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Abstract—Estimation theoretic secure transmission of a scalar
random parameter is investigated in the presence of an eaves-
dropper. The aim is to minimize the estimation error at the
receiver under a secrecy constraint at the eavesdropper; or, al-
ternatively, to maximize the estimation error at the eavesdropper
for a given estimation accuracy limit at the receiver. In the
considered setting, the encoder at the transmitter is allowed to use
a randomized mapping between two one-to-one and continuous
functions and the eavesdropper is fully aware of the encoding
strategy at the transmitter. For small numbers of observations,
both the eavesdropper and the receiver are modeled to em-
ploy linear minimum mean-squared error (LMMSE) estimators,
and for large numbers of observations, the expectation of the
conditional Cramér-Rao bound (ECRB) metric is employed for
both the receiver and the eavesdropper. Optimization problems
are formulated and various theoretical results are provided in
order to obtain the optimal solutions and to analyze the effects
of encoder randomization. In addition, numerical examplesare
presented to corroborate the theoretical results. It is observed
that stochastic encoding can bring significant performancegains
for estimation theoretic secrecy problems.

Index Terms—Estimation, secrecy, Gaussian wiretap channel,
optimization, Internet of Things (IoT).

I. I NTRODUCTION AND MOTIVATION

A. Literature Review

In a secure communication system, the main goal is to
secretly transmit data to an intended receiver in the presence
of a malicious third party such as an eavesdropper. As the
age of Internet of Things (IoT), smart homes and cities, self-
driving cars, and wireless sensor networks with a vast number
of nodes has already arrived, it is necessary to find ways
to ensure secure communication of data in such systems.
Massive deployments of sensors, the nature of wireless links
across a network, and the sensitivity of data collected by
sensors present serious security challenges. Traditionally, key-
based cryptographic approaches have been employed in many
applications for secure communication [1], [2]. However, the
management of key generation and distribution can be very
challenging in heterogenous and dynamic networks with vast
numbers of connections [3], [4]. Furthermore, as many nodes
in sensor networks are low-cost with limited battery power
and bandwidth and have strict latency requirements, it might
not be suitable to consider cryptographic solutions as the only
layer of security in such systems [5].

Based on these motivations, there has been a renewed
interest in physical layer secrecy to develop alternative or
complementary layers of security technologies. Physical layer
secrecy is based on the idea of exploiting the randomness in
wireless channel conditions to ensure secure communication
[6]. In this regard, information theoretic metrics and tools,
such as capacity, have been employed in a multitude of studies
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for various channel models such as fading channels [7], [8],
Gaussian wiretap, broadcast and interference channels [9]-
[12]. In the literature, alternative metrics and frameworks have
also been utilized to quantify secrecy levels. For example,in
[13] and [14], secure communication problem is investigated
based on the signal-to-noise ratio (SNR) metric in the quality-
of-service (QoS) framework. In [15], the secrecy constrained
distributed detection problem is studied under Bayesian and
Neyman-Pearson frameworks. Alternatively, secrecy levels can
be measured via estimation theoretic tools and metrics, such
as Fisher information and mean-squared error (MSE), where
the aim is the design of low-complexity, practical, and secure
systems [16]-[29].

Estimation theoretic secrecy has been studied in a wide
variety of settings. In [16], the secret communication problem
is considered for Gaussian interference channels with vector
parameters in the presence of eavesdroppers. The problem
is formulated to minimize the total minimum mean-squared
error (MMSE) at the intended receivers while keeping the
MMSE at the eavesdroppers above a certain threshold, where
joint artificial noise and linear precoding schemes are usedto
satisfy the secrecy requirements. In [17], privacy of households
using smart meters is considered in the presence of adver-
sary parties who estimate energy consumption based on data
gathered in smart meters. The Fisher information is employed
as a metric of privacy for both scalar and multivariable
parameter cases, and the optimal policies for the utilization
of batteries are derived to minimize the Fisher information
to achieve privacy. Both [18] and [19] investigate secrecy
in a distributed inference framework, where the information
coming to a fusion center from various sensor nodes can
also be observed by eavesdroppers. In [18], the estimation
problem of a single point Gaussian source in the presence of
an eavesdropper is analyzed for the cases of multiple transmit
sensors with a single antenna and a single sensor with multiple
transmit antennas. Optimal transmit power allocation policies
are derived to minimize the average MSE for the parameter of
interest while guaranteeing a target MSE at the eavesdropper.
In [19], the asymptotic secrecy and estimation problem is
studied when the sensor measurements are quantized and the
channel between sensors and receivers are assumed to be
binary symmetric channels. The sensor quantization thresholds
are designed to ensure perfect secrecy when the number of
sensors is very large. In [20], the secure inference problem
is investigated for deterministic parameters in IoT systems
under spoofing and man-in-the-middle-attack (MIMA). For
MIMAs, necessary and sufficient conditions are derived to
decide when the attacked data can or cannot improve the
estimation performance in terms of the Cramér-Rao bound.
For spoofing attacks, effective attack strategies are described
with a guaranteed performance in terms of Cramér-Rao bound
(CRB) degradation and it is shown that quantization imposes
a limit on the robustness of the system against such attacks.
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Stochastic encryption has been used as a defense mecha-
nism against eavesdropper attacks in the estimation theoretic
security framework [21]-[24]. In [22], stochastic encryption
is performed based on the 1-bit quantized version of a noisy
sensor measurement of a deterministic parameter to achieve
secret communication, where both symmetric and asymmetric
bit flipping strategies are considered under the assumptions
that the intended receiver is aware of the flipping probabilities
and the eavesdropper is unaware of the encryption. It is shown
that it is possible to create biased estimation and large errors
at the eavesdropper via this simple scheme. In [23], the binary
stochastic encryption (BSE) approach proposed in [22] is
extended to non-binary stochastic encryption (NBSE) to fa-
cilitate vector parameter estimation. In [24], secrecy provided
by stochastic encryption is studied under the assumptions that
the eavesdropper is aware of the particular technique, e.g.,
BSE, NBSE, employed in the transmitter, uses an unbiased
estimator, and does not know the encryption key and quantizer
regions. It is shown that such a scheme is secure in the domain
of unbiased estimators.

While the aforementioned studies focus on the stochastic
encryption of a quantized measurement of a deterministic
parameter, [25] and [26] focus on the secrecy problem for
a random parameter in the Bayesian estimation setting. In
[25], the optimal deterministic encoding of a scalar random
parameter is investigated based on the minimization of ex-
pectation of the conditional Cramér-Rao bound (ECRB) in
order to guarantee a certain level of estimation accuracy at
the intended receiver while keeping the estimation error atthe
eavesdropper above a certain level. In [26], a robust parameter
encoding approach is developed and the optimization is based
on the worst-case CRB of the parameter in order to guarantee
a certain level of estimation accuracy at the intended receiver.
The results in [25] are extended to vector parameter estimation
scenarios in [27]. The common assumption in [25]-[27] is that
the encoding function is not available to the eavesdropper;
hence, it acts like a secret key similarly to the assumption of
flipping probabilities not being available to the eavesdropper in
[22] and [24]. On the other hand, for determining fundamental
security limits of many systems (such as those investigated
in the classical information theoretical framework), it isa
common practice to assume that the eavesdropper has the
full knowledge of the encoding strategy at the transmitter.
For example, in a Gaussian wiretap channel, the positive
secrecy capacity is possible even though the eavesdropper
knows the encoding scheme [12]. In particular, data is kept
private as a result of the condition that the noise present
in eavesdropper’s received signal is stronger than the noise
at the intended receiver. In that setting, the key ingredient
is to apply stochastic encoding at the transmitter to achieve
a positive rate with no data leakage to the eavesdropper.
The encoder is used to confuse the eavesdropper with the
cost of a reduced communication rate. Inspired from this
classical setting, in this manuscript, estimation theoretic secure
transmission of a scalar random parameter is investigated in
a Gaussian wiretap channel under the Bayesian framework,
which has not been investigated in the literature. As the
encoding strategy is available to the eavesdropper, the encoder
randomization is allowed to increase ambiguity to possibly
enhance security. The work in this manuscript is distinguished
from [25]-[27] as it assumes that the mapping strategy is
available to both the eavesdropper and the receiver (i.e., not

secret), allows stochastic encoding in the transmitter, considers
multiple observations rather than a single one, and employs
different performance metrics leading to a distinct optimization
problem. It is also different from those studies (such as [22],
[23]) that allow stochastic encryption as it considers direct
encoding of a random parameter rather than a measured
deterministic one.

B. Contributions

In this manuscript, estimation theoretic secure transmission
of a scalar random parameter is investigated in the presence
of an eavesdropper in a Gaussian wiretap channel. The aim
is to achieve accurate estimation of the parameter at the
intended receiver while keeping the estimation error at the
eavesdropper above a certain level; or, alternatively, to ensure
that the estimation error at the eavesdropper is as large as
possible while satisfying an estimation accuracy constraint
at the intended receiver. To enhance security, stochastic en-
coding is employed at the transmitter, and the encoder is
modeled to perform randomization between two one-to-one,
continuous encoding functions, which should be designed. It
is assumed that the mapping at the encoder is fully available
to the eavesdropper and the receiver. For small numbers of
channel observations, both the eavesdropper and the receiver
are modeled to employ linear MMSE (LMMSE) estimators,
and for large numbers of observations, the ECRB metric is
employed both in the receiver and the eavesdropper [30]. This
is because of the fact that even though the optimal estimator
in terms of the MSE metric is the MMSE estimator, the
calculations for its MSE have high computational complexity
and do not yield closed-form expressions in general. LMMSE
and ECRB tightly approximate the optimal metric for small
and large numbers of observations (e.g., see Figs. 2–4), respec-
tively, in our setting, and they facilitate theoretical analyses
with intuitive explanations based on closed-form expressions.
Therefore, based on these metrics, the optimization problems
are formulated to perform optimal encoding for small and
large numbers of observations separately. Both generic and
affine functions are considered in the proposed encoding
scheme, and a number of theoretical results on the solutions
of the problems are provided. Finally, numerical examples are
presented to illustrate the theoretical results for both small
and large numbers of observations. The main contributions
and novelty in this manuscript can be summarized as follows:

• The problem of parameter encoding via encoder random-
ization is analyzed to ensure estimation theoretic secure
communication under the assumption that the encoding
scheme is available to the eavesdropper.

