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_ Abstract—In this letter, a channel switching problem is inves- channel switching problem in the presence of jamming and
tigated in the presence of jamming based on a game theoretic the jamming problem for a given channel switching strategy.

approach. First, a convex formulation of the optimal channé |, 1ne jiterature, there exist various game theoretic itigas
switching problem is proposed for a given jamming strategy. !

Then, considering a fixed channel switching strategy, an eXigit tions of anti-j.amming problems in the presence of multiple
solution of the optimal jammer power allocation problem is channels, which employ Stackelberg equilibrium, Markov de
obtained. Consequently, a game theoretic formulation is psposed cision process (MDP), and Nash equilibrium concepts [9]-

and the existence of a pure-strategy Nash equilibrium is shvn [11]. However, they do not employ the average capacity

g’gér}ﬁgrj‘;ﬁa‘z‘g channel switching game between the transitér  etric in the utility functions and the channel switching
[ndex Terms—Channel switching, jamming, Nash equilibrium, approach adopted in this manuscript. In addition, based on a

capacity, time-sharing, power allocation. hierarchical approach, Stackelberg game formulationsdest
users and jammers are proposed in [12]-[14]. For example,
. INTRODUCTION a hierarchical power control algorithm is developed in [12]

In the availability of multiple communication channels, 40 obtain the Stackelberg equilibrium by modeling the user
transmitter and a receiver can perform channel switchimg, (i 2_the leader and the jammer as the follower. The studies in
time-sharing) among different channels by communicating2l-[14] differ from our manuscript since they employ the
over only one channel at a given time [1]-[3]. As motivated if ackelberg equilibrium concept and different utility &tions
[3], channel switching is applied in various scenarios sash N the absence of channel switching. Without any hierarahy o
in cognitive radio networks, where secondary users caizeitil COmmitment assumptions, we employ the Nash equilibrium
frequency bands of primary users when they are available.CONcept in this work, where players announce their strategi

Via channel switching, performance improvements can @g’nulltaneously (also see Footnote 2). The main contribatio
achieved in terms of various performance metrics such @kthis letter are as follows: _
the average probability of error, throughput, and channelThe optimal channel switching problem in the presence
capacity. In [1] and [2], the aim is to perform optimal chahne ©f @ jammer is formulated under average and peak power
switching for minimizing the average probability of erréor ~ constraints, and an equivalent convex optimization proble
example, [1] focuses on an average power constrained binar{s obtained (Proposition 1) for the first time in the litenatu
communication system and shows that the average prolyabitit For @ given channel switching strategy, the optimal power
of error is minimized by either communicating over one allocation problem for the jammer is formulated as a con-
channel exclusively, or switching between two channelfiwit Vex optimization problem and its solution is characterized
a certain time-sharing factor. The work in [4]-[6] consiler explicitly (Proposition 2).
channel switching in the context of opportunistic spectrumA channel switching game is formulated between the trans-
access in cognitive radio networks. In the presence of plelti Mitter and the jammer, and it is shown that the game admits
frequency bands and channel switching constraints, throug at least one pure-strategy Nash equilibrium (Propositjon 3
put performance of various bandwidth allocation strategie AlS0, how to calculate the Nash equilibrium is discussed.
is investigated in [6]. To maximize the average Shannon 1. SYSTEM MODEL

capacity between a transmitter and a receiver, optimalrlan Consider a communication system in which a transmitter

switching problems are proposed in [3], [7], [8], consideri ; icat h h oth i ch |
Gaussian channels and the presence of average and peak p " rﬁ. receiver c;mgjflfmlcate K\" elacf other V|abc Zmne
constraints. It is shown in [3] that an optimal channel shiitg switching among ifferent channels (frequency bands).

strategy can be realized by utilizing at most two dif'ferer“1 part;c{ularr], theltr?nsmlrt]ter ant(:] the receiver Ca'.'l[ SV\;'tfhh
channels. Extensions of the optimal channel switching lerab among s channels to enhance he average capacity of the

in [3] are performed by considering channel switching dglag®mmunication system as in [3]. In this channel switching
in [7] and the presence of multiple users in [8]. approach, only one ghannel is utilized _for the communicatio
Although the optimal channel switching problem for avepetween the transmitter and the receiver at any given time,
age Shannon capacity maximization is investigated in [8} tand the transmitter informs the receiver about the occupied
presence and effects of jamming have not been considergig@nel in order for the receiver to be synchronized during
In this letter, we focus on the channel switching problefommunication [3]. The channels are modeled as flat-fading
in the preseﬁce of a jammer, and propose a game theor@ﬁg't've Gaussian noise channels with various bandwidits a

approach by deriving the optimal strategies for both gHgonstant power spectral density I_eve_ls. Besides the Lréesm
and the receiver in the communication system, there exists a
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can transmit over multiple channels in parallel at a givemeti

