Convexity Properties of Detection Probability for Noncodrd
Detection of a Modulated Sinusoidal Carrier
Cuneyd Ozturk, Berkan Dulekjlember, IEEE, and Sinan GeziciSenior Member, |EEE

Abstract—In this letter, the problem of noncoherent detection
of a sinusoidal carrier is considered in the presence of Gasgn
noise. The convexity properties of the detection probabity are
characterized with respect to the signal-to-noise ratio (8R). It
is proved that the detection probability is a strictly concave
function of SNR when the false alarm probability o satisfies
a > e 2, and it is first a strictly convex function and then
a strictly concave function of SNR for o < e~ 2. In addition,
optimal power allocation strategies are derived under avesige
and peak power constraints. It is shown that on-off signalig
can be optimal for a < e~2 depending on the power constraints
whereas transmission at a constant power level that is equab
the average power limit is optimal in all other cases.

Index Terms— Detection, Neyman-Pearson, noncoherent, prob-
ability of detection, convexity, power allocation.

I. INTRODUCTION

Noncoherent detection is employed in various wireless

applications due to its practicality and low complexity,[[].
In the noncoherent detection framework, the receiver doés

exploit the phase information of the carrier, which modesat
the message signal. In this letter, the problem of noncater

detection of a modulated sinusoidal carrier is consideged

pp. 65-72]. In this problem, the detection probability ca

explicitly be obtained in terms of the false alarm probapili

n

e

SNR when the false alarm probability satisfiesa > Q(2)
and has two inflection points whem < Q(2), whereQ(-)
denotes th&)—function [5]. Based on this result, the optimal
power allocation strategy is proposed fox (QQ(2), which can
significantly improve the detection probability in some eas
via time sharing between different power levels.

In this letter, we consider the noncoherent detection bl
for a modulated sinusoidal carrier within the NP framework
[2, pp. 65—-72]. The main contribution of this letter is to cha
acterize the convexity properties of the detection prdigbi
with respect to SNR for all levels of false alarm probabijlity
which is not available in the literature. We prove that the
detection probability is strictly concave in SNR when thiséa
alarm probability satisfiesx > ¢=2, and starts as a strictly
convex function and continues as a strictly concave functio
of SNR for o < e~2. Due to the existence of the convex
région for o < e~2, the detection probability performance
can be improved via time sharing between different power
levels, which is analyzed by characterizing the optimal @ow
allocation under average and peak power constraints. It is
hown that, forae < e~2, on-off signaling can facilitate
ignificant improvements in the detection performance when
the average power constraint is less than a fixed value.

and signal-to-noise ratio (SNR). The aim in this letter is to

investigate the convexity properties of the detection pholity

Il. SYSTEM MODEL

with respect to SNR and consequently to develop optimal
power allocation strategies for noncoherent detection of aConsider the problem of noncoherent detection of a sinu-

modulated sinusoidal carrier.

Convexity properties of error probability and detectionlpr
ability are analyzed in various studies in the literatutehsas
[3]-[5]. The work in [3] investigates the convexity propest

of the error probability corresponding to the maximum likel
hood (ML) detector for a binary hypothesis-testing problenf’l"‘l0 :

The theoretical analysis reveals that the error probghfithe
ML detector is convex with respect to the signal power wh

the noise has a unimodal distribution [3]. The results ingg] 2nd
extended to the multi-dimensional case in [4] by employin
the ML detector for additive white Gaussian noise (AWGN
channels with flat and non-flat fading. It is shown that wheli!
the dimension of the constellation is less than or equal tg tw’*

soidal carrier in the presence of Gaussian noise. Namedy, th
aim is to decide between two hypothe$és versusH, based

on a vector-valued observatidri = [Y7,...,Y,]%, which is
described as follows:

Vi = N, Hi: Vi = VPsp(0) +Ng, for k=1,....n
1)

dnhere the noise component$, are zero-mean independent

identically distributed (i.i.d.) Gaussian random &hlés
ith variance o? for £ = 1,...,n, parameterP deter-

ines the power of the transmitted signal, aafh) =
(0),...,s,(0)]" is a vector-valued function of), with

(#)’s being samples from a modulated sinusoidal carrier as

the symbol error rate is always convex in SNR. On the othigllows [2, p. 65]:

hand, when the dimension is larger than two, the symbol error g, (9) = 4, sin ((k — 1)w.Ts +0) for k=1,....n

