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Abstract—The problem of simple M−ary hypothesis testing
under a generic performance criterion that depends on arbitrary
functions of error probabilities is considered. Using results from
convex analysis, it is proved that an optimal decision rule can be
characterized as a randomization amongat most two determinis-
tic decision rules, each of the form reminiscent to Bayes rule, if
the boundary points corresponding to each rule have zero proba-
bility under each hypothesis. Otherwise, a randomization among
at most M(M−1)+1 deterministic decision rules is sufficient. The
form of the deterministic decision rules are explicitly specified.
Likelihood ratios are shown to be sufficient statistics. Classical
performance measures including Bayesian, minimax, Neyman-
Pearson, generalized Neyman-Pearson, restricted Bayesian, and
prospect theory based approaches are all covered under the
proposed formulation. A numerical example is presented for
prospect theory based binary hypothesis testing.

Index Terms– Hypothesis testing, optimal tests, convexity,
likelihood ratio, randomization.

I. PROBLEM STATEMENT

Consider a detection problem withM simple hypotheses:

Hj : Y ∼ fj(·), with j = 0, 1, . . . ,M − 1, (1)

where the random observationY takes values from an obser-
vation setΓ with Γ ⊂ R

N . Depending on whether the observed
random vectorY ∈ Γ is continuous-valued or discrete-valued,
fj(y) denotes either the probability density function (pdf) or
the probability mass function (pmf) under hypothesisHj . For
compactness of notation, the termdensity is used for both
pdf and pmf. In order to decide among the hypotheses, we
consider the set of pointwise randomized decision functions,
denoted byD, i.e., δ := (δ0, δ1, . . . , δM−1) ∈ D such that
∑M−1

i=0 δi(y) = 1 and δi(y) ∈ [0, 1] for 0 ≤ i ≤ M − 1 and
y ∈ Γ. More explicitly, given the observationy, the detector
decides in favor of hypothesisHi with probabilityδi(y). Then,
the probability of choosing hypothesisHi when hypothesisHj

is true, denoted bypij with 0 ≤ i, j ≤ M − 1, is given by

pij := Ej [δi(y)] =

∫

Γ

δi(y)fj(y)µ(dy), (2)

whereEj [·] denotes expected value under hypothesisHj and
µ(dy) is used in (2) to denote theN−fold integral and sum for
continuous and discrete cases, respectively. Letp(δ) denote
the (column) vector containing all pairwise error probabilities
pij for 0 ≤ i, j ≤ M − 1 and i 6= j corresponding to the
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decision ruleδ. It is sufficient to include only the pairwise
error probabilities inp(δ), i.e., pij with i 6= j. To see this,
note that (2) in conjunction with

∑M−1
i=0 δi(y) = 1 imply

∑M−1
i=0 pij = 1, from which we get the probability of correctly

identifying hypothesisHi aspii = 1−
∑M−1

i=0,i6=j pij .
For M -ary hypothesis testing, we consider a generic de-

cision criterion that can be expressed in terms of the error
probabilities as follows:

minimize
δ∈D

g0(p(δ))

subject to gi(p(δ)) ≤ 0, i = 1, 2, . . . ,m

hj(p(δ)) = 0, j = 1, 2, . . . , p (3)

where gi and hj denote arbitrary functions of the pairwise
error probability vector. Classical hypothesis testing criteria
such as Bayesian, minimax, Neyman-Pearson (NP) [1], gen-
eralized Neyman-Pearson [2], and restricted Bayesian [3] are
all special cases of the formulation in (3). For example, in the
restricted Bayesian framework, the Bayes risk with respectto
(w.r.t.) a certain prior is minimized subject to a constraint on
the maximum conditional risk [3]:

minimize
δ∈D

rB(δ)

subject to max
0≤j≤M−1

Rj(δ) ≤ α (4)

for someα ≥ αm, whereαm is the maximum conditional
risk of the minimax procedure [1]. The conditional risk when
hypothesisHj is true, denoted byRj(δ), is given byRj(δ) =
∑M−1

i=0 cijpij and the Bayes risk is expressed asrB(δ) =
∑M−1

j=0 πjRj(δ), whereπj denotes thea priori probability
of hypothesisHj and cij is the cost incurred by choosing
hypothesisHi when in fact hypothesisHj is true. Hence, (4)
is a special case of (3).