• For small numbers of observations, a closed form expres-
sion for the MSE of the LMMSE estimator is derived for
both the receiver and the eavesdropper for the considered
transmission and encoding scheme. The optimization
problems to minimize the MSE at the intended receiver
for a given secrecy target at the eavesdropper and to
maximize the MSE at the eavesdropper for a given
estimation accuracy limit at the receiver are formulated.
The relationship between the solutions of those problems
is characterized. An optimal solution of the optimization
problems is obtained theoretically when the channel
of the eavesdropper is noisier than the channel of the
intended receiver. It is also shown that a simple deter-
ministic affine function can attain the optimal value. For
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Fig. 1: System model for the parameter encoding problem.

the case of affine functions, the monotonicity behavior of
the MSE is obtained with respect to the randomization
probability when the encoding functions are fixed.

• For large numbers of observations, the optimization prob-
lems to minimize the ECRB at the intended receiver
for a given secrecy target at the eavesdropper and to
maximize the ECRB at the eavesdropper for a given
estimation accuracy limit at the receiver are formulated.
The optimizations problems are theoretically solved when
only deterministic encoding is considered. It is also
shown that under symmetric mapping, the ECRB is
maximized when the randomization probability is1/2.
Also, the monotonicity behavior of the ECRB is obtained
with respect to the randomization probability when the
encoding functions are fixed for this case, as well.

II. SYSTEM SETUP

Consider the transmission of a scalar parameterθ ∈ Λ
to an intended receiver in the presence of an eavesdropper
who wants to estimate parameterθ. Both the intended receiver
and the eavesdropper obtainn-dimensional observations over
their respective additive noise channels. The aim is to achieve
accurate estimation of the parameter at the intended receiver
while keeping the estimation error at the eavesdropper above
a certain level; or, alternatively, to ensure that the estimation
error at the eavesdropper is as large as possible while satisfying
an estimation constraint at the intended receiver. To that aim,
the parameter is encoded by an encoding functionf : Λ → Γ.
Let f(θ) denote the encoded version of the parameter. Hence,
the ith observation at the intended receiver can be written as

Yi = f(θ) + Vi , i = 1, 2, . . . , n. (1)

where the noiseVi is modeled as a zero-mean Gaussian
random variable with varianceσ2

V , andVi andθ are assumed
to be independent [12]. On the other hand, theith observation
at the eavesdropper is

Zi = f(θ) +Wi , i = 1, 2, . . . , n. (2)

where Wi is zero-mean Gaussian noise with varianceσ2
W ,

which is independent ofθ for i = 1, 2, . . . , n. Also, the
prior information on parameterθ is represented by a prob-
ability density function (PDF) denoted bypθ(θ) for θ ∈ Λ.
The signal model in (1) and (2) can also be employed
for flat-fading channels assuming perfect channel estima-
tion and appropriate equalization [31]. The intended receiver
aims to estimate parameterθ based on observationsY ,

[Y1, Y2, . . . , Yn]
T whereas the eavesdropper uses observations

Z , [Z1, Z2, . . . , Zn]
T for estimatingθ. The system model is

illustrated in Fig. 1.

The considered system model is also known as the Gaussian
wiretap channel [9], [12], and has been studied extensively
via information theoretical tools, as mentioned in SectionI.
In that framework, it is assumed that the eavesdropper knows
the codewords (mapping) in the encoder and has unlimited
resources/time for computation. Therefore, the encoder applies
a stochastic mapping from messages to codewords to ensure
that the message can be kept unknown to the eavesdropper by
exploiting the degradedness of eavesdropper’s channel while
still being able to transmit the message to the intended receiver
at a certain rate.1 Motivated from such a setting, the following
assumptions are made for the rest of this study:

• The encoding function at the transmitter is fully available
to the eavesdropper and the receiver. Therefore, it is
possible that both the eavesdropper and the receiver can
utilize optimal estimators according to a certain metric.

• To enhance security, stochastic encoding is employed
and the encoder is modeled to perform the following
mapping:

f(θ) =

{

f1(θ), with probability γ

f2(θ), with probability 1− γ
(3)

where fk(θ) : Λ → Γ is a continuous and one-to-one
function for k = 1, 2 andγ ∈ [0, 1]. 2

• Each observation is corrupted by independent and identi-
cally distributed noise components. Therefore, based on
this and the previous assumption, the conditional PDF of
the n observations at the receiver givenθ, denoted by
p(y|θ), can be expressed as

p(y|θ) =
n
∏

i=1

p(yi|θ) (4)

where y , [y1, y2, . . . , yn]
T , p(yi|θ) = γ pV (yi −

f1(θ)) + (1 − γ) pV (yi − f2(θ)) and pV (x) =
1√

2πσV
exp{− x2

2σ2
V

}. Similarly, the conditional PDF of the
n observations at the eavesdropper givenθ, p(z|θ), can
be stated as

p(z|θ) =
n
∏

i=1

p(zi|θ) (5)

where z , [z1, z2, . . . , zn]
T , p(zi|θ) = γ pW (zi −

f1(θ)) + (1 − γ) pW (zi − f2(θ)) and pW (x) =
1√

2πσW
exp{− x2

2σ2
W

}.

In this setting, the encoder should be designed in such a way
that the estimation errors at the eavesdropper or, alternatively,
at the intended receiver satisfy the constraints. It is noted that
the secrecy capacity in information theory is an asymptotic
metric and assumes thatn → ∞. In practice, it is also
important to investigate how much secrecy can be achieved
in the finite regime with a small number of observations. For
example, [32] provides new achievability results and converse
bounds for the maximal secret communication rate of wiretap
channels for a given finite blocklengthn. Similarly, we focus

1Unlike the classical Gaussian wiretap channel [9], [12], weconsider a
scenario in which the channel of the eavesdropper is not necessarily worse
than that of the intended receiver.

2The stochastic encoder in (3) both facilitates practical implementations
and allows for theoretical investigations. Note that it canalso be represented
asf(θ) = f2−X(θ), whereX is a Bernoulli random variable with parameter
γ andX is statistically independent of all other variables.
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on the optimal encoding design in the non-asymptotic region
for both small and large numbers of observations in this work.

It is known that the optimal estimator for Bayesian param-
eter estimation in terms of the MSE metric is the MMSE
estimator. However, in most scenarios, the MSE of the optimal
MMSE estimator does not have a closed form expression.
Therefore, even though the encoding operation can be per-
formed with such an approach by using numerical methods, it
does not allow theoretical investigations for achieving intuitive
understanding of the parameter encoding problem. It is known
that for a large number of observations, the MSE of the
MMSE estimator converges to the ECRB [30], and for a small
number of observations, the MSE of the LMMSE estimator is
a close approximation to the optimal MMSE (see Figs. 2-4
for an illustration). (Note that the LMMSE estimator would
actually be the optimal MMSE estimator if the parameter of
interest and the observations were jointly Gaussian random
variables.) Therefore, instead of the optimal MMSE, the ECRB
and the LMMSE estimator will be considered in the rest of
the manuscript.

Remark 1: The main reason for employing the MSE metric
in both the receiver and the eavesdropper is that we focus on
a parameter estimation problem in the Bayesian setting in the
presence of an eavesdropper and the MSE metric is widely
used in practice with or without secrecy concerns in such prob-
lems. For example, estimation theoretic secrecy based on the
MSE metric has been considered in various channel scenarios
such as Gaussian interference channel [16], multiuser MIMO
broadcast channel [28], sensor network systems with eaves-
droppers [18] and MIMO Gaussian wiretap channel [29]. In
addition to parameter estimation problems, the MSE metric is
also utilized to design practical and implementable methods to
degrade performance of eavesdroppers for enhancing security
as an additional layer.

III. SMALL NUMBER OF OBSERVATIONS

In this section, it is assumed that a small number of
observations are available to the intended receiver and the
eavesdropper to estimateθ. As motivated in the previous
section, both the eavesdropper and the intended receiver are
modeled to employ LMMSE estimators for a given number of
observationsn.

A. Generic Encoding Functions

First, generic encoding functions are considered at the
transmitter. To that end, as motivated in [25], the parameter
space and the intrinsic constraints on the functionsf1(θ) and
f2(θ) are specified as follows:

• θ ∈ Λ = [a, b].
• fk(θ) ∈ [a, b] for k = 1, 2.
• f1(θ) andf2(θ) are continuous and one-to-one functions.
The LMMSE estimator at the intended receiver can explic-

itly be written for given observationsy as

θ̂r = E(θ) +Σθ,YΣ−1
Y

(y − E(Y)), (6)

and the corresponding MSE can be obtained as

ǫr = MSE = V ar(θ) −Σθ,YΣ−1
Y

ΣT
θ,Y. (7)

where Σθ,Y = [Cov(θ, Y1), Cov(θ, Y2) . . . Cov(θ, Yn)] and

ΣY = E

(

(

Y−E(Y)
)(

Y−E(Y)
)T

)

. Similarly, the MSE of

the LMMSE estimator at the eavesdropper,ǫe, can be obtained
for given observationsz by usingZ instead ofY in (7). Based
on these MSE expressions, the optimization problems can be
proposed as follows:

min
γ,f1(θ),f2(θ)

ǫr s.t. ǫe ≥ α1 (8)

and

max
γ,f1(θ),f2(θ)

ǫe s.t. ǫr ≤ α2 (9)

whereα1 andα2 denote, respectively, the secrecy target for
the first problem and the estimation accuracy (error) limit at
the intended receiver for the second problem. The following
proposition provides a closed form expression for the MSE of
the LMMSE estimator at the intended receiver.

