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Power Efficient Positioning for Visible Light
Systems via Chance Constrained Optimization

Onurcan Yazar, Musa Furkan Keskin, and Sinan Gezici

Abstract—The problem of minimizing total power consumption
in light-emitting diode (LED) transmitters is investigated for
achieving power efficient localization in a visible light com-
munication and positioning (VLCP) system. A robust power
allocation approach based on stochastic uncertainties is proposed
for total power minimization in the presence of localization
accuracy, power, and illumination constraints. Specifically, the
power consumption minimization problem is formulated under a
chance constraint on the probability of Cramér-Rao lower bound
(CRLB) exceeding a tolerable limit, which is a computationally
intractable constraint. The sphere bounding method is used
to propose a safe convex approximation to this intractable
constraint, which makes the resulting problem suitable forstan-
dard convex optimization tools. Numerical results demonstrate
the advantages of the proposed robust solution over the non-
robust solution and uniform power allocation in the presence of
stochastic uncertainty.

Index Terms– Visible light communication and positioning
(VLCP), robust design, power efficiency, chance constrained
programming, convex optimization.

I. I NTRODUCTION

Visible light communication (VLC) applications based on
light-emitting diodes (LEDs) have become widespread in
recent years due to the advances in LED technologies as
well as their advantages over current wireless communication
schemes [1]–[3]. VLC-based designs come into prominence
not only by their multi-purpose utilization capability along
with indoor illumination but also by providing high data
rates, low multipath fading, and no requirement of a licensed
spectrum [4], [5].

Visible light positioning (VLP) systems, which involve the
usage of visible light systems to accomplish localization tasks,
have also become an intriguing area of research [6]–[8]. In
VLP systems, the location of a VLC receiver can be estimated
by utilizing the visible light signals transmitted by anchor
nodes, which are LED transmitters with known locations [9].

Our main objective in this work is to design power efficient
VLP systems by minimizing the total power consumption in
LED transmitters while maintaining a desired level of localiza-
tion performance under practical constraints. Although power
and resource allocation has been investigated extensivelyfor
VLC systems (e.g., [10]–[16]), it has been considered only
in a few studies for VLP systems [17]–[20]. In [17], an or-
thogonal frequency division multiple access (OFDMA) based
visible light system with both communication and positioning
capabilities is considered, and a power allocation algorithm
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is proposed to reduce the positioning error. The work in
[18] focuses on a multi-user visible light communication and
positioning (VLCP) system, and proposes a joint subcarrier
and power allocation approach to maximize the sum rate
under constraints on minimum data rates and localization
accuracy of users. In [20], optimal and robust power allocation
strategies are examined to improve localization performance
of VLP systems and to address the problem of minimum
power consumption in the presence of uncertainty modeled by
deterministic norm-bounded errors. In this letter, we propose
the problem of minimum total power consumption for LED
transmitters in a VLP system in which a stochastic approach
is embraced in modeling the uncertainties in the localization
parameters. To our knowledge, the total power minimization
problem in the presence of stochastic uncertainty has not been
considered before in the VLP literature, which is an important
problem as the assumption of deterministically bounded errors
may not be practical in general [21], [22].

The minimum total power consumption problem in the
case of deterministic norm-bounded uncertainty is solved in
[20] through an upper constraint on the Cramér-Rao lower
bound (CRLB) for the localization error, which yields a convex
optimization problem . However, in the case of stochastic un-
certainty considered in this work, the fact that the unbounded
parameter uncertainties come into the problem precludes the
use of a worst-case upper bound on the CRLB [21], [22].
For such a case, we propose to formulate the robust design
problem as achance constrainedoptimization problem, in
which a probabilistic constraint on thelocalization accuracy
outage probabilityis established [23], [24]. We propose to
solve this problem by proving that this probabilistic constraint
can conservatively be approximated by a convex constraint
via the sphere boundingmethod. This solution strategy is
shown to satisfy any constraint on the localization accuracy
outage probability as opposed to the non-robust approach and
the uniform power allocation strategy. The main contributions
of this work over [20] are related to the consideration of a
probabilistic constraint on the localization accuracy forthe
minimum total power consumption problem in a VLP system
and the proposed solution approach based on the sphere
bounding method.