In other words, although the transmitter and the receivar-co K
municate with each other by employing time-sharing among 1ax Z/\i C, (ﬁiT//\i’PiJ> (3a)
channels, the jammer concurrently transmits noise over the;, p7}E | “—
channels that are considered in the jamming strategy during K
the whole communication duration. subject toz PT < pT (3b)

i=1

Ill. FORMULATION AND GAME THEORETICANALYSIS ~r ~r T
P >0, P; —/\iPpk <0,Vie{l,...,K} (3¢c)

Consider the presence df channels that are available

between the transmitter and the receiver for communication K
via channel switching, as described in Section Il. For cleann SA=1120Vie{l,.. . K} (3d)
i, let B; and N; /2 denote, respectively, the bandwidth and the i=1
constant power spectral density level of the additive G'ausswherelsi:r 2 \,PT forie {1,...,K}. The problem in(3) is

noise, where € {1,...,K}. Also, leth! andh; represent
the complex channel gains related to chanheifom the
transmitter to the receiver and from the jammer to the reggivp, ¢
respectively. Then, the capacity of chanriebetween the
transmitter and the receiver in the presence of the jammer

a convex optimization problem. B

Proof: Based on the definitior?! £ X\, P, (2) can
ransformed into (3). Then, to prove the concavity of the
objective function in (3a), we defing, = P for notational
dimplicity and obtain the following relation for any € (0,1),

(1) (M K (2) g2 K .
nT|? pT M a0 and I gL
Cy(P",P’) = B;log, <1+ g —— L i ) bps (1) {K Jimar 209 i
|1 ["P7 + N;B; ) PRGN o + (1 - a)p? J
) ; (O(AZ + (1 Oé))\Z ) Cz ) 2) 7PL
where P and P’ represent the average transmit powers ofi=1 ad; "+ (1= a)A;
the transmitter and the jammer, respectively. K B K 5™
>a) AVO | Bs P )+ (1-0) Y AP0 2 P
) . " A L A
A. Optimal Channel Switching in the Presence of Jammer =1 i =1 i

In order to formulate the optimal channel switching problemwhere the inequality follows from the concavity 6§ (x, P;)
in the presence of the jammer, time-sharing (channel switdhith respect tar > 0 (see (1)). Hence, the objective function
ing) factors are defined ai,..., \x, Where ); represents in (3a) is shown to be concave. (The functidnC;(z/ A, P)
the fraction of time when channélis utilized by the trans- can be regarded as thgerspective[17] of C;(z, P;) and
mitter for communication with the receiver. Then, the otim its concavity follows from the concavity of’;(z, P;/).) In
channel switching problem in the presence of the jammer cagdition, it is noted that all the constraints in (3) are dine

be expressed for a given jamming strategy as follows: ~ Therefore, (3) is a convex optimization problem. L
K Based on Proposition 1, the solution of the optimization
max Z/\' Ci(PT, PY) (2a) problem in (2) can be obtained by solving the optimization

problem in (3). Since (3) is a convex optimization problem,
it can efficiently be solved by interior-point methods, whic
are very fast in practice. Once the solution of (3) is obtdjne

{Ai-,P?:T}f(:l i=1

K
subject toz X PT < PT

, av ) (2b) the solution of (2) can be calculated based on the definition
r _— Pra\Plfori=1,... K.
Pl €[0,P,], Vie{l,...,K} (2c) Remark 1: The formulation of the optimal channel switch-

K ing problem as the convex problem in Proposition 1 has not

Z/\i =1, N>0,Vie{l,...,K} (2d) been available in the related studies such as [3], [7], which

i=1 employ different algorithms to obtain the optimal channel
where C,(P. ) s as in (1), P! and P represent the TR ST, Y CE 08 O e Game between
average transmit powers allocated to channky the trans- q 99

mitter and the jammer, respectivelgfﬁ denotes the peak the transmitter and the jammer involve channel switching

limit of the t it o7 s th among more than two channels, such equilibria cannot be
poweriimit ol the transmitter, ant,,, repreésents Ine average,piained without the formulation in Proposition 1 (cf. Tah).

