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Sensor Selection and Design for Binary Hypothesis
Testing in the Presence of a Cost Constraint

Berkay Oymak, Berkan Dulek, and Sinan Gezici

Abstract—We consider a sensor selection problem for binary
hypothesis testing with cost-constrained measurements. Random
outputs related to a parameter vector of interest are assumed to
be generated by a linear system corrupted with Gaussian noise.
The aim is to decide on the state of the parameter vector based on
a set of measurements collected by a limited number of sensors.
The cost of each sensor measurement is determined by the
number of amplitude levels that can reliably be distinguished. By
imposing constraints on the total cost and the maximum number
of sensors that can be employed, a sensor selection problem
is formulated in order to maximize the detection performance
for binary hypothesis testing. By characterizing the form of the
solution corresponding to a relaxed version of the optimization
problem, a computationally efficient algorithm with near optimal
performance is proposed. In addition to the case of fixed sensor
measurement costs, we also consider the case where they are
subject to design. In particular, the problem of allocating the
total cost budget to a limited number of sensors is addressed
by designing the measurement accuracy (i.e., the noise variance)
of each sensor to be employed in the detection procedure. The
optimal solution is obtained in closed form. Numerical examples
are presented to corroborate the proposed methods.2

Index Terms– Detection, sensor selection, cost constraint.

I. INTRODUCTION

With the increasing availability of sensors, performance
of detection and estimation methods based on information
gathered from multiple sensors has become more important.
While various optimality criteria, such as Bayesian detection
and estimation, Neyman-Pearson detection, and minimum
variance unbiased estimation, are investigated extensively in
the literature [1], additional challenges arise from practical
considerations in sensor networks. These challenges are com-
monly related to limited resources such as power, bandwidth,
and number and quality of sensors in the network.

There exist several studies in the literature that focus on
the objective of maximizing detection/estimation performance
in sensor networks while satisfying system-level constraints
related to communication bandwidth, transmission power, and
sensor costs [2]–[11]. In [2], the optimal cost allocation
problem in a sensor network is investigated for centralized
and decentralized detection, where it is assumed that sensors
with higher costs provide less noisy measurements. Detection
performance is assessed according to Bayesian, Neyman-
Pearson and J-divergence criteria, and optimal cost allocation
strategies are provided. The works in [3] and [4] address
performance of parameter estimation with cost-constrained
measurements in sensor networks. In [3], the problem of
optimal cost allocation to measurement devices is investigated
in order to maximize the average Fisher information about a
vector parameter. A closed-form solution is obtained for the
case of Gaussian noise. On the other hand, in [4], the authors
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focus on the minimization of the total measurement cost while
satisfying several estimation accuracy constraints. Closed form
solutions are obtained when the system measurement matrix is
invertible and the noise is Gaussian. Extensions that take into
account the uncertainty on the system measurement matrix are
also analyzed. In [5], a distributed detection problem in the
presence of transmission power constraints on sensor nodes
and communication bandwidth constraints between sensors
and a fusion center is considered. By assuming independent
and identically distributed (i.i.d.) sensor measurements, multi-
ple and parallel access channel models are investigated under
bandwidth constraints. An asymptotically optimal decision
strategy is obtained for a multiple access channel, where
each sensor transmits its local likelihood ratio with constant
power to a fusion center. In [6], a detection problem in sensor
networks is investigated, where costs due to performing mea-
surements at each sensor as well as those due to transmissions
from sensors to a fusion center are considered. The solution
under such cost constraints leads to a randomized scheme
that specifies when sensors should transmit data and make
measurements. Examples in which the joint optimization over
all sensor nodes decouples into individual optimizations at
each sensor node are presented.

In addition to communication bandwidth and transmission
power constraints in sensor networks, limitations on the
number of actively used sensors are also important. In fact,
the number of sensors activated simultaneously has direct
implications on both communication bandwidth and total
power consumption. Commonly, it is desirable to constrain
the number of active sensors without sacrificing performance.
Thus, the sensor selection problem arises naturally in resource
constrained sensor networks. Some applications of sensor se-
lection are sensor coverage [12], target localization [13], [14],
discrete event systems [15], Internet of Things [16], and sensor
placement [17], [18]. The information theory framework is
also employed as a basis for sensor selection in [19]–[22]. To
highlight main aspects and challenges in the sensor selection
problem, we summarize several related papers in the literature.
In [23], sensor selection is carried out to determine the most
informative subset of sensors in a wireless sensor network
(WSN) for a detection problem. It is shown that the sensor
selection problem is NP-hard, and computationally efficient
algorithms are provided to obtain near optimal solutions under
Kullback-Leibler (KL) and Chernoff criteria. In [24], a sen-
sor selection problem is formulated for parameter estimation
under Gaussian noise. An intuitive method based on convex
relaxation is described in order to approximately solve the
problem. Numerical experiments are provided to demonstrate
the proposed method. Also, additional constraints to the sensor
selection problem are outlined for which the proposed method
remains effective. An entropy based sensor selection approach
in the context of target localization is proposed in [25].
The sensor selection problem is addressed to minimize the
estimation error in target localization in [26], where the authors
formulate an optimization problem with a constraint on the
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number of sensors employed for measuring the target position.
An algorithm to obtain an approximate solution is presented,
and it is shown that the estimation error is not higher than the
twice of the minimum achievable error. (The reader is referred
to [27] for commonly employed sensor selection schemes in
target tracking and localization.) The study in [28] focuses on
the optimal design of a WSN using different classes of sensors,
where each class of sensors has a cost and measurement
characteristic. The aim is to find the optimal number of sensors
to choose from each class so that the detection performance
based on the symmetric KL divergence is maximized. It is
shown that the KL divergence and the number of sensors of
each class are linearly related. The results indicate that it is
optimal to choose all sensors from the class with the best
performance to cost ratio. In [29], a sensor selection problem
is formulated for state estimation of dynamic systems such as
those found in large space structures. In the problem statement,
it is required to select a measurement subsystem out of several
candidates. A sensor selection policy is presented as an on-
line algorithm which selects the measurement subsystem that
provides the maximum information along the principal state
space direction associated with the largest estimation error.
The work in [30] investigates a failure diagnosis system, in
which each subset of sensors can be used to make a diagnosis
observation with a certain cost and failure detection proba-
bility. It is aimed to determine the cheapest combination of
sensors that guarantee a certain probability of failure detection
when a certain number of observations are made. A method
that identifies this subset with the minimum number of trials
is proposed. In [31], spectrum sensing with multiple sensors is
considered. The aim is to find a subset that guarantees reliable
sensing performance. It is pointed out that it is crucial to select
sensors that experience uncorrelated fading; meaning that they
should be spatially separated. Assuming limited knowledge
on sensor positions, iterative suboptimal algorithms that are
based on correlation measure, estimated sensor position, and
radius information are proposed and compared with random
sensor selection. In [32], a dynamic sensor selection algorithm
is devised for a wearable sensor network that performs real-
time activity recognition. It is shown that by utilizing the
selection algorithm, a desired level of classification accuracy
is sustained while increasing network lifetime significantly.
In [33], the sensor selection problem is considered in the
distributed detection framework. One particular application
is to detect hot spots (i.e., the areas where the temperature
exceeds a certain threshold) of a multi-core processor for
subsequent control actions. In the theoretical formulation of
the problem, the authors aim at minimizing the number of
data acquired from the sensors while maintaining a desired
detection performance, expressed in terms of the Bayesian
probability of error as well as miss detection and false alarm
probabilities. The major distinction between their work and
ours is that in selecting the best subset of sensor data samples
that result in a desired detection probability, they do not dis-
tinguish between the costs of different sensor measurements.
An explicit sensor measurement cost function is not employed.
As a result, the sensing, storage, transmission, and processing
costs are assumed to be identical for all the sensors as each
sensor enters into the optimization function via the `0−quasi
norm which only accounts for the presence/absence of the data
from a particular sensor.

As noted from the aforementioned literature, optimal re-
source allocation to improve detection performance in cost
constrained sensor networks is considered in various studies.