Proposition 1: The MSE (ǫr) of the LMMSE estimator at
the intended receiver for the encoding model specified in(3)
with givenf1(θ), f2(θ) and γ is

ǫr = V ar(θ) − n (γ c1 + (1 − γ) c2)
2

(n− 1)x+ τ − nt
(10)

where

x , γ2 r1 + (1− γ)2r2 + 2 γ (1 − γ)E(f1(θ) f2(θ))

τ , γ r1 + (1− γ) r2 + σ2
V

t , (γ m1 + (1− γ)m2)
2 (11)

with mi = E(fi(θ)), ri = E(fi(θ)
2) and ci = Cov(fi(θ), θ)

for i = 1, 2.
Proof: Note that ΣY = E(YYT ) − E(Y)E(Y)T .

Also, E(Yk|θ) = γ f1(θ) + (1 − γ) f2(θ). Then,E(Yk) =
E
(

E(Yk|θ)
)

= γ m1 + (1 − γ)m2 for k = 1, 2, . . . , n.
Therefore,E(Y) = (γ m1 + (1 − γ)m2)1, where1 denotes
the n × 1 column vector of ones. Thus,E(Y)E(Y)T =
(γ m1 + (1− γ)m2)

211T = t11T .
In addition,E(Y 2

k |θ) = γ (f1(θ)
2+σ2

V )+(1−γ) (f2(θ)
2+

σ2
V ); hence,E(Y 2

k ) = γ r1 + (1 − γ) r2 + σ2
V = τ for

k = 1, 2, . . . , n. Similarly, E(YjYk|θ) = E(Yj |θ)E(Yk|θ) =
(γ f1(θ) + (1 − γ) f2(θ))

2. Then,E(YjYk) = γ2 r1 + (1 −
γ)2 r2 + 2 γ (1− γ)E(f1(θ) f2(θ)) = x for j, k = 1, 2, . . . , n
andj 6= k. Overall, the value of the diagonal elements ofΣY

is τ − t and the rest of the elements arex− t.
Furthermore,Σθ,Y = Cov(θ, Yk)1

T and Cov(θ, Yk) =
E(θYk) − E(θ)E(Yk). Note thatE(θ Yk) = E

(

E(θYk|θ)
)

=
E
(

θ E(Yk|θ)
)

= γ E(θf1(θ)) + (1 − γ)E(θf2(θ)). Then,

Cov(θ, Yk) = γ

(

E(θf1(θ)) − E(θ)E(f1(θ))

)

+ (1 −

γ)

(

E(θf2(θ)) − E(θ)E(f2(θ))

)

= γ c1 + (1 − γ)c2. There-

fore, the MSE becomesV ar(θ)−Σθ,YΣ−1
Y

ΣT
θ,Y = V ar(θ)−

(γ c1 + (1− γ) c2)
2
1TΣ−1

Y
1. Note that the sum of the ele-

ments in each row ofΣY is the same; therefore,ΣY1 = λ1,
whereλ = (n−1)x+τ−nt. As λ is an eigenvalue ofΣY with
a corresponding eigenvector1, Σ−1

Y
1 = (1/λ)1 holds. Then,

1TΣ−1
Y

1 = (1/λ)1T1 = n/λ. Hence, the MSE becomes
V ar(θ)− (γ c1 + (1− γ) c2)

2
n/λ, and inserting the value of

λ = (n− 1)x+ τ − nt concludes the proof. �

Proposition 1 provides a tool to calculate the MSE for any
given prior informationpθ(θ), encoding scheme (f1(θ), f2(θ),
γ) and number of observationsn. Note that Proposition 1 can
similarly be derived for the eavesdropper by usingσ2

W instead
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of σ2
V whenever necessary. It can be observed that the MSE

in (10) increases when the noise variance increases; therefore,
ǫr < ǫe whenσ2

V < σ2
W .

It is noted that the optimization problems in (8) and (9) are
related such that the expressions forǫr and ǫe differ only in
the noise variance terms. Therefore, it is possible to find a
relationship between the solutions of (8) and (9), as statedin
the following proposition.

Proposition 2: Suppose thatS = {(γ∗, f∗
1 , f

∗
2 )} is the set

of optimal solutions to(8). Let the optimal value of(8) be
denoted asǫ∗r . If α2 is set asα2 = ǫ∗r in (9), then the
optimal solutions of (9) satisfy the constraint in(9) with
equality, andǫ†e = max

(γ,f1,f2)∈S
ǫe, whereǫ†e is the optimal value

of (9). Similarly, let S̄ = {(γ†, f †
1 , f

†
2 )} denote the set of

optimal solutions to(9). If α1 = ǫ†e in (8), then the optimal
solutions to(8) satisfy the constraint in(8) with equality, and
ǫ∗r = min

(γ,f1,f2)∈S̄
ǫr.

Proof: We provide a proof only for the first state-
ment as the second one can be shown in a similar fash-
ion. Let the MSEs of the intended receiver and the eaves-
dropper be denoted, respectively, asǫr = T (γ, f1, f2, σ

2
V )

and ǫe = T (γ, f1, f2, σ
2
W ) for given γ, f1, and f2. Sup-

pose that(γ†, f †
1 , f

†
2 ) is an optimal solution to (9) with

T (γ†, f †
1 , f

†
2 , σ

2
V ) < α2 = ǫ∗r . Then,(γ†, f †

1 , f
†
2 ) cannot be in

the feasible set of (8) asα2 = min ǫr for ǫe ≥ α1 in (8), imply-
ing thatT (γ†, f †

1 , f
†
2 , σ

2
W ) < α1. Note that any(γ∗, f∗

1 , f
∗
2 ) ∈

S satisfiesT (γ∗, f∗
1 , f

∗
2 , σ

2
W ) ≥ α1 > T (γ†, f †

1 , f
†
2 , σ

2
W ),

which shows that(γ†, f †
1 , f

†
2 ) cannot be an optimal solution

to (9). Therefore, the optimal solution to (9) should satisfy
T (γ†, f †

1 , f
†
2 , σ

2
V ) = α2 = T (γ∗, f∗

1 , f
∗
2 , σ

2
V ) = ǫ∗r , and it

needs to be inS. Hence, the sufficient space to search for the
optimal solution of (9) reduces toS, andǫ†e = max

(γ,f1,f2)∈S
ǫe.

�

The following corollaries immediately follow from Propo-
sition 2.

Corollary 1 : If (γ∗, f∗
1 , f

∗
2 ) is a unique solution to(8) with

the optimal valueǫ∗r , then it is also a unique solution to(9)
for α2 = ǫ∗r .

Corollary 2 : If all the optimal solutions to(8) satisfy the
constraint in(8) with equality, then the optimal value of(9),
ǫ†e, is equal toα1 for α2 = ǫ∗r .

Corollary 3 : If (γ†, f †
1 , f

†
2 ) is a unique solution to(9) with

the optimal valueǫ†e, then it is also a unique solution to(8)
for α1 = ǫ†e.

Corollary 4 : If all the optimal solutions to(9) satisfy the
constraint in(9) with equality, then the optimal value of(8),
ǫ∗r , is equal toα2 for α1 = ǫ†e.

As the optimization problems in (8) and (9) require a search
over functions, characterizing the set of optimal solutions
in every case may not be possible. However, Proposition 1
provides the required expressions to evaluate the objective and
constraint functions for givenσ2

W and σ2
V . Based on those

expressions, the following proposition provides a closed form
expression for an optimal solution to (8) and (9) when the
channel of eavesdropper is noisier than that of the intended
receiver; that is,σ2

W > σ2
V .

Proposition 3: If σ2
W > σ2

V , an optimal solution to(8) is
a deterministic affine function, denoted byf∗(θ) = k∗1θ+ k∗2 ,

where

k∗1 = ±
√

σ2
V

n

(

1

α1
− 1

V ar(θ)

)

(12)

and k∗2 can be anything as long asf∗(θ) ∈ [a, b]. Then, the
optimal value of(8) is

ǫ∗r =
σ2
V V ar(θ)α1

σ2
W (V ar(θ)− α1) + σ2

V α1
· (13)

Similarly, an optimal solution to(9) is a deterministic affine
function,f †(θ) = k†1θ + k†2, where

k†1 = ±
√

σ2
W

n

(

1

α2
− 1

V ar(θ)

)

(14)

and k†2 can be anything as long asf †(θ) ∈ [a, b]. Then, the
optimal value of(9) is

ǫ†e =
σ2
W V ar(θ)α2

σ2
V (V ar(θ) − α2) + σ2

Wα2
· (15)

Proof: First, we focus on the optimization problem in (9).
The denominator of the second term in (10) can be rewritten
asn(x−t)+τ−x, wherex−t = V ar(γf1(θ)+(1−γ)f2(θ))
and τ − x = γ (1 − γ)E

(

|f1(θ)− f2(θ)|2
)

+ σ2
V . Also, the

numerator of the second term in (10) can be expressed as
nCov(γf1(θ)+(1−γ)f2(θ), θ)

2. Therefore,ǫe andǫr become

ǫe = V ar(θ) − nCov(f̃ , θ)2

nV ar(f̃ ) + γ (1− γ)E (|f1(θ) − f2(θ)|2) + σ2
W

ǫr = V ar(θ) − nCov(f̃ , θ)2

nV ar(f̃ ) + γ (1− γ)E (|f1(θ) − f2(θ)|2) + σ2
V

respectively, wherẽf , γf1(θ) + (1 − γ)f2(θ). It is noted
that unless we have the trivial case off̃ = 0, the following
equation holds:

ǫr − V

ǫe − V
=

∆+ σ2
W

∆+ σ2
V

where V = V ar(θ) and ∆ , nV ar(f̃ ) + γ (1 −
γ)E

(

|f1(θ)− f2(θ)|2
)