In this letter, we consider a genericM−ary simple hy-
pothesis testing framework and do not make any specific
assumptions on the employed optimization criterion expect
that it can be specified using functions of error probabilities.
Not only does this allow us to account for several classical
performance criteria that are mentioned above but also to
generalize prospect theory based approaches developed in [4]
for behavioral (e.g., human) decision makers who may have a
distorted view of probabilities and costs. Our approach to this
problem is to characterize the set of all achievable pairwise
error probabilities and the corresponding optimal decision
rule that delivers any given feasible pairwise error probability
vector. To that aim, we first specify the optimal decision
rule that yields an extreme point of the set of all achievable
pairwise error probabilities. Randomization is required only
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if the solution of the specific optimization problem under
consideration occurs at an interior point or a boundary (but
not an extreme) point of the feasible set. In this way, for the
first time in the literature, we provide a unified characterization
of optimal decision rules for simple hypothesis testing under
a general criterion involving error probabilities.

II. PRELIMINARIES

Let v be a real (column) vector of lengthM(M−1) whose
elements are denoted asvij for 0 ≤ i, j ≤ M − 1 and
i 6= j. Next, we present an optimal deterministic decision rule
that minimizes the weighted sum ofpij ’s with arbitrary real
weightsv.1

A. Optimal decision rule that minimizesvTp(δ)

The corresponding weighted sum of pairwise error proba-
bilities can be written as

vTp(δ) =

M−1
∑

i=0

M−1
∑

j=0,j 6=i

vijpij

=

∫

Γ

M−1
∑

i=0

δi(y)





M−1
∑

j=0,j 6=i

vijfj(y)



µ(dy), (5)

where (2) is substituted forpij in (5). Defining Vi(y) :=
∑M−1

j=0,j 6=i vijfj(y), we get

vTp(δ) =

∫

Γ

M−1
∑

i=0

δi(y)Vi(y)µ(dy)

≥

∫

Γ

min
0≤i≤M−1

{Vi(y)} µ(dy) (6)

The lower bound in (6) is achieved if, for ally ∈ Γ, we set

δℓ(y) = 1 for ℓ = argmin
0≤i≤M−1

Vi(y) (7)

(and hence,δi(y) = 0 for all i 6= ℓ), i.e., each observed vector
y is assigned to the corresponding hypothesis that minimizes
Vi(y) over all0 ≤ i ≤ M−1. In case where there are multiple
hypotheses that achieve the same minimum value ofVℓ(y) for
a given observationy, the ties can be broken by arbitrarily se-
lecting one of them since the boundary decision does not affect
the decision criterionvTp(δ). However, pairwise probabilities
for erroneously selecting hypothesesHi andHj will change
if the set of boundary points

Bi,j(v) := {y ∈ Γ : Vi(y) = Vj(y) ≤ Vk(y)

for all 0 ≤ k ≤ M − 1, k 6= i, k 6= j} (8)

occurs with nonzero probability. We also define the set of all
boundary points

B(v) :=
⋃

0≤i≤M−1
i<j≤M−1

Bi,j(v) (9)

and the complimentary set whereVi(y) for some0 ≤ i ≤
M − 1 is strictly smaller than the rest:

B̄(v) := Γ \ B(v) = {y ∈ Γ : Vi(y) < Vj(y), for some

0 ≤ i ≤ M − 1 and all0 ≤ j ≤ M − 1, j 6= i} (10)

1In classical BayesianM−ary hypothesis testing,vij = πj(cij − cjj).

B. The set of achievable pairwise error probability vectors

Let P denote the set of all pairwise error probability vectors
that can be achieved by randomized decision functionsδ ∈ D,
i.e., P := {p(δ) : δ ∈ D}. In this part, we present some
properties ofP.

Property 1: P is a convex set.
Proof: Let p1(δ1) andp2(δ2) be two pairwise error prob-

ability vectors obtained by employing randomized decision
functions δ1 and δ2, respectively. Then, for anyθ with
0 ≤ θ ≤ 1, pθ = θp1(δ1) + (1 − θ)p2(δ2) ∈ P sincepθ

is the pairwise error probability vector corresponding to the
randomized decision ruleθδ1 + (1 − θ)δ2 as seen from (2).

Property 2: Let p0 be a point on the boundary ofP. There
exists a hyperplane{p : vTp = vTp0} that is tangent toP
at p0 andvTp ≥ vTp0 for all p ∈ P.

Proof: Follows immediately from the supporting hyperplane
theorem [5, Sec. 2.5.2].

III. C HARACTERIZATION OF OPTIMAL DECISION RULE

In order to characterize the solution of (3), we first present
the following lemma.