II. SYSTEM MODEL

We consider a VLP setup in which the location of a VLC
receiver is estimated by utilizing the signals sent byNL LED
transmitters. As the multipath fading effect is not significant in
visible light systems compared to RF-based systems, only the
line-of-sight (LOS) path between each LED transmitter and
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the VLC receiver is considered [6], [25], [26]. The receiver
is assumed to be able to process the signals sent by different
LED transmitters individually by following a multiple access
protocol (e.g., frequency-division multiple access). Then, the
received (electrical) signal at the output of the photodetector
at the VLC receiver due to the signal transmitted by theith
LED transmitter can be modeled as [11], [27]1

ri(t) = αiRpsi(t− τi) + ηi(t) (1)

for i ∈ {1, . . . , NL} and t ∈ [T1,i, T2,i], where T1,i and
T2,i are the starting and the ending time instants for VLC
receiver’s observation of the signal transmitted by theith
LED transmitter,αi is the optical channel attenuation factor
between theith LED transmitter and the VLC receiver,Rp

is the responsivity of the photodetector at the VLC receiver,
si(t) is the transmitted signal of theith LED transmitter,τi
is the time-of-arrival (TOA) of the signal arriving from the
ith LED transmitter, andηi(t)’s are independent zero-mean
additive white Gaussian noise processes each having a spectral
density level ofσ2 (with the independence stemming from the
multiple access protocol).

The TOA in (1) can be determined by

τi =
||lr − l

i
t||

c
+ δi (2)

where the positions of the VLC receiver and theith LED
transmitter are denoted bylr = [lr,1 lr,2 lr,3]

T and l
i
t =

[lit,1 lit,2 lit,3]
T respectively,c denotes the speed of light,|| · ||

specifies the Euclidean norm, andδi stands for the clock offset
between the VLC receiver and theith LED transmitter, which
is equal to zero in synchronous systems and regarded as an
unknown parameter in asynchronous systems [27].

The optical channel attenuation factorsαi given in (1) can
be expressed through the Lambertian model as [28]

αi =
S(mi + 1)(lit − lr)

T
nr

2π
(
(lr − l

i
t)

Tni
t

)−mi ||lr − l
i
t||mi+3

(3)

whereS is the area of the photodetector at the VLC receiver,
mi stands for the Lambertian order for theith LED, andnr =
[nr,1 nr,2 nr,3]

T and n
i
t = [ni

t,1 ni
t,2 ni

t,3]
T correspond to

the orientation vectors for the VLC receiver and theith LED
transmitter, respectively. In this configuration, it is assumed
that parametersS and nr are known by the VLC receiver
(e.g., via measurements from a gyroscope) and the parameters
related to the LED transmitters (i.e.,mi, l

i
t, andn

i
t) can be

acquired by the VLC receiver through communications with
each of the LED transmitters.

III. PROBLEM FORMULATION AND PROPOSEDAPPROACH

In this section, we first formulate a robust total power
minimization problem for VLP systems under a chance con-
straint related to the localization accuracy of the VLC receiver.
Then, we apply the sphere bounding method to provide a low-
complexity solution to the proposed problem.

1The signal model in (1) is in compliance with Eq. (3) of [11] for the case
of single-color LEDs.

A. Assessment of Localization Performance

In order to quantify the localization performance of the
VLP system, the CRLB for the location estimation error
is chosen as the performance metric. The main motivations
behind the use of the CRLB metric are that the maximum
likelihood (ML) estimator achieves a very close performance
to the CRLB at high signal-to-noise ratios and that CRLB
expressions commonly facilitate theoretical investigations and
analyses [20].