)

rate is concave at low SNRs and convex at high SNRs [4]. _ ) _ )
In [5], the convexity properties of the detection probapili In (2), w. is the carrier (angular) frequend, is the sampling

are investigated in the Neyman-Pearson (NP) framework.ifterval, ai,..

is proved that the detection probability is strictly coneawn
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.,a, are samples of bandlimited waveform
a(t) which modulates the sinusoidal carrier, afdis the
unknown phase of the carrier, which is modeled by a uniform
random variable ovel0, 27) that is independent of the noise
components. Itis assumed that T, = 27m for some integer
m, andn/m (i.e., the number of samples taken per cycle of
the sinusoid) is an integer larger than one [2].



Averaging over the uniform distribution of the phasand whereQ;,|[-, -] denotes Marcum's)-function of orderi. Then,
assuming that, ..., a2 vary slowly compared to twice thevia the recurrence relation of Marcum@-function in [7,
carrier frequency, the likelihood ratio for the problemafied Eq. 2], (6) can be written as:
by (1) and (2) can be expressed as

d? 1 f(a) _vt¢n?
) ) yJla) = ———=¢ 2
L(y) _ e_ 714(16213 IO(TP/O-Q)’ (3) d’yQ Ql[\/’_}/ f( )] 4 \//7

where a2 = LN iai, Ip(-) is the zeroth or- X (MIQ(ﬁf(OL)) - Il(ﬁf(a))> , (7)
der modified Bessel function of the first kind, i.e. el

I(x) = (1/21) [["e*%df and r = +/y2Z+y2 wherel;(-) denotes the™ order modified Bessel function of
with y. = > arypcos((k —w.Ts) and ys = the first kind. To prove the concavity, it is sufficient to cinies
> k=1 akyksin ((k — Lw.Ty). From (3) and the monotonicity the sign of(L\/%‘)IQ(\ﬁf(a)) — Li(yAf(@)) as the other

of Iy(-), the optimum likelihood ratio test can be implementeghyms are positive in (7). From the inequality given in [8,
by comparing- against a threshold. Then, the optimum Srj>ze-Eq_ 2.21], it is known that

NP decision rule can be specified as [2, p. 70]

Vf(a
W e B(AF@) < hiyire) g
rZ (ncr a? 1og(1/a)) 4)
Ho Therefore, it follows that
Let v £ na?P/(202) represent the SNR. The decision rule inf() _ fl@)?
(4) achieves the following probability of detection: VY L(VAf(e)=h(vrf(e) < 4 DLV (e)
©)
Pi(v,0) = @1 [ﬁ, v —2loga}, (5) From (9), it is noted that iff («)? < 4 (equivalently, ifa >
-2
where « is the false alarm probability an@,[y,b] is Mar- ) f(a)
cum’s Q-function of order1, which is given byQ:[y,b] = 712(\/%[(04)) —L(y7f(a) <0 (10)
I e UL (1) de (2] o _
is obtained, which concludes the proof. |

Next, to investigate the convexity properties Bf(v, )
I1l. CONVEXITY PROPERTIES INSIGNAL POWER AND for a < e~2, the following lemmas are presented, which are
OPTIMAL POWER ALLOCATION proved in the Appendix. ,
Lemma 1. If a < e~ 2, there existsy > 0 such that the

In this section, the aim is to analyze the convexity progecond derivative of;(v, a) with respect toy is positive for
erties of the detection probability in (5) with respect toRSN 7 € [0,7].
(or, equivalently signal power), and subsequently to dgvel Lemma 2: If o < e™?, there existsy such that the second
optimal power allocation strategies that achieve the marim derivative of Py(v,a) with respect toy is negative for all
average detection probability under average and peak power 7-
constraints. Lemma 3. For a < e~2, there exists a unique inflection
point v* such thatP) (v*,«) = 0, where P/ (v*, o) denotes
the second derivative aP,(v, a) with respect toy evaluated
at~*.