Lemma: Let p0 be a point on the boundary ofP and {p :
vTp = vTp0} be a supporting hyperplane toP at the point
p0.
Case 1: Any deterministic decision rule of the form given in(7)
corresponding to the weights specified byv yieldsp0 if B(v),
defined in(9), has zero probability under all hypotheses.
Case 2:p0 is achieved by a randomization among at most
M(M−1) deterministic decision rules of the form given in(7),
all corresponding to the same weights specified byv, if B(v),
defined in(9), has nonzero probability under some hypotheses.

Proof: See Appendix A.
It should be noted that the condition in case 1 of the lemma,

i.e., B(v) has zero probability under all hypotheses, is not
difficult to satisfy. A simple example is when the observation
under hypothesisHi is Gaussian distributed with meanµi and
varianceσ2 for all 0 ≤ i ≤ M − 1. Furthermore, the lemma
implies that any extreme point of the convex setP, i.e., any
point on the boundary of the convex setP that is not a convex
combination of any other points in the set, can be achieved
by a deterministic decision rule of the form (7) without any
randomization. The points that are on the boundary but not
extreme points can be obtained via randomization as stated in
case 2.

Next, we present a unified characterization of the optimal
decision rule for problems that are in the form of (3). We
suppose that the problem in (3) is feasible and letδ∗ and
p∗(δ∗) denote an optimal decision rule and the corresponding
pairwise error probabilities, respectively.

Theorem: An optimal decision rule that solves(3) can be
obtained as
Case 1: a randomization among at most two deterministic
decision rules of the form given in(7), each specified by some
real v, if B(v), defined in(9), has zero probability under all
hypotheses for all realv; otherwise
Case 2: a randomization among at mostM(M − 1) + 1
deterministic decision rules of the form given in(7), one
specified by some realv and the remainingM(M − 1)
correspond to the same weights specified by another realv.
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Proof: If the optimal pointp∗(δ∗) is on the boundary ofP,
then the lemma takes care of the proof. Here, we consider the
case whenp∗(δ∗) is an interior point ofP. First, we pick an
arbitraryv1 ∈ R

M(M−1) and derive the optimal deterministic
decision rule according to (7). Letp1 denote the pairwise error
probability vector corresponding to the employed decision
rule. Then, we move along the ray that originates fromp1

and passes throughp∗(δ∗). SinceP is bounded, this ray will
intersect with the boundary ofP at some point, sayp2. If the
condition in case 1 is satisfied, then by lemma-case 1, there
exists a deterministic decision rule of the form given in (7)
that yieldsp2. Otherwise, by lemma-case 2,p2 is achieved
by a randomization among at mostM(M − 1) deterministic
decision rules of the form given in (7), all sharing the same
weight vectorv2. Sincep∗(δ∗) resides on the line segment
that connectsp1 to p2, it can be attained by appropriately
randomizing among the decision rules that yieldp1 andp2.�

When the optimization problem in (3) possesses certain
structure, the maximum number of deterministic decision rules
required to achieve optimal performance may be reduced
below those given in the theorem. For example, suppose that
the objective is a concave function ofp and there are a total of
n constraints in (3) which are all linear inp (i.e., the feasible
set, denoted byP′, is the intersection ofP with halfspaces and
hyperplanes). It is well known that the minimum of a concave
function over a closed bounded convex set is achieved at an
extreme point [5]. Hence, in this case, the optimal pointp∗ is
an extreme point ofP′. By Dubin’s theorem [6], any extreme
point ofP′ can be written as a convex combination ofn+1 or
fewer extreme points ofP. Since any extreme point ofP can
be achieved by a deterministic decision rule of the form (7),
the optimal decision rule is obtained as a randomization among
at mostn+ 1 deterministic decision rules of the form (7). If
there are no constraints in (3), i.e.,n = 0, the deterministic
decision rule given in (7) is optimal and no randomization is
required with a concave objective function.

An immediate and important corollary of the theorem is
given below.

Corollary: Likelihood ratios are sufficient statistics for
simpleM−ary hypothesis testing under any decision criterion
that is expressed in terms of arbitrary functions of error
probabilities as specified in(3).