Among other factors, the CRLB is related to the transmitted
signalssi(t) utilized in the localization of the VLC receiver.
As in [20], the transmitted signals can be represented in terms
of base signals̃si(t) as

si(t) =
√
Pi s̃i(t) (4)

for i ∈ {1, . . . , NL} , where the non-negative base signal rep-
resents the normalized version of the transmitted signal such
that it has a unit power, i.e., it satisfies

∫ Ts,i

0 (s̃i(t))
2
dt = Ts,i,

whereTs,i denotes the duration of the transmitted signal. In
other words, in this configuration,Pi indicates the electrical
transmit power of theith LED transmitter. Then, we define

p , [P1 · · ·PNL
]
T (5)

which is used as the main optimization variable for the
minimum total power consumption problem. As shown in (4),
our power optimization framework relies on scaling the non-
negative base signals̃si(t) by parameters

√
Pi, which implies

that adjustingp in (5) affects both the DC and AC parts of
the LED signals.

The CRLB on the variance of any unbiased estimatorl̂r for
the VLC receiver locationlr is expressed as [27]

E
{
||̂lr − lr||2

}
≥ trace

{
J−1(p)

}
(6)

whereJ(p) is the Fisher information matrix (FIM), which is
computed by [20]

J(p) = (I3 ⊗ p)TΓ . (7)

In (7), I3 is the3×3 identity matrix,⊗ denotes the Kronecker
product, and

Γ ,



γγγ1,1 γγγ1,2 γγγ1,3

γγγ2,1 γγγ2,2 γγγ2,3

γγγ3,1 γγγ3,2 γγγ3,3


 ∈ R

3NL×3 (8)

with

γγγk1,k2
,

[
γ
(1)
k1,k2

. . . γ
(NL)
k1,k2

]T
∈ R

NL (9)
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for k1, k2 ∈ {1, 2, 3} [20]. γ(i)
k1,k2

in (9) is as described in [20,
App. A], which is also stated below for convenience:

γ
(i)
k1,k2

=

{
γ
(i),syn
k1,k2

, if synchronous VLP system

γ
(i),asy
k1,k2

, if asynchronous VLP system

γ
(i),syn
k1,k2

,
R2

p

σ2

(
Ei

2

∂αi

∂lr,k1

∂αi

∂lr,k2

+ Ei
1α

2
i

∂τi
∂lr,k1

∂τi
∂lr,k2

− Ei
3αi

(
∂αi

∂lr,k1

∂τi
∂lr,k2

+
∂τi
∂lr,k1

∂αi

∂lr,k2

))

γ
(i),asy
k1,k2

,
R2

p

σ2

(
Ei

2 −
(Ei

3)
2

Ei
1

)
∂αi

∂lr,k1

∂αi

∂lr,k2

Ei
1 ,

∫ Ts,i

0

(
s̃′i(t)

)2
dt , Ei

2 ,

∫ Ts,i

0

(
s̃i(t)

)2
dt

Ei
3 ,

∫ Ts,i

0

s̃i(t)s̃
′
i(t)dt ,

∂τi
∂lr,k

=
lr,k − lit,k

c‖lr − l
i
t‖

∂αi

∂lr,k
= − (mi + 1)S

2π

((
(lr − l

i
t)

T
n

i
t

)mi−1

‖lr − l
i
t‖mi+3

×
(
mi n

i
t,k(lr − l

i
t)

T
nr + nr,k(lr − l

i
t)

T
n

i
t

)

−
(mi + 3)(lr,k − lit,k)

‖lr − l
i
t‖mi+5

(
(lr − l

i
t)

T
n

i
t

)mi
(lr − l

i
t)