Based on Lemma 1, Lemma 2, and Lemma 3, the convexity

We start with analyzing the convexity ofproperties of P;(y,«) are characterized in the following
Q1 [\/'_y, s/—2logo¢} in (5) with respect to . To proposition when the false alarm probability satisfies. e 2.
simplify the notation, the following definition is Proposition 2 : For a < e~2, there existsy, > 0
employed: f(a) = +/—2loga. Then, (5) becomes such thatP,(y,«) is a strictly convex and monotonically
Pa(v,a) = Q1[\/7, f(a)]. increasing function ofy in [0,~,) and a strictly concave and

Before analyzing the convexity aP; (v, «), it is recalled monotonically increasing function of in [v,, o).
from [6, Thm. 1] thatP;(~, «) is monotone increasing with Proof : The proof follows from [9, Thm. 1], Lemma 1,
respect toy. Then, the following proposition characterizes théemma 2, Lemma 3, and the Intermediate Value Theolkm.
behavior of P;(v, a) for a > e~2. Proposition 1 together with Proposition 2 characterize the

Proposition 1: If the false alarm probability satisfies > convexity properties of the detection probability for adgsi-
e~2, then Py(y,a) is a strictly concave and monotonicallyble values of the false alarm probabiliay*
increasing function ofy for all v € [0, c0).

Proof: From [7, Eq. 16], the second derivative ofB. Optimal Power Allocation

Q17 f(a)] with respect toy can be expressed as

A. Convexity/Concavity Results

In this section, enhancement of detection performance via
time sharing among different power levels is investigated.

2 2
j—ﬁQl[ﬁ’f(a)] = (_2)—22(_1)17 (;) Q1+plv/7, f(a)] Consider a general time sharing strategy with time sharing
p=0

1it is worth mentioning that inflection point,, can easily be computed via a

— i (Ql[ﬁ’ f(a)] _ 2@2[ﬁ7 f(a)] + Q3[\/§7 f(a)]) (6) bisection search [5] since it is a root of the following edqort v (yo f(a)) =

(f())2, as shown in the proof of Lemma 3.



factors{\;}M, and corresponding SNR valugs;} M, , where the following average detection probability is achieved:
M denotes the number of SNR levels that can be employed - L
{Pd(% Oé) ) if v e (’Ytarpeak]

during the time sharing operation, akgs are nonnegative and p*(— o) =
’ Py(0,0) + A5, if 5 €0, %]

sum to one. Then, the aim is to obtain the optimal strategly tha

maximizes the average detection probability under avesade . - .
: ; - wherel = (Pi(y, o) — Py(0,«))/~:. Since the aimin (11) is
peak SNR (equivalently, power) constraints. Mathemdycalto maximize the average detection probability via time sttgr

stated, it can be shown that the optimal solution resides on the upper
M boundary of the convex hull of theversusP; (v, a) curve for
Wty Z AiPa(vi, @) (1a) € [0, T pear] (se€, €.g., [10] for a similar scenario). Therefore,
et the proposition can be proved by showing thaf (v, @)
. ol M in (12) is the smallest concave function which is greater
subject to z;/\m < Tavgs 2)‘1' =1 (115)  than or equal toP,(v,a); i.e., P;(v,a) forms the upper
b . , boundary of the convex hull. First, it is clear th&t, (v, a)
0<% < Tpear, Ai 20 @ =1, M (116) g5 concave function of. Hence, fory > %,h%(%a)
wherel',ye < I'peak IS assumed. in (12) becomes the upper boundary of the convex hull by

Since the detection probability is a monotonically inciegs definition. Fory € [0,7:], suppose, towards a contradiction,
function of ~, the solution of (11) always operates at théhat P;(y,) is not the smallest concave function greater
average SNR limif,,. In addition, fora > e¢~2, based on than or equal toFy(y,a). This implies that there exists
the strict concavity of the detection probability with resp another functiony: (v, «) which is concave and greater than
to SNR (Proposition 1), it can be deduced that the solution 8f equal toF(v, o), and that there exists € [0, v,] such that
(11) is given byAt = 1, \X* = 0 fori € {1,...,M}\ {k} qi(z,a) < Py(z,a). Asz € [0,v], there existd) < § < 1
and~; = T, for any k € {1,...,M}. In other words, such thatz = jv. Then, by the concavity ofy, it is
whena > e~2, time sharing is not employed, and a constagiear thatg:(z,a) > Bgi(y, @) + (1 — 8)g1(0,a). Since
transmission power that corresponds to the average SNR lingi. iS greater than or equal t0,(v, ), it is concluded that
e, is used all the time. g1(z,a) = Bgi(ye, a) + (1= B)g1(0,a) = BPa(ye, @) + (1 —