. Then, for all feasibleγ, f1(θ), f2(θ),

ǫe = V − (V − ǫr)
∆ + σ2

V

∆+ σ2
W

≤ V − (V − α2)
∆ + σ2

V

∆+ σ2
W

≤ V − (V − α2)
∆∗ + σ2

V

∆∗ + σ2
W
(16)

where ∆∗ = min
γ,f1,f2

∆ s.t., ǫr ≤ α2. Note that the first

inequality in (16) is due to the fact thatǫr ≤ α2 in the
feasible region, and the second inequality is due to the fact
that (∆ + σ2

V )/(∆ + σ2
W ) is an increasing function of∆ as

σ2
W > σ2

V with ∆ ≥ 0. As (16) provides a global upper bound
for ǫe, if there exists a feasible(γ, f1, f2) such thatǫe attains
the global bound, then it is concluded thatǫe is maximized
with it. A sufficient condition for the existence of such a case
is that the solution of min

γ,f1,f2,ǫr≤α2

∆ satisfies the constraint

with equality, i.e.,ǫr = α2. Therefore, we aim to obtain the
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solution of the following problem:

min
γ,f1(θ),f2(θ)

nV ar(f̃) + γ(1− γ)E
(

|f1(θ)− f2(θ)|2
)

s.t.

nCov(f̃ , θ)2

nV ar(f̃ ) + γ (1− γ)E (|f1(θ)− f2(θ)|2) + σ2
V

≥ V − α2

(17)

Note that for any possiblẽf , which is obtained using a
feasible(γ, f1, f2), there are infinitely many alternative ways
of constructing it with other feasible(γ, f1, f2)’s. Among all
constructions, choosing̃f = f1 = f2 yields a smaller objective
value and a larger value for the left side of the constraint in
(17), implying that it is the optimal selection. Therefore,the
problem reduces to

min
f̃

V ar(f̃ ) s.t. V − nCov(f̃ , θ)2

nV ar(f̃ ) + σ2
V

≤ α2 (18)

The constraint in (18) can be expressed as

n
(

V ar(θ)V ar(f̃)− Cov(f̃ , θ)2
)

+ σ2
V V ar(θ)

nV ar(f̃) + σ2
V

≤ α2

Note that V ar(θ)V ar(f̃ ) − Cov(f̃ , θ)2 ≥ 0 for any f̃
due to Cauchy-Schwarz inequality. Therefore,V ar(f̃) ≥
σ2
V (V ar(θ) − α2)/(nα2) for any f̃ . This global lower bound

can be achieved viãf(θ) = k†1θ + k†2 with k†1 being given
by (14) andk†2 being selected as any value to guarantee
f̃(θ) ∈ [a, b]. It is noted that when (9) is a feasible problem,
|k†1| ≤ 1. For such an encoding,∆∗ = σ2

V (V ar(θ) − α2)/α2

and ǫr = α2, i.e., the constraint is satisfied with equality
in (17). Therefore, an optimal solution of (17), which is a
deterministic affine function, is also an optimal solution of (9),
which yields the optimal value ofǫ†e =

σ2
W V ar(θ)α2

σ2
V
(V ar(θ)−α2)+σ2

W
α2

.

Based on the preceding discussion and Corollary 4, it can
be argued that an optimal solution to (8) is a deterministic
affine function whenσ2

W > σ2
V . First, notice that any optimal

solution to (9) should satisfy the constraint with equality, i.e.,
ǫr = α2. This is due to the fact for any other solution which
does not satisfy the constraint with equality, the inequality
in (16) would strictly be implying a gap betweenǫe and the
global bound, and it is already shown that this bound can
actually be achieved. Therefore, the result of Corollary 4 can
be applied to connect the solutions of (8) and (9) and to imply
that the deterministic affine functions solve (8) as well under
the conditions of Proposition 3. Via Corollary 4 and (15), the
expression in (13) can be obtained after a rearrangement.�

There are some interesting observations regarding the result
in Proposition 3. First, randomization between two functions
does not bring any benefits over deterministic encoding when
the intended receiver has already a less noisy channel than
the eavesdropper, and the encoding function can be selected
as a simple affine function. Second, for a givenα1 (or, α2)
value,ǫ∗r (andǫ†e) does not depend onn; however, the slope of
the deterministic affine optimal function decays with1/

√
n.

This means that the transmit power per channel use should be
decreased asn increases such that the total transmitted signal
power to sendθ with n channel uses stays constant. Also, the
constant term in the deterministic affine optimal function does
not have any effects; hence, it can be chosen freely as long as
the function remains in the feasible set.

Even though Proposition 3 provides a closed-form expres-
sion for an optimal solution whenσ2

W > σ2
V , it does not

bring any conclusions into the case ofσ2
W < σ2

V . In order
to obtain the solutions of the optimization problems in (8)
and (9) in this case, the solution methods provided in [25]
can be adopted, andǫe and ǫr can directly be calculated
using (10). In this study, the piecewise linear approximation
method described in [25] is utilized to obtain the optimal
solutions whenσ2

W < σ2
V . In particular, for fi(θ), the

increment in thekth interval in [a, b] is defined as∆x
(i)
k ,

fi(a + k∆θ) − fi(a + (k − 1)∆θ) for k = 1, . . .M , and
the optimization is performed over2M + 1 variables, that
is, [∆x

(1)
1 ,∆x

(1)
2 , . . . ,∆x

(1)
M ,∆x

(2)
1 ,∆x

(2)
2 , . . . ,∆x

(2)
M , γ], by

using the Global Optimization Toolbox of MATLAB. In the
numerical examples,M is taken to be25, which seems to
provide a good trade-off between accuracy and complexity.

Next, we investigate a special case in which the encoding
function is restricted to be affine.

B. Affine Encoding Functions

In this section, it is assumed that encoding is performed
via affine encoding functions such thatf1(θ) = k1θ + k2 and
f2(θ) = s1θ + s2.3 For this case, the MSE of the intended
receiver (and the eavesdropper by usingσ2

W ) can be expressed
in terms ofk1, k2, s1 ands2 as a corollary to Proposition 1.

Corollary 5 : The MSE (ǫr) of the LMMSE estimator at the
intended receiver for the encoding model specified in(3) when
f1(θ) = k1θ + k2 and f2(θ) = s1θ + s2 is

ǫr = V ar(θ)
γ (1− γ)κ+ σ2

V

nV ar(θ)(γ k1 + (1− γ)s1)2 + γ (1− γ)κ+ σ2
V

(19)

where

κ , E
(

((k1 − s1)θ + (k2 − s2))
2
)

. (20)

Proof: For the givenf1 and f2, c1 and c2 defined in
Proposition 1 becomek1 V ar(θ) ands1 V ar(θ), respectively.
Hence, the numerator of the second term in (10) becomes
n(γ k1 +(1− γ) s1)

2 V ar(θ)2. Also, the denominator of (10)
can be rewritten asn(x − t) + τ − x, where x, τ and t
are as defined in (11). Note that(x − t) = γ2k21V ar(θ) +
(1 − γ)2s21V ar(θ) + 2γ(1 − γ)k1s1V ar(θ) = (γk1 + (1 −
γ)s1)

2 V ar(θ), andτ − x = γ (1− γ)κ+ σ2
V , whereκ is as

defined in (20). After arranging the terms, the final expression
in (19) is obtained. �

When the encoding functions are restricted to affine func-
tions, the optimization problems in (8) and (9) involve a
search over only5 variables instead of functions. Letxa ,

[γ, k1, k2, s1, s2] andTa(xa, σ
2
V ) , ǫr, whereǫr is as defined

in (19). Then, the optimization problems can be written as

min
xa

Ta(xa, σ
2
V ) s.t. Ta(xa, σ

2
W ) ≥ α1 (21)

max
xa

Ta(xa, σ
2
W ) s.t. Ta(xa, σ

2
V ) ≤ α2 (22)

where Ta(xa, σ
2
W ) , ǫe. It is noted that the optimization

problems in (21) and (22) are much easier to solve than those
in the case of encoding with generic functions.

3k1 and k2 should be such thatk1θ + k2 ∈ [a, b] for all θ ∈ [a, b].
Similarly, s1θ + s2 needs to be in[a, b] for all θ ∈ [a, b]. Note that this
requires|k1| ≤ 1 and |s1| ≤ 1.
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Finally, as the closed form expression for the MSE with
affine encoding can be calculated based on given encoding
coefficients, it is also possible to investigate its behavior asγ
changes. Namely, the aim is to provide regions ofγ ∈ [0, 1] in
which the MSE increases or decreases with respect toγ. Such
a characterization is helpful for both theoretical analysis and
gaining intuition on the benefits of randomization. In addition,
it facilitates the specification of the exact optimal solution of
γ for the given encoding functions, i.e.,k1, k2, s1, s2, and
secrecy target. The following proposition characterizes the
behavior of the MSE with respect toγ, whereγ is taken as a
real number (the case ofγ ∈ [0, 1] immediately follows as a
corollary).