Proof: It is stated in the theorem that a solution of the
generic optimization problem in (3) can be expressed in terms
of decision rules of the form given in (7). These decision
rules only involve comparisons amongVi(y)’s, which are
linear w.r.t. the density termsfi(y)’s. Normalizing fi(y)’s
with f0(y) and definingLi(y) := fi(y)/f0(y), we see that an
optimal decision rule that solves the problem in (3) depends
on the observationy only through the likelihood ratios. �

IV. N UMERICAL EXAMPLES

In this section, numerical examples are presented by con-
sidering a binary hypothesis testing problem (i.e.,M = 2 in
(1)) in order to illustrate the theoretical results. Suppose that a
bit (0 or 1) is sent over two independent binary channels to a
decision maker, which aims to make an optimal decision based
on the binary channel outputs. The output of binary channelk
is denoted byyk ∈ {0, 1}, k = 1, 2, and the decision maker
declares its decision based ony = [y1, y2]. The probability

that the output of binary channelk is i when bit j is sent is
denoted byp(k)ij for 0 ≤ i, j ≤ 1 with p

(k)
0j + p

(k)
1j = 1. Then,

the pmf ofy underHj is given by

fj(y) = p
(1)
ij p

(2)
ℓj if y = [i, ℓ] (11)

for i, ℓ ∈ {0, 1} and j ∈ {0, 1}. As in the previous sections,
the pairwise error probability vector of the decision maker
for a given decision ruleδ is represented byp(δ), which is
expressed asp(δ) = [p10, p01]

T in this case. It is assumed
that the decision maker knows the conditional pdfs in (11).

In this section, a special case of (3) is considered based on
prospect theory by focusing on a behavioral decision maker
[4], [7]–[9]. In particular, there exist no constraints (i.e.,m =
p = 0 in (3)) and the objective function in (3) is expressed as

g0(p(δ)) =

1
∑

i=0

1
∑

j=0

w(P (Hi is selected &Hj is true))v(cij)

(12)
wherew(·) is a weight function andv(·) is a value function,
which characterize how a behavioral decision maker distorts
probabilities and costs, respectively [4], andP (·) denotes the
probability of its argument. In the numerical examples, thefol-
lowing weight function is employed:w(p) = pκ

(pκ+(1−p)κ)1/κ

[4], [7]–[9]. In addition, the other parameters are set as
v(c00) = 3, v(c01) = 10, v(c10) = 20, and v(c11) = 7.
Furthermore, the prior probabilities of bit0 and bit 1 are
assumed to be equal.

The aim of the decision maker is to obtain a decision
rule that minimizes (12). In the first example,κ is set to
5, and the parameters of the binary channels are selected as
p
(1)
10 = p

(2)
10 = 0.4 andp

(1)
01 = p

(2)
01 = 0.1. In this case, it can

be shown via (11) that there exist6 different deterministic
decision rules in the form of (7), which achieve the pairwise
error probability vectors marked with blue stars in Fig. 1.
The convex hull of these pairwise error probability vectorsis
also illustrated in the figure. Over these deterministic decision
rules (i.e., in the absence of randomization), the minimum
achievable value of (12) becomes0.1901, which corresponds
to the pairwise error probability vector shown with the green
square in Fig. 1. If randomization between two deterministic
decision rules in the form of (7) is considered, the resulting
minimum objective value becomes0.0422, and the corre-
sponding pairwise error probability vector is indicated with
the red triangle in the figure. On the other hand, in compliance
with the theorem (case 2), the minimum value of (12) is
achieved via randomization of (at most) three deterministic
decision rules in the form of (7) (sinceM(M − 1) + 1 = 3).
In this case, the optimal decision rule randomizes amongδ1,
δ2, andδ3, with randomization coefficients of0.41, 0.51, and
0.08, respectively, as given below:

δ1(y) = 0 for all y

δ2(y) =

{

0 , if y ∈ {[0, 1], [1, 0], [1, 1]}

1 , if y = [0, 0]
(13)

δ3(y) =

{

0 , if y = [1, 1]

1 , if y ∈ {[0, 0], [0, 1], [1, 0]}

This optimal decision rule achieves the lowest objective value
of 0.0400, and the corresponding pairwise error probability
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Fig. 1: Convex hull of pairwise error probability vectors corresponding to
deterministic decision rules in (7), and pairwise error probability vectors
corresponding to decision rules which yield the minimum objectives attained
via no randomization (marked with square), randomization of two (marked
with triangle) and three deterministic decision rules (marked with circle),
wherep(1)10 = p

(2)
10 = 0.4, p(1)01 = p

(2)
01 = 0.1, andκ = 5.

vector is marked with the black circle in Fig. 1. Hence, this
example shows that randomization among three deterministic
decision rules may be required to obtain the solution of (3).