T
nr

)

wheres̃′i(t) denotes the derivative of̃si(t).
Remark 1: From the preceding expressions, it is noted

that, for a given power vectorp, the CRLB is determined
by matrix Γ, which depends on the VLP system parameters,
consisting ofRp, S, σ2, lr, nr, l

i
t, n

i
t, mi, Ei

1, Ei
2, and

Ei
3 for i ∈ {1, . . . , NL}. In general, the knowledge of the

receiver related parameters except forlr; namely,Rp, S, σ2,
and nr, can be available at the VLC receiver or obtained
by it via previous observations or sensor (e.g., gyroscope)
measurements. Similarly, the knowledge of the transmitter
related parameters,lit, n

i
t, mi, Ei

1, Ei
2, andEi

3, are available
at the LED transmitters. Since the knowledge of some system
parameters (e.g.,nr) may be imperfect andlr is unknown in
general, it is not possible to knowΓ perfectly. Hence, a robust
approach should be taken by employing a suitable uncertainty
model for the information aboutΓ. �

B. Practical Constraints on LED Powers

Before the formulation of the optimization problem, the
constraint sets on the LED powers should be specified. These
limitations are due to practical concerns such as hardware
requirements and desired ambient illumination levels.

(i) Individual bounds on each of the allocated LED powers
exist for guaranteeing the operation of each LED in the
linear region so as to provide efficient optical energy
conversion and also to prevent self-heating resulting from
high currents flowing through the LEDs. Thus, the con-
straint setP1 in [20, Eq. 12] must be considered, which
is stated as follows:

P1 , {p ∈ R
NL : plb � p � pub} (10)

whereplb ∈ R
NL andpub ∈ R

NL represent, respectively,
the lower and upper bounds onp in (5).

(ii) The fact that VLP systems are used for illumination
purposes in indoor scenarios may necessitate particular
locations over the region to have illumination limitations.
Therefore, we have the constraint setP3 specified in [20,
Eq. 17], which is expressed as

P3 , {p ∈ R
NL : Iind(xℓ,p) ≥ Ĩℓ, ℓ = 1, . . . , L} (11)

with L denoting the number of locations at which the
illuminance constraint should be satisfied andĨℓ being
the illuminance constraint for locationxℓ. In addition,
Iind(xℓ,p) in (11) is given by [20]

Iind(xℓ,p) =

NL∑

i=1

√
Pi φi(xℓ)

with

φi(x) =
(mi + 1)κiẼ

opt
i

[
(x− l

i
t)

T
n

i
t

]mi

(lit,3 − x3)

2π‖x− l
i
t‖mi+3

(12)

where Ẽopt
i ,

∫ Ts,i

0 s̃i(t)dt
/
Ts,i and κi represents the

luminous efficacy (lm/W) of theith LED [29]. It is noted
that the illumination constraints are related to the DC
levels of the transmitted signals.

(iii) In some scenarios, an additional average illuminance
constraint over a certain region (e.g., the entire indoor
region) may exist. In order to handle such situations, we
induce the constraint setP4 in [20, Eq. 19], which can
be stated as

P4 ,

{
p ∈ R

NL :

NL∑

i=1

√
Pi

|A|

∫

A

φi(x)dx ≥ Ĩavg
}

(13)

whereA denotes the region,|A| is the volume ofA,
φi(x) is as in (12), andĨavg represents the average
illuminance constraint.

C. Robust Minimization of Total Power Consumption via
Chance Constrained Programming

The aim is to perform optimal power allocation among
the LED transmitters in order to minimize their total power
consumption under a constraint on the localization accuracy
of the VLC receiver as well as the practical constraints in
Sec. III-B. This power allocation operation is performed by
a central controller (e.g., a micro-controller) that sets the
parameters of the LED transmitters [19]. Since the knowledge
of the system parameters that determineΓ (hence, the CRLB)
may not be available at the central controller (Remark 1),
the power allocation should be performed in the presence of
imperfect knowledge. Therefore, a robust constraint should be
considered for the localization accuracy of the VLC receiver.
If upper and lower bounds on the error related to each
system parameter are known, a deterministic norm-bounded
uncertainty model as in [20] can be employed forΓ. However,
such knowledge may not always be available due to stochastic
nature of error sources in measuring some parameters. As
an alternative approach, we propose a stochastic uncertainty
model in this work. Namely, we model the uncertainty in the
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measurement of the actual localization parameter matrixΓ

by considering the measured value ofΓ as Γ̃ = Γ + ∆Γ,
where ∆Γ represents the stochastic error matrix. The fact
that the measured matrix̃Γ is obtained as a result of the
noisy estimates of the true matrixΓ leads us to consider
the error matrix∆Γ having a certain probabilistic struc-
ture [30]–[33]. Similar to RF [23], [30] and visible light
[21], [22] based models, we can model the free entries2 in
∆Γ ∈ R