On the other hand, for < e~2, there exists an interval 3)Fu(0,a) = Py (x, @), which contradicts the assumption of
over which the detection probability is convex (Proposit®). 91(7, a) < Py (z,«). Hence, it is proved thal, (v, ) is the
Hence, improvements in detection probability can be aeevsmallest concave function greater than or equatfoy, o). In
via time sharing under certain scenarios. To charactehige @ddition, sinceP, (v, «) is monotone increasing (due to the
optimal time sharing strategy (i.e., the solution of (119y f monotone increasing nature @%(v,«)), the optimal value
a < e~?, the following lemma is presented first, which i®f (11a) is equal taP, (T'avg, @), Which can be achieved by

(12)

proved in the Appendix. the strategies specified Hy) or (i:) depending on the value
Lemma 4: Let v, be the unique inflection point dPy(y,a) Of T'ava- The proof for casgiii), i.e., I'peax < 71, can be
for & < e~2. Then, there existsy > v, such that the obtained in a similar fashion. L

line passing through point), P;(0,a)) and (y:, Pa(vi, @) Proposition 3_ states that whem < 6*2,_ ti_me sh_aring
is tangent toP;(v, a) at v, and lies aboveP, (v, a) for all becomes beneficial if the average power limit (equivalently

v > 0. the average SNR limit) is lower than a certain threshold. In
Based on Lemma 4, the optimal time sharing strategy g2t case, on-off signaling is the optimal strategy, and the
o < ¢—2 can be described as follows: duration of the silent period and the transmitted powerlleve

are determined according to the average and peak powes.limit
Remark: The power allocation strategy can be implemented
, . . in practice as follows: Suppose that the statistical model i
(Z). If ¢ < Tavg, the optimal strategy is to empldya, all (1) is valid for Ny consecutive transmissions (observations).
the time. ) ) . First, 74 defined in Lemma 4 is calculated. Then, if the
(i) If Tpearc > 71 > Davg, the optimal strategy is to ime condition in Proposition 34) is satisfied, the same power
share between SNRs 6fand-y,, with fraction of timelavs /v:  |evel (corresponding to SNR.) is used for all (V,)
allocated to the SNR of;.2 transmissions. If the condition in Propositior(@3) is satisfied,
(#44) If v > [peak, the optimal strategy is to time share beround(N,Tays/v:) out of N, transmissions occur with a
tween SNRs of) andI',c.x, with fraction of timel'., /T'yeax  constant power level corresponding to SNR and nothing
allocated to the SNR oF cax. is transmitted during the remaining slots (correspondimg t
Proof: Let the average SNR in (11b) and the averageero power). A similar approach is adopted if the condition i
detection probability (objective function) in (11a) be desd Proposition 3fii¢) holds .
by S Ay 2 7 and Y NiPa(yi,a) £ Pa(3,a),
respectively. Considefi) and (i7), wherey; < I'peax. Let ¥
be an average SNR. Then, according to the proposed strategy,
In this section, we provide numerical examples and simula-
2In practice, time sharing between different SNR values einiplemented tions to illustrate the theoretical results of the previsestion.

by time sharing between different transmitter powers, rcdied by the Fig. 1 ShQWS the probability of detection in (5) VErsus SNR,
parameterP in (1). ~, for various values of the false alarm probability The

Proposition 3: Let o < e~2 and~; be the tangent point
defined as in Lemma 4.

