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Abstract—Estimation theoretic secure transmission of a scalar for various channel models such as fading channels [7], [8],
random parameter is investigated in the presence of an eaves Gaussian wiretap, broadcast and interference channels [9]
dropper. The aim is to minimize the estimation error at the 121 |n the literature, alternative metrics and framevehiave

receiver under a secrecy constraint at the eavesdropper; pmal- P - .
ternatively, to maximize the estimation error at the eavestbpper ~ &1SO been utilized to quantify secrecy levels. For examiple,

for a given estimation accuracy limit at the receiver. In the [13] and [14], secure communication problem is investidate
considered setting, the encoder at the transmitter is alloed to use  based on the signal-to-noise ratio (SNR) metric in the gyali
a randomized mapping between two one-to-one and continuous of-service (QoS) framework. In [15], the secrecy constein
functions and the eavesdropper is fully aware of the encod®  gistriputed detection problem is studied under Bayesiath an

strategy at the transmitter. For small numbers of observatons, .
both the eavesdropper and the receiver are modeled to em- Neyman-Pearson frameworks. Alternatively, secrecy tevah

ploy linear minimum mean-squared error (LMMSE) estimators, be rT]eaSUI_’ed via e_Stimation theoretic tools and metriCSh suc
and for large numbers of observations, the expectation of ta as Fisher information and mean-squared error (MSE), where
conditional Cramér-Rao bound (ECRB) metric is employed for the aim is the design of low-complexity, practical, and secu
both the receiver and the eavesdropper. Optimization prokgms systems [16]-[29]

are formulated and various theoretical results are providel in '

order to obtain the optimal solutions and to analyze the effets Esti . h . h b died | id
of encoder randomization. In addition, numerical examplesare -stimation theoretic secrecy has been studied in a wide
presented to corroborate the theoretical results. It is oberved Variety of settings. In [16], the secret communication peab

that stochastic encoding can bring significant performancegains is considered for Gaussian interference channels withovect

for estimation theoretic secrecy problems. parameters in the presence of eavesdroppers. The problem
Index Terms—Estimation, secrecy, Gaussian wiretap channel, is formulated to minimize the total minimum mean-squared
optimization, Internet of Things (IoT). error (MMSE) at the intended receivers while keeping the

MMSE at the eavesdroppers above a certain threshold, where
joint artificial noise and linear precoding schemes are used
. INTRODUCTION AND MOTIVATION satisfy the secrecy requirements. In [17], privacy of hbotds

A. Literature Review using smart meters is considered in the presence of adver-
ary parties who estimate energy consumption based on data
athered in smart meters. The Fisher information is employe
é a metric of privacy for both scalar and multivariable
rameter cases, and the optimal policies for the utibpati
batteries are derived to minimize the Fisher information
achieve privacy. Both [18] and [19] investigate secrecy
a distributed inference framework, where the informatio
ming to a fusion center from various sensor nodes can
so be observed by eavesdroppers. In [18], the estimation
p¥ob|em of a single point Gaussian source in the presence of
an eavesdropper is analyzed for the cases of multiple tidansm
E0¥sors with a single antenna and a single sensor with reultip

applications for secure communication [1], [2]. Howevé t transmit antennas. Optimal transmit power allocationgiesi

management of key generation and dlsmbutlon can l_)e VelYe derived to minimize the average MSE for the parameter of
challenging in heterogenous and dynamic networks with va i

numbers of connections [3], [4]. Furthermore, as many nod| X e[rlegsjt Vgﬁélea%;%rsgsf'gg c? é?;g;g/lsegtiﬁ ;23 ne?)vr?)icljé?nprif
In sensor UetWOka are lOW'.COSt with I'm'te.d battery.povye tudied when the sensor measurements are quantized and the
and bandwidth and have strict latency requirements, it tig

not be suitable to consider cryptographic solutions as tig o annel between sensors and receivers are assumed to be
| o yptograp binary symmetric channels. The sensor quantization tlotdsh
ayer of security in such systems [5].

re designed to ensure perfect secrecy when the number of

7= a

_ Based on these motivations, there has been a renewgf ., s very large. In [20], the secure inference problem
interest in physical layer secrecy to deve!op alterr_latme g investigated for deterministic parameters in 10T system
complementary layers of security technologies. Physayt under spoofing and man-in-the-middle-attack (MIMA). For

secrecy is based on the idea of exploiting the randomnesg\AFMAS’ necessary and sufficient conditions are derived to

wireless channel conditions to ensure secure communl'rcatg)ecide when the attacked data can or cannot imorove the
[6]. In this regard, information theoretic metrics and ®ol P

such as capacity. have been emploved in a multitude of stu stimation performance in terms of the Cramér-Rao bound.
pacity, pioy r spoofing attacks, effective attack strategies are ibestr
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In a secure communication system, the main goal is
secretly transmit data to an intended receiver in the poese
of a malicious third party such as an eavesdropper. As t
age of Internet of Things (loT), smart homes and cities,—seﬁf
driving cars, and wireless sensor networks with a vast nmml%g
of nodes has already arrived, it is necessary to find ways
to ensure secure communication of data in such syste
Massive deployments of sensors, the nature of wireless Ii{%
across a network, and the sensitivity of data collected



Stochastic encryption has been used as a defense mecearet), allows stochastic encoding in the transmittersicters
nism against eavesdropper attacks in the estimation ttieorenultiple observations rather than a single one, and employs
security framework [21]-[24]. In [22], stochastic encrigst different performance metrics leading to a distinct optiation
is performed based on the 1-bit quantized version of a noipyoblem. It is also different from those studies (such ag,[22
sensor measurement of a deterministic parameter to achig®@]) that allow stochastic encryption as it considers dire
secret communication, where both symmetric and asymmeteiccoding of a random parameter rather than a measured
bit flipping strategies are considered under the assunwgtiaeterministic one.
that the intended receiver is aware of the flipping probtdbdi
and 'ghe eaves_dropper is unaware of th_e encryption. It is lshog/' Contributions
that it is possible to create biased estimation and largarserr ) ) o ) o
stochastic encryption (BSE) approach proposed in [22] @ a scalar random parameter is |nve§t|gated in the presence
extended to non-binary stochastic encryption (NBSE) to f&f an eavesdropper in a Gaussian wiretap channel. The aim
cilitate vector parameter estimation. In [24], secrecyjited IS t0 achieve accurate estimation of the parameter at the
by stochastic encryption is studied under the assumpttuats tintended receiver while keeping the estimation error at the
the eavesdropper is aware of the particular technique, eQavesdropper above a certain level; or, alternativelynguee
BSE, NBSE, employed in the transmitter, uses an unbiasédt the estimation error at the eavesdropper is as large as
estimator, and does not know the encryption key and quanti9ssible while satisfying an estimation accuracy constrai

regions. It is shown that such a scheme is secure in the dom@iirfhe intended receiver. To enhance security, stochastic e
of unbiased estimators. coding is employed at the transmitter, and the encoder is

modeled to perform randomization between two one-to-one,

While the aforementioned studies focus on the stochas@entinuous encoding functions, which should be designed. |
encryption of a quantized measurement of a deterministicassumed that the mapping at the encoder is fully available
parameter, [25] and [26] focus on the secrecy problem fé& the eavesdrop_per and the receiver. For small numbers.of
a random parameter in the Bayesian estimation setting. ghannel observations, both the eavesdropper and the eeceiv
[25], the optimal deterministic encoding of a scalar randogf€ modeled to employ linear MMSE (LMMSE) estimators,
parameter is investigated based on the minimization of ex0d for large numbers of observations, the ECRB metric is
pectation of the conditional Cramér-Rao bound (ECRB) igmployed both in the receiver and the eavesdropper [30§ Thi
order to guarantee a certain level of estimation accuracyigtoecause of the fact that even though the optimal estimator
the intended receiver while keeping the estimation errdhat in terms of the MSE metric is the MMSE estimator, the
eavesdropper above a certain level. In [26], a robust pammealculations for its MSE have high computational complexit
encoding approach is developed and the optimization iscbag#d do not yield closed-form expressions in general. LMMSE
on the worst-case CRB of the parameter in order to guaranfét ECRB tightly approximate the optimal metric for small
a certain level of estimation accuracy at the intended vecei and large numbers of observations (e.g., see Figs. 2-fgces
The results in [25] are extended to vector parameter estmattively, in our setting, and they facilitate theoretical byses
scenarios in [27]. The common assumption in [25]-[27] ig thaVith intuitive explanations based on closed-form exp@ssi
the encoding function is not available to the eavesdroppdmerefore, based on these metrics, the optimization proble
hence, it acts like a secret key similarly to the assumption @re formulated to perform optimal encoding for small and
flipping probabilities not being available to the eavesgrpn large numbers of observations separately. Both generic and
[22] and [24]. On the other hand, for determining fundamientaffine functions are considered in the proposed encoding
security limits of many systems (such as those investigatd¢gheme, and a number _of theo_retlcal resultfs on the solutions
in the classical information theoretical framework), it as Of the problems are provided. Finally, numerical examptes a
common practice to assume that the eavesdropper has mﬁsented to illustrate the theoretlcal results_for bOtl’ale
full knowledge of the encoding strategy at the transmittetnd large numbers of observations. The main contributions
For example, in a Gaussian wiretap channel, the positiggd novelty in this manuscript can be summarized as follows:
secrecy capacity is possible even though the eavesdropper The problem of parameter encoding via encoder random-
knows the encoding scheme [12]. In particular, data is kept ization is analyzed to ensure estimation theoretic secure
private as a result of the condition that the noise present communication under the assumption that the encoding
in eavesdropper’s received signal is stronger than theenois scheme is available to the eavesdropper.
at the intended receiver. In that setting, the key ingrddien « For small numbers of observations, a closed form expres-
is to apply stochastic encoding at the transmitter to aehiev  sion for the MSE of the LMMSE estimator is derived for
a positive rate with no data leakage to the eavesdropper. both the receiver and the eavesdropper for the considered
The encoder is used to confuse the eavesdropper with the transmission and encoding scheme. The optimization
cost of a reduced communication rate. Inspired from this problems to minimize the MSE at the intended receiver
classical setting, in this manuscript, estimation théosscure for a given secrecy target at the eavesdropper and to
transmission of a scalar random parameter is investigated i maximize the MSE at the eavesdropper for a given
a Gaussian wiretap channel under the Bayesian framework, estimation accuracy limit at the receiver are formulated.
which has not been investigated in the literature. As the The relationship between the solutions of those problems