3NL×3 as independent and identically distributed
zero mean Gaussian random variables with varianceσ2

e , i.e.,
∆Γjk ∼ N (0, σ2

e), where∆Γjk is the (j, k)th entry in∆Γ

for (j, k) ∈ {1, . . . , 3NL} × {1, 2, 3}. This can alternatively
be stated as

[
vd(∆Γ)
vod(∆Γ)

]
∼ N

([
0

0

]
,

[
σ2
eI3NL

0

0 σ2
eI3NL

])
(14)

wherevd(Γ) andvod(Γ) (both R
3NL×3 → R

3NL×1) denote
the vectorization operators to stack the diagonal (i.e.,γγγj,j for
j ∈ {1, 2, 3}) and the off-diagonal (i.e.,γγγj,k for j 6= k and
j, k ∈ {1, 2, 3}) columns of any matrixΓ ∈ R

3NL×3 having
the structure in (8).

Remark 2: The use of the Gaussian error model in (14),
which is also employed in [21]–[23], [30], can be justified
by the fact that the Gaussian distribution corresponds to the
worst-case scenario as it maximizes the differential entropy for
a given mean and variance. Hence, it leads to a conservative
(robust) approach. �

Remark 3: Referring to Remark 1, the transmitter related
parameters,lit, n

i
t, mi, Ei

1, Ei
2, andEi

3, are already available
at the central controller, and the receiver related parameters,
Rp, S, σ2, andnr, can be sent to the central controller via
the uplink (e.g., via WiFi or infrared links [17], [19]). In
addition, the position estimate at the VLC receiver can be sent
to the central controller regularly so that it can have imperfect
knowledge oflr for the power allocation operation in the next
cycle. Overall, the uncertainty in the knowledge ofΓ is caused
by many factors such as the errors in measuring parameters,
the errors during communications from the VLC receiver to
the central controller, and the dynamics of the VLC receiver.�

As the Gaussian distributed errors∆Γjk are unbounded,
a worst-case constraint on the CRLB cannot be imposed.
Therefore, in order to handle such uncertainties, we propose
a chance constrained programmingbased optimization ap-
proach, where we introduce an upper constraintζ on the
probability that the CRLB exceeds a certain levelǫ. This
constraint can be stated as

Prob∆Γ

{
trace{J−1(p)

}
≤ ǫ} ≥ 1− ζ (15)

where∆Γ has the distribution specified in (14) andǫ repre-
sents the threshold value that the CRLB is expected to exceed
only by a maximum chance ofζ ∈ (0, 1), which is called
the localization accuracy outage probability. (For notational
simplicity, we omit subscript∆Γ in (15) in the remainder
of the manuscript.) The minimum total power consumption

2It is noted thatΓ in (8) contains6NL free entries asγγγk1,k2
= γγγk2,k1

.

problem with the localization accuracy outage probability
constraint can then be proposed as

minimize
p

1Tp (16a)

subject to Prob
{
trace{J−1(p)

}
≤ ǫ} ≥ 1− ζ (16b)

p ∈ P (16c)

whereJ(p) = (I3 ⊗ p)T (Γ̃ − ∆Γ) is the FIM given in (7)
andP , P1 ∩ P3 ∩ P4 stands for the practical LED power
constraints mentioned in Sec. III-B (please see (10), (11),and
(13)).

Since the chance constraint in (16b) is not computationally
tractable, we resort to thesphere boundingmethod to derive a
tractable convex constraint that provides a safe approximation
to (16b) in the sense that any point satisfying the new
constraint also satisfies (16b) [33]. The following proposition
presents a worst-case type deterministic condition under which
the probabilistic constraint (16b) always holds.