Proposition 4: Defineν(γ) , ν2γ
2 + ν1γ + ν0 with

ν2 , −κ(k21 − s21)

ν1 , −2 κ s21 − 2σ2
V (k1 − s1)

2

ν0 , κs21 − 2σ2
V (k1 − s1)s1 (23)

whereκ is as defined in(20). Then,
• if ν2 = 0 and ν1 > 0, then ǫr is an increasing (a

decreasing) function ofγ for γ > −ν0/ν1 (γ < −ν0/ν1);
• if ν2 = 0 and ν1 < 0, then ǫr is a decreasing (an

increasing) function ofγ for γ > −ν0/ν1 (γ < −ν0/ν1);
• if ν2 > 0, then ǫr is a decreasing function ofγ

when γ is in between the roots ofv(γ)=0, which are
κs1−2σ2

V (k1−s1)
κ(k1+s1)

and −s1
k1−s1

, and an increasing function
elsewhere;

• if ν2 < 0, then ǫr is an increasing function ofγ when
γ is in between the roots ofv(γ) = 0, and a decreasing
function elsewhere;

• if ν1 = ν2 = 0, thenǫr is constant with respect toγ.
Proof: From (19), the MSE can be expressed asǫr =

V ar(θ)h(γ)/(ξg(γ)2+h(γ)), whereh(γ) = γ(1−γ)κ+σ2
V ,

g(γ) = (k1 − s1)γ + s1, and ξ = nV ar(θ) > 0. Consider
the derivative of the MSE with respect toγ, i.e., dǫr/dγ. As
the denominator ofdǫr/dγ is always positive, it is enough to
characterize the sign of its numerator with respect toγ. Let
v̂(γ) denote the numerator ofdǫr/dγ.4 Then,

ν̂(γ) = h′(γ)
(

ξg(γ)2 + h(γ)
)

− h(γ) (2ξg(γ)g′(γ) + h′(γ))

= ξg(γ) (h′(γ)g(γ)− 2h(γ)g′(γ)) , ξ v(γ) (24)

whereh′(γ) = (1−2γ)κ andg′(γ) = k1−s1. After inserting
these into (24),ν(γ) becomes

ν(γ) = ((k1 − s1)γ + s1)
(

−κ(k1 + s1)γ + κs1 − 2σ2
V (k1 − s1)

)

= ν2γ
2 + ν1γ + ν0 (25)

where ν2, ν1, and ν0 are as given in (23). As the roots of
v(γ) are κs1−2σ2

V (k1−s1)
κ(k1+s1)

and −s1
k1−s1

, the conclusions in the
proposition can be obtained by applying the sign test tov(γ).
�

The result in Proposition 4 can be used to find the optimal
γ directly whenk1, k2, s1 and s2 are fixed. For example,
consider a scenario with a single observation (n = 1), σV =
0.01, σW = 0.5, and a secrecy target ofα1 = 0.08. If f1(θ) =
θ andf2(θ) = 1−θ, whereθ is uniformly distributed in[0, 1],
thenν2 = 0 andν1 < 0 with −ν0/ν1 = 1/2 for bothǫr andǫe.
Therefore, whenγ > 1/2, the MSE is a decreasing function of
γ and whenγ < 1/2 it is an increasing function ofγ according

4TheV ar(θ) term is omitted in the expression as it is always positive.

to Proposition 4. Due to the symmetry in this specific problem,
it is possible to restrictγ to γ ∈ [0, 1/2]. Therefore, whenγ
increases, the MSEs (bothǫr and ǫe) increase monotonically
until γ = 1/2, as well. As the goal is to minimizeǫr, it
is obvious thatγ should be increased until it yieldsǫe =
α1 = 0.08 but no more. Finally,γ = 0.3 can be obtained
as the optimal probability, and the corresponding MSE at the
intended receiver becomesǫr = 0.07.

IV. L ARGE NUMBER OF OBSERVATIONS

In this section, it is assumed that a large number of
observations are available to the intended receiver and the
eavesdropper to estimateθ.5 As motivated in Section II, the
ECRB metric is employed for both the intended receiver
and the eavesdropper in this scenario. The constraints on the
parameter space and the encoding functions are the same as
in the previous section.

The ECRB is defined as the expectation of the conditional
CRB with respect to the unknown parameter [30], which is
expressed as

Eθ

(

(I(n)(θ))−1
)

=

∫ b

a

pθ(θ)
1

I(n)(θ)
dθ , ECRB (26)

wherepθ(θ) is the prior PDF ofθ, I(n)(θ)−1 corresponds to
the conditional CRB for estimatingθ andI(n)(θ) denotes the
Fisher information based onn observations. Therefore, for the
intended receiver,I(n)r (θ) can be expressed as

I(n)r (θ) =

∫
(

∂ log p(y|θ)
∂θ

)2

p(y|θ) dy (27)

with p(y|θ) representing the conditional PDF of then ob-
servations for a given value ofθ [33]. Also, due to (4),
I
(n)
r (θ) = nIr(θ), where Ir(θ) is the Fisher information

based onp(y|θ) = γ pN (y − f1(θ)) + (1− γ) pN(y − f2(θ)).
Therefore,

Ir(θ) =

∫ ∞

−∞

u(θ)2

p(y|θ) dy (28)

where

u(θ) = γ
1√

2πσV

e
−(y−f1(θ))2

2σ2
V

(y − f1(θ))

σ2
V

f
′

1(θ)

+ (1− γ)
1√

2πσV

e
−(y−f2(θ))2

2σ2
V

(y − f2(θ))

σ2
f

′

2(θ)

(29)

and

p(y|θ) = γ√
2πσV

e
−(y−f1(θ))2

2σ2
V +

1− γ√
2πσV

e
−(y−f2(θ))2

2σ2
V (30)

In addition, when (28) is employed in (26), the ECRB at the
intended receiver,Er, is obtained as

Er =
1

n

∫ b

a

pθ(θ)
1

Ir(θ)
dθ . (31)

5It should be emphasized that the ECRB approaches the MSE of the MMSE
estimator in the asymptotic region, which refers to either alarge number of
observations or high SNR/SINR scenarios [30]. When stochastic encoding
is employed, there exists a certain interference term in thereceived signal
limiting the effective SINR. Therefore, the ECRB metric is not reliable for a
small number of observations even for a small noise variance.
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Similarly, the ECRB at the eavesdropper can be obtained by
defining Fisher informationIe(θ) based onp(z|θ) = γ pW (z−
f1(θ)) + (1 − γ) pW (z − f2(θ)), which can be calculated as
in (28)-(30). Then, the ECRB at the eavesdropper,Ee, is

Ee =
1

n

∫ b

a

pθ(θ)
1

Ie(θ)
dθ . (32)

Therefore, similarly to (8) and (9), the optimization prob-
lems can be proposed as follows:

min
γ,f1(θ),f2(θ)

Er s.t. Ee ≥ η1 (33)

max
γ,f1(θ),f2(θ)

Ee s.t. Er ≤ η2 (34)

whereη1 andη2 denote the secrecy target for the first problem
and the estimation accuracy limit at the intended receiver for
the second problem. Even though the simplification to (28)
may not be possible for the generic case, calculating the
ECRB is still easier and more practical for a large number
of observations than calculating the MSEs of estimators such
as the MAP or MMSE estimators.

Remark 2: Similarly to the results in Proposition 2 and
Corollary 1–4, the exact relationship between the solutions of
(33) and (34) can be obtained based on a similar approach,
which is not repeated here for brevity.

It is noted that if the encoding function is deterministic,
then simplification is possible for bothEr andEe. The fol-
lowing proposition provides the solutions to the optimization
problems in (33) and (34) in the absence of randomization.

Proposition 5: Suppose that a deterministic encoding func-
tion f(θ) is employed at the transmitter. For a given feasi-
ble secrecy targetη1, the optimal value of the optimization
problem in (33) is η1 σ

2
V /σ

2
W . Furthermore, anyf(θ) with

(σ2
W /n)

∫ b

a
pθ(θ)/f

′(θ)2dθ = η1 is an optimal deterministic
encoding function for(33). Similarly, for a given estimation
accuracy limit η2, the optimal value of the optimization
problem in (34) is η2 σ

2
W /σ2

V . Furthermore, anyf(θ) with
(σ2

V /n)
∫ b

a
pθ(θ)/f

′(θ)2dθ = η2 is an optimal deterministic
encoding function for(34).

Proof: When a deterministic encoding functionf(θ)
is employed at the transmitter,Ir(θ) in (28) simplifies to
Ir(θ) = f ′(θ)2/σ2

V [25]. Similarly, Ie(θ) = f ′(θ)2/σ2
W .

Then, the optimization problem in (33) becomes

min
f(θ)

σ2
V

n

∫ b

a

pθ(θ)
1

f ′(θ)2
dθ

s.t.
σ2
W

n

∫ b

a

pθ(θ)
1

f ′(θ)2
dθ ≥ η1 . (35)

As the integral term is identical in both the objective and the
constraint functions, the argument in Proposition 5 follows by
choosing an encoding function that satisfies the constraintwith
equality. The result for (34) can be justified similarly. �

Proposition 5 shows that if there is no randomization in the
encoding function, then the ratio ofEr/Ee depends only on
the noise variances in the channels of the eavesdropper and
the intended receiver. Therefore, any deterministic encoding
function can be used at the transmitter as long as it satisfiesthe
constraints. Also, it is noted that the only difference between
using a generic deterministic encoding function and an affine
deterministic encoding function is that the former may support
a larger set of feasibleη1 (or, η2) values.

Finally, it is possible to obtain some theoretical and intuitive
results for the generic stochastic encoding scheme in (3) by
using the convexity of the Fisher information with respect to
the conditional distribution [34]. Specifically, let the Fisher
information based onp1(y|θ) andp2(y|θ) be denoted byI1(θ)
andI2(θ), respectively. Ifp3(y|θ) = γp1(y|θ)+(1−γ)p2(y|θ),
then the Fisher informationI3(θ) based onp3(y|θ) satisfies
I3(θ) < γI1(θ) + (1 − γ)I2(θ) given thatγ ∈ (0, 1) and
p1(y|θ) 6= p2(y|θ). This implies thatI3(θ) is also a convex
function of γ for any givenθ ∈ [a, b], and it always remains
below the linear line connectingI1(θ) andI2(θ).

This convexity property is helpful for providing a few
intuitive and analytical results. For example, a lower bound for
the ECRB can be obtained whenf1(θ) andf2(θ) correspond
to affine encoding. To that end, consider the affine encoding
scheme described in Section III-B. Then,I1(θ) = k21/σ

2

and I2(θ) = k22/σ
2. Then, I3(θ) <

(

γk21 + (1 − γ) k22
)

/σ2

∀θ ∈ [a, b]. Therefore, for the ECRB of the intended receiver,
it is obtained thatEr >

σ2
V

n(γk2
1+(1−γ)k2

2)
and for the ECRB of

the eavesdropper, it is obtained thatEe >
σ2
W

n(γk2
1+(1−γ)k2

2)
.