encoding strategy is available to the eavesdropper, thedenc is characterized. An optimal solution of the optimization
randomization is allowed to increase ambiguity to possibly problems is obtained theoretically when the channel
enhance security. The work in this manuscript is distingeds of the eavesdropper is noisier than the channel of the

from [25]-[27] as it assumes that the mapping strategy is intended receiver. It is also shown that a simple deter-
available to both the eavesdropper and the receiver (ic¢., n  ministic affine function can attain the optimal value. For
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Fig. 1: System model for the parameter encoding problem.

The considered system model is also known as the Gaussian
wiretap channel [9], [12], and has been studied extensively
via information theoretical tools, as mentioned in Section
In that framework, it is assumed that the eavesdropper knows
the codewords (mapping) in the encoder and has unlimited
resources/time for computation. Therefore, the encodaiesp
a stochastic mapping from messages to codewords to ensure
that the message can be kept unknown to the eavesdropper by
exploiting the degradedness of eavesdropper’s channéé whi
still being able to transmit the message to the intendedveice
at a certain raté.Motivated from such a setting, the following
assumptions are made for the rest of this study:

the case of affine functions, the monotonicity behavior of
the MSE is obtained with respect to the randomization
probability when the encoding functions are fixed.

For large numbers of observations, the optimization prob-
lems to minimize the ECRB at the intended receiver e
for a given secrecy target at the eavesdropper and to
maximize the ECRB at the eavesdropper for a given
estimation accuracy limit at the receiver are formulated.
The optimizations problems are theoretically solved when
only deterministic encoding is considered. It is also
shown that under symmetric mapping, the ECRB is
maximized when the randomization probability lig2.
Also, the monotonicity behavior of the ECRB is obtained
with respect to the randomization probability when the
encoding functions are fixed for this case, as well.

Il. SYSTEM SETUP

Consider the transmission of a scalar paraméter A
to an intended receiver in the presence of an eavesdropper
who wants to estimate parameteBoth the intended receiver
and the eavesdropper obtairdimensional observations over
their respective additive noise channels. The aim is toeaehi
accurate estimation of the parameter at the intended mceiv
while keeping the estimation error at the eavesdroppereabov
a certain level; or, alternatively, to ensure that the estiom
error at the eavesdropper is as large as possible whilégadjs
an estimation constraint at the intended receiver. To timaf a
the parameter is encoded by an encoding funcfiel\ — T'.
Let f(0) denote the encoded version of the parameter. Hence,
the ith observation at the intended receiver can be written as

Yi=fO)+Vi, i=12,...,n 1)

The encoding function at the transmitter is fully available
to the eavesdropper and the receiver. Therefore, it is
possible that both the eavesdropper and the receiver can
utilize optimal estimators according to a certain metric.
To enhance security, stochastic encoding is employed
and the encoder is modeled to perform the following

mapping:
fl (9)1

f@‘{mw

where f;.(6) : A — T is a continuous and one-to-one
function fork = 1,2 and~v € [0, 1]. 2

Each observation is corrupted by independent and identi-
cally distributed noise components. Therefore, based on
this and the previous assumption, the conditional PDF of
the n observations at the receiver givén denoted by
p(yl|6), can be expressed as

n

p(yl0) = [[ p(v:l0)

i=1

with probability v

with probability 1 — ~ )

(4)

L

[y vz, -yl p(yil0) = vpv(y -

(1 = Npvly — f2(0)) and py(z)
\/%UV exp{—5> }. Similarly, the conditional PDF of the
n observations at the eavesdropper givem(z|d), can
be stated as

where y

f1(0)) +

n

p(z0) = [[ p(=il0) )
i=1
where z 2 [z, 20,..., 2.7, p(z]0) = vypw(z —
[10) + (1 = Y)pw(z = f2(0)) and pw(z) =
o exp{—50

where the noiseV; is modeled as a zero-mean Gaussian |, this setting, the encoder should be designed in such a way

random variable with varianoﬁ%,, andV; and@ are assumed
to be independent [12]. On the other hand, iieobservation
at the eavesdropper is

Zi = [f(0)+ Wi, )

where W; is zero-mean Gaussian noise with variaru%e,
which is independent of) for ¢ = 1,2,...,n. Also, the

1=1,2,...,n.

prior information on parametef is represented by a prob-

ability density function (PDF) denoted by (6) for 6 € A.

that the estimation errors at the eavesdropper or, alfeehat

at the intended receiver satisfy the constraints. It is chthet

the secrecy capacity in information theory is an asymptotic
metric and assumes that — oo. In practice, it is also
important to investigate how much secrecy can be achieved
in the finite regime with a small number of observations. For
example, [32] provides new achievability results and coswe
bounds for the maximal secret communication rate of wiretap
channels for a given finite blocklength Similarly, we focus

The signal model in (1) and (2) can also be employed
for flat-fading channels assuming perfect channel estimaiuniike the classical Gaussian wiretap channel [9], [12], semsider a

tion and appropriate equalization [31]. The intended raxei
aims to estimate parametér based on observation¥ £
[Y17 }/'27 A
Z%2(2,,7,,...,7,]" for estimatingd. The system model is
illustrated in Fig. 1.

,Y,]T whereas the eavesdropper uses observation

scenario in which the channel of the eavesdropper is notssadey worse

than that of the intended receiver.

2The stochastic encoder in (3) both facilitates practicaplamentations
and allows for theoretical investigations. Note that it @dsp be represented
asf(0) = fa_x(0), whereX is a Bernoulli random variable with parameter
~ and X is statistically independent of all other variables.



on the optimal encoding design in the non-asymptotic regitine LMMSE estimator at the eavesdropger,can be obtained
for both small and large numbers of observations in this worfor given observations by usingZ instead ofY in (7). Based

It is known that the optimal estimator for Bayesian paranon these MSE expressions, the optimization problems can be
eter estimation in terms of the MSE metric is the MMSproposed as follows:
estimator. However, in most scenarios, the MSE of the optima . ¢ > ®)
MMSE estimator does not have a closed form expression. i@ gaey T S e =
Therefore, even though the encoding operation can be per-

formed with such an approach by using numerical methods,afi‘d
does not allow theoretical investigations for achievingitive max e, st 6 < o (9)
understanding of the parameter encoding problem. It is know v, £1(8),f2(0)

that for a large number of observations, the MSE of thghereq; anda. denote, respectively, the secrecy target for
MMSE estimator converges to the ECRB [30], and for a smafe first problem and the estimation accuracy (error) limit a
number of observations, the MSE of the LMMSE estimator e intended receiver for the second problem. The following

a close approximation to the optimal MMSE (see Figs. 2groposition provides a closed form expression for the MSE of
for an illustration). (Note that the LMMSE estimator woultthe L MMSE estimator at the intended receiver.
actually be the optimal MMSE estimator if the parameter of Proposition 1: The MSE ¢,) of the LMMSE estimator at

inte_rest and the obse_rvations were jo_intly Gaussian rand@a intended receiver for the encoding model specifie(8)n
variables.) Therefore, instead of the optimal MMSE, the BCR,;i, given f1(0), f»(6) and~ is

and the LMMSE estimator will be considered in the rest of
the manuscript.