Proposition 1. Let B , {Ψ ∈ R
3NL×3 : ||Ψ|| ≤ ξ}, where

|| · || denotes the matrix spectral norm andξ is defined as

ξ , σe

√
3Φ−1

χ2

3NL

(√
1− ζ

)
(17)

with Φ−1
χ2

3NL

(·) denoting the inverse cumulative distribution

function (CDF) of a chi-squared random variable with3NL

degrees of freedom. Then, the following implication holds true:

trace{[(I3 ⊗ p)T (Γ̃−Ψ)]−1} ≤ ǫ, ∀Ψ ∈ B =⇒
Prob

{
trace{[(I3 ⊗ p)T (Γ̃−∆Γ)]−1} ≤ ǫ

}
≥ 1− ζ.

(18)

Proof. We define new setsBs and B̃ as

Bs ,

{
Ψ ∈ R

3NL×3 : ||vd(Ψ)||2 ≤ ξ√
3
,

||vod(Ψ)||2 ≤ ξ√
3

}
(19)

and
B̃ , {Ψ ∈ R

3NL×3 : ||Ψ||F ≤ ξ} (20)

where|| · ||F denotes the Frobenius norm. First, we note that

Prob{∆Γ ∈ Bs}

= Prob

{
||vd(∆Γ)||2 ≤ ξ√

3

}
Prob

{
||vod(∆Γ)||2 ≤ ξ√

3

}

(21a)

=

[
Prob

{
(||vd(∆Γ)||2/σe)

2 ≤ Φ−1
χ2

3NL

(√
1− ζ

)}]2

(21b)

= 1− ζ (21c)

where (21a) follows from (19) and (14), (21b) is based on (17),
and (21c) is due to (14) and the definition ofΦ−1

χ2

3NL

(·). Now,

assume that the left-hand-side (LHS) of (18) is satisfied. Since
Bs ⊆ B̃ via (19) and (20), and̃B ⊆ B via ||Ψ|| ≤ ||Ψ||F , we
obtain

trace{[(I3 ⊗ p)T (Γ̃−Ψ)]−1} ≤ ǫ, ∀Ψ ∈ Bs. (22)
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Then, we have

Prob
{
trace

{
[(I3 ⊗ p)T (Γ̃−∆Γ)]−1

}
≤ ǫ

}

≥ Prob{∆Γ ∈ Bs} (23)

which yields the desired result in (18) via (21). �

Based on the implication in (18), the constraint (16b) can be
replaced by the LHS of (18), which can be transformed into a
set of linear matrix inequality (LMI) constraints. Proposition
2 asserts to construct a convex optimization problem that con-
stitutes a conservative tractable approximation of the original
problem in (16).

Proposition 2. The chance constrained problem in(16) can
safely be approximated through the following convex optimiza-
tion problem (i.e., any feasible point of(24) is feasible for
(16)):

minimize
p,H,s,µ

1Tp (24a)

subject to trace{H} ≤ ǫ−Ds (24b)

Φ(p,H, s, µ) � 0,H � 0, µ ≥ 0 (24c)

p ∈ P (24d)

whereD stands for the dimension of localization,H, s, and
µ are auxiliary variables, and

Φ(p,H, s, µ)

,




H+ sI I 0

I (I3 ⊗ p)T Γ̃− µI − ξ
2 (I3 ⊗ p)T

0 − ξ
2 (I3 ⊗ p) µI



 , (25)

with ξ being defined in(17).

Proof. Following the same steps as in the proof of [20, Prop.
3], the LHS of (18) can be shown to be equivalent to the LMI
constraints in (24b)-(24d). Hence, according to Proposition 1,
the feasible region of (24) is contained entirely in the feasible
region of (16). �

Based on Proposition 2, the convex optimization problem
in (24) can be solved to perform power efficient localization
in VLP systems by satisfying the chance constraint in (16b)
as well as the practical constraints in (16c).