power limit for the transmitter. The average power constrai
at the transmitter can be regarded as the power consumption

constraint and/or the battery life constraint at the trattem B. Optimal Jamming Strategy against Channel Switching

On the other hand, the peak power constraint correspondgor a given channel switching strategy between the trans-

to the maximum power level that can be delivered by th&iiter and the receiver specified Hy\., PT}%,, the optimal

transmitter circuitry (i.e., a hardware constraint) [3]. iamming strate roblem can be formulefc:eg as follows:
Unlike [3], which considers a similar problem to that ir! g o P '

K
(2) (see [3, eqn. (2)]) and proposes a solution based on the min ) O-(IST/A- Py (4a)
optimality of channel switching between at most two differe (Y, &
channels, we transform the problem in (2) into an equivalent I
problem and prove its convexity in the following propositio ; J J
Proposition 1: For a given jamming strategy denoted by subject toZB < Fows (4b)

{P/}X |, the optimization problem i2) can be transformed =1

into the following problem: B/ >0,vie{l,. . . K} (4c)



where P/ denotes the average transmit power allocated /., must hold. Otherwisey would be zero due to the first
channeli by the jammer as in (2), ankl/, represents the total complementary slackness condition in (9) and it would bezzom
power limit of the jammer. Since the jammer can emit signalsipossible to satisfy both the stationarity condition in (8
to all the channels simultaneously, a total power condtiain and the dual feasibility condition af;, > 0 simultaneously.
employed in (4) instead of the average power constraint)in (Aext, from the second complementary slackness condition in
The problem in (4) is specified as a convex problem and 8), it is concluded that for all positive power levels, j.e.
solution is presented in the following proposition. P/ > 0, the corresponding;’s must be zero. Then, the
Proposition 2:_For a given channel switching strategy€XPressions on the left-hand-side of (8) must be equal for al
denoted by{\;, PT}X,, the problem in(4) is a convex positive power levelsP;. By settingr; = 0, (8) becomes a

optimization problem with the following solution: second-order p(;lynorQniaI in terms W'QWhiCh caQane stated
; as (NiBi + |h/|"P/)" + (NiBi + |1} |"P)[nI|"PT [ xi =
. \nT|" PT ]hﬂg B;PT )\iBi|h;-]|2‘hﬂ2ﬁiT/('y \; In(2)) = 0. It can be shown that one
Py = max 72 ¥IDN + 71 o 1172 root of this second-order polynomial is always negativedae
B[ n(2) [p]" not a valid solution due to the primal feasibility condition

N; B; ‘hﬂQ ﬁiT . and the other root is given by the first expression inside the
T T2 00, Vie{l,...,K} (5) maximum operator in (5). If the latter root is positive for a
‘hz‘ ‘ 2 ’h% ‘ Ai given channel index, it is the solution of the optimization
pT /Y. A _ pT _ . ) _ problem for that channel. Otherwise, the power level must
whereP, /i = 0for A, = I, =0, andy is a Karush-Kuhn be zero for that channel to satisfy the stationary condition
e (8) with v; > 0 (see (9)). Overall, the optimal power levels
ZPJ _pJ ©6) corresponding to the solution of (4) can be expressed as the
i tot * maximum of zero and the specified root of the polynomial, as
=1 . stated in (5). To calculate the KKT multiplierin (5), the full
_Proof: Based 09 the expression |n](1), the second-ordghwer utilization property can be used, as stated in (6)
derivative ofC;(x, B; ) with respect toP;’ can be shown to * proposition 2 characterizes the problem in (4) as a convex
be positive for allP;’ > 0, 2 > 0, andi € {1,..., K'}; hence, gptimization problem and specifies the optimal jammingtstra

Ci(z, P/) is a convex function ofP/. Since the objective gqy for a given channel switching strategy via (5) and (6).
function in (4a) is a nonnegative weighted sum of convex

functions, it is also convex [18]. Therefore, together wle  C. Channel Switching Game and Nash Equilibrium
linear constraints in (4b) and (4c), the problem in (4) beesm Due to the conflicting aims of the transmitter and the

a convex optimization prob_le_m. Hence, the KKT qond.'tlonj%lmmer, a game theoretic formulation is well suited for the
present necessary and sufficient conditions for optimality considered problem. La§ — (A, (S:): (us)icnr) denote
first obtain the Lagrangian function for (4) as follows: p y - 1 Wi JiEN s Wi JieN

the channel switching game between the transmitter (i.e.,
K pr K playerT) and the jammer (i.e., playef) in the presence of
E(PJ,’%V):Z)\ZCl(A—l,PZJ)—f—’y ZPiJ_Pt{)t
i=1 ¢ i=1