In the second example, the parameters are taken asκ = 1.5,
p
(1)
10 = 0.3, p(2)10 = 0.2, p(1)01 = 0.4, andp

(2)
01 = 0.25. In this

case, there exist8 different deterministic decision rules in the
form of (7), which achieve the pairwise error probability vec-
tors marked with blue stars in Fig. 2. The minimum value of
(12) among these deterministic decision rules is3.9278, which
corresponds to the pairwise error probability vector shown
with the green square in the figure. In addition, the pairwise
error probability vectors corresponding to the solutions with
randomization of two and three deterministic decision rules are
marked with the red triangle and the black circle, respectively.
In this scenario, the minimum objective value (3.8432) can be
achieved via randomization of two deterministic decision rules,
as well. This is again in compliance with the theorem (case 2),
which states that an optimal decision rule can be obtained as
a randomization amongat mostM(M − 1) + 1 deterministic
decision rules of the form given in (7).

V. CONCLUDING REMARKS

This letter presents a unified characterization of optimal
decision rules for simpleM−ary hypothesis testing under
a generic performance criterion that depends on arbitrary
functions of error probabilities. It is shown that optimal perfor-
mance with respect to the design criterion can be achieved by
randomizing among at most two deterministic decision rules
of the form reminiscent (but not necessarily identical) to Bayes
rule when points on the decision boundary do not contribute to
the error probabilities. For the general case, the solutionfor an
optimal decision rule is reduced to a search over two weight
coefficient vectors, each of lengthM(M−1). Likelihood ratios
are shown to be sufficient statistics.

Finally, we point out that the form of optimal local sensor
decision rules for the problem of distributed detection [10]–
[13] with conditionally independent observations at the sensors
and anarbitrary fusion rule can be characterized using the
proposed framework.
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Fig. 2: Convex hull of pairwise error probability vectors corresponding to
deterministic decision rules in (7), and pairwise error probability vectors
corresponding to decision rules which yield the minimum objectives attained
via no randomization (marked with square), randomization of two (marked
with triangle) and three deterministic decision rules (marked with circle),
wherep(1)10 = 0.3, p(2)10 = 0.2, p(1)01 = 0.4, andp(2)01 = 0.25, andκ = 1.5.

APPENDIX A
PROOF OFLEMMA

Since{p : vTp = vTp0} is a supporting hyperplane to
P at the pointp0, we get vTp ≥ vTp0 for all p ∈ P.
Furthermore, the deterministic decision rule given in (7),
denoted here byδ∗, minimizesvTp among all decision rules
δ ∈ D (and consequently over allp ∈ P). Sincep0 ∈ P

as well, the deterministic decision rule given in (7) achieves
a performance score ofvTp0. Any other decision rule that
does not agree withδ∗ on any subset of̄B(v) with nonzero
probability measure will have a strictly greater performance
score thanvTp0 (due to the optimality ofδ∗), and hence,
cannot be on the supporting hyperplane.
Case 1: We prove the first part by contrapositive. Suppose
that the deterministic decision ruleδ∗ given in (7) yields
p∗ 6= p0 meaning thatp0 is achieved by some other decision
rule δ0 ∈ D. Since δ∗ minimizes vTp over all p ∈ P,
vTp∗ = vTp0 holds and bothp∗ andp0 are located on the
supporting hyperplane{p : vTp = vTp0}. This implies that
δ∗ and δ0 must agree on any subset ofB̄(v) with nonzero
probability measure. As a result, the difference between the
pairwise probability vectorsp∗ and p0 must stem from the
difference ofδ∗ andδ0 overB(v). Consequently, the setB(v)
cannot have zero probability under all hypotheses.
Case 2: Suppose that the set of boundary points specified by
B(v) has nonzero probability under some hypotheses. In this
case, each point inBi,j(v) can be assigned arbitrarily (or in
a randomized manner) to hypothesesHi and Hj . Since the
way the ties are broken does not changevTp, the resulting
error probability vectors are all located on the intersection of
the setP with the M(M − 1) − 1 dimensional supporting
hyperplane{p : vTp = vTp0}. By Carathéodory’s Theorem
[14], any point (includingp0) in the intersection set, whose
dimension is at mostM(M − 1)− 1, can be represented as a
convex combination of at mostM(M − 1) extreme points of
this set. Since these extreme points can only be obtained via
deterministic decision rules which all agree withδ∗ on the set
B̄(v), p0 can be achieved by a randomization among at most
M(M − 1) deterministic decision rules of the form given in
(7), all corresponding to the weights specified byv. �
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