Remark 1: The main reason for employing the MSE metric
in both the receiver and the eavesdropper is that we focus o
a parameter estimation problem in the Bayesian settingan il
presence of an e_avesdr(_)pper and the MSE me_tric is widely o £ 425 4 (1 —7)2ry +2v(1 =) E(f1(0) f2(0))
used in practice with or without secrecy concerns in suchpro
lems. For example, estimation theoretic secrecy based®n t
MSE metric has been considered in various channel scenarios t £ (ym; + (1 — ) m2)? (11)
such as Gaussian interference channel [16], multiuser MIMQ
broadcast channel [28], sensor network systems with eavl¥dh 7 = E(fi(0)), ri = E(f:(0)*) and¢; = Couv(fi(0).0)
droppers [18] and MIMO Gaussian wiretap channel [29]. | ri=1,2. T T
addition to parameter estimation problems, the MSE medric j  Proof: Note thatZy = E(YY") — E(Y)E(Y)".
also utilized to design practical and implementable mesttod AlIS0: E(Yx[0) = 7 f1(0) + (1 — ) f2(0). Then, E(Y;) =

degrade performance of eavesdroppers for enhancin C (E(Yk|9)) = ymi+ (L —v)my for k = 1,2,....n.
asgan adgitional layer. PP 988 Therefore,E(Y) = (ym1 + (1 — v) m2)1, wherel denote

the n x 1 column vector of ones. ThusZ(Y)E(Y)”
s N o (ymy + (1 —y)meo)?117T =117,
. -MALL- .UMBER OF OBSERVATIONS In addition,E(123|9) =y (f1(0)2 +02)+(1—7) (f2(0)2+
In this section, it is assumed that a small number gfg/); hence, E(Y?) = ~vri + (1 —y)r2 + 0‘2/ = 7 for
observations are available to the intended receiver and the- 1,2, ... n. Similarly, E(Y;Y;|0) = E(Y;|0)E(Y:|0) =
eavesdropper to estimaté As motivated in the previous (v f,(9) 4 (1 — v) f2(6))%. Then, E(Y;Y:) = v2r1 + (1 —
section, both the eavesdropper and the intended recei®er Q2 4 2~ (1 — ) E(f1(0) f2(0)) = = for j,k=1,2,...,n
modeled to employ LMMSE estimators for a given number &ind;j # k. Overall, the value of the diagonal elementsSa§

n(yer+(1-7)e)?

r = 0) —
& = Var(9) mn—Dz+717—nt

(10)

Here

h T2 yri+ (1 —7)ry + oy

observations.. is 7 — ¢ and the rest of the elements are- .
Furthermore, 3y y = Cov(0,Y;)1T and Cov(0,Y}) =
A. Generic Encoding Functions E(0Yy) — E(0)E(Y)). Note thatE(0 ;) = E(E(0Y:|0)) =

First, generic encoding functions are considered at tlﬁe(eE(YkW)) = 1 E(0£(0)) + (1 = 7)E(6/2(9)). Then,

transmitter. To that end, as motivated in [25], the parameteoy(9,v;,) = ~ (E(9f1 0)) — E(G)E(fl(t?))) + (1 -
space and the intrinsic constraints on the functigf(@) and

u(0) are speciied as folows D(EORE) - EOBRAO)) = e1-+ (1 =)z There-
. = |a, 0].
e f1(0) €[a,b] for k =1,2. fore, the MSE becomeiéar(@)—23973(2{(125,Y =Var(0)—

« f1(0) and f5(¢) are continuous and one-to-one functiongsy ¢; + (1 — ) 02)2 1T§;}11_ Note that the sum of the ele-
The LMMSE estimator at the intended receiver can explitaents in each row oEy is the same; therefor&v1 = A1,

itly be written for given observationg as whereX = (n—1)z+7—nt. AS A is an eigenvalue dEy with
. 1 a corresponding eigenvectr £'1 = (1/A)1 holds. Then,
Or = E(0) + 2oy Ey (y — E(Y)), 6) 17511 = (1/A)171 = n/A. Hence, the MSE becomes
and the corresponding MSE can be obtained as Var(8) — (ye1 + (1 — ) ¢2)? n/A, and inserting the value of
e = MSE = Var(0) — Ee,YEQIEéF,Y. % A= (n—1)z+ 7 — nt concludes the proof. |

Proposition 1 provides a tool to calculate the MSE for any
where Zg v = [Cov(6,Y71),Cov(6,Yz)...Cov(6,Y,)] and given prior informatiorp,(¢), encoding schemef((6), f2(0),

T . ~) and number of observatioms Note that Proposition 1 can
Sy = B (Y-E(Y))(Y-E(Y)) ) Similarly, the MSE of - similarly be derived for the eavesdropper by usirfg instead



of o whenever necessary. It can be observed that the M@fere
in (10) increases when the noise variance increases; theref
- #

€ < €. Wheneo? < o3 U%/(l 1 >

r < e 3 <ol AT (12)
It is noted that the optimization problems in (8) and (9) are n \ex  Var(f)

related such that the expressions éprande. differ only in - 544 %% can be anything as long ag*() € [a,b]. Then, the

the noise variance terms. Therefore, it is possible to ﬁndo‘i‘)timgal value of(8) is ’ ’

relationship between the solutions of (8) and (9), as stated )

the following proposition. o oy, Var(6) oy _ (13)
Proposition 2: Suppose thal = {(v*, f{, f3)} is the set " oy (Var(d) — 1) + open

of optimal solutions to(8). Let the optimal value 0{8) be  gjmilarly, an optimal solution t¢9) is a deterministic affine

denoted ase;. If as is set asay = ¢ in (9), then the f,ction fT(O) — kT + kI where

optimal solutions of (9) satisfy the constraint in(9) with ’ ! '

equality, andk! = max e., wheree! is the optimal value 2
a Y ¢ (nh.f2)ES © P kI = i\/a—w ( ! ! ) (14)
. fHY denote the set of

as  Var(0)

n

of (9). Similarly, letS = {(y', f]
optimal solutions to(9). If a; = ei in (8), then the optimal

solutions to(8) satisfy the constraint i§8) with equality, and

*

and k§ can be anything as long agf(0) € [a,b]. Then, the
optimal value of(9) is

€ :( min) €.
v, f1.f2)€S o2, Var(d)
Proof: We provide a proof only for the first state- el = i Var(0) o, ' (15)

2 _ 2

ment as the second one can be shown in a similar fash- oy (Var(f) — az) + ojaz
ion. Let the MSEs of the intended receiver and the eaves- Proof: First, we focus on the optimization problem in (9).
dropper be denoted, respectively, @as = T'(v, f1, f2,0%) The denominator of the second term in (10) can be rewritten
ande. = T(v, f1, f2,0%,) for given ~, fi, and fo. Sup- asn(x—t)+7—x, wherex—t = Var(yfi(0)+(1—7)f2(0))
pose that(+', fI, ) is an optimal solution to (9) with and7 —z = v (1 —¥)E (|f1(0) — f2(0)*) + o. Also, the
Ty, 1, #1,0%) < ay = €. Then,(v1, ff, f1) cannot be in numerator of the second term in (10) can be expressed as
the feasible set of (8) as, — min e, for e, > a in (8), imply- 7 Cov(vf1(0)+(1-7)f2(6),0)*. Therefore¢. ande, become
ing thatT(v!, f{, f3,0%,) < au. Note that any(y*, f7, f3) € ) n Cou(f,0)>
S satisfiesT(v*, ff, f5,0%) > o > T(y, fl, fl,0%,), € =Var(d) - = 5

) ) ) ) ) ) 1— E 9 — 9 2
which shows that~1, |, 1) cannot be an optimal solution nVar(f)+v(1-1) (|~fl(2) RO)F) + o
to (9). Therefore, the optimal solution to (9) should satisf, _ 1,4, (g — _ nCov(f,0)
T o) = aa = T(y, f1, f3,0%) = €, and it nVar(f) +v (1 —=2E(f1(0) - f2(0)?) + o7,
needs to be ir5. Hence, the sufficient space to search for the

optimal solution of (9) reduces t5, andel = max .. TesSpectively, wheref £ v f1(0) + (1 - 7)f2(0). It is noted
(v f1,f2)€S that unless we have the trivial case pf= 0, the following
u equation holds:
The following corollaries immediately follow from Propo- 9
sition 2. G-V _ A+ il
Corollary 1: If (v*, £, f3) is a unique solution t¢8) with €=V Atoy
the optimal valuee?, then it is also a unique solution €9) where V' = Var(d) and A £ nVar(f) + v(1 —
for ap = €. Y)E (|f1(8) — f2(0)]*). Then, for all feasibley, f1(6), f2(6),
Corollary 2: If all the optimal solutions tq8) satisfy the A 9 A 9
constraint in(8) with equality, then the optimal value ¢®), €=V — (V- ET)LO';/ <V —(V—an) + U;/
el, is equal toa; for ap = €. A+ oy Atoayy
Corollary 3: If (T, ff, f;) is a unique solution t@9) with <V — (V- an) A* + oy,
the optimal value!, then it is also a unique solution t8) - A* + o2,
for a = el. (16)
Corollary 4: If all the optimal solutions tq9) satisfy the \where A* = min A s.t., ¢, < . Note that the first

constraint in(9) with equality, then the optimal value ¢8), inequality in (1éif|2s due to the fact that, < as in the

& is equal t.OOfQ fgr 1= e . . feasible region, and the second inequality is due to the fact
As the optimization problems in (8) and (9) require a seargf, (A +02)/(A + 02, is an increasing function of\ as

over functions, characterizing the set of optimal soluion > > o2 with A > 0. As (16) provides a global upper bound
in every case may not be p(_)SS|bIe. However, Propositiong €., if there exists a feasiblgy, f1, f2) such that, attains
provides the required EXpressions to ev2aluate the obgeatid o g10hal bound, then it is concluded thatis maximized
constraint functions for givemy; and oy,. Based on those it A sufficient condition for the existence of such a eas

expressions, the following proposition provides a closEtf s hat the solution of min A satisfies the constraint
expression for an optimal solution to (8) and (9) when the v, 1, fa,6r<az

channel of eavesdropper is noisier than that of the intend@éh equality, i.e.,e, = a». Therefore, we aim to obtain the
receiver; that isg?, > oZ,.