Tucker (KKT) multiplier, which is calculated by solving

complete information [19], wherd/ = {T, J} is the index
set for the players$; is the strategy set for playéy andu; is
K the utility function of playeri. For the transmitter, the strategy
— Z v P/ (7) setSr is defined as
=1

; ) . . Sr 2 (X, PT e RE|1TPT< PI A 0 < e] PT< P (e]N),
whereP” = [P{ --- P%]',andyandv = [v; - - - vk]' denote . T . Ty
the KKT multipliers related to the constraints in (4b) angl e{l... K} hedz0,Vie{l,.... K} ALA _(11}0)
(4c), respectively. Among the KKT conditions, the statidtya
condition is employed first by setting the partial derivagvof |, 1orax — 1\, ... 01T PT — [BT... PT1" 1 s the vector
(7) with respect toP; to zero. Based on the expressions ¢ ones e_[ ! &l 1 Kl
(1) and (7), the stationarity condition leads to the follogi o
equalities after some manipulation:

is the unit vector with itsith element being one
and others being zerdy is the dimension oA and PT, and
Pl and P} are as in (3). Similarly, the strategy s€&§ for

/\iBi|h;’|2\hf|2ﬁT/()\i In(2)) the jammer node is defined as
~— =77V

(NiB; + |/ |"P/)" + & (N:Bi + 1] [*P/ ) [n] | PT Sy & {P7 eRF|1TPI< Py nelPT>0Vie {l,... K}}

(8) (11)

T .

fori =1,..., K. Also, the primal feasibility condition referswhere P/ = [P/ ... P{]" and P/, are as in (4).
to the inequalities in (4b) and (4c), and the dual feasipilit Let {X, PT} and P’ denote the strategies of play@r
condition implies thaty; > 0 for all i € {1,...,K} and and player.J, respectively. Then, a strategy (action) profile
7 = 0. In addition, the complementary slackness conditiogf the game can be denoted bY)\,PT}PJ) € S, where
can be stated as {X\,PT} € Sy, P7 € S;,andS = Sy x S;. For a given

K K " . .
) ) , action profile, the utility functions of player and playerJ
’7(5 Pi]_Pt{)t> =0, ViPi]:()v ZE{L...,K} 9) are defined as
=1

K pT
Based on the KKT conditions, it is first concluded that, fO{LT()\7 15T’PJ) - Z/\i C; (Pi
the solution of (4) represented Gy?}X |, the total power e Ai
constraint must be satisfied with equality; that¥s,-, P/ = (12)

,Pﬂ) = —uy;(A\, PT,P7)



As  ur(A,PT,P7) and uJ(A,PT7PJZ satisfy pure-strategy Nash equilibriund,, = (A, , PT, P/), of the
uT()\,ﬁT,PJ) + uJ()\,ﬁT’pJ) =0, ¥{\,PT} € S gameg satisfies the following relation [16], [20]:
andvP7 € Sy, it is concluded that the channel switching ur (A pT P) = —us (A pT PJ)
game between playef’ and player.J corresponds to a o P
two-player zero-sum game [19]. . . =T J

The Nash equilibrium is one of the solution approaches — ~ (| Bfycq, ples, - A Gi(P /N, FY) (13)
that is commonly used for game theoretic problems [19 ' =1 I
In the game-theoretic notation, a strategy profile of ga om .(13)' a pure-strategy N"’.ISh equilibrium of the chan_nel
G, denoted by({)\* 15T} PJ)’ is a Nash equilibrium if SW|tch!ng gamey can be obtalneq. Based on thg convexity

— AT S = result in Proposition 1, the maximization problem in (13hca

“T(A*alf* ,P]) > “T(AaP~ ,P]), V{X,PT} € St and pe solved via convex optimization tools by calculating the
uy( A, PT,P}) > u;(A., PT,P7), VP’ € S;. That is, solution of the minimization problem in (13) via the resurt i
at a Nash equilibrium, no player can improve its utility byProposition 2. Also, each Nash equilibrium obtained from) (1
changing its strategy unilaterally. Such an equilibriuneslo is Pareto optimal as in all two-player zero-sum games $19].
not necessarily exist in infinite games. However, the chianne Remark 2: The results in this section can be applied
switching gameg admits a pure-strategy Nash equilibrium ag a secondary user in a cognitive radio system with the

stated in the following proposition. - ~overlay approach [3]. For the underlay approach, a secondar
Proposition 3: A pure-strategy Nash equilibrium exists inuser is affected from interference due to primary users. If
the channel switching gamg. that interference is modeled by a Gaussian noise process