IV. NUMERICAL EXAMPLES AND SIMULATIONS



cross () signs in the figure indicate the results of the Montanodel, the proposed optimal power allocation approach ean b
Carlo simulations, which match perfectly with the theareti employed within each block. If the transmitter does not have
results (dashed and straight lines), as expected. As stategherfect channel power gain information, then the detection
Propositions 1 and 2, the probability of detection is a cuacaprobability achieved by the proposed optimal signalinghudt
function of SNR fora > e~2 ~ 0.135, and initially a convex based on perfect information can be regarded as an upper
and then a concave function of SNR fer< ¢~2. The optimal bound on the detection performance.
power allocation strategies can also be deduced from Fig. 1 alf power allocation is applied over different fading blocks
follows: Suppose thal,..x = 50. Then, the optimal strategy then the convexity properties of traverage detection prob-
is to operate at the average power limit far= 0.5 and ability should be considered to determine the optimal power
a = e~ 2 due to the concavity of the probability of detectionallocation strategy. It is noted that for a given valuehoin
On the other hand, forv = 1072, o = 1074, anda = 1076, (13), the sizex NP decision rule in (4) is still optimal since
the optimal strategy is to time share between SNR6 ahd the detector threshold does not dependroar h. By defining
~¢, with fraction of timeT',,./7: allocated to the SNR of; v = na2Ph/(20?), it is seen that the detection probability of
(see Proposition 3), wherg, is equal t09.685, 23.76, and the optimum sizex NP detector for fixed channel power gain
36.6 for « = 1072, o = 1074, anda = 1075, respectively. is in the same form as that given in (5). By treating the channe
For example, fore = 10~* and Ty, = 10, the probability power gainh as a random variable, the detection probability
of detection can be improved frofm161 to 0.318 via time can be averaged over the distributionofor, equivalentlyy).
sharing between SNRs of and 23.76. The dashed lines in Since the resulting average detection probability is a tionc
Fig. 1 indicate the probability of detection values that ban of the transmit powe, its convexity properties w.r.tP can
achieved via time sharing (on-off signaling) in the constde be identified and the optimal power allocation under peak and
scenario. It is noted that time sharing becomes more crucéalerage power constraints can be determined. To this end,
for low levels of false alarm probability, which is the case iwe compute the average detection probability of the prapose
many practical scenarios. detector under Rayleigh block-fading in the following.

For the Rayleigh fading scenario, the probability density
function (PDF) ofh is given by f,(h) = (1/h)e~"/" for
h > 0. For convenience, define2 na2P/(202); theny = ph
andy = Ej[y] = ph, where E,,[-] represents expectation
w.r.t. fading power distribution. Denote the average d#iac
probability under Rayleigh fading a%;(¥, ). Then, from (5)
and [11, Eq. 30],P;(7, «) can be calculated as follows:

1

09

_ % q

£05 Pi(7,a) = / ﬁef%Ql[\/ph, Vv —2loga| dh
& 0

0.4 r [e%s}

1 2

sl :/0 ﬁe 0 Ql[u\/ﬁ,\/—2loga]2udu

02 — QTR = o TFATE (14)

01 The second derivative of the average detection probability

with respect to the average SNR at the receiver, denoted by

0 5 10 15 20 25 30 35 40 45 50 5 —
P; (7,«), can be computed as

Y

Fig. 1. Probability of detection versusfor various values of the false alarm _”(— Q) = aﬁ 71 In(c) In(a) n
probability .. The dashed lines correspond to the upper boundaries of thé 7,Q) = 2(1+7/2)3 2(1+7/2)

convex hulls ofP'd_(-y7 «) curves, wh_ich are _attained via on-off signaling, as (15)
zfﬁﬁgtlir;r:’sr.oposmon 3. The cross signs indicate the mesiithe Monte-Carlo Since0 < a < 1, it is noted that
P (7,0) >0 < 5 < —In(a) —2 (16)
V. EXTENSION TOFADING CHANNELS Therefore, it is concluded that e > e~2, the average

Although no fading is considered in the analysis in Se@robability of detection is always concave with respect to
tion 111, the results are also valid for frequency-flat bleck?- OtherwiseFy(¥,a) is a strictly convex function ofy for
fading channels assuming that perfect channel power g&in< —In(a) — 2 and a strictly concave function of for
information is available at the transmitter and peak/ayera) > —In(a) — 2. Due to the similarity of the convexity
power constraints are imposed over the duration of blocRroperties of the average detection probability to those of

fading. In particular, considering the following obserwat the non-fading scenario in Section Ill-A, the power allowat
model approach in Section 11I-B can also be employed for Rayleigh

block-fading channels.

Ho: Y = Ni, Hi: Yy = VPhsi(0)+Ng, for k=1,...,n
(13) VI. CONCLUDING REMARKS

whereh > 0 is the channel power gain, the only modification In this letter, for optimal noncoherent detection of a mod-

in the formulations would be to scale SNR)(with the ulated sinusoidal carrier, the convexity properties of tee

known channel power gaih. Under the block-fading channeltection probability have been characterized with respect t



the SNR for all values of the false alarm probability. Since By combining the results in (19)-(21) with (18), it is seen
required levels of false alarm probability are lower thai ~ that
0.135 in almost _aII pr_actical applications, time sharing_ in the _ 02Py(7,q) 1 R
form of on-off signaling may prove useful for enhancing the 1;%1 T2 . 1 gre > dz—
noncoherent detection performance of a modulated sinakoid v L fe) °
. 22 322

carrier. / e T dx + / re T d:v). (23)

An important direction for future work is to characterize fla) fla)

the convexity properties of the detection probability fastf Then, it is obtained that
fading channels.

