optimad values for the AIE with permutation solution | Al h AJE d NIE d h
and the AJE solution can be found & = [0.4787 0.7807] andr” = examp e_s' S0, when an are compared to eac
[0.48 0.9017] respectively. other, it is observed that one can have better performartace th

C. Computational Complexity
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the other depending on the scenario. This means that inrcertaintly and despite the increase in computational compjexi
scenarios, simple permutation or/and scaling of the patenmie the performance can further be improved. As future work, we
can be the effective security solution and in some casesgusaim to investigate scenarios in which the eavesdropper has
a nonlinear function without utilizing any permutationtgs full or partial knowledge of the encoder and the transmitter

more benefits. employs a stochastic encoder to possibly enhance security.
We note that the main goal behind the encoding operation
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