The following proposition provides a result for symmetric
encoding:

Proposition 6: Consider the symmetric mapping with
f1(θ) = g(θ) and f2(θ) = g0 − g(θ) such thatg(θ) ∈ [a, b]
and g0 − g(θ) ∈ [a, b] for all θ ∈ [a, b]. Then, the ECRB is
maximized atγ = 1/2.

Proof: Let γ = γ0 ∈ [0, 1]. For the given model,I(θ) =
g′(θ)2

∫∞
−∞ û(θ)2/p(y|θ)dy, where

û(θ) = γ0
1√
2πσ

e
−(y−g(θ))2

2σ2
(y − g(θ))

σ2

− (1− γ0)
1√
2πσ

e
−(y+g(θ)−g0)2

2σ2
(y + g(θ)− g0)

σ2

, m(y, θ, γ0) (36)

and

p(y|θ) = γ0
1√

2πσV

e
−(y−g(θ))2

2σ2
V

+ (1− γ0)
1√

2πσV

e
−(y+g(θ)−g0)2

2σ2
V , d(y, θ, γ0). (37)

If the change of variables withg0 − y = ŷ is applied
in the integration for I(θ), it is obtained thatI(θ) =

g′(θ)2
∫∞
−∞

m(ŷ,θ,1−γ0)
2

d(ŷ,θ,1−γ0)
dŷ. Therefore,I(θ) attains the same

value for γ = γ0 and γ = 1 − γ0; hence, it is a symmetric
function of γ aroundγ = 1/2 for any θ ∈ [a, b]. Due to this
fact and the convexity ofI(θ) with respect toγ, its minimum
occurs atγ = 1/2 for all θ ∈ [a, b], implying that the ECRB
is maximized atγ = 1/2. �

Finally, the behavior of the ECRB with respect toγ can be
investigated for the general encoding scheme in (3) based on
the convexity property, as stated in the following proposition.
(Similar results can also be derived forIe(θ).)

Proposition 7: Let dIr(θ)
dγ

∣

∣

γ=0+
, d0 and dIr(θ)

dγ

∣

∣

γ=1−
,

d1. Then,

• if d1 < 0 for all θ ∈ [a, b], Ir(θ) is monotone decreasing
with γ, implying that the ECRB is monotone increasing
with γ ∈ (0, 1);

• if d0 > 0 for all θ ∈ [a, b], Ir(θ) is monotone increasing
with γ, implying that the ECRB is monotone decreasing
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with γ ∈ (0, 1);
• if d0 < 0 and d1 > 0 for a givenθ ∈ [a, b], Ir(θ) has a

minimumγ∗ ∈ (0, 1). Furthermore, ifγ∗ minimizesIr(θ)
for all θ ∈ [a, b], thenEr is maximized atγ = γ∗

Proof: Due to the strict convexity ofIr(θ) with respect
to γ, d2Ir(θ)

dγ2 > 0 holds for γ ∈ (0, 1). If d1 < 0 for all

θ ∈ [a, b], then dIr(θ)
dγ

< 0 for all γ ∈ (0, 1) as the value of
the derivative only increases asγ increases. Hence,Ir(θ) is
a monotone decreasing function ofγ for all θ ∈ [a, b], which
implies thatEr is monotone increasing. Similarly, ifd0 > 0
for all θ ∈ [a, b], dIr(θ)

dγ
> 0 for all γ ∈ (0, 1); hence,Ir(θ) is

a monotone increasing function ofγ for all θ ∈ [a, b], which
implies thatEr is monotone decreasing. Finally, ifd0 < 0 and
d1 > 0, then via a similar argument, there exists aγ = γ∗

such thatdIr(θ)
dγ

∣

∣

γ=γ∗
= 0, and it is the minimum forIr(θ),

and the rest of the arguments in the proposition follow from
(31). �

The following point should be noted related toγ∗ in
Proposition 7. Even though there may not exist such aγ∗

which is the minimum for allθ ∈ [a, b] in general,Er can still
have a maximizer inγ ∈ (0, 1). Hence, it is only a sufficient
condition, and the symmetric mapping given in Proposition 6
is an example in which this condition is satisfied.

Remark 3: The monotonicity results are important to gain
intuition about the benefits of randomization and provide a
practical tool and guide to obtain the optimal value ofγ for
given functionsf1(θ) andf2(θ). For example, if the designer
fixes the encoding functions to decrease system complexity,
then the problem reduces to finding the optimalγ to satisfy the
secrecy targets. (In some other scenarios, it may help reduce
the search space.) However, in order to obtain the solutionsof
the optimization problems in (33) and (34) in general, similarly
to the previous section, the piecewise linear approximation
method described in [25] can be utilized, andEe andEr are
calculated based on (26)–(32).

Remark 4: Even though the ECRB metric is also utilized
in [25], the current problem setup is significantly different
as it considers encoder randomization, multiple observations
(n > 1), and the availability of encoding information at the
eavesdropper. ECRB is only an optimization metric for the
performance of the estimator at the receiver in [25], i.e.,
optimizing it impliesimproved overall performance. However,
in this study, ECRB is used only whenn is sufficiently
large; hence, it is rather directly a tight approximation ofthe
optimal MSE value in the asymptotic region. Also, in [25],
different metrics are utilized in the receiver (ECRB) and the
eavesdropper (MSE of LMMSE estimator) whereas in this
section, ECRB is utilized both in the intended receiver and
the eavesdropper. Due to these reasons, most of the theoretical
discussions in [25] cannot be applied to the current study.

V. NUMERICAL RESULTS

In this section, numerical examples are provided to investi-
gate the theoretical results and the solution of the optimization
problems proposed in Section III and IV.

A. Justification for LMMSE estimator and ECRB metric

In this section, we provide numerical examples to illustrate
the motivation behind using different approaches for the cases
of small and large numbers of observations. In all examples,
the corresponding ECRB and the MSEs for the MMSE and

LMMSE estimators are plotted versus the number of obser-
vationsn. The SNR is defined as10 log10(1/σ

2), whereσ2

is the variance of the zero-mean Gaussian noise. In the first
example, we consider a simple scenario in which the parameter
is not encoded, i.e.,f(θ) = θ. In the second example, the pa-
rameter is encoded by a simple piecewise linear deterministic
encoding function such thatf(θ) = 2θ/3 for θ ∈ [0, 0.5]
andf(θ) = (4θ − 1)/3 for θ ∈ [0.5, 1]. In both examples, it
is assumed thatθ has uniform distribution inθ ∈ [0, 1] and
the SNR is set to5 dB. The results are shown in Fig. 2 (top
and bottom figures), and the corresponding encoding functions
are provided in the upper right corner of each figure. It is
observed that the MSEs of the LMMSE and MMSE estimators
are close to each other whenn is small whereas the ECRB
converges to the MSE of the MMSE estimator for largen
values in both figures. In the absence of encoding, the MSE
performance of the MMSE and LMMSE estimators is almost
the same for large numbers of observations, as well. However,
the performance of the LMMSE estimator deviates from that
of the MMSE estimator and the ECRB for large numbers of
observations in the second example (with nonlinear encoding
function), which motivates the use of ECRB in this regime in
the general case. It is also noted that the ECRB is not a lower
bound, and it rather identifies the optimal estimator behavior
in asymptotic scenarios.

Next, we provide two numerical examples in Figs. 3 and
4 under stochastic encoding as modeled in (3). In both of
the examples, it is assumed thatγ = 0.8, f1(θ) = θ, and
f2(θ) = 1− θ andθ ∈ [0, 1]. Also, θ has uniform distribution
in Fig. 3, and beta distribution with parameters(2, 3), i.e.,
pθ(θ) = 12 θ (1 − θ)2, in Fig. 4. It is observed that for
both SNR values in the figures, the MSE of the LMMSE
estimator and the ECRB are close to the MSE of the MMSE
estimator whenn is small and large, respectively.6 Another
important observation is that as the noise variance decreases,
the ECRB also reduces rapidly. For small values ofn, the
ECRB cannot capture the interference effect on the error due
to the randomization employed in the encoder, and it can yield
optimistic values for the MSE, which motivates the use of
the LMMSE estimator in such scenarios. On the other hand,
there is a performance gap between the LMMSE and MMSE
estimators for large values ofn. This is due to the fact that
practical estimators start correctly deciding which mode of
encoding (f1 or f2) is employed with larger observations.
However, the LMMSE is unable to achieve such a decision,
motivating the use of the ECRB in such scenarios as it is
very tight in that region. Therefore, the LMMSE estimator
and the ECRB can be utilized for small and large numbers
of observations, respectively, at both the receiver and the
eavesdropper.

Note that the MMSE solutions in these examples are
obtained based on the following approach: For a givenθ,
n−dimensional realizationsy are obtained empirically at each
run of Monte-Carlo simulations, and the conditional MSE is
obtained. Then, the MMSE estimatorθ̂(y) = E (θ|Y = y) is
analytically calculated for a giveny at each run. Finally, the
MSE is obtained by taking the expectation of the conditional

6At high SNRs, the MSE of the MMSE estimator may be in between the
ECRB and the MSE of the LMMSE estimator for medium values ofn; hence,
a more conservative approach can be taken and the ECRB can be used for the
eavesdropper and the LMMSE metric can be used for the intended receiver
in such a case.
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MSE overpθ(θ) analytically. The total number of Monte-Carlo
runs is set to105.