_0%Py(v, ) 1o o =t@? (fa)?
E%T'y:z_gf(a) e <T_1)' (24)
Thus, the expression on the LHS of (24) is positive if and only
APPENDIX if f(a)? > 4, which is satisfied if and only itv <e=2. H
A. Proof of Lemma 1 B. Proof of Lemma 2

Since the second derivative (v, o) is continuous with __ SIMilar to the proof of Proposition 1 (see (7)), we consider

respect toy, the statement in the lemma can be proved t}pe sign of
showing that f(a)
2 —= L f(a) - Li(y7f(a)). (25)

lim 9Faly, @) Ii‘;(Z’ Al oy (17) val
= v = This sign determines the convexity/concavity of the detec-
for @ € (0,e72). In other words, the condition in (17)tion probability. From [12, Cor. 1], it can be seen that
guarantees that there exists > 0 such thatPy(v,«) is . fla)) < I fla o3 for a) > 2
convex in[0,4]. Towards the aim of proving (17), the seconq\frge\/rz O(ZO)): —11£>\g/(7/§( z) 1). Then as(y;ﬁi( 0) it is

derivative of P;(v, o) with respect toy is obtained as follows: ¢jagr that (/7 f(a)) < L(yif(e) for yAfla) > 2.

2Py (v, a) L1 [ 22 Therefore, the statement in the lemma follows directly for
(v, ) _a? o o
oy ¢ \a ze” 7 Io(y/yx)de v > max{(f(a))%2/(f(a))?}. Namely, it is sufficient to
L ] fl) ) choosey = max{(f(a))2,2/(f(a))?} for a fixeda. ]
—/ ze” T g(z,7) d:v—i—/ xe%h(x,w)dx), (18)
f(e) J(e)

C. Proof of Lemma 3

_ z? 2w .2 x cos 6 _
V‘g’gt‘efezﬂg(waﬂ = fr Jo sin"fe"Vy do and h(z,v) = From (7), notice that ifP; (v*,«) = 0 for v* < oo, then

i 4 T 0s 0 H
éﬁ uOti|iZSleI(lj ienethevcrooclfe. Then, the following three resultsv* must be a root OfL\/O%)IQ(ﬂf(OZ)) — I,(y/7f(a)). Now
P ' observe that

me3 [ L% _ [Tl fle
Rt /M e Thlvande = /,.(a)z“ =, (W)Iz(ﬁf(a))—hmﬂa»
(19)
et [ we B B — 1 a <f(o‘)12(\ﬁf(o‘))—1>. 26
E%e /f(a) xe” 7 g(x,v)dx _/f(a)4$ e dz, (20) 1(V7f(@)) /7 L(Jif(@)) (26)
= 2 > 22 i : . f (@) (V7 ()
lime*%/ ve™ T h(z, ) dw :/ i:c‘”’e*? di. Sln_cell() > 0, v* must be a root ofﬁ Afay — b
710 F(a) F(a) 32 1) which can be expressed as
Here, the proof for (19) is provided ((20) and (21) can bef(a) L(v7f()) —1= f(a)2< ! S 2),
shown in a similar fashion). Notice that from the monotatyici VT L7 (@) u(y7fl@)  fle)

. _a _a2 (27)
of Io(") for v € [0,1], it follows thate™3 gze™ = Io(\/72) < \wherew, (x) £ 21, (x)/I»(x) As stated in [9] and [13} («)
re~ 7 Iy(x). Sincexe™ = Iy(z) is integrable, by the Domi- is a strictly increasing function for positive Therefore, in our

nated Convergence Theorem, the expression on the Ieft—hacmbe,m is a strictly decreasing function af, which
side (LHS) of (19) can be written as implies tfat t%ere must be at most one root of (27); hence,
o o3 - there is at most one finite root @} (v, o). Based on Lemma
lim ze” 2 Io(y/yz) dx 1 and 2, there is at least one finite root Bf (v, «) when
70 J ) 4 a < e~? by the Intermediate Value Theorem. Therefore, there
_ /°° lim e 3 :cefglo(ﬁx) da (22) exists a unique inflection point. |
flay 40 4

D. Proof of Lemma 4

- 22 22
Sincelim, o <5~ ze™ T Io(\/7x) = tze T, the statement
in (19) is proved. In a similar manner, it can be shown that To prove Lemma 4, the following result is obtained first.

lim. 0 g(z,7) = 2%/4 andlim, o h(z,v) = z*/32. Lemma 5: limy o Pi(y, ) = 1.