However, an in-depth analysis of the sensor selection problem
under a cost constraint related to the measurement quality of
the employed sensors is lacking in the literature. In this work,
we propose an optimal sensor selection method that minimizes
the Bayes risk while satisfying a total cost constraint related to
the measurement accuracy of the sensors. As in most sensor
selection problems, the corresponding optimization problem
emerges as a zero-one integer linear programming problem
[34], which is known to be NP-complete [35]. Although there
exist methods to find an optimal solution to such problems,
such as the branch and bound method given in [35], [36],
they turn out to be practically ineffective in terms of the
running time unless

(
Ns

K

)
is small, where Ns is the number

of available observations and K is the number of sensors
(equivalently, the effective number of observations that can
be measured by the sensors). In this paper, we first relax
the binary constraint (that a sensor is either selected or not)
into a linear constraint, which leads to a linearly constrained
linear optimization problem. Then, the form of the solution
to the relaxed problem is characterized theoretically and a
numerical algorithm with reduced computational complexity
is presented to obtain the solution. Based on the solution of
the relaxed problem, a feasible set of sensors are selected
using a local optimization approach. The effectiveness of the
proposed approach is demonstrated by depicting the perfor-
mance difference between the bound provided by the solution
of the relaxed problem and the objective value attained by the
proposed sensor selection algorithm. Also, comparisons with
alternative heuristic approaches are provided to highlight the
efficiency of our method. As an extension, we also consider
the case where sensors (i.e., their noise variances) are subject
to design, and a joint sensor selection and design method
is developed. The optimal solution to this joint problem is
given in closed form, where the parameter of the solution can
be determined by a practical algorithm. Numerical examples
are presented to illustrate the effectiveness of the proposed
approach.

The main contributions of this paper can be summarized as
follows:
• Based on the cost definition in [37], we propose a cost-

constrained sensor selection problem for binary hypoth-
esis testing to minimize the Bayes risk under a linear
system model corrupted with Gaussian noise.

• It is shown that the solution to the linearly relaxed
problem contains at most two non-integer elements and
an approximate solution with near optimal performance
is developed based on this observation.

• The optimal solution is obtained in closed form when the
accuracy, measured by the noise variances, of individual
sensors is also subject to design.

The rest of this paper is organized as follows. In Section
II, we present the measurement model for the a generic linear
system. In Section III, an approximate solution is developed
for determining which sensors should be employed to collect
the measurements when the cost of each sensor measurement
is given. In Section IV, we analyze the problem of joint sensor
selection and design, and characterize the optimal solution.
In Section V, we provide numerical examples to evaluate the
performance of the proposed methods. We conclude with some
remarks in Section VI.

II. SYSTEM MODEL

Let Θ ∈ RL represent a parameter vector of interest. This
parameter vector is processed by a noisy linear system and the
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corresponding outputs are expressed as

xi = hTi Θ + ni , i = 1, . . . , Ns (1)

where ni is the noise in the ith system output and hi is an
L× 1 vector representing the coefficients of the linear system
related to output i. The output of the linear system in (1) can
be measured by Ns potential sensors as follows:

yi = xi +mi , i = 1, . . . , Ns (2)

where mi is the measurement noise of the ith sensor.
In a more compact manner, the system outputs in (1) and

the potential measurements in (2) can be expressed as

x = HTΘ + n and y = x + m , (3)

respectively, where H = [h1,h2, . . . ,hNs ] is the L×Ns sys-
tem matrix, x = [x1, x2, . . . , xNs

]T , n = [n1, n2, . . . , nNs
]T ,

y = [y1, y2, . . . , yNs ]T , and m = [m1,m2, . . . ,mNs ]T .
As in [4] and [24], the noise components are modeled
as independent Gaussian random variables with zero mean,
that is, ni ∼ N (0, σ2

ni
) and mi ∼ N (0, σ2

mi
) for i =

1, . . . , Ns. In the vector notation, n ∼ N (0, Σ) and m ∼
N (0, Σm), where Σ = diag{σ2

n1
, σ2
n2
, . . . , σ2

nNs
} and Σm =

diag{σ2
m1
, σ2
m2
, . . . , σ2

mNs
}. In addition, it is assumed that the

measurement noise m is independent of the system noise n.
We place no restrictions on the system matrix H. For

example, in wave optics, H may represent the real equivalent
of the fractional Fourier transform matrix, which provides a
convenient approximation of the Fresnel diffraction integral
that relates the measured field to the unknown field [37].
H is dictated by the physics of the underlying phenomenon
and n is an intrinsic part of the relation between x and Θ,
which we have no control over. On the other hand, m is the
noise associated with the employed measurement device and
depends on our choices.

III. SENSOR SELECTION FOR BINARY HYPOTHESIS
TESTING

Since Ns can be very large in various scenarios, it is
an important problem to choose a subset of the Ns system
outputs for measurement in an optimal manner, which is
called the sensor selection problem in the literature [13],
[15], [23], [24], [26], [31], [32], [38]. In particular, the aim
is to optimize a certain performance metric while making
measurements with at most K out of Ns potential sensors. To
represent the selection operation, we define a selection vector
z = [z1, z2, . . . , zNs ]T that specifies whether the ith sensor is
selected (i.e., zi = 1 if the ith sensor is selected and zi = 0
otherwise). We denote the number of selected sensors as k,
that is, 1T z = k, where 1 represents a column vector of ones
and k ≤ K. For notational convenience, we also introduce an
injective function f : {1, 2, . . . , k} → {1, 2, . . . , Ns}, where
f(i) denotes the index of the ith selected sensor. Then, we
construct a k × Ns selection matrix Z, in which k of the
columns are unit vectors eNs,1, eNs,2 . . . , eNs,k (ej,i is defined
as a column vector of length j and it has a 1 at the ith
position and 0 elsewhere), and the other columns are zero
vectors. In the selection matrix Z, the column indices of the
unit vectors specify the selected sensors. It is noted that Z can
be constructed from z and f as follows:

rowi(Z) = eTk,f(i) , i = 1, 2, . . . , k (4)

where rowi(Z) denotes the ith row of Z. Also, z can be
obtained from Z simply as z = diag(ZTZ), where diag(ZTZ)

Fig. 1: System block diagram.

represents a column vector consisting of the diagonal elements
of ZTZ. As an example, for Ns = 4, when the second
and third system outputs are selected, we have k = 2,
z = [0 , 1 , 1 , 0]T , f(1) = 2, f(2) = 3 and we construct the

selection matrix as Z =

[
0 1 0 0
0 0 1 0

]
.

Based on the selection matrix Z, the sensor selection
operation can be expressed as

ỹ , Zy = Zx + Zm , x̃ + m̃ . (5)

Namely, k out of Ns system outputs are measured via k
sensors. The resulting system and measurement model is
illustrated in Fig. 1.

For the cost of making a sensor measurement, we employ
the measurement cost model proposed in [37]. Specifically, the
cost of making a measurement via sensor i is given by [37]

ci = 0.5 log2

(
1 +

σ2
ni

σ2
mi

)
(6)

Similar to [2]–[4], we consider the expression in (6) as the cost
of making a measurement with sensor i in our problem for-
mulation. The important properties of this cost model are that
it is nonnegative, monotonically decreasing, and convex with
respect to σ2

mi
. Considering sensor i associated with system

output xi, a higher cost means a more accurate measurement,
yi (see (2)). The sensor measurement model specified by (2)
and (6) is first introduced in [37], where the physical problem
of measuring the propagating wave field at a certain number of
points and estimating the values of the field at other locations
is considered. The aim was to recover the wave field as
economically as possible based on a trade-off between the
estimation accuracy and the cost of performing measurements.
The plausibility of the proposed measurement cost function
is discussed in meticulous detail in [37, Section III]. It is
assumed that the ranges of measurement devices can be chosen
freely to match any interval (similar to scaling the range of
a multimeter) and the cost of the measurements is solely
determined by the number of quantization levels it can reliably
distinguish. The connections of the measurement problem with
communication and rate-distortion theories via the Shannon’s
formula for the capacity of a Gaussian noise channel were also
discussed.