Proposition 3: If 03, > 0%, an optimal solution tq8) is
a deterministic affine function, denoted ¥(6) = k76 + k3,



solution of the following problem: Even though Proposition 3 provi<12es a clzosed—form expres-
. x 9 sion for an optimal solution wheny,, > o7, it does not
%f}(gl;}}z(@)”va”(f> (L =NE(1/10) = L(0)F) s-t. bring any conclusions into the casVeV@‘iV <Vo‘2,. In order
7 o to obtain the solutions of the optimization problems in (8)
_ nCov(f,0) >V —a, and(9) in this case, the solution methods provided in [25]
nVar(f)+~vQ =7)E(|f1(0) — f2(0)]?) + 0% — can be adopted, and. and ¢, can directly be calculated
(17) using (10). In this study, the piecewise linear approxiorati
Note that for any possibl@f, which is obtained using amTtT-Od deshcnbeg n [25]2 |s|ut|I|zef[j_ t? Ob]Eam thee ot%tlmal
feasible(v, f1, f2), there are infinitely many alternative waysSO utions whehoyy - < oy 1N paricuiar, for il ){i) Ae
of constructing it with other feasiblgy, fy, f2)'s. Among all Increment in thekth interval in[a,b] is defined asAz,” =

: Lz : = o fila + kEAO) — fi(a + (K — 1)AQ) for k = 1,...M, and
constructions, choosinfyj= f; = f» yields a smaller objective N '
value and a larger value for the left side of the constraint |trr1]e op?lr)mzatl((i))n IS perf(olr)med(gveIJV{g;L 1 varle(lg))les, that
(17), implying that it is the optimal selection. Therefotee IS: [Aa1 s Az ", Ay, Aay™, Awy .., Ay, 7], by
problem reduces to using t.he Global Optlmllzanon Toolbox of MATLAB. In the
~ numerical examples)M is taken to be25, which seems to
: nCov(f,0)?

provide a good trade-off between accuracy and complexity.

mfin Var(f) st. V- nVar(f) + o2 S (18) ™ Next, we investigate a special case in which the encoding
o v function is restricted to be affine.
The constraint in (18) can be expressed as
n (Var(e)Vm‘(f) - COU(fﬁ)Q) + oy, Var(0) B. Affine Encoding Functions
— < : L L
nVar(f)+ o% =2 In this section, it is assumed that encoding is performed

5 5 _via affine encoding functions such thAt(6) = k16 + k- and
Note that Var(9)Var(f) — Cou(f,0)> > 0 for any f  £,(9) = 516 + s2.3 For this case, the MSE of the intended
due to Cauchy-Schwarz inequality. Therefoléar(f) > receiver (and the eavesdropper by usiffg) can be expressed
0% (Var(0) — as)/(nas) for any f. This global lower bound in terms ofky, k2, s1 and s as a corollary to Proposition 1.
can be achieved vig(d) = ki + k} with kI being given ~ Corollary 5: The MSE ;) of the LMMSE estimator at the
by (14) andk} being selected as any value to guarantdBtended receiver for the encoding model specifie(B)rwhen
7(0) € [a,b]. It is noted that when (9) is a feasible problem/1(0) = k16 + k2 and f5(0) = 516 + s, is

|kI(|:i < 1. For such arr1] encoding)* = J%(V?r(g‘) - ﬁzg)/ag i = Var(®) v =)k + o2
and e, = ao, i.e., the constraint is satisfied with equalityr = Var0(~ k 11— 3 1_ 3
in (17). Therefore, an optimal solution of (17), which is a nVar@)(vk + 1 =7)s1)* +7( 7)%—(%133/
deterministic affine function, is also an optizmal solutidr{®),
which yields the optimal value off = — 2w Var@as where
e ot (Var(0)—az)+oj, az N 5
Based on the preceding discussion and Corollary 4, it can K=E (((kl —51)0 + (k2 — 52)) ) : (20)

be argued that an optimal solution to (8) is a deterministic  proof: For the givenf; and f», ¢1 and ¢, defined in

affine function whenv{;, > 0. First, notice that any optimal proposition 1 becomé, Var(6) ands; Var(6), respectively.

solution to (9) should satisfy the constraint with equalify., Hence, the numerator of the second term in (10) becomes

€, = ap. This is due to the fact for any other solution which, (y ., + (1 —~) s1)2 Var(6)2. Also, the denominator of (10)

does not satisfy the constraint with equality, the inedwalican be rewritten asi(z — t) + 7 — z, where z,7 and ¢

in (16) would strictly be implying a gap betweep and the are as defined in (11). Note that — t) = 2k2Var(h) +

global bound, and it is already shown that this bound cam — )22V ar(0) + 2v(1 — 7)k1s1Var(d) = (vk + (1 —

actually be achieved. Therefore, the result of Corollaryas Cq)s1)? Var(h), andr — z = v (1 — )k + 0%, wherex is as

be applied to connect the solutions of (8) and (9) and to impHéfined in (20). After arranging the terms, the final expi@ssi

that the deterministic affine functions solve (8) as well emdip (19) is obtained. m

the conditions of Proposition 3. Via Corollary 4 and (158 th  when the encoding functions are restricted to affine func-

expression in (13) can be obtained after a rearrangemint. tions, the optimization problems in (8) and (9) involve a
There are some interesting observations regarding thé research over only; variables instead of functions. Lef, £

in Proposition 3. First, randomization between two funtsio [, k1, k2, 51, S2] andTa(xa,cr%,) £ ¢,., wheree, is as defined

does not bring any benefits over deterministic encoding whan(19). Then, the optimization problems can be written as

the intended receiver has already a less noisy channel than

. 2 2

the eavesdropper, and the encoding function can be selected I?cinTa(Xa’UV) st To(Xa, 01) 2 0 (21)
as a simple affine function. Second, for a given (or, az) max T, (Xa, 0%) s.t. Ty(Xa,0%) < o (22)
value,e* (ande!) does not depend om; however, the slope of Xa ’ ’ -

the deterministic affine optimal function decays witf,/n.
This means that the transmit power per channel use should
decreased as increases such that the total transmitted sign
power to send with n channel uses stays constant. Also, the
constant term in the determin_istic affine optimal functiaes 3, and ks should be such thaki0 + ks € [a,b] for all 0 € [a,b].
not have any effects; hence, it can be chosen freely as lonGs@ilarly, s,6 + s, needs to be ifa,b] for all @ € [a, b]. Note that this
the function remains in the feasible set. requires|k1| < 1 and|s1| < 1.

here T, (Xa, 0%) £ ¢,.. It is noted that the optimization
Gblems in (21) and (22) are much easier to solve than those
the case of encoding with generic functions.



Finally, as the closed form expression for the MSE witlo Proposition 4. Due to the symmetry in this specific prohlem
affine encoding can be calculated based on given encodinés possible to restrict to v € [0, 1/2]. Therefore, wheny
coefficients, it is also possible to investigate its behag®y increases, the MSEs (both ande¢.) increase monotonically
changes. Namely, the aim is to provide regionsaf [0,1] in  until v = 1/2, as well. As the goal is to minimize,, it
which the MSE increases or decreases with respegt 8uch is obvious thaty should be increased until it yields =
a characterization is helpful for both theoretical anaysnd «; = 0.08 but no more. Finally,y = 0.3 can be obtained
gaining intuition on the benefits of randomization. In addif as the optimal probability, and the corresponding MSE at the
it facilitates the specification of the exact optimal salatiof intended receiver becomes = 0.07.
~ for the given encoding functions, i.ek;, ko, s1, s2, and
secrecy target. The following proposition characteriZes t
behavior of the MSE with respect tg where~ is taken as a
real number (the case of € [0, 1] immediately follows as a In this section, it is assumed that a large number of

IV. LARGE NUMBER OF OBSERVATIONS

corollary). observations are available to the intended receiver and the
Proposition 4: Definev(vy) £ voy? + vy + 1o With eavesdropper to estimate® As motivated in Section Il, the
A 5 9 ECRB metric is employed for both the intended receiver
ve = —r(ki = s7) and the eavesdropper in this scenario. The constraintsen th
v & 2ks7 — 20‘2/(141 —51)2 parameter space and the encoding functions are the same as
N 23) in the previous section.

v ns% - 20%/(141 — 51)81

The ECRB is defined as the expectation of the conditional
wherer is as defined in(20). Then, CRB with respect to the unknown parameter [30], which is
e if 1, = 0 andwv; > 0, thene, is an increasing (a expressed as
decreasing) function of for v > —vy /11 (v < —vo/11); b 1
e if v, = 0andvy; < 0, thene, is a decreasing (an  Ep((I(M(0))7!) = / po(0)————df £ ECRB (26)
increasing) function ofy for v > —vy /11 (v < —vo/11); a It (6)
« if v, > 0, thene, is a decreasing function ofy  \yherep,(9) is the prior PDF ofg, I (§)~! corresponds to
when  is in between the roots of(7)=0, which are e conditional CRB for estimating and (™ (§) denotes the