B. Small Number of Observations

In this section, numerical results are provided for the case
of small number of observations. In all of the examples in
this section, it is assumed that the number of observations
is 5, i.e., n = 5, and θ is uniformly distributed in[0, 2].
The SNRs of the intended receiver and the eavesdropper are
defined as10 log10(1/σ

2
V ) and10 log10(1/σ

2
W ), whereσ2

V and
σ2
W are the variances of the zero-mean Gaussian noise at each

observation of the intended receiver and the eavesdropper,
respectively. The following strategies are evaluated in the
examples:

Stochastic generic:This strategy corresponds to the so-
lution of (8) (and alternatively (9)), which provides optimal
generic encoding functionsf1(θ) andf2(θ), and the probabil-
ity γ.
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Fig. 4: ECRB, LMMSE and MMSE versusn, where θ has beta
distribution with parameters(2, 3) in [0,1].
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Stochastic affine:This strategy corresponds to the solution
of (21) (and alternatively (22)), which provides the optimal
affine encoding functionsf1(θ) = k1θ+k2 andf2(θ) = s1θ+
s2, and the probabilityγ.

Deterministic generic: This strategy corresponds to the
solution of (8) (and alternatively (9)) when a deterministic
generic encoding functionf(θ) is employed at the transmitter.

Deterministic affine: This strategy corresponds to the so-
lution of (21) (and alternatively (22)) when a deterministic
encoding functionf(θ) = k1θ + k2 is employed at the
transmitter.

First, we consider the minimization of the MSE at the
intended receiver for a given secrecy level at the eavesdropper,
i.e., the optimization problems in (8) and (21).

In the first example, two different scenarios are considered,
and the MSE of the intended receiver is plotted versus the
SNR of the intended receiver. In Scenario 1, the SNR of the
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when SNRs of eavesdropper and intended receiver are15 and5 dB,
respectively.

eavesdropper is20 dB, and the secrecy targetα1 = 0.26
and in Scenario 2, the SNR of the eavesdropper is15 dB,
and the secrecy targetα1 = 0.04. In Fig. 5, it is observed
that when the SNR of the intended receiver is higher than
the SNR of the eavesdropper, all strategies yield the same
performance in both scenarios. This result is actually proved
formally in Proposition 3, and the optimal value for the
MSE of the intended receiver can be achieved by using a
simple deterministic affine function. For example, when the
SNR of the intended receiver is30 dB, f(θ) = 0.013 θ is
an optimal encoder for Scenario 1, yieldingǫ∗r = 0.0872,
and f(θ) = 0.0663 θ is an optimal encoder for Scenario
2, yielding ǫ∗r = 0.0014 according to (12) and (13). It is
also observed in Fig. 5 that when the SNR of the intended
receiver is lower than that of the eavesdropper, there is a
performance gap between different strategies. In that region,
the deterministic affine functions perform worse than the
other strategies, and applying randomization to affine functions
brings significant performance gains. Also, the generic func-
tions yield lower MSE values than affine functions. In Scenario
1, stochastic generic functions bring a small performance gain
over deterministic generic functions. However, stochastic and
deterministic generic functions yield the same performance in
Scenario 2, implying that randomization is not necessary ifa
generic function is employed in that scenario. Also, the MSE
of the intended receiver is equal toα1 for all strategies when
the SNRs of the intended receiver and the eavesdropper are
the same.

In Fig. 6, the MSE of the intended receiver is plotted versus
the secrecy target at the eavesdropper when the SNRs of
the eavesdropper and the intended receiver are15 and5 dB,
respectively. Obviously, as the secrecy target becomes larger,
the MSE of the intended receiver increases, as well. When
the secrecy target is very small(≈ 0) or very ambitious
(≈ V ar(θ)), all the strategies have similar performance. For
medium values ofα1, it is observed that the deterministic
affine function strategy performs significantly worse than the
other strategies. However, the stochastic affine strategy has
significantly closer performance to that of generic functions.
When α1 is less than0.24, randomization does not bring
any improvements over the deterministic generic strategy.
However, asα1 gets larger (that is, a relatively large MSE
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Fig. 7: Optimal encoding functions for different strategies when
SNRs of eavesdropper and intended receiver are10 and 0 dB,
respectively, and secrecy targetα1 is 0.28.

is required at the eavesdropper), stochastic generic functions
have slightly better performance than deterministic ones.This
implies that it is not possible to claim that deterministic generic
functions are an optimal class of functions in all settings even
though their performance is not far from that of stochastic
generic functions.

In Fig. 7, the optimal encoding functions for different strate-
gies are plotted when the SNRs of the eavesdropper and the
intended receiver are10 and0 dB, respectively, and the secrecy
targetα1 is 0.28. Some important observations can be made
from the figure related to the optimal functions. First, it is
noticed that the deterministic affine function mapsθ ∈ [0, 2] to
a smaller interval ([0, 0.213]) to solve the optimization problem
and has a low degrees of freedom in the mapping operation.
On the other hand, the stochastic affine strategy sends an affine
functionf1(θ) = 0.4625 θ+1.075 with probability0.604 and
nothing (i.e.,f2(θ) ≈ 0) with probability0.396. Furthermore,
the characteristics of the generic functions are quite different
from those of the affine functions. The optimal deterministic
generic function isf(θ) ≈ 2 if θ < 0.1232, and f(θ) ≈ 0
otherwise.7 This implies that the optimal deterministic func-
tion actually converges to a non-uniform quantizer such that
θ values are mapped to0 and 2. Furthermore, the stochastic
generic function strategy randomizes between twoquantizer-
like generic functions to outperform the optimal deterministic
encoding function strategy. The intuition behind such a scheme
is that a quantizer-like encoder already assigns≈ 2 and≈ 0
for a set ofθ values and provides one layer of ambiguity.
Then, randomization over these two quantizer-like functions
provides an extra layer of ambiguity about the parameter to
achieve required secrecy targets for the eavesdropper.

In Fig. 8, the optimal encoding functions for different strate-
gies are plotted when the SNRs of the eavesdropper and the
intended receiver are15 and5 dB, respectively, and the secrecy
targetα1 is 0.04. In this case, the secrecy constraint is not as
ambitious as the previous one. Similarly to the previous case,

7Note that the encoding functions are required to be one-to-one functions
in this study; therefore, even though they are not allowed tostay constant
over an interval, it is easy to make sure that they are arbitrarily close to being
constant and still do not violate the one-to-one assumption. Also note that if
f(θ) is an optimal deterministic solution, then̄f(θ) = f̄0 ± f(θ) is also an
optimal solution as long as̄f(θ) ∈ [a, b], wheref̄0 is a constant.
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the deterministic affine function mapsθ ∈ [0, 2] to a smaller
interval ([0, 0.746]). The stochastic affine approach sends the
original value of the parameter with probability0.8775 but it
mapsθ to ≈ 2 with probability 0.1225. According to Fig. 5,
the deterministic and stochastic affine approaches yield the
MSE values of0.1923 and0.088, respectively, illustrating the
benefits of randomization. In addition, the optimal determin-
istic generic function (and also the optimal stochastic generic
function) has different characteristics than the one in Fig. 7.
In particular, it has three different regions; namely,f(θ) ≈ 2
for θ < 0.57, f(θ) ≈ 0 for θ > 1.43, and f(θ) decreases
monotonically for0.57 ≤ θ ≤ 1.43, yielding an MSE value
0.0597. This implies that when the secrecy target is not very
high, the deterministic generic encoding function does not
actually behave like a non-uniform quantizer.

Proposition 4 can be utilized to derive the probability values
for the stochastic affine strategy theoretically for given affine
functionsf1 andf2. For example, if the parameters of Fig. 8
are used in Proposition 4, it is obtained thatν2 < 0 for the
MSEs of both the eavesdropper and the intended receiver, and
according to the root test given in the proposition, the MSE
decreases asγ increases whenγ ∈ [0, 1]. For γ = 0, ǫe is
found as1/3 > α1 = 0.04; hence,γ has to be increased until
ǫe = α1 = 0.04 to minimizeǫr. After some algebra,γ can be
obtained as0.8775.

We also provide an example for the problem of maximizing
the MSE at the eavesdropper for a given estimation accuracy
limit at the intended receiver (i.e., the optimization problems
in (9) and (22)). In Fig 9, the MSE of the eavesdropper is
plotted versus the SNR of the eavesdropper when the SNR
of the intended receiver is5 dB and the estimation accuracy
limit α2 is 0.24. It is observed that when the SNR of the
eavesdropper is lower than the SNR of the intended receiver,
all the solutions have the same performance; that is, using an
optimal deterministic affine function is sufficient as claimed
in Proposition 3. However, when the SNR of the eavesdropper
increases, the MSE of the eavesdropper keeps decreasing for
the deterministic affine strategy. Performing randomization
over affine functions stops such a decline in the MSE and
creates an MSE floor at the eavesdropper. Using generic
functions yields even a higher MSE floor, where the stochastic
approach performs slightly better than the deterministic one.
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Fig. 9: MSE of eavesdropper (ǫe) versus SNR of eavesdropper when
SNR of intended receiver is5 dB, and estimation accuracy limitα2

is 0.24.

Finally, in Fig. 10, the MSE of the intended receiver (ǫr)
is plotted versus the secrecy targetα1, and the MSE of the
eavesdropper (ǫe) is plotted versus the estimation accuracy
limit α2 when the SNRs of the eavesdropper and the intended
receiver are5 and 15 dB, respectively. In this scenario, it
is already established that all the methods have the same
performance. Note thatǫr can be kept at relatively low
levels forα1 < 0.2; then, it increases rapidly as the secrecy
demand becomes more ambitious. Also,ǫe increases at a high
rate whenα2 is lower than0.15, but further relaxing the
estimation accuracy limit at the intended receiver does not
bring significant benefits in terms of the MSE level at the
eavesdropper.

It is noted that Proposition 2 and Corollary 1-4 establish
the direct relationship between the optimization problemsin
(8) and (9). Also, based on Proposition 3, it has already
been established that the conditions of Corollary 2 and 4 are
satisfied when the SNR of the intended receiver is higher
than the SNR of the eavesdropper; hence, their results can
be applied. This can also be verified in Fig. 10. For example,
given a secrecy level ofα1 = 0.2, the minimum MSE value at
the intended receiver is obtained asǫr = 0.043 after solving
(8). Furthermore, for a given estimation accuracy limit of
α2 = 0.043, the maximum MSE value at the eavesdropper
becomesǫe = 0.2 after solving (9). A similar relationship is
also observed when the SNR of the intended receiver is lower
than the SNR of the eavesdropper according to Figs. 6 and 9.