Suppose that the parameter vector Θ takes one of two
possible values. Namely, there exist two hypotheses defined as
H0 : Θ = Θ0 andH1 : Θ = Θ1, where the prior probability
ofHi is denoted by πi. The conditional probability distribution
of the selected measurements ỹ in (5) can be specified, based
on the system model in Section II, as

ỹ |Hi ∼ N
(
ZHTΘi , Z (Σ + Σm) ZT

)
(7)

for i ∈ {0, 1}. To determine the true hypothesis, we employ
the Bayes rule, denoted by δB(ỹ), which minimizes the
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Bayes risk among all possible decision rules [1]. Assuming
uniform cost assignment (UCA), the Bayes rule reduces to the
maximum a posteriori probability (MAP) decision rule, which
achieves the following Bayes risk (equivalently, the average
probability of error) [2]:

r(δB) = π0Q

(
ln(π0/π1)

d
+
d

2

)
+ π1Q

(
d

2
− ln(π0/π1)

d

)
(8)

where π0 and π1 denote the prior probabilities of H0 and H1,
respectively, and

d ,
( (

ZHTΘ1 − ZHTΘ0

)T (
Z(Σ + Σm)ZT

)−1

×
(
ZHTΘ1 − ZHTΘ0

) )1/2

(9)

The expression in (9) can also be written as

d =
(

(Θ1 −Θ0)THZT
(
Z(Σ + Σm)ZT

)−1

× ZHT (Θ1 −Θ0)
)1/2

(10)

Based on the definition of the selection matrix Z, d in (10)
can be stated, after some manipulation, as

d =

√√√√ Ns∑
i=1

zi
(hTi (Θ1 −Θ0))2

σ2
ni

+ σ2
mi

(11)

The aim is to minimize the Bayes risk r(δB) under a total
cost constraint, specified by CT , by making measurements
with at most K sensors. Since it is known that r(δB) in (8)
is a monotonically decreasing function of d [2], maximizing
d is equivalent to minimizing the Bayes risk. Therefore, we
propose the following sensor selection problem for binary
hypothesis-testing:

maximize
z

Ns∑
i=1

zipi

subject to

Ns∑
i=1

zici ≤ CT (12)

Ns∑
i=1

zi ≤ K

zi ∈ {0, 1}, i = 1, 2, . . . , Ns

where ci is given by (6) and pi is defined as

pi ,

(
hTi (Θ1 −Θ0)

)2
σ2
ni

+ σ2
mi

· (13)

Due to its combinatorial nature, the problem in (12) can be
very complex to solve unless

(
Ns

K

)
is small. To simplify the

problem, the last constraint can be relaxed as 0 ≤ zi ≤ 1,
i = 1, . . . , Ns, and a suitable optimization algorithm can be
employed to obtain a solution for z. Then, the elements of
that solution can be used to determine the selected sensors.

Relaxing the last constraint in (12), we obtain the following
convex optimization problem:

maximize
z

Ns∑
i=1

zipi

subject to

Ns∑
i=1

zici ≤ CT (14)

Ns∑
i=1

zi ≤ K

0 ≤ zi ≤ 1, i = 1, 2, . . . , Ns

The problem in (14) is a linearly constrained linear opti-
mization problem. Hence, it can be solved efficiently via
linear/convex optimization algorithms [39] such as the simplex
method [40] and the interior point method [34]. Since the
feasible region of (12) is contained in that of (14), the solution
of (14) leads to an equal or higher objective value and provides
a performance upper bound on the original problem in (12).
Hence, (14) can be used to evaluate performance of suboptimal
solution methods. In addition, the solution to (14) can be used
as an initial point for developing close-to-optimal solutions of
(12) with low computational complexity, as discussed towards
the end of this section.

It is possible to specify the form of an optimal solution to
(14) based on theoretical analysis. Towards that aim, we first
provide the following two lemmas:

Lemma 1. Let NL denote the number of distinct sets that
consist of indices of sensors having K largest pi’s, and let
B1, B2, . . . , BNL

represent these sets. Assume that there exists
j ∈ {1, 2, . . . , NL}, such that CT ≥

∑
i∈Bj

ci, where ci is as
defined in (6). Then, z∗ is a solution to (14) (and also to (12)),
where the elements of z∗ are given by

z∗i =

{
0 , i 6∈ Bj
1 , i ∈ Bj

. (15)

Proof: Please see Appendix A.
To clarify the definition of the sets in Lemma 1, consider an

example in which Ns = 5, K = 3, and [p1, p2, p3, p5, p5] =
[20, 18, 22, 5, 18]. Then, the sets in the lemma are obtained as
B1 = {1, 2, 3} and B2 = {1, 3, 5} with NL = 2. Basically,
Lemma 1 states that if the cost budget allows the use of any
best K sensors, it is optimal to select them.

Lemma 2. Suppose that the optimization problem in (14) is
feasible and let B1, B2, . . . , BNL

denote the sets of indices of
K largest pi’s. If CT <

∑
i∈Bj

ci for all j ∈ {1, 2, . . . , NL},
then there exists a solution z∗ to (14) that satisfies

Ns∑
i=1

z∗i ci = CT (16)

Proof: Please see [41, Sec. A.2].
Based on Lemma 1 and Lemma 2, the following proposition

is obtained related to the solution of the relaxed problem in
(14).

Proposition 1. Suppose that the optimization problem in (14)
is feasible. Then, there exists a solution z∗ to (14) that is
characterized as either of the following:
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a)
∑Ns

i=1 z
∗
i = K with

z∗i ∈


{0} , i ∈ S0

{1} , i ∈ S1

[0, 1] , i ∈ S2

, i = 1, 2, . . . , Ns (17)

where S0, S1, and S2 are disjoint sets of indices such
that

S0 ∪ S1 ∪ S2 = {1, 2, . . . , Ns} ,
|S0| = Ns −K − 1 , |S1| = K − 1 , |S2| = 2 .

(18)

b)
∑Ns

i=1 z
∗
i < K with

z∗i ∈


{0} , i ∈ S0

{1} , i ∈ S1

[0, 1] , i ∈ S2

, i = 1, 2, . . . , Ns (19)

where S0, S1, and S2 are disjoint sets of indices such
that

S0 ∪ S1 ∪ S2 = {1, 2, . . . , Ns} , |S2| = 1 (20)

Proof: Please see Appendix B.
Proposition 1 states that when the problem in (14) is

feasible, a solution can be expressed to include at most two
non-integer elements. To utilize Proposition 1 for obtaining a
solution of (14), we first consider the following problem in
which the number of selected sensors is forced to be equal to
K.

maximize
z

Ns∑
i=1

zipi

subject to

Ns∑
i=1

zici ≤ CT (21)

Ns∑
i=1

zi = K

0 ≤ zi ≤ 1, i = 1, 2, . . . , Ns

For this problem, Proposition 1 implies that a solution z∗

conforming to (17) and (18) can be found. In particular, K−1
or K elements of such a solution are one, and Ns − K − 1
or Ns −K elements are zero. This characterization is helpful
for obtaining the solution of (21) in a low-complexity manner.
An algorithm is proposed for this purpose, which is presented
as Algorithm 1 (please see Section III-A for the complexity
analysis of Algorithm 1).

The main idea behind Algorithm 1 can be explained
as follows: The algorithm initially checks whether any set
of sensors with K largest pi’s satisfies the cost constraint
(cf. Lemma 1). If no such set exists, the algorithm searches
for the two possibly non-integer components of the solution
by enumerating all

(
Ns

2

)
combinations of sensor indices. For

each combination, all sensor indices are partitioned into three
disjoint sets (a set for which zi = 1, another set for which
zi = 0, and finally a set for which zi ∈ [0, 1]). Finally, it is
checked whether the Karush-Kuhn-Tucker (KKT) conditions
can be satisfied for this partition.

Although Algorithm 1 can be used to solve (21), it is not
directly applicable to the relaxed problem in (14). However,
we argue that, with a suitable change of parameters, an exact
solution to (14) can be obtained by applying Algorithm 1 on

Algorithm 1 Proposed Numerical Algorithm for the Solution
of (21)

1: obtain B1, . . . , BNL
as sets of indices of K largest pi’s.

2: if ∃ k ∈ {1, . . . , NL} s.t.
∑
i∈Bk

ci ≤ CT then
3: z∗i = 1, i ∈ Bk
4: z∗i = 0, i /∈ Bk
5: else
6: for all

(
Ns

2

)
combinations of sensor indices a, b do

7: if ca 6= cb then
8: init S0, S1, S2 as empty sets
9: calculate µ = (pa − pb)/(ca − cb)

10: calculate ν = (pbca − pacb)/(ca − cb)
11: add every sensor index s that satisfies

ps = µcs + ν to S2
12: add every sensor index s that satisfies

ps > µcs + ν to S1
13: add remaining sensor indices to S0

14: M = |S2|, N = |S1|
15: if N < K < N +M then
16: let CS2

consist of indices of cheapest
(K −N) sensors in S2

17: let ES2
consist of indices of most expensive

(K −N) sensors in S2
18: if

∑
i∈(S1∪CS2

) ci ≤ CT and
19: CT ≤

∑
i∈(S1∪ES2

) ci then
20: X0 = CS2 , t = 0
21: while

∑
i∈(S1∪Xt)

ci ≤ CT and
22: t < min{K −N,M +N −K} do
23: let mt be index of cheapest sensor in Xt

let nt be index of most expensive sensor
in S2 \Xt

24: Xt+1 = (Xt \ {mt}) ∪ {nt}
25: t = t+ 1
26: end while
27: T = t− 1
28: S21 = XT \ {mT }
29: S20 = S2 \ (XT ∪ {nT })
30: if cmT

= cnT
then

31: α = 0
32: else
33: α =

(CT−
∑

i∈(S1∪S21) ci−cmT
)

(cnT
−cmT

)