202 (k1 — _ . . . . . . .
2 ,1(21‘;(511) =) and klflsl, and an increasing function Fisher information based anobservations. Therefore, for the

elsewhere; intended receiver\™ (#) can be expressed as

« if 15 < 0, thene, is an increasing function of when dlogp(y[6) 5
~ is in between the roots af(y) = 0, and a decreasing 1M () = / < ogply > 0) d 27
function elsewhere; "0 00 p(y[6) dy @7

« if vy = vy =0, thene, is constant with respect tg. with p(y|#) representing the conditional PDF of the ob-
Proof: From (%9) the MSE can be expressedea32= servations for a given value of [33]. Also, due to (4),
Var(0)h(v)/(€9(7)* + (7)), whereh(y) = (1 —v)r + oy, 1"(0) = nl.(0), where I,(9) is the Fisher information

g(y) = (k1 — s1)y + s1, andé = nVar() > 0. Consider . _ _ _ _
the derivative of the MSE with respect tq i.e., de, /dvy. As based orp(y|0) = vpn (y — f1(0)) + (1 =) pn(y — f2(0)).

the denominator ofle,./dy is always positive, it is enough to Therefore, -
characterize the sign of its numerator with respecttd et 1(6) = u(6)? d (28)
d(v) denote the numerator ak, /dv.* Then, e p(ylo) Y
() =0 (7) (€9(v)* + h(7)) — h(7) (269(7)g'(v) + I'(v))  where
=&9(7) (W' (7)g(v) = 2h(7)g' (7)) £ €v() (24) L e - [0)
. . u(@) =7 e v 2 fl (9)
whereh/(v) = (1—2v)x andg’(y) = k1 — s1. After inserting V2may v
these into (24)y(y) becomes 1 —wod o0 (0 £o(0))
2 + (1 — 7)\/_76 20y Wfé(e)
v(y) = ((k1 — s1)v + s1) (—Ii(kl + 1)y + k1 — 207 (k1 — 51)) 2roy o (29)
=y + vy + 1 (25) d
an

where vy, 1, and vy are as given in (23). As the roots of o fr (o)) o fa(0))?

ks1—20% (k1—s1) d == h lusi in th B ¥ 1’207% 1— ~ 9267%
v(y) are ——mqsy— and ;= the conclusions in the p(y|0) = 5 ¢ v ¢ v (30)
proposition can be obtained by applying the sign tesi(tp). v v v v
| In addition, when (28) is employed in (26), the ECRB at the

The result in Proposition 4 can be used to find the optimaitended receiver,., is obtained as

~ directly whenky, ko, s; and sy are fixed. For example, 1 b 1
consider a scenario with a single observation= 1), oy = E, = _/ e (0) de. (31)
0.01, o = 0.5, and a secrecy target of = 0.08. If f1(0) = nJa I.(0)

6 and f2(0) = 1—0, whered is uniformly distributed ino, 1],
thenv, = 0 andy; < 0 with _VO/V1 — 1/2 for bothe, ande.. 51t should be emphasized that the ECRB approaches the MSE MKNSE

: : : stimator in the asymptotic region, which refers to eithéarge number of
Therefore, Wheﬂ’/ > 1/2' the MSE is a decreasmg function O]&gbservations or high SNR/SINR scenarios [30]. When stdzh@ncoding

v and wheny < 1/2itis an increasing function of according s employed, there exists a certain interference term inréeived signal
limiting the effective SINR. Therefore, the ECRB metric istmeliable for a
4The Var(0) term is omitted in the expression as it is always positive. small number of observations even for a small noise variance



Similarly, the ECRB at the eavesdropper can be obtained byFinally, it is possible to obtain some theoretical and itei
defining Fisher informatiod, (¢) based om(z]0) = vpw (z— results for the generic stochastic encoding scheme in (3) by
f1(0)) + (1 — v)pw(z — f2(0)), which can be calculated asusing the convexity of the Fisher information with resperct t

in (28)-(30). Then, the ECRB at the eavesdropger, is the conditional distribution [34]. Specifically, let thesher
L 1 information based op, (y|0) andp2(y|f) be denoted by, (6)

E.=— / po(0) —— db. (32) andly(0), respectively. Ifps(y|6) = yp1(y|0)+(1—7)p2(y]6),
nJa 1.(0) then the Fisher informatiori; (¢) based orps(y|0) satisfies

I3(0) < vL(0) + (1 — v)I2(0) given thaty € (0,1) and
p1(y|0) # p2(ylf). This implies thatl3(#) is also a convex
function of v for any givend € [a, b], and it always remains

Therefore, similarly to (8) and (9), the optimization prob
lems can be proposed as follows:

min E,. st. E. > (33) below the linear line connecting (6) and I5(6).
7:51(8).£2(6) This convexity property is helpful for providing a few
L E. st. E. < (34) intuitive and analytical results. For example, a lower btor

. the ECRB can be obtained whei(#) and f2(6) correspond
wheren; andn, denote the secrecy target for the first probleny affine encoding. To that end, consider the affine encoding
and the estimation accuracy limit at the intended receiver fscheme described in Section 1II-B. Theh,(§) = k?/o?

the second problem. Even though the simplification to (28hd L(0) = k3/0>. Then,I3(0) < (7/@% +(1—7) k%ﬁ/cﬂ
may not be possible for the generic case, calculating the ¢ [, b]. Therefore, for the ECRB of the intended receiver,

ECRB is still easier and more practical for a large number. - o2
of observations than calculating the MSEs of estimators su% is obtained tha, > ;i sy and for the 2ECRB of
as the MAP or MMSE estimators. the eavesdropper, it is obtained th&at > T

n(yR+(1—7)k2) "
Remark 2: Similarly to the results in Proposition 2 andThe following proposition provides a resuit7 c;Lr( sfr)nrzr%etric
Corollary 1-4, the exact relationship between the solstioh encoding:
(33) and (34) can be obtained based on a similar approachProposition 6. Consider the symmetric mapping with
which is not repeated here for brevity. f1(0) = g(8) and f2(8) = go — g(8) such thatg(6) € [a, b]

It is noted that if the encoding function is deterministicand go — g(0) € [a,b] for all & € [a,b]. Then, the ECRB is
then simplification is possible for both, and E,. The fol- maximized aty = 1/2.

lowing proposition provides the solutions to the optimiaat Proof: Let v = 7 € [0, 1]. For the given model[(6) =
problems in (33) and (34) in the absence of randomizationg’(6)* [~ @(6)?/p(y|0) dy, where
Proposition 5: Suppose that a deterministic encoding func- 1 w002 (y — g(0))
tion f() is employed at the transmitter. For a given feasi- (6) = o e 2P
ble secrecy target);, the optimal value of the optimization V2o g
problem in (33) is 7, 0% /o¥,. Furthermore, anyf(6) with — (=) 1 E%W (y +9(8) — 90)
(02:/n) [2 pe(8)/f'(8)d0 = n: is an optimal deterministic V2ro o?
encoding function for(33). Similarly, for a given estimation 2 m(y,0,%) (36)

accuracy limit n,, the optimal value of the optimization
problem in (34) is s 02, /o2 Furthermore, anyf(#) with an

2 b 1N\20 — ; ; it —(y—g(6))?
(oy,/n) N po(0)/f'(0)°df = n2 is an optimal deterministic pl6) = o0 1 R
encoding function foK34). V2roy
Proof: When a deterministic encoding functiofi(6) 1 ~(tg(0)~90)?
is employed at the transmitter,.() in (28) simplifies to +(1=v) ——e >V 2 d(y,0,7). (37)
I.(0) = f’(G)Q/_a%’,_[ZS]. Similarly, I.(0) = 1'(0)?/c%,. V2moy
Then, the optimization problem in (33) becomes If the change of variables withyy — y = ¢ is applied
o2 b 1 in the integration forI(#), it is obtained thatl(d) =
. 00 m(Yy — 2 ~ .
I}%}.}I)l TV/ pg(@)w de q0)% [ %9071_1%} dj. Therefore,I(0) attains the same
) . ) value fory = 79 and~ = 1 — 7; hence, it is a symmetric
. Ow function of v aroundy = 1/2 for any 6 € [a, b]. Due to this
st n /a Po(6) 17(6)2 0= m (35) fact and the convexity of () with respect toy, its minimum

froceurs aty = 1/2 for all 8 € [a,b], implying that the ECRB

IS maximized aty = 1/2. |
Finally, the behavior of the ECRB with respect{acan be

investigated for the general encoding scheme in (3) based on

the convexity property, as stated in the following progosit
imilar results can also be derived far(6).)