C. Large number of observations

In this section, the numerical examples are provided for
a large number of observations. In all the examples in this
section, it is assumed that the number of observations is
1000, i.e., n = 1000. Similarly to the previous section,
it is assumed thatθ is uniformly distributed in [0, 2] and
the SNRs are defined in the same way. Also, the stochastic
generic, stochastic affine and deterministic function strategies
are evaluated in a similar fashion. The stochastic generic
strategy corresponds to the solution of (33) and alternatively
(34). The stochastic affine strategy also solves (33) or (34)
with the additional assumption that the encoding functionsare
affine; that is,f1(θ) = k1θ+ k2 andf2(θ) = s1θ+ s2. Based



13

α
1
  (α

2
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

ǫ
r  (

ǫ
e
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

All methods, ǫ
r
 vs α

1

All methods, ǫ
e
 vs α

2

Fig. 10:ǫr versusα1 andǫe versusα2 when SNRs of eavesdropper
and intended receiver are5 and15 dB, respectively.

SNR of intended receiver (dB)
-5 0 5 10 15 20 25

E
C

R
B

 o
f i

nt
en

de
d 

re
ce

iv
er

 (
E

r)

10-6

10-5

10-4

10-3

10-2

10-1

Stochastic generic
Stochastic affine
Deterministic
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on Proposition 5, there will be no deterministic affine and
deterministic generic strategies separately in this section, and
the solution of the deterministic strategy is directly evaluated
via Proposition 5.

In this part, we consider the minimization (maximization) of
the ECRB at the intended receiver (eavesdropper) for a given
secrecy level (estimation accuracy limit) at the eavesdropper
(intended receiver) in Figs. 11 and 13 (Figs. 12 and 14). First,
the ECRB of the intended receiver (eavesdropper) is plotted
versus the SNR of the intended receiver (eavesdropper) when
the SNR of the eavesdropper (intended receiver) is10 dB, and
the secrecy targetη1 = 0.001 (and the estimation accuracy
limit η2 = 0.001). In Fig. 11 (Fig. 12), it is observed that
the deterministic functions yield the worst performance and
randomization is beneficial at all SNR values of the intended
receiver (eavesdropper) for a large number of observations,
which was not the case for a small number of observations.
Note that the stochastic generic and affine functions have the
same performance when the SNR of the intended receiver is
lower than that of the eavesdropper. However, the stochastic
generic functions outperform the stochastic affine functions
when the SNR of intended receiver is higher than the SNR
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Fig. 12: ECRB of eavesdropper (Ee) versus SNR of eavesdropper
when SNR of intended receiver is10 dB, and estimation accuracy
limit η2 is 0.001.
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of the eavesdropper. Note that the ECRB versus SNR curve
for the deterministic functions is a linear line as explained
in Proposition 5. Also, the ECRB of the intended receiver
(eavesdropper) is equal toη1 (η2) for all the strategies when
the SNRs of the intended receiver and the eavesdropper are
same.

Next, in Fig. 13 (Fig. 14), the ECRB of the intended receiver
(eavesdropper) is plotted versus the secrecy target (estimation
accuracy limit) for two different scenarios. In both scenarios,
the SNR of the eavesdropper (receiver) is10 dB and the SNR
of the intended receiver (eavesdropper) is5 and20 dB in the
first and second scenarios, respectively. In the first (second)
scenario in Fig. 13 (Fig. 14), the performances of the stochastic
strategies are almost the same and they are better than the de-
terministic solution. Furthermore, in the second (first) scenario
in Fig. 13 (Fig. 14), the stochastic generic solution has better
performance than the stochastic affine solution; hence it has
the overall best performance. In that case, it is interesting to
note that asη1 (η2) increases, the performance gap between
the stochastic solutions and the simple deterministic solution
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Fig. 14: ECRB of eavesdropper (Ee) versus estimation accuracy
limit (η2) for two different scenarios.

increases, as well. This shows that randomization can bring
significant performance improvements over the deterministic
solution in the case of a large number of observations.

Finally, Proposition 6 and 7 can be utilized in the numerical
examples to further analyze the results. For example, in Fig.
11, when the SNR of the eavesdropper is10 dB, and the SNR
of the intended receiver is15 dB, with η1 = 0.001, the solution
of the optimal stochastic affine encoding strategy is found as
f1(θ) = 0.4824θ + 1.0352, f2(θ) = 0.9648 − 0.4824θ, and
γ = 0.5. Note that according to Proposition 6, this is a sym-
metrical mapping; therefore, the ECRB of the eavesdropper is
maximized atγ = 0.5. Also, as this encoding function satisfies
the secrecy constraint with equality, Proposition 6 implies that
otherγ values would be infeasible for this particularf1 and
f2. Also, again in Fig. 11, when the SNR of the intended
receiver is5 dB, the solution of the optimal stochastic affine
encoding strategy is found asf1(θ) = 0.4274 θ + 0.2597,
f2(θ) = 0.4274 θ+ 0.8989, andγ = 0.5. In order to employ
Proposition 7, it can be shown thatd0 < 0 and d1 > 0 for
all θ ∈ [0, 2]. Actually, I(θ) is constant for a givenγ for
this givenf1 and f2, and γ = 0.5 minimizes I(θ) (as it is
constant, basically for allθ ∈ [a, b]). Therefore, the ECRB of
the eavesdropper is maximized atγ = 0.5.

It is important to mention that the closed-form expressions
(e.g., Proposition 1, Corollary 5, and eqns. (26)–(30)) obtained
in the theoretical parts (Sections III and IV) are used to calcu-
late the LMMSE and ECRB values in the numerical examples.
The performance of the theoretically optimal solutions (e.g.,
Proposition 3 and 5) is compared with the simulations for
verification and the same performance results are obtained.
However, the curves are not duplicated in the figures for
brevity/clarity of presentation.

D. Computational Complexity

The dimension of the search space and the number of mul-
tiplications required to calculate the constraint and objective
functions are both important factors about the complexity of
the proposed methods. In the case of the stochastic generic
function approach, the optimization is performed over2M+1
variables, whereM is the number of piecewise regions. For
the deterministic generic solutions, the optimization is overM

variables. The affine solutions require optimization over five
and two variables for the stochastic and deterministic cases,
respectively. When Proposition 3 and 5 are utilized, no search
is required and the solutions can be obtained directly. Also,
the intuition provided by Proposition 4 can reduce the search
space to four variables for the stochastic affine solutions in
the small number of observations case. For large numbers
of observations, the search space for the stochastic generic
solution can be reduced to2M based on Proposition 6 when
the conditions of the proposition hold.

For small numbers of observations, we use the expressions
in Proposition 1 to calculate the MSE. In the calculations,
the most costly terms are the expectation terms such as
E(f1(θ) θ) and E(f2(θ) θ). To calculate these terms, which
include one-dimensional integrals, one of the possible ways is
to employ Riemann sums, each of which includesS terms for
a given step size. Then, when the stochastic and deterministic
generic functions are used, calculating the objective function
requiresO(14S) andO(5S) multiplications, respectively. For
the affine solutions, we do not have any of these terms, which
implies a complexity ofO(1). As the only difference between
the objective and constraint is the noise variance term, the
complexity does not double for calculating both functions.It
is important to note that the computational complexity does
not depend onn.

For large numbers of observations, the overall expression
requires double integration and complexity ofO(14S1S2),
where the Riemann sums haveS1 andS2 terms. Even though
the ECRB calculation is more complex than calculating the
MSE of the LMMSE estimator, it also does not depend on
n. Note that the optimal MMSE expression would require
n + 1 integrals instead of two; hence, it is possible to
tightly approximate the optimal MSE performance by using
the ECRB with a much lower complexity. Finally, when the
conditions of Corollaries 1-4 are satisfied, it is possible to
connect the optimization problems in (8) and (9) (or, (33) and
(34)) so that it is sufficient to solve one of the problems to
obtain the solutions of both.

VI. CONCLUDING REMARKS

Estimation theoretic secure transmission of a random scalar
parameter has been investigated in a Gaussian wiretap channel
model, and various constrained optimization problems have
been proposed in terms of estimation accuracy performance of
the intended receiver and the eavesdropper. The results have
shown that for small numbers of observations, when the SNR
of the intended receiver is higher than that of the eavesdropper,
the deterministic affine solution forms a class of optimal
functions, which verifies the theoretical results. When theSNR
of the intended receiver is lower than that of the eavesdropper,
stochastic generic functions have the best performance in
general; however, depending on the target secrecy/accuracy
value, deterministic generic functions can provide an optimal
solution, as well. Stochastic affine functions can provide sig-
nificant performance gains over deterministic affine functions,
and they can be an attractive alternative solution to generic
functions. For large numbers of observations, deterministic
generic/affine functions have worse performance than stochas-
tic solutions at all SNRs and in all the considered scenarios.
Therefore, stochastic encoding is also attractive in this region
of operation. Similarly to the previous case, stochastic generic
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functions have the best performance in general; however,
stochastic affine functions can also provide an optimal solution
in certain scenarios. Intuitively, the main factor that determines
whether the stochastic methods bring performance gains or not
is the quality and quantity of the measurements available to
the eavesdropper given the secrecy target. If the eavesdropper
has a large number of observations or a small number of
observations with a better SNR than the intended receiver, then
it is encoder’s task to make estimation more challenging for
the eavesdropper; hence, stochastic encoding provides perfor-
mance gains especially in such scenarios. As a relevant future
work, it would be interesting to investigate the MSE-based
and information theoretically optimal solutions in a common
and fair framework to provide theoretical comparisons and
connections.
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