IV. N UMERICAL RESULTS

In this section, we present a numerical example to in-
vestigate the performance of the proposed approach for the
chance constrained minimum total power consumption prob-
lem. We consider an asynchronous VLP setup in a room
of size 10 × 10 × 5m3 with NL = 4 LED transmitters
and a VLC receiver whose locations and orientations are as
specified in [20, Table I]. The scaled version of the signal
transmitted from theith LED transmitter is modeled as̃si(t) =
2
3 (1 − cos(2πt/Ts,i))(1 + cos(2πfc,it)) for i = 1, . . . , NL

and t ∈ [0, Ts,i], where the pulse widthTs,i and the center
frequencyfc,i along with the other simulation parameters are
as provided in [20, Table II]. The robust strategy illustrated in
Fig. 1 refers to the solution of the convex approximation in
(24). This strategy is compared with the non-robust strategy

of solving the worst-case accuracy constrained optimization
problem using the noisy measurementΓ̃, which can be for-
mulated as [20]

minimize
p

1Tp (26a)

subject to trace{[(I3 ⊗ p)T Γ̃]−1} ≤ ǫ (26b)

p ∈ P (26c)

and also with the uniform power allocation strategy of

Pi = trace{[(I3 ⊗ 1)T Γ̃]−1}/ǫ (27)

for i ∈ {1, . . . , NL}.
Figs. 1(a) and 1(b) show the CDF of the CRLB for

different noise variances in (14), namely,σ2
e = 10−4 and

σ2
e = 4 × 10−4, respectively, where the outage probability

limit in (16) is set toζ = 0.15. We observe that the proposed
robust strategy satisfies the probabilistic constraint in (16), i.e.,
it guarantees the specified accuracy levelǫ for 100(1−ζ)% of
the realizations. On the other hand, the other two approaches
fail to satisfy the chance constraint in (16) as they disregard the
probabilistic uncertainty inΓ. In addition, the robust strategy
tends to over-satisfy the probabilistic constraint asσe de-
creases, which indicates that the approximation in Proposition
2 becomes tighter for higher levels of uncertainty.

Fig. 2 illustrates the average power of the LEDs versus the
accuracy constraint

√
ǫ for the robust, non-robust and uniform

power allocation strategies, whereζ = 0.15 andσ2
e = 10−4.

It is observed that the uniform power allocation strategy
consumes the highest transmit powers. Also, it is noted that
the relative performance gain of the proposed robust strategy is
achieved at the cost of higher transmit powers than those in the
non-robust approach. However, it should be emphasized that
the robust strategy provides a solid theoretical guaranteefor
satisfying the chance constraint in (16) unlike the non-robust
and uniform power allocation approaches.

V. CONCLUDING REMARKS

In this work, the minimization of total power consumption
in LED transmitters in a VLP system has been considered
via a chance constrained programming approach. We have
formulated the problem with a stochastic uncertainty modelfor
the localization parameters. This yields an optimization prob-
lem having an intractable non-convex constraint related tothe
probability that the localization CRLB exceeds a certain level
as well as constraints on LED powers regarding the hardware
requirements and the illumination task of the VLP system.
We have demonstrated that the sphere bounding method can
be applied to approximate the non-convex constraint with a
convex one, which facilitates the solution of the minimum total
power consumption problem via standard convex optimization
tools. The numerical results show that via the proposed ro-
bust approach, constraints on the localization accuracy outage
probability can always be satisfied as opposed to the uniform
and non-robust strategies, with a power consumption level in
between the two.
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Fig. 1: CDF of localization CRLBs achieved by robust, non-robust, and
uniform strategies in case of stochastic uncertainty, where the accuracy
constraint on CRLB in (16) is set to

√
ǫ = 0.06 m, the outage probability

constraint isζ = 0.15, and two different noise variances, (a)σ2
e = 10−4

and (b)σ2
e = 4× 10−4, are considered.
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√
ǫ for robust, non-robust and uniform power allocation strategies,

where the outage constraint isζ = 0.15 and the noise variance isσ2
e = 10−4.