[ s dl, (6 dl, (6
groposition 7: Let d§ ) —o+ = do and d§ ) - 2

As the integral term is identical in both the objective and
constraint functions, the argument in Proposition 5 foldwy
choosing an encoding function that satisfies the constwatht
equality. The result for (34) can be justified similarly. W
Proposition 5 shows that if there is no randomization in t
encoding function, then the ratio &, /E. depends only on
the noise variances in the channels of the eavesdropper an
the intended receiver. Therefore, any deterministic eimgpd di. Then,
function can be used at the transmitter as long as it satibiges « if d; < 0 for all 6 € [a,b], I,.(§) is monotone decreasing
constraints. Also, it is noted that the only difference begw with ~, implying that the ECRB is monotone increasing
using a generic deterministic encoding function and aneaffin  with v € (0, 1);
deterministic encoding function is that the former may sapp  « if dy > 0 for all 4 € [a, b], I,.(§) is monotone increasing
a larger set of feasible; (or, n2) values. with ~, implying that the ECRB is monotone decreasing




with v € (0,1); LMMSE estimators are plotted versus the number of obser-
o if dy <0 andd; > 0 for a givend € [a,b], I.(9) has a vationsn. The SNR is defined as0log,,(1/0?), whereo?
minimumy* € (0, 1). Furthermore, ify* minimizesl,.(6) is the variance of the zero-mean Gaussian noise. In the first
for all 6 € [a,b], thenE,. is maximized aty = ~* example, we consider a simple scenario in which the paramete
Proof: Due to the strict convexity of,.(¢) with respect is ”0tt en.COded,(;-eaf(bG) =0. |”| the second ?xampclje,tthg P?'t
d*I,.() rameter is encoded by a simple piecewise linear deterrunis
07 gy >d? (S)olds fory € (0,1). If dy < 0 for al encoding function such that(¢) = 26/3 for 6 € [0,0.5]
0 € [a,b], then == < 0 for all v € (0,1) as the value of and r(§) = (46 — 1)/3 for 6 € [0.5,1]. In both examples, it
the derivative only increases asincreases. Hencd,.(f) is is assumed tha@ has uniform distribution ird € [0, 1] and
a monotone decreasing function pffor all ¢ € [a,b], which the SNR is set t& dB. The results are shown in Fig. 2 (top
implies thatE,. is monotone increasing. Similarly, ifp > 0 and bottom figures), and the corresponding encoding fungtio
for all 6 € [a, b], d{;—s‘g) > 0 for all v € (0,1); hence,.(8) is are provided in the upper right corner of each figure. It is
a monotone increasing function offor all § € [a,b], which observed that the MSEs of the LMMSE and MMSE estimators
implies thatE,. is monotone decreasing. Finally,df < 0 and are close to each other whenis small whereas the ECRB

d; > 0, then via a similar argument, there existsya= v* converges to the MSE of the MMSE estimator for lange

such thatC”U’l‘—(m] =0, and it is the minimum for,.(9), Values in both figures. In the absence of encoding, the MSE
,Y —A* 1 T 1 . .

and the rest of the arguments in the proposition follow froerformance of the MMSE and LMMSE estimators is almost

(31). m the same for large numbers of observations, as well. However

The following point should be noted related tg° in the performance of the LMMSE estimator deviates from that
Proposition 7. Even though there may not exist such*a of the MMSE estimator and the ECRB for large numbers of

which is the minimum for alp € [a, b] in general,E, can still obse_rvations_in the §econd example (with n(_)nlin_ear er_u;pd_in
have a maximizer iny € (0,1). Hence, it is only a sufficient function), which motivates the use of ECRB in this regime in

condition, and the symmetric mapping given in Proposition §€ general case. It is also noted that the ECRB is not a lower
is an example in which this condition is satisfied. bound, and it rather identifies the optimal estimator betravi

Remark 3: The monotonicity results are important to gaid @symptotic scenarios. _ o
intuition about the benefits of randomization and provide a Next, we provuje two ngmencal example_s in Figs. 3 and
practical tool and guide to obtain the optimal valuerofor 4 under stochastic encoding as modeled in (3). In both of
given functionsf; (9) and f2(6). For example, if the designerthe examples, it is assumed that= 0.8, fi(¢) = ¢, and
fixes the encoding functions to decrease system complexify(f) =1 — 06 andd € [0,1]. Also, § has uniform distribution
then the problem reduces to finding the optimab satisfy the in Fig. 3, and beta distribution with parametdts 3), i.e.,
secrecy targets. (In some other scenarios, it may help eedwe(f) = 126(1 — 6)?, in Fig. 4. It is observed that for
the search space.) However, in order to obtain the solutbnsPoth SNR values in the figures, the MSE of the LMMSE
the optimization problems in (33) and (34) in general, simyl ~ estimator and the_ ECRB are close to the MSE of the MMSE
to the previous section, the piecewise linear approximatigstimator whem is small and large, respectivélyAnother
method described in [25] can be utilized, aAd and E, are important observation is that as the noise variance deeseas
calculated based on (26)—(32). the ECRB also reduces rapidly. For small valuesngfthe

Remark 4: Even though the ECRB metric is also utilizedECRB cannot capture the interference effect on the error due

in [25], the current problem setup is significantly differento the randomization employed in the encoder, and it canlyiel
as it considers encoder randomization, multiple obsesmati Optimistic values for the MSE, which motivates the use of
(n > 1), and the availability of encoding information at thdhe LMMSE estimator in such scenarios. On the other hand,

eavesdropper. ECRB is only an optimization metric for thigere is a performance gap between the LMMSE and MMSE
performance of the estimator at the receiver in [25], i.eestimators for large values of. This is due to the fact that
optimizing itimpliesimproved overall performance. Howeverpractical estimators start correctly deciding which mode o
in this study, ECRB is used only when is sufficiently €encoding (i or f2) is employed with larger observations.
large; hence, it is rather directly a tight approximatiortloé However, the LMMSE is unable to achieve such a decision,
optimal MSE value in the asymptotic region. Also, in [25]motivating the use of the ECRB in such scenarios as it is
different metrics are utilized in the receiver (ECRB) and thvery tight in that region. Therefore, the LMMSE estimator
eavesdropper (MSE of LMMSE estimator) whereas in th@nd the EC_RB can be u_tlllzed for small and Iar_ge numbers
section, ECRB is utilized both in the intended receiver arRf observations, respectively, at both the receiver and the
the eavesdropper. Due to these reasons, most of the tluadregavesdropper.
discussions in [25] cannot be applied to the current study. Note that the MMSE solutions in these examples are
obtained based on the following approach: For a gi¥en

V. NUMERICAL RESULTS n—dimensional realizationg are obtained empirically at each
un of Monte-Carlo simulations, and the conditional MSE is
btained. Then, the MMSE estimatéfy) = F (0]Y =y) is
analytically calculated for a givegp at each run. Finally, the
MSE is obtained by taking the expectation of the conditional

In this section, numerical examples are provided to inves
gate the theoretical results and the solution of the optition
problems proposed in Section Ill and V.

A. Justification for LMMSE estimator and ECRB metric

In this section, we provide numerical examples to illugtrat_ At high SNRs, the MSE of the MMSE estimator may be in between th

PR : : : ECRB and the MSE of the LMMSE estimator for medium valuespfience,
the motivation behind using different approaches for theesa a more conservative approach can be taken and the ECRB casetédar the

of small and Iar_ge numbers of observations. In all exampl@gyesdropper and the LMMSE metric can be used for the inteneieeiver
the corresponding ECRB and the MSEs for the MMSE andsuch a case.
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Fig. 3: ECRB, LMMSE and MMSE versus, wheref has uniform SNR of intended receiver (dB)

distribution in [0,1].
Fig. 5: MSE of intended receiveref) versus SNR of intended

MSE overpy(6) analytically. The total number of Monte-Carlo' - " for two different scenarios.

runs is set tal0”. Stochastic affine: This strategy corresponds to the solution
_ of (21) (and alternatively (22)), which provides the optima
B. Small Number of Observations affine encoding functiong, () = k10+k2 and f2(0) = s10+

In this section, numerical results are provided for the casg, and the probabilityy.
of small number of observations. In all of the examples in Deterministic generic: This strategy corresponds to the
this section, it is assumed that the number of observatios@ution of (8) (and alternatively (9)) when a determirasti
is 5, i.e.,, n = 5, and @ is uniformly distributed in[0,2]. generic encoding functiofi(9) is employed at the transmitter.
The SNRs of the intended receiver and the eavesdropper arBeterministic affine: This strategy corresponds to the so-
defined ad01log,,(1/0%) and10log,,(1/03,), wheres?, and lution of (21) (and alternatively (22)) when a determiristi
0%, are the variances of the zero-mean Gaussian noise at eawboding functionf(§) = k10 + ko is employed at the
observation of the intended receiver and the eavesdroppgeansmitter.
respectively. The following strategies are evaluated ia th First, we consider the minimization of the MSE at the
examples: intended receiver for a given secrecy level at the eavepeiop
Stochastic generic: This strategy corresponds to the soke., the optimization problems in (8) and (21).
lution of (8) (and alternatively (9)), which provides opim In the first example, two different scenarios are considered
generic encoding functionf (6) and f2(6), and the probabil- and the MSE of the intended receiver is plotted versus the
ity . SNR of the intended receiver. In Scenario 1, the SNR of the
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Fig. 6: MSE of intended receiveref) versus secrecy target() Fig. 7: Optimal encoding functions for different strategies when

when SNRs of eavesdropper and intended receivei a@nd5 dB, SNRs of eavesdropper and intended receiver Hreand 0 dB,
respectively. respectively, and secrecy target is 0.28.