34: end if
35: z∗i = 1, i ∈ S1 ∪ S21

z∗i = 0, i ∈ S0 ∪ S20

z∗i = α, i = nT
z∗i = 1− α, i = mT

36: break
37: end if
38: end if
39: end if
40: end for
41: end if
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an equivalent problem in the form of (21). To this aim, we
define the following optimization problem:

maximize
z̄

N̄s∑
i=1

z̄ip̄i

subject to

N̄s∑
i=1

z̄ic̄i ≤ CT (22)

N̄s∑
i=1

z̄i = K

0 ≤ z̄i ≤ 1, i = 1, 2, . . . , N̄s

where

N̄s , Ns +K

c̄i ,

{
ci , i = 1, 2, . . . , Ns
0 , i = Ns + 1, Ns + 2, . . . , Ns +K

p̄i ,

{
pi , i = 1, 2, . . . , Ns
0 , i = Ns + 1, Ns + 2, . . . , Ns +K

(23)

with ci and pi being defined in (6) and (13), respectively. A
solution z∗ of the problem in (14) can be obtained from a
solution z̄∗ of (22) as follows:

z∗i = z̄∗i , i = 1, 2, . . . , Ns (24)

It is important to note that the optimization problem in (22)
can be solved via Algorithm 1 as it is in the same form as
that in (21).

The main idea behind the problem formulation in (22) is
to introduce K hypothetical outputs, which induce no cost
and no performance gain, in addition to the Ns actual system
outputs. In this way, solving the new problem with Ns + K
outputs by choosing exactly K sensors becomes equivalent to
solving the relaxed problem in (14) by choosing less than or
equal to K sensors. This conclusion mainly comes from the
introduction of slack variables to the problem in (14).

Based on our results related to the relaxed optimization
problem in (14), we propose a suboptimal solution procedure
for the original optimization problem in (12) as follows:

Proposed Suboptimal Solution to (12):
1) Obtain the equivalent relaxed problem in the form of

(22). Calculate its solution as z̄∗ via Algorithm 1. (Due
to Proposition 1-a), z̄∗ either has all integer entries or
contains exactly two non-integer entries.)

2) If z̄∗ has two non-integer entries, we generate a new
vector ẑ by setting the non-integer entry of z̄∗ with the
lower associated cost to one and the other to zero. If z̄∗

has all integer entries, ẑ is equal to z̄∗. Notice that
Ns∑
i=1

ẑici ≤
Ns∑
i=1

z̄∗i ci ≤ CT . (25)

3) Run the local optimization algorithm on ẑ (Algorithm 2),
and denote the resulting selection vector as ẑ′.

4) Obtain the proposed suboptimal solution z̃ to (12) from
ẑ′ by using the relation

z̃i = ẑ′i, i = 1, 2, . . . , Ns (26)

It should be noted that the main aim of the second step is to
modify z̄∗ in such a way that its components satisfy the last
constraint in (12) (i.e., the solution of (12) must be a binary

vector). After the second step, the entries corresponding to the
hypothetical outputs (indices from Ns+1 to Ns+K) could be
dropped from ẑ (as in (26)) to obtain a selection vector that is
in the feasible region of (12). Instead, we attempt to increase
the objective value further by considering swaps between
selected and unselected sensors starting from the selection
vector ẑ. This approach is similar to that in [24], where swaps
are performed to improve the suboptimal solution obtained
from the formulation of a relaxed selection problem. (The main
difference is that we only consider swaps that do not violate
the total cost constraint.) The swapping algorithm can be
named as ‘local optimization’ since it starts with the selection
vector denoted by ẑ (i.e., a certain point in the feasible region
of (12)) and performs a search by iterating through adjacent
points. The local optimization algorithm starts with ẑ, which
is obtained in Step 2, as described above. The algorithm seeks
to improve the objective value via swaps that do not violate
the total cost constraint. It terminates when no such swaps
can improve the objective value. (The pseudo-code of the local
optimization algorithm is provided in Algorithm 2.) Finally, in
the last step, the proposed suboptimal solution z̃ is constructed
from the first Ns entries of ẑ′, which is obtained in Step 3.

Algorithm 2 Local Optimization

1: get S1 from ẑ . set of selected sensors
2: get S0 from ẑ . set of unselected sensors
3: thisCost = cost of S1

4: top:
5: for i = 1 to K do
6: for j = 1 to Ns −K do
7: ∆cost = cost of jth element in S0 −

cost of ith element in S1
8: if thisCost + ∆cost ≤ CT then
9: ∆objValue = obj. value of jth element in S0 −

obj. value of ith element in S1
10: if ∆objValue > 0 then
11: exchange ith element of S1 with

jth element of S0
12: thisCost = thisCost + ∆cost
13: goto top.
14: end if
15: end if
16: end for
17: end for
18: construct ẑ from S1, S0

Regarding the computational complexity of Algorithm 2, it
is first noted that the termination of Algorithm 2 is guaranteed
since there exists a finite number of swaps that can improve the
objective value starting from a selection vector. The number
of iterations in Algorithm 2 can be large in theory since the
outer for loop in line 5 is re-initialized after each swap. As
proposed in [24], an upper limit can be imposed on the number
of iterations of the inner for loop in line 6. We can choose the
limit such that in our proposed suboptimal solution technique,
the local optimization stage does not dominate Algorithm 1 in
terms of the order of growth associated with the running time.
From Algorithm 2, it is observed that the operations performed
at each individual iteration require a constant time. Therefore,
the number of iterations directly determines the complexity of
the algorithm. Hence, an iteration limit that grows no faster
that N3

s can be chosen as the complexity order of Algorithm 1
is O(N3

s ) as discussed next.
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A. Complexity Analysis of Algorithm 1
In this subsection, we analyze the computational complexity

of Algorithm 1 for solving (22) under realistic settings. We
obtain an asymptotical upper bound on the order of growth of
runtime. Numerical results about the runtime of Algorithm 1
and its comparisons against the simplex and interior point
methods are presented in Section V-A.

Algorithm 1 starts with the computation of the total cost
arising from the selection of best K sensors. Since there can
exist sensors i and j with pi = pj , there can be multiple
sets of best K sensors. If such a set has a total cost not
violating the total cost constraint, CT , then selecting this set of
sensors is a solution and the algorithm terminates (Lemma 1).
When there is no set of best K sensors with a total cost not
exceeding the total cost constraint, the algorithm proceeds with
the else condition in line 5. Algorithm 1 consists of two main
functions. The first one is the enumeration of best K sensors
and the computation of the cost of selecting them. The second
one is to find the sensor pair a and b for which the KKT
conditions hold.

The function for finding the sensor pair a and b for which
the KKT conditions hold is related to the for loop in line 6.
In the worst case, this loop iterates

(
Ns

2

)
times. This occurs

when the break statement in line 36 is executed in the
(
Ns

2

)
th

iteration of the for loop. On the other hand, the while loop
in line 21 runs for at most min{K − N,M + N − K}
iterations. For the discussion here, it suffices to consider that
Ns ≥ min{K−N,M+N−K}. Apparently, this while loop is
executed only in the last iteration of the outer for loop (see the
break statement in line 36). Focusing on the execution time of
the other lines in the for loop, we have comparison operations
that divide the sensor indices to disjoint sets. The complexities
of these operations are tied linearly to the input size, Ns. Since
there are no other operations with higher order complexity, we
can multiply the linear computational effort of the individual
iterations with the quadratically growing iteration count to
specify the overall complexity. As a result, the asymptotical
upper bound on the function relating the runtime to the input
size, Ns, is O(N3

s ).
In the worst case, the enumeration process of the sets with

K largest pi’s (called as best sets) has complexity O(
(
Ns

K

)
).

In other words, the number of such sets, NL, can be as large
as
(
Ns

K

)
, which is the case when all the elements in vector p

are equal. Such a case would render the enumeration process
of best sets impractical. However, in realistic scenarios, the
elements of vector p are distinct since they depend on system
parameters and noise levels (see (13)). For example, hi can
represent the channel for the ith system output. Therefore,
in practice, the complexity of the enumeration process is
mainly related to sorting the elements of vector p, which has
a complexity of O(N2

s ) or O(Ns logNs) depending on the
employed sorting algorithm.1

Overall, for practical scenarios, the complexity of Algo-
rithm 1 can be specified as O(N3

s ).