Proof: From [14, Eq. 4], the detection probability can b&hen, for,/y > f(«)

lower bounded for,/y > f(«) as follows:

1/ _«A-f@n? (A @)?)
Ay f(e)] 2 1 (T o) ag)

which can equivalently be written as

(29)

V(Pd(/% a) - 1)

For a fixeda, the RHS of (35) converges t0. Therefore,
lim, oo (Py(y, @) — 1)y > 0. Hence, the converse direction is
shown. Overall, it is obtained théitn., o (Py(y, «) — 1)y =

0. This implies thatlim, ,. h(y) =1 —a > 0 asa < e~ 2,

> —%efga(eﬂf(o‘) - eiﬂf(o‘)). (35)

Qilv7, fla)] 21— %e—%a(eﬁf(a) — eV (@),

For a fixeda, the right-hand-side (RHS) of (29) converges
to 1 as v goes tooco. Therefore, it is concluded that
lim, o0 Py(y,0) > 1. Also, asPy(v,«) is the probability
of detection, it must be less than or equalltoHence, the
statement in Lemma 5 follows. O

Let g(v) denote the straight line passing through pointd?]
(0, P4(0,c)) and (7, Pa(,«)), which has a slope of (3]
P (v, ). Then,

(1]

g(v) = 3(0) + Py(ye, @)y (30)

whereP) (v, ) is the first derivative of?;(~y, o) with respect
to v evaluated aty,. By definitionz,g(o) = P,(0,«). First, it is
noted thatP,;(0, a) = f;’(oa) re~ 2 Iy(0) dz. Sincely(0) = 1,

— ()2
P;(0, ) is calculated as?;(0, ) = e I — . Therefore,

the existence ofy, such thatP;(vi, ) = a + Pj(v, @)y
will imply the existence of the straight line. Define a new
function as h(y) 2 Pu(y,a) — a — Pj(vy,a)y. If one
can show that there existg; # 0 such trlatﬁ(%) =0,
then the claim will be proved. Notice thdt(0) = 0 and
W(v) = Pyv,a) = P (v,)y — Py(v,a) = —FPj(v,a)y.
From Proposition 25/(y) < 0if v € [0,7,] andh/(y) > 0 if

¥ € (Ya,0). Therefore,h is a decreasing function if), v, ]
and an increasing function iy, oo). Hence, it is sufficient to 10]
show thatlim,_, h(y) > 0 since this dictates the existencé
of such ay, due to the Intermediate Value Theorem.

(4]

g

(6]

(7]
(8]

El

From Lemma 5, the following relation is obtained: [11]

lim h(y) = lim Py(vy,a) —a—Pi(v,a)y  (31) [12]
y—00 y—00

1 — T /

=1-a- lim Py(y,e)y 32) 5

Therefore, if we can show thaéim,_,, P;(v,a)y <1 —«,
thenlim, ., h(v) > 0 will be proved. Notice thatP,(, a)—
1) goes to0 and % goes to0 as vy goes toco. Then, by
L'Hépital Rule, the following expressions are derived:

Pd(’}/,Oé) —1

[14]

Jim (Paly, @) = 1)y = lim == (33)
_ o Pilve) o , )
= T = R ey (34)

Therefore, it can be deduced tHah, o (Pa(y, ) — 1)y =
0 if and only if lim, . Pj(v,a)y? 0. Since 0 <
|P)(, )| < |Pi(y, )y?| fory > 1, lim, o Pj(v, )y =

0 implies thatlim, .., Pj(vy, )y = 0. Hence, proving that
limy 00 (P4 (v, ) — 1)y = 0 would be sufficient to conclude
thatlim,_, P;(7,a)y = 0. For this reason, we next compute
limy 00 (P4(y, ) — 1)y. As P; is the detection probability,
Py(v,a) — 1 < 0; therefore,limy_, o (Pa(y,a) — 1)y < 0.
For the other direction, from [14, Eq. 4], it is known that for
V7 2 f(@), Pa(y,0) 21— e 3a(eV (@) — emvil(e),

which concludes the proof.
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