eavesdropper i20 dB, and the secrecy target; = 0.26 is required at the eavesdropper), stochastic genericitursct
and in Scenario 2, the SNR of the eavesdroppet5idB, have slightly better performance than deterministic oiéss
and the secrecy target; = 0.04. In Fig. 5, it is observed implies that it is not possible to claim that deterministamngric
that when the SNR of the intended receiver is higher thdanctions are an optimal class of functions in all settingsre
the SNR of the eavesdropper, all strategies yield the satheugh their performance is not far from that of stochastic
performance in both scenarios. This result is actually @dovgeneric functions.
formally in Proposition 3, and the optimal value for the In Fig. 7, the optimal encoding functions for different stra
MSE of the intended receiver can be achieved by usinggées are plotted when the SNRs of the eavesdropper and the
simple deterministic affine function. For example, when thietended receiver are) and0 dB, respectively, and the secrecy
SNR of the intended receiver 80 dB, f(f) = 0.0130 is targeta; is 0.28. Some important observations can be made
an optimal encoder for Scenario 1, yieldin§j = 0.0872, from the figure related to the optimal functions. First, it is
and f(6) = 0.06636 is an optimal encoder for Scenarionoticed that the deterministic affine function majps [0, 2] to
2, yielding ¢ = 0.0014 according to (12) and (13). It is a smaller interval[(), 0.213]) to solve the optimization problem
also observed in Fig. 5 that when the SNR of the intendeshd has a low degrees of freedom in the mapping operation.
receiver is lower than that of the eavesdropper, there isCa the other hand, the stochastic affine strategy sends ae affi
performance gap between different strategies. In thabregifunction f;(0) = 0.4625 6 + 1.075 with probability 0.604 and
the deterministic affine functions perform worse than theothing (i.e.,f2(0) ~ 0) with probability 0.396. Furthermore,
other strategies, and applying randomization to affinetions the characteristics of the generic functions are quiteedsffit
brings significant performance gains. Also, the genericfunfrom those of the affine functions. The optimal determigisti
tions yield lower MSE values than affine functions. In Scemargeneric function isf(f) ~ 2 if § < 0.1232, and f(6) ~ 0
1, stochastic generic functions bring a small performaraie g otherwise’ This implies that the optimal deterministic func-
over deterministic generic functions. However, stocltaatid tion actually converges to a non-uniform quantizer such tha
deterministic generic functions yield the same perforneanc 6 values are mapped 1 and 2. Furthermore, the stochastic
Scenario 2, implying that randomization is not necessagy ifgeneric function strategy randomizes between guantizer-
generic function is employed in that scenario. Also, the MSlike generic functions to outperform the optimal deterministic
of the intended receiver is equal ¢q for all strategies when encoding function strategy. The intuition behind such aesuh
the SNRs of the intended receiver and the eavesdropper i@réhat a quantizer-like encoder already assign8 and~ 0
the same. for a set of@ values and provides one layer of ambiguity.
In Fig. 6, the MSE of the intended receiver is plotted versughen, randomization over these two quantizer-like funtio
the secrecy target at the eavesdropper when the SNRsptgdvides an extra layer of ambiguity about the parameter to
the eavesdropper and the intended receiverlarand5 dB, achieve required secrecy targets for the eavesdropper.
respectively. Obviously, as the secrecy target becomgsrdar In Fig. 8, the optimal encoding functions for different $tra
the MSE of the intended receiver increases, as well. Whgies are plotted when the SNRs of the eavesdropper and the
the secrecy target is very smalk 0) or very ambitious intended receiver arks and5 dB, respectively, and the secrecy
(~ Var(0)), all the strategies have similar performance. Fdargeta; is 0.04. In this case, the secrecy constraint is not as
medium values ofa;, it is observed that the deterministicambitious as the previous one. Similarly to the previougcas
affine function strategy performs significantly worse thaa t
other strategies. However, the stochastic affine stratexgy h "Note that the encoding functions are required to be onestofanctions
significantly closer performance to that of generic funusio in this study; therefore, even though they are not allowedtty constant

; g . over an interval, it is easy to make sure that they are arlhjtrelose to being
When a, is less than0.24, randomization does not bring constant and still do not violate the one-to-one assump#dso note that if

any improvements over the dEt_erminiStiC_ generic strategyy) is an optimal deterministic solution, thef(9) = fo + f(6) is also an
However, asa; gets larger (that is, a relatively large MSEoptimal solution as long ag(6) € [a, b], where fo is a constant.
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Fig. 8: Optimal encoding functions for different strategies wheifrig. 9: MSE of eavesdroppek() versus SNR of eavesdropper when
SNRs of eavesdropper and intended receiver Hreand 5 dB, SNR of intended receiver i5 dB, and estimation accuracy limit;
respectively, and secrecy target is 0.04. is 0.24.

the deterministic affine function magse [0, 2] to a smaller
interval (0,0.746]). The stochastic affine approach sends th|§
original value of the parameter with probabili®y8775 but it

Finally, in Fig. 10, the MSE of the intended receiver)(
plotted versus the secrecy target, and the MSE of the

N . o X . eavesdropperef) is plotted versus the estimation accuracy
mapso to ~ 2 W'th probability 0.1225. According to Fig. 5, imit as when the SNRs of the eavesdropper and the intended
the deterministic and stochastic afflne_ appr_oaches_ yiedd ceiver are5 and 15 dB, respectively. In this scenario, it
Eﬂesrlif};zlgisr;r%éﬁi;?:no'?ﬁséégﬁﬁj?t%ﬂy(’)gl{?;gﬂg%;?ﬁi is already established that all the methods have the same
istic generic function (and. also the op’timal stochasticegien fg/gg?oarrfleg\(l)ogé tfgr::‘ihit Cir?cr:]r egi ezegpﬁ}yr%amli elt?r\:avcy
functlon) has_dlfferent cha(acter|stlcs _thar? the one in Fig demand becomes more ambitious. Alsojncreases at a high

In particular, it has three different regions; namef{g) ~ 2 rate whenas is lower than0.15, but further relaxing the

for & < 0.57, f(9) ~ 0 for § > 1.43, and f(¢) decreases estimation accuracy limit at the intended receiver does not

monotonically for0.57 < 6§ < 1.43, yielding an MSE value . I o
0.0597. This implies that when the secrecy target is not verbrlng significant benefits in terms of the MSE level at the

: oo . ; . d vesdropper.
high, the determ|n|st|c generic encodlng function does no?It is noted that Proposition 2 and Corollary 1-4 establish
actually behave like a non-uniform quantizer.

. o ) o the direct relationship between the optimization probléms

o e e o g ©) and (9, i, based on Proposiion 5, i as altady
functions f; and f,. For example, if the parameters of Fig 8pe(?n.establlshed that the conquns of Corollary 2 f_;md 4 are
are used iln Pro Zo'sition 4 it'is obtained that < 0 for the. Satisfied when the SNR of the intended receiver is higher
MSEs of both thg eavesdré) er and the intended receiver th%n th_e SNR-Of the eavesdropp_er;_hen_ce, their results can
according to the root test gpi\?en in the proposition, the MSE% applied. This can also be verified in Fig. 10. For example,
decreases as increases wheny ¢ [0, 1]. For  — 0’ . i ven a secrecy Ieyel o_il = 02 the minimum MSE valu_e at
found asl /3 = a; — 0.04; hence ha{s fo be %crea,seé untilthe intended receiver is obtalned @s= 0.043 after sol\(lng
e — o —0.04 tolmini.miz’ee Af’twer some algebray can be (8). Furthermore, for_ a given estimation accuracy limit of
ebt_' 1d_ g) 77 T as = 0.043, the maximum MSE value at the eavesdropper
obtainéd a%).o 7 o. ... becomes, = 0.2 after solving (9). A similar relationship is

We also provide an example for the problem of Maximizingis, ohserved when the SNR of the intended receiver is lower

the MSE at the eavesdropper for a given estimation accur . :
limit at the intended receiver (i.e., the optimization desbs fiéin the SNR of the eavesdropper according to Figs. 6 and 9.

in (9) and (22)). In Fig 9, the MSE of the eavesdropper is _

plotted versus the SNR of the eavesdropper when the SI¢R Large number of observations

of the intended receiver i§ dB and the estimation accuracy In this section, the numerical examples are provided for
limit as is 0.24. It is observed that when the SNR of thea large number of observations. In all the examples in this
eavesdropper is lower than the SNR of the intended receivegction, it is assumed that the number of observations is
all the solutions have the same performance; that is, using 00, i.e., n = 1000. Similarly to the previous section,
optimal deterministic affine function is sufficient as claigh it is assumed that is uniformly distributed in[0,2] and

in Proposition 3. However, when the SNR of the eavesdroppgae SNRs are defined in the same way. Also, the stochastic
increases, the MSE of the eavesdropper keeps decreasinggmeric, stochastic affine and deterministic functiontsgigs

the deterministic affine strategy. Performing randomdrati are evaluated in a similar fashion. The stochastic generic
over affine functions stops such a decline in the MSE arstrategy corresponds to the solution of (33) and alterabtiv
creates an MSE floor at the eavesdropper. Using geng8d). The stochastic affine strategy also solves (33) or (34)
functions yields even a higher MSE floor, where the stocbastiith the additional assumption that the encoding functiers
approach performs slightly better than the deterministie.o affine; that is,f1(0) = k16 + k2 and f2(0) = s10 + s». Based
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on Proposition 5, there will be no deterministic affine anfp" two different scenarios.