IV. JOINT SENSOR SELECTION AND DESIGN FOR BINARY
HYPOTHESIS TESTING

In Section III, the sensor selection problem is investigated
under a cost constraint to minimize the Bayes risk for a
given binary hypothesis testing problem by considering fixed

1The hypothetical outputs, which are introduced to construct (22), do not
affect the number of sets with K largest pi’s since their pi’s are zero by
definition.

measurement noise variances (σ2
m1
, σ2
m2
, . . . , σ2

mNs
) for the

sensors, which corresponds to using sensors with fixed/given
costs. In this section, we focus on the joint selection and
design of sensors by optimally determining both the number
of sensors and their measurement noise variances (i.e., costs).
To that aim, let σ2

m denote the vector of measurement noise
variances, defined as

σ2
m ,

[
σ2
m1
, σ2
m2
, . . . , σ2

mNs

]T
. (27)

Since the aim is to optimize the selection vector z and σ2
m

jointly, we extend the sensor selection problem in (12) (also
see (6) and (13)) as follows:

maximize
z,σ2

m

Ns∑
i=1

zi

(
hTi (Θ1 −Θ0)

)2
σ2
ni

+ σ2
mi

subject to 0.5

Ns∑
i=1

zi log2

(
1 +

σ2
ni

σ2
mi

)
≤ CT (28)

Ns∑
i=1

zi ≤ K

zi ∈ {0, 1}, i = 1, 2, . . . , Ns

In other words, the Bayes risk is to be minimized over both
z and σ2

m under the cost constraint.
Before investigating the solution of the optimization prob-

lem in (28), we first consider the problem for a fixed z and
present the following optimization problem over σ2

m (called
the measurement noise variance design problem):

maximize
σ2

m

∑
i∈Z1

(
hTi (Θ1 −Θ0)

)2
σ2
ni

+ σ2
mi

subject to 0.5
∑
i∈Z1

log2

(
1 +

σ2
ni

σ2
mi

)
≤ CT (29)

σ2
mi

=∞, i ∈ Z0

where sets Z0 and Z1 are defined as

Z0 = {i ∈ {1, 2, . . . , Ns} | zi = 0} , (30)
Z1 = {i ∈ {1, 2, . . . , Ns} | zi = 1} . (31)

It is noted that the optimization variables {σ2
mi
}i∈Z0 do not af-

fect the values of the objective function and the cost constraint
since they correspond to unselected sensor measurements.
However, they are included for keeping the generality of the
formulation.

The problem in (29) is analyzed in [2]. It is shown that
since a convex function is maximized over a convex set, the
solution of (29) lies at the boundary. Namely, the solution can
be obtained by an iterative algorithm that can be outlined as
in Algorithm 3, where the following definitions are used for
the simplicity of the expressions:

µ2
i ,

(
hTi (Θ1 −Θ0)

)2
, (32)

µ2 ,
[
µ2

1, µ
2
2, . . . , µ

2
Ns

]T
, (33)

σ2
n ,

[
σ2
n1
, σ2
n2
, . . . , σ2

nNs

]T
. (34)

The complexity of Algorithm 3 is governed by the max-
imum number of iterations that the while loop in line 3
can have, and the number of operations required for the
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Algorithm 3 Optimal Variance Design [2]

1: get z,µ2,σ2
n

2: Zfin = {i ∈ {1, . . . , Ns} | zi = 1}
3: while Zfin 6= ∅ do

4: α =

(
22CT

∏
i∈Zfin

σ2
ni

µ2
i

) 1
|Zfin|

5: Sinf =
{
i ∈ {1, . . . , Ns} | (i ∈ Z1) &

(
σ2
ni
≥ αµ2

i

)}
6: if Sinf 6= ∅ then
7: i = arg min

j∈Sinf

σ2
nj

8: Zfin = Zfin \ {i}
9: else

10: break
11: end if
12: end while

13: σ2
mi

=

{
σ4
ni

µ2
iα−σ2

ni

, i ∈ Zfin
∞ , else

i = 1, 2, . . . , Ns

computation of α in each iteration (line 4). They are both
in linear relationship with the number of elements in Zfin,
which is always less than or equal to Ns. Hence, a quadratic
function asymptotically bounds the order of growth of its
runtime (O(N2

s )).
Algorithm 3 will be useful for obtaining the solution of

the joint optimization problem in (28), as discussed in the
following.

Based on (6), the measurement noise variance of the ith sen-
sor can be stated in terms of its cost as σ2

mi
= σ2

ni
/(22ci−1).

Then, the joint optimization problem in (28) can equivalently
be expressed as

maximize
z,c

Ns∑
i=1

zi
µ2
i

(
22ci − 1

)
σ2
ni

22ci

subject to zT c ≤ CT (35)
Ns∑
i=1

zi ≤ K

zi ∈ {0, 1}, i = 1, 2, . . . , Ns
ci ≥ 0, i = 1, 2, . . . , Ns

where

c , [c1, c2, . . . , cNs
] . (36)

Remark. Setting either ci = 0 or zi = 0 effectively results in
not selecting the sensor with index i .

The solution of (35) is specified by the following proposi-
tion.

Proposition 2. Let B̃ denote the set of indices corresponding
to K largest values of µ2

i /σ
2
ni

for i = 1, 2, . . . , Ns (break ties
arbitrarily). Then, a solution to the joint optimization problem
in (35) is (z∗, c∗), where the elements of z∗ are given by

z∗i =

{
1 , i ∈ B̃
0 , else

, i = 1, 2, . . . , Ns (37)

and c∗ is an optimizer of the problem in (35) when z is fixed
as z = z∗. (Namely, c∗ can be obtained via Algorithm 3 and
(6) by setting z = z∗ in (35).)

Proof: Please see Appendix C.

Proposition 2 states that it is optimal to allocate all the
cost budget to K sensors with largest values of µ2

i /σ
2
ni

ratios
among indices i = 1, 2, . . . , Ns. Intuitively, these ratios can
be regarded as the SNR values of the sensors; hence, the
sensors with highest SNRs are selected. It is also interesting
to note that the joint problem considered in this section
leads to a simpler sensor selection solution than the sensor
selection problem considered in Section III for sensors with
fixed measurement noise variances. In addition, it is noted that
the solution of (28) includes cases in which measurement noise
variances of some sensors are set to infinity, which corresponds
to assigning no cost to those sensors. In fact, this is equivalent
to not selecting (using) those sensors at all.

V. NUMERICAL EXAMPLES

In this section, we first compare Algorithm 1 with the
simplex method and the interior point method in terms of
runtime for solving the relaxed problem in (14). Then, we
provide examples for both the sensor selection problem in
Section III and the joint sensor selection and design problem
in Section IV. In the simulations, a linear system as in Fig. 1
is considered, where the number of potential sensors (Ns),
the number of sensors to select (K), the total cost constraint
(CT ) and the length of Θ (which is L) are taken as the
simulation parameters (to be specified in the related sections).
Also, parameter vector Θ is equal to Θ0 under hypothesis H0

and equal to Θ1 under hypothesis H1. The entries of Θ0 and
Θ1 are i.i.d. with each component being uniformly distributed
in the closed interval of [0, 1]. H is a system matrix of size
L × Ns and is considered to be known in advance for the
considered problems. The entries of the system matrix H are
i.i.d. random variables that are uniformly distributed in the
interval [−0.1, 0.1]. The entries of the system noise variance
vector, σ2

n, and the measurement noise variance vector, σ2
m,

also come from a uniform distribution in the interval [0.05, 1].

A. Runtime Simulation of Algorithm 1
In this part, we consider the linear optimization problem

in (14) and solve it via three different methods. The first one
is based on Algorithm 1. Specifically, the problem in (14) is
converted into the problem in (22), and the solution of (22) is
computed via Algorithm 1. Then, by dropping the indices of
the hypothetical outputs, we obtain the solution of (14) (see
(24)). The other methods are the simplex and interior point
methods, which are commonly employed for solving linear
optimization problems.

In the literature, the simplex method is investigated in
detail and its implementation is optimized so that it performs
well in most applications [42], [43]. Despite its effectiveness
in practice, it is proven that the simplex method has an
exponential complexity with respect to input size (number
of optimization variables) [42]. This is due to the fact that
in the worst case, the simplex method visits all vertices of
the feasible region.2 On the other hand, the interior point
methods address this issue and are constructed to perform
in polynomial time. As the name implies, in such methods,
optimization variables are moved to the interior of the feasible
region at each iteration. Although the interior point method is
asymptotically more efficient, special care must be taken when
evaluating optimization methods for a specific problem, which
is (14) in this case.

2By randomizing its inputs, the simplex method can have polynomial time
complexity [43].
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(a) CT = 1.4 times the cost of the cheapest K sensors.

(b) CT = 4 times the cost of the cheapest K sensors.

Fig. 2: Average running time of different methods versus Ns
for solving (14).

To obtain statistically meaningful results for the running
times of the three solution methods, we obtain 10000 real-
izations for the previously described random variables Θ0,
Θ1, H, σ2

n, and σ2
m. For each realization, we solve the cor-

responding optimization problem with the described methods
and obtain the running time of each method. In Fig. 2, we
plot the average running time of each method versus Ns for
two different values of the numbers of sensors to select (K)
and for two different cost constraints. The length of Θ (which
is denoted as L) is taken as dNs/2e. Also, the total cost
constraint (CT ) is defined as a multiple of the sum of the
costs of the cheapest K sensor measurements. The simulations
are performed on an Intel Core i7 2.6GHz PC with 16GB of
physical memory using MATLAB R2018a on a Windows 10
operating system. The simplex and interior point methods are
implemented via the “linprog” function in the Optimization
Toolbox of MATLAB.

In Fig. 2a, the total cost constraint, CT , is set to 1.4 times
the cost of the cheapest K sensors. It is seen that for Ns < 80,
it takes a shorter amount of average time for Algorithm 1
to solve the relaxed problem in (14) than the simplex and
interior point methods. However, as Ns gets larger, the runtime
performance of Algorithm 1 deteriorates. Also, it is noted that
the number of sensors to select (K) does not have significant
effects on runtime when it is changed from one third to one
half of Ns. In addition, the running times of the simplex and
interior point methods are not affected significantly from Ns
or K. In Fig. 2b, the total cost constraint is set to 4 times the
cost of the cheapest K sensors. In this case, the cost constraint
is not strict and in most cases it becomes feasible to select
K sensor measurements with highest contributions to the
objective value. Since Algorithm 1 evaluates the feasibility of
best sets of K sensors at the beginning, it achieves significantly
lower running times than the other methods in this scenario.
The execution times of the simplex and interior point methods

are not affected by this fact as they are not specifically
designed for the problem in (14).

Overall, it is concluded that when the cost constraint is not
strict or Ns is not very large, the proposed solution employing
Algorithm 1 and Algorithm 2 can be used to perform sensor
selection. On the other hand, if the cost constraint is strict and
Ns is very large, then the interior point method can be used
instead of Algorithm 1.

B. Sensor Selection for Binary Hypothesis Testing

In this part, we consider the sensor selection problem for
the described binary hypothesis testing problem and focus on
the formulation in (12). We investigate the performance of
the proposed suboptimal solution to (12) in Section III. We
consider the linear system in Fig. 1, where the value of Ns is
set to 100 and L is taken to be 20. Again, 10000 realizations
are obtained for the previously described random variables
Θ0, Θ1, H, σ2

n, and σ2
m. For each realization, we solve the

optimization problem in (12) via the proposed method (which
is described in Section III in items 1-4 preceding (26)) and
obtain the resulting values of the objective function. We then
average out the objective values for different realizations to
provide the average performance results.

We also present two different sensor selection strategies,
along with the proposed solution method, for comparison
purposes, which are described as follows:
• Simple Selection Strategy: In this strategy, sensors are

sorted in descending order according to their pi values (please
see the definition in (13)). Then, starting from the top of the
sorted list, sensors are added to the set of selected sensors one
by one until no remaining sensors can be selected (because
either selecting any of the remaining sensors results in the
violation of the cost constraint or the constraint on the number
of sensors to select, K, is achieved).
• Selection with only Local Optimization: In this strategy,

the cheapest K sensors are selected and the local optimization
algorithm (Algorithm 2) is executed based on this initial
selection.

In Figs. 3 and 4, the proposed solution (based on relaxation
and local search), the simple selection strategy, and the selec-
tion with only local optimization strategy are labeled as ‘Pro-
posed’, ‘Simple’, and ‘LocalOpt’, respectively. In addition,
‘Relaxed’ denotes the objective value achieved by the solution
of the linear optimization problem in (14), which is the relaxed
version (12). Hence, the curves labeled as ‘Relaxed’ provide
performance bounds in the considered scenarios.

In Fig. 3, the performance of the considered strategies is
presented versus the normalized total cost parameter (CT
divided by the cost of the cheapest K sensors) for two dif-
ferent values of K. For the performance metric, the objective
value in (12) achieved by each strategy is employed, which
corresponds to d2, with d being given by (11). From Fig. 3, it
is observed that the performance of all the strategies improves
as the total cost constraint CT and/or the number of selected
measurements, K, increase. Also, it is noted that the rate of
performance improvement decreases as CT increases; hence,
there is a diminishing return in increasing the cost budget. In
addition, it is noted that the proposed strategy has the best
performance, which is very close to the performance bound
(‘Relaxed’). Moreover, the simple selection strategy achieves
higher (lower) objective values than the selection with only
local optimization strategy when CT is lower (higher) than a
certain value for both K = 20 and K = 40. Although the gap
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(a) K = 20

(b) K = 40

Fig. 3: Performance of different strategies versus normalized
cost, together with the performance bound obtained from the
relaxed problem in (14).

between the performance bound and the selection with only
local optimization strategy is significant for all values of the
total cost constraint in case of low K values, it becomes quite
small for higher values of K in the region of high total cost
constraints.

In Fig. 4, the performance of the strategies are plotted
versus K for two different cost budgets. The proposed strategy
achieves the best performance, which is close to the upper
bound. The simple selection strategy performs better than
the selection with only local optimization strategy when the
total cost constraint, CT , is equal to 1.05 times the cost
of the cheapest K sensors. As the cost constraint becomes
less strict (i.e., when CT is equal to 1.45 times the cost
of the cheapest K sensors), the local optimization starts to
perform better than simple selection method. When CT is
equal to 1.45 times the cost of the cheapest K sensors, the gap
between the performance bound and the selection with only
local optimization strategy decreases as K increases. However,
when CT is equal to 1.05 times the cost of the cheapest K
sensors (i.e., for low total cost constraints), the corresponding
gap does not reduce with K. A similar observation is also
valid for the gap between the simple selection strategy and
the performance bound.

C. Sensor Selection and Design for Binary Hypothesis Testing
In this part, we provide numerical results for the joint

sensor selection and design problem given in (28). The same
simulation setup as in Section V-B is used. However, it should
be noted that, for the joint sensor selection and design problem,
the realization of σ2

m is irrelevant since it is considered as an
optimization variable, and determined via the solution method.

To obtain the proposed optimal solution to (28), we utilize
the approach described in Proposition 2. In addition to the

(a) CT = 1.05 times the cost of the cheapest K sensors

(b) CT = 1.45 times the cost of the cheapest K sensors

Fig. 4: Performance of different strategies versus K together
with the performance bound obtained from the relaxed prob-
lem in (14).

proposed optimal solution, we also present results for two sub-
optimal sensor selection and design strategies for comparison
purposes. These strategies are explained as follows:
• Allocate Equal Cost to Best K Sensors: In this strategy,

the sensors are sorted in a descending order according to the
values of µ2

i /σ
2
ni

. Then, the top K sensors are selected and
a cost of CT /K is allocated to each of them. Therefore, the
measurement noise variance for a selected sensor (call sensor
j) becomes

σ2
mj

=
σ2
nj

22CT /K − 1
· (38)

• Allocate All Cost to Best Sensor: As in the previous
strategy, the sensors are sorted in a descending order of µ2

i /σ
2
ni

ratios, and the top K sensors are selected. Then, all the
cost is allocated to the sensor with the highest µ2

i /σ
2
ni

ratio,
and the other sensors are allocated zero cost (i.e., infinite
measurement noise variance). If the best sensor has index j,
then its measurement noise variance is given by

σ2
mj

=
σ2
nj

22CT − 1
· (39)

In Fig. 5, the performance of the proposed strategy (labeled
as ‘Optimal’) is evaluated by plotting d2 against the total cost
constraint CT for K = 15. In addition, the performance of the
“allocate equal cost to best K sensors” strategy (labeled as
‘EqualCost’) and the “allocate all cost to best sensor” strategy
(labeled as ‘AllCostBest’) is presented in the same figure. It is
observed that allocating all the cost to the best sensor achieves
the same performance as the proposed optimal strategy for
very small values of CT . However, as CT increases its
detection performance diverges significantly from the optimal
performance. The main reason for this is that, for very low
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Fig. 5: Performance of different strategies versus CT for K =
15.

cost budgets, the optimal strategy assigns non-zero cost only
to the best sensor. As the cost budget increases, the optimal
approach requires assigning non-zero costs to multiple sensors
to benefit from the diversity of sensor measurements. It is also
noted from Fig. 5 that the detection performance achieved by
allocating all the cost to the best sensor quickly increases with
CT for small values of CT . However, further increases in CT
do not result in any significant performance increase since
the performance of this strategy is upper bounded by µ2

j/σ
2
nj

,
where j is the index of the best sensor (please see the objective
value of the joint sensor selection and design problem in (35)
for verification). On the other hand, the strategy that allocates
equal costs to the best K sensors yields a close performance to
the proposed optimal strategy at high cost budgets; however,
its performance becomes the worst at low values of CT .