deterministic generic strategies separately in this sectind

the solution of the deterministic strategy is directly exded of the eavesdropper. Note that the ECRB versus SNR curve

via Proposition 5. for the deterministic functions is a linear line as expldine
In this part, we consider the minimization (maximizatiof) oin Proposition 5. Also, the ECRB of the intended receiver

the ECRB at the intended receiver (eavesdropper) for a giveavesdropper) is equal ta (n2) for all the strategies when

secrecy level (estimation accuracy limit) at the eavesoeop the SNRs of the intended receiver and the eavesdropper are

(intended receiver) in Figs. 11 and 13 (Figs. 12 and 14)t,Firsame.

the ECRB of the intended receiver (eavesdropper) is plottedNext, in Fig. 13 (Fig. 14), the ECRB of the intended receiver

versus the SNR of the intended receiver (eavesdropper) wi{eavesdropper) is plotted versus the secrecy target (@tsdim

the SNR of the eavesdropper (intended receivet)idB, and accuracy limit) for two different scenarios. In both sceosy

the secrecy targey; = 0.001 (and the estimation accuracythe SNR of the eavesdropper (receiver)@sdB and the SNR

limit no = 0.001). In Fig. 11 (Fig. 12), it is observed thatof the intended receiver (eavesdropper}iand20 dB in the

the deterministic functions yield the worst performancel arfirst and second scenarios, respectively. In the first (scon

randomization is beneficial at all SNR values of the intendestenario in Fig. 13 (Fig. 14), the performances of the ststita

receiver (eavesdropper) for a large number of observatiostrategies are almost the same and they are better than-the de

which was not the case for a small number of observatiorierministic solution. Furthermore, in the second (firsgrsario

Note that the stochastic generic and affine functions hage ih Fig. 13 (Fig. 14), the stochastic generic solution hasepet

same performance when the SNR of the intended receivepirformance than the stochastic affine solution; hencest ha

lower than that of the eavesdropper. However, the stochadtie overall best performance. In that case, it is intergstin

generic functions outperform the stochastic affine fumdio note that as); (12) increases, the performance gap between

when the SNR of intended receiver is higher than the SNRe stochastic solutions and the simple deterministict&oiu
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variables. The affine solutions require optimization ovee fi
and two variables for the stochastic and deterministic $ase
respectively. When Proposition 3 and 5 are utilized, noctear
is required and the solutions can be obtained directly. Also

=
o
T

=
o
)

_ Scenario 1 the intuition provided by Proposition 4 can reduce the dearc
W’ - space to four variables for the stochastic affine solutions i

2 the small number of observations case. For large numbers
2 of observations, the search space for the stochastic generi
% 107 solution can be reduced t\/ based on Proposition 6 when

- the conditions of the proposition hold.

2 For small numbers of observations, we use the expressions
£ in Proposition 1 to calculate the MSE. In the calculations,

the most costly terms are the expectation terms such as
—e— Stochastc goneric | E(f1(0)0) and E(f2(9)0). To calculate these terms, which
Scenarin 2 || =Y = Suehsse s include one-dimensional integrals, one of the possiblesway

> = ; to employ Riemann sums, each of which includeterms for
o 10 10 a given step size. Then, when the stochastic and deteriinist
Estimation accuracy limit (1,,) . . . . .

2 generic functions are used, calculating the objective tianc
requiresO(145) andO(5S5) multiplications, respectively. For
the affine solutions, we do not have any of these terms, which
implies a complexity ofD(1). As the only difference between

: Il This sh that domizati b the objective and constraint is the noise variance term, the
Increases, as well. 1his shows that randomization can r'Egmplexity does not double for calculating both functiolts.

Significaf.“ performance improvements over the dgtern’m’nisk important to note that the computational complexity does
solution in the case of a large number of observations. ot depend om

Fmallly, Profposr:tmn 6 a}nd 7 ﬁan be lljt'l'ZFed in the nlum.en('::gl For large numbers of observations, the overall expression
examples to further analyze the results. For example, in Fig . . ; ; S

quires double integration and complexity 6145;55),

1f1£hwhetn tf(\je (?NR Qf th%eg\éesqtrﬁppejm(%%,la%d thel St.NR where the Riemann sums ha$g and S, terms. Even though
ortne intended receiver B, With 7, = U.OU, the Solulion ,o ECRB calculation is more complex than calculating the
of the optimal stochastic affine encoding strategy is found fISE of the LMMSE estimator, it also does not depend on
f1(0) = 0.48240 + 1.0352, f2(0) = 0.9648 — 0'48246' and n. Note that the optimal MMSE expression would require
7 = 0.5. Note that according to Proposition 6, this is a symz" 1 “ineqrals instead of two; hence, it is possible to
metrical mapping; therefore, the ECRB of the eavesdromperyony., anroximate the optimal MSE performance by using
maximized aty = 0.5. AIS.O’ as th's. encoding .fl.mCt'O.n Sat'Sf'eﬁhe ECRB with a much lower complexity. Finally, when the
the secrecy constraint W't.h equghty, Proposition 6 imptieat conditions of Corollaries 1-4 are satisfied, it is possilde t
othery values_ W.OUId. be infeasible for this partlculﬁf and onnect the optimization problems in (8) and (9) (or, (33) an
f2. Also, again in Fig. 11, when the SNR of the intendes )y o that it is sufficient to solve one of the problems to
receiver is5 dB, the solution of the optimal stochastic aﬁ'n%btain the solutions of both
encoding strategy is found af () = 0.42746 + 0.2597, ’
f2(0) = 0.42746 + 0.8989, and~ = 0.5. In order to employ
Proposition 7, it can be shown thdy < 0 andd; > 0 for
all 6 € [0,2]. Actually, I(#) is constant for a giveny for VI. CONCLUDING REMARKS

this given f, and f;, andy = 0.5 minimizes I(0) (as it is  Egtimation theoretic secure transmission of a random scala
constant, basically for all € [a, b]). Therefore, the ECRB of h5rameter has been investigated in a Gaussian wiretap @hann
the eavesdropper is maximized-at= 0.5. _ model, and various constrained optimization problems have
It is important to mention that the closed-form expressiongen proposed in terms of estimation accuracy performaice o
(e.g., Proposition 1, Corollary 5, and eqns. (26)~(30)ai#d e intended receiver and the eavesdropper. The resulis hav
in the theoretical parts (Sections Ill and 1V) are used te@al spown that for small numbers of observations, when the SNR
late the LMMSE and ECRB values in the numerical examplegs the intended receiver is higher than that of the eavessnop
The performance of the theoretically optimal solutiongj(e. the deterministic affine solution forms a class of optimal
Proposition 3 and 5) is compared with the simulations fqynctions, which verifies the theoretical results. WhenShéR
verification and the same performance results are obtaingflihe intended receiver is lower than that of the eavesdropp
However, the curves are not duplicated in the figures fQfochastic generic functions have the best performance in
brevity/clarity of presentation. general; however, depending on the target secrecy/agcurac
. : value, deterministic generic functions can provide anrogti
D. Computational Complexity solution, as well. Stochastic affine functions can provide s
The dimension of the search space and the number of muificant performance gains over deterministic affine fuorcsi
tiplications required to calculate the constraint and cfije and they can be an attractive alternative solution to generi
functions are both important factors about the complexfty dunctions. For large numbers of observations, deterninist
the proposed methods. In the case of the stochastic gengeaeric/affine functions have worse performance than atch
function approach, the optimization is performed o¥&f +1 tic solutions at all SNRs and in all the considered scenarios
variables, whereV/ is the number of piecewise regions. FoiTherefore, stochastic encoding is also attractive in thggan
the deterministic generic solutions, the optimizationusral/  of operation. Similarly to the previous case, stochastitegie

._.
S
S

Fig. 14: ECRB of eavesdropperEL.) versus estimation accuracy
limit (72) for two different scenarios.
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functions have the best performance in general; howevpn] B. Kailkhura, V. S. S. Nadendla, and P. K. Varshney, tbisited
stochastic affine functions can also provide an optimaltaniu

in certain scenarios. Intuitively, the main factor thatedetines |,

whether the stochastic methods bring performance gainstor n

is the quality and quantity of the measurements available
the eavesdropper given the secrecy target. If the eavgseiro

65%]

has a large number of observations or a small number of

observations with a better SNR than the intended recelven, t

it is encoder’s task to make estimation more challenging il
the eavesdropper; hence, stochastic encoding providésrper
mance gains especially in such scenarios. As a relevarefut(£5]
work, it would be interesting to investigate the MSE-based
and information theoretically optimal solutions in a commoj26]
and fair framework to provide theoretical comparisons and
connections.
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