In Fig. 6, the detection performance of the considered
strategies is plotted with respect to K for some fixed cost
budgets; namely, CT = 1 and CT = 5. From the figure, it
is first noted that the strategy of allocating all the cost to
the best sensor achieves a constant performance with respect
to K since it only employs one sensor. It is also observed
that the performance of the optimal strategy improves with K
up to a certain value. After that value, the optimal strategy
does not allocate any positive cost to new sensors but rather
keeps the previously selected sensors. In addition, the value
of K after which the optimal strategy has constant detection
performance increases as the total cost constraint CT gets
larger. On the other hand, the performance of the strategy
that allocates equal costs to the best K sensors first increases
and then decreases with respect to K. The increasing part
occurs since allocating the cost budget CT to a larger set of
sensors is beneficial up to some point due to the diversity
in the sensor measurements. However, after some value of
K, distributing CT among a large number of sensors equally
becomes unfavorable since each sensor starts getting a low
cost of CT /K, which corresponds to low quality sensor
measurements. Moreover, it is noted that the value of K
after which the performance starts degrading gets larger as
the cost budget increases. Overall, Fig. 5 and Fig. 6 illustrate
the advantages of the proposed optimal strategy in various
scenarios.

VI. CONCLUSION

We have formulated and investigated a sensor selection
problem for binary hypothesis testing in order to minimize the
Bayes risk via sensor selection in the presence of a constraint
on the total cost of sensors. Due to the combinatorial nature of
the problem, we have first performed linear relaxation of the
selection vector and obtained a relaxed version of the original

(a) CT = 1

(b) CT = 5

Fig. 6: Performance of different strategies versus K.

problem. For calculating the solution of the relaxed problem,
a low complexity algorithm has been developed based on
some theoretical results. Then, a local search algorithm has
been used to generate a solution to the original problem. Via
numerical examples, we have showed that linear relaxation
along with local optimization proves to be a practical method
to provide close-to-optimal solutions for the proposed cost
constrained sensor selection problem.

As an extension, we have regarded the measurement noise
variances of sensors as additional optimization variables, and
proposed a joint sensor selection and design problem. Based
on theoretical results, a practical approach has been proposed
to obtain an optimal solution to this joint problem. Numerical
examples have been presented to evaluate the proposed ap-
proaches and to provide comparisons with other techniques.

APPENDIX

A. Proof of Lemma 1
Consider the optimization problem in (14) in the absence of

the cost constraint. Then, it is easy to verify that z∗ defined
in the lemma is a solution to (14) as it corresponds to K
largest pi’s. Since it is assumed that CT ≥

∑
i∈Bj

ci, the cost
constraint is already satisfied for z∗. Hence, z∗ is a solution
to (14) in the presence of the cost constraint, as well. As the
elements of z∗ are either zero or one, it also becomes the
solution of (12).

B. Proof of Proposition 1
Let B1, B2, . . . , BNL

denote the sets of indices of K largest
pi’s (break ties arbitrarily). Consider the case that there exists
j such that CT ≥

∑
i∈Bj

ci. Then, by Lemma 1, a solution to
(14) can be expressed as

z∗i =

{
0 , i 6∈ Bj
1 , i ∈ Bj

(40)
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which conforms to the characterization in (17) and (18).
Consider the case of CT <

∑
i∈Bj

ci for all j ∈
{1, 2, . . . , NL}. In this case, there exists a solution z∗ to (14)
that satisfies CT =

∑Ns

i=1 z
∗
i ci by Lemma 2. z∗ should satisfy

the following KKT conditions with an equality constraint for
the total cost:

Ns∑
i=1

z∗i −K ≤ 0 (41)

Ns∑
i=1

z∗i ci − CT = 0 (42)

0 ≤ z∗i ≤ 1, i = 1, 2, . . . , Ns (43)

ν

(
Ns∑
i=1

z∗i −K

)
= 0 (44)

λi ≥ 0, i = 1, 2, . . . , 2Ns (45)
λiz
∗
i = 0, i = 1, 2, . . . , Ns (46)

λNs+i(z
∗
i − 1) = 0, i = 1, 2, . . . , Ns (47)

− pi − λi + λNs+i + µci + ν = 0, i = 1, 2, . . . , Ns (48)

where λ1, λ2, . . . , λ2Ns , µ, and ν are the KKT multipliers.
From (44)–(48), it is observed that if z∗i ∈ (0, 1) we get

Ns∑
i=1

z∗i = K =⇒ pi = µci + ν

Ns∑
i=1

z∗i < K =⇒ pi = µci

(49)

Suppose that there exists a solution z′ to (14) (
∑Ns

i=1 z
′
ici =

CT ), where
∑Ns

i=1 z
′
i = K and z′ does not satisfy the property

in (17) and (18), meaning that it has M > 2 non-integer
components; i.e., z′i ∈ (0, 1). In this case, we argue that there
exists another solution to (14) that satisfies (17) and (18).
Define sets of indices S′0, S′1 and S′2 as

S′0 , {i : z′i = 0, i = 1, 2, . . . , Ns}
S′1 , {i : z′i = 1, i = 1, 2, . . . , Ns}
S′2 , {i : z′i = (0, 1) , i = 1, 2, . . . , Ns}

(50)

and let N , |S′1|. Then, we have

|S′2| = M > 2 (51)
|S′0| = Ns −M −N (52)
0 ≤ N < K < N +M ≤ Ns (53)∑
i∈S′2

z′i = K −N. (54)

Also, define set CS′2 as the indices of K −N elements of S′2
with minimum ci’s (i.e., cheapest sensors). Similarly, let ES′2
have the indices of K−N elements of S′2 with maximum ci’s
(i.e., most expensive sensors), where ties are broken arbitrarily.
It is clear that ∑

i∈CS′2

ci ≤
∑
i∈S′2

z′ici ≤
∑
i∈ES′2

ci . (55)

Starting with the set of indices X0 = CS′2 , let

Xt+1 = (Xt \ {mt}) ∪ {nt}
mt = arg min

i
ci, i ∈ Xt

nt = arg max
i

ci, i ∈ S′2 \Xt

(56)

Note that cmt
≤ cnt

. For some integer T , where 0 ≤ T <
min{(K −N), (M +N −K)}, the following relation holds:∑

i∈XT

ci ≤
∑
i∈S′2

z′ici ≤
∑

i∈XT+1

ci . (57)

It is possible to find α ∈ [0, 1) such that∑
i∈XT \{mT }

ci + (1− α)cmT
+ αcnT

=
∑
i∈S′2

z′ici . (58)

In particular,

α =

{
0 , cnT

= cmT∑
i∈S′2

z′ici−
∑

i∈XT
ci

cnT
−cmT

, cnT
> cmT

. (59)

Let S′21 = XT \ {mT } and S′20 = S′2 \ (XT ∪ {nT }), and
consider selection vector ẑ with

z∗i =


0 , i ∈ S′0 ∪ S′20

1 , i ∈ S′1 ∪ S′21

α , i = nT
1− α , i = mT

. (60)

Here, we basically split up S′2 into four disjoint sets as

S′2 = S′20 ∪ S′21 ∪ {mT } ∪ {nT } (61)

Also it is noted that

|S′21| = K −N − 1 . (62)

In the following, it is shown that z∗ in (60) satisfies the
condition in (42); i.e., the cost constraint.

Ns∑
i=1

z∗i ci =
∑

i∈S′1∪S′21

ci + α cnT
+ (1− α)cmT

(63)

=
∑
i∈S′1

ci +
∑

i∈XT \{mT }

ci + α cnT
+ (1− α)cmT

(64)

=
∑
i∈S′1

ci +
∑
i∈S′2

z′ici (65)

=

Ns∑
i=1

z′ici (66)

= CT (67)

where (63) follows from (60), (64) is due to the definition of
S′21, (65) is based on (58), (66) follows from definitions in
(50) and finally (67) is due to Lemma 2.
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To prove that z∗ is a solution that satisfies the property
in (17) and achieves the same objective value as z′, consider
following equalities:

v′ =

Ns∑
i=1

z′ipi (68)

=
∑
i∈S′1

pi +
∑
i∈S′2

z′ipi (69)

=
∑
i∈S′1

pi + µ
∑
i∈S′2

z′ici + ν
∑
i∈S′2

z′i (70)

=
∑
i∈S′1

pi + µ

 ∑
i∈XT \{mT }

ci + (1− α)cmT
+ αcnT


+ ν (K −N) (71)

=
∑
i∈S′1

pi +
∑
i∈S′2

z∗i (µci + ν) (72)

=
∑
i∈S′1

pi +
∑
i∈S′2

z∗i pi (73)

=

Ns∑
i=1

z∗i pi = v∗ (74)

where (69) follows from the definitions in (50), (70) is due to
(49), (71) is based on (50) and (58), (72) follows from (60)–
(62), (73) is due to (49), and finally (74) is based on (60) and
(61).

Based on the preceding arguments, it is proved that z∗ is
also a solution to (14). From (60), it is noted that z∗ satisfies
(17), where

S0 = S′0 ∪ S′20

S1 = S′1 ∪ S′21

S2 = {nT ,mT }
(75)

Suppose there exists a solution z′ to (14) (
∑Ns

i=1 z
′
ici = CT )

such that
∑Ns

i=1 z
′
i < K, where z′ does not satisfy (19); i.e.,

z′ has M > 1 non-integer components. We argue that there
exists another solution satisfying (19). Define sets of indices
S′0, S′1 and S′2 as in (50). Then, the following relation holds:

0 ≤
∑
i∈S′2

z′ici <
∑
i∈S′2

ci (76)

Let X0 = ∅ and

Xt+1 = Xt ∪ {nt}
nt = arg max

i
ci, i ∈ S′2 \Xt

(77)

Here, Xt represents the set of indices in S′2 with t largest ci’s.
Hence |Xt| = t. Then, for some integer T , where 0 ≤ T ≤
b
∑
i∈S′2

z′ic, we get∑
i∈XT

ci ≤
∑
i∈S′2

z′ici ≤
∑

i∈XT+1

ci (78)

It is possible to find α ∈ [0, 1] such that∑
i∈XT

ci + αcnT
=
∑
i∈S′2

z′ici (79)

where

α =

∑
i∈S′2

z′ici −
∑
i∈XT

ci

cnT

. (80)

Since
∑
i∈S′2

z′ici ≤
∑
i∈XT

ci +
(∑

i∈S′2
z′i − T

)
cnT

, we
have

α ≤

(∑
i∈XT

ci +
(∑

i∈S′2
z′i − T

)
cnT

)
−
∑
i∈XT

ci

cnT

=

(∑
i∈S′2

z′i − T
)
cnT

cnT

=
∑
i∈S′2

z′i − T

(81)

Let

S′21 = XT , S′20 = S′2 \ (XT ∪ {nT }) , (82)

split S′2 into four disjoint sets as

S′2 = S′20 ∪ S′21 ∪ {nT } (83)

and consider the selection vector z∗ defined as

z∗i =


0 , i ∈ S′0 ∪ S′20

1 , i ∈ S′1 ∪ S′21

α , i = nT

. (84)

It is noted that z∗ satisfies the total number of sensors
constraint as shown below:

Ns∑
i=1

z∗i = |S′1|+ |S′21|+ α (85)

≤ |S′1|+ |XT |+
∑
i∈S′2

z′i − T (86)

= |S′1|+
∑
i∈S′2

z′i (87)

=

Ns∑
i=1

z′i ≤ K (88)

Here, (85) follows from (84), (86) is due to (81), (87) follows
from (77), and finally (88) is based on (50).

The total cost constraint is also satisfied since
NS∑
i=1

z∗i ci =
∑

i∈S′1∪S′21

ci + αcnT
(89)

=
∑
i∈S′1

ci +
∑
i∈XT

ci + αcnT
(90)

=
∑
i∈S′1

ci +
∑
i∈S′2

z′ici (91)

=

NS∑
i=1

z′ici = CT (92)

where (89) follows from the definition of ẑ in (84), (90) is
based in (50), (91) is due to (79), and (92) follows from the
definition of z′.
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Also, z∗ achieves the same objective value as z′ since

v′ =

NS∑
i=1

z′ipi =
∑
i∈S′1

pi +
∑
i∈S′2

z′ipi (93)

=
∑
i∈S′1

pi + µ
∑
i∈S′2

z′ici (94)

=
∑
i∈S′1

pi + µ

(∑
i∈XT

ci + αcnT

)
(95)

=
∑
i∈S′1

pi +
∑
i∈S′2

z∗i (µci) (96)

=
∑
i∈S′1

pi +
∑
i∈S′2

z∗i pi (97)

=

NS∑
i=1

z∗i pi = v∗ (98)

where (93) is based on (50), (94) and (97) follow from (49),
(95) is due to (79), and (96) is based on (84) and (83).

Overall, it is shown that if there exists a solution to (14)
that does not satisfy neither a) (i.e., (17) and (18)) nor b) (i.e.,
(19) and (20)), then there always exists an alternative solution
which satisfies either a) or b) in the proposition. Thus, when
the relaxed problem in (14) is feasible, there exists a solution
satisfying either a) or b), as claimed in the proposition.

C. Proof of Proposition 2

To simplify notation, we denote the objective function in
(35) as F (z, c), that is,

F (z, c) ,
Ns∑
i=1

zi
µ2
i

(
22ci − 1

)
σ2
ni

22ci
· (99)

Let (z, c) be any feasible solution to the problem in (35). We
argue that there exists c′ =

[
c′1, c

′
2, . . . , c

′
Ns

]T
such that

F (z∗, c′) ≥ F (z, c) (100)

and (z∗, c′) is feasible, where z∗ is as defined in (37). To
justify this claim, we define c′ in the following way: First,
consider any bijection g from {i | z∗i = 1, zi = 0} to {j | z∗j =
0, zj = 1}. Then, let

c′i =


ci , z∗i = 1, zi = 1

cg(i) , z∗i = 1, zi = 0

0 , else
, i = 1, 2, . . . , Ns . (101)

It is noted that c′i ≥ 0 for i = 1, 2, . . . , Ns. Also,

(z∗)T c′ =
∑

i∈{k | z∗k=1, zk=1}

ci +
∑

i∈{k | z∗k=1, zk=0}

cg(i) (102)

=
∑

i∈{k | z∗k=1, zk=1}

ci +
∑

i∈{k | z∗k=0, zk=1}

ci (103)

= zT c ≤ CT . (104)

Hence, (z∗, c′) is feasible. Then, we consider the objective
values, F (z∗, c′) and F (z, c), and compare them as follows:

F (z∗, c′) =
∑

i∈{k | z∗k=1,zk=1}

µ2
i

(
22ci − 1

)
σ2
ni

22ci

+
∑

i∈{k | z∗k=1,zk=0}

µ2
i

(
22cg(i) − 1

)
σ2
ni

22cg(i)
(105)

=
∑

i∈{k | zk=1}

µ2
i

(
22ci − 1

)
σ2
ni

22ci

−
∑

i∈{k | z∗k=0,zk=1}

µ2
i

(
22ci − 1

)
σ2
ni

22ci

+
∑

i∈{k | z∗k=1,zk=0}

µ2
i

(
22cg(i) − 1

)
σ2
ni

22cg(i)
(106)

= F (z, c)−
∑

i∈{k | z∗k=0,zk=1}

µ2
i

(
22ci − 1

)
σ2
ni

22ci

+
∑

i∈{k | z∗k=1,zk=0}

µ2
i

(
22cg(i) − 1

)
σ2
ni

22cg(i)
(107)

= F (z, c)−
∑

i∈{k | z∗k=1,zk=0}

µ2
g(i)

(
22cg(i) − 1

)
σ2
ng(i)

22cg(i)

+
∑

i∈{k | z∗k=1,zk=0}

µ2
i

(
22cg(i) − 1

)
σ2
ni

22cg(i)
(108)

= F (z, c) +
∑

i∈{k | z∗k=1,zk=0}

(
22cg(i) − 1

22cg(i)

)(
µ2
i

σ2
ni

−
µ2
g(i)

σ2
ng(i)

)
(109)

≥ F (z, c) (110)

By definition, µ2
i

σ2
ni

≥ µ2
g(i)

σ2
ng(i)

for i ∈ {k | z∗k = 1, zk = 0} and

g(i) = j ∈ {k | z∗k = 0, zk = 1} since i ∈ B̃ and j 6∈ B̃.
Moreover,

(
2x−1

2x

)
≥ 0 for x ≥ 0. Therefore, each element in

the summation term in (109) is larger than or equal to zero.
Hence, the inequality in (110) follows. Finally, we have

F (z∗, c∗) ≥ F (z∗, c′) ≥ F (z, c) (111)

since c∗ is a solution of (29) for z∗. Thus, we conclude that
no feasible solution (z, c) produces an objective value larger
than (z∗, c∗), which makes (z∗, c∗) an optimal solution.
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