Proof: The channel switching gamé in the strategic [7], then the results can still be applied by extending the
form (W, (Si)ienr, (ui)ienr) admits at least one pure-strategyapacity formula in(1) as C;(PT,P’) = B;log, (1 +
Nash equilibrium if the following conditions hold [19]i) |hZT|2PT/(‘h,Z_I‘2PJ +2B,;(0.5N; + 1)) bps, whereI; de-
Strategy set; is compagTandJco_nvex for alle V, where  hoies the spectral density level of the interference in oeéin
N ={T,J}. (ii) wi(A, PT,P7) is a continuous function  Remark 3: The channels between the transmitter and the
in the profile of strategies({\, PT},P7) € S for all receiver can be determined based on pilot based channel
i e N. (iii) uT()\,ﬁT,pJ) and uJ()\’ﬁT’pJ) are quasi- estimation approaches, and the jammer can learn the channel
concave functions i\, PT} and P”, respectively. Since coefficients by listening to signal exchanges between the

gtransmitter and the receiver and by performing estimations

set St in (10) and setS; in (11) are closed and bounde ! ;
it can be shown that these sets are compact. Also, the s@sed on the knowledge of geographical locations [21]

in (10) and (11) are convex, as discussed in the proofs of
Propositions 1 and 2. Hence, the first condition is satisfied. IV. NUMERICAL RESULTS AND CONCLUSIONS
In addition,ur (X, PT, P7) andu; (X, PT,P7) in (12) are _ In this section, we provide numerical examples to
continuous functions, for which the second condition holdilustrate the theoretical results in Section Ill by demyi
Regarding the third condition, it is proved in Propositiothat Nash equilibria in various scenarios. We consider= 4
ur(X, PT, P7) is a concave function of A, PT}, and it is channels with the following parameter®; = 10~ W/Hz,

) ) b ’~ o _12 o _12
deduced from the proof of Proposition 2 that(X, PT, P) Ny = 2 x 107 °W/Hz, Ny = 5 x 107 °W/Hz,

) ) Ny = 107" W/Hz, andB; = B, = B3 = By = 1MHz.
J T J 4 ’ 1 2 3 4
is a concave function aP~. Consequentlyur (A, P~, P) Also, considering Rayleigh fading channels between the

andu (A, PT’PJ_) are quasi-concave functions {m’PT_}_ transmitter and the receiver and between the jammer and
and P, respectively, as specified in the third conditionne receiver, we modeh?|? and |h7|? as i.i.d. exponential
Overall, it is concluded that at least one pure-strategyhNagandom variables with a mean parameter of—4 and
equilibrium exists in the channel switching gagie B generate them in MATLAB with seed, which results
For analyzing the Nash equilibrium, the best respongg (InT 12| T2, |hT 12, |hTJ2) :g0.87462,0.3280579.07607

functions of player7 and player.J should be specified. | 1962)><10*4 and(|hlJ|2 \hd |2, |hd |2 |h4{|2) :(1 919.2.3823

. J . ) ) ) M ) M )
For a given strategy of playef, denoted byP-, tbg best 1.6806, 1.0626)><10*4. In addition, the peak power constraint
response function of playéf can be stated af\sr, Pog} = i (2¢) is given by PT = 200W. In the simulations, Nash

Jy & K T J oo .pk oo
BRy(P7) = argmax, prycq, > ;1 \iCi(Pf/Xi. PY).  equilibria are obtained for the channel switching game
Similarly, for a given strategy of playér, the best responsepetween the transmitter and the jammer, and the resulting
function of playerJ is expressed a®s; = BR; (A, PT) £ capacity values (see (12)) are calculated.

argmaxps g, — Zfil X\ C; (ﬁiT/,\i’piJ)_ Considering the  In Fig. 1, the capacities achieved at Nash equilibria of the
best response functions together, the following functiodé- channel switching game are plotted versg§ and Py, by
fined: BR®) = (BRy,BR;) from S to S, whereS = Spx.S§; considering three different total jammer powers and awerag
ande & (}\715T7PJ)_ For the Nash equilibrium, denoted bytransmit powers, respectively. As expected, lower cajeacit
0. 2 (\.,PT, PJ), the following fixed point equation holds are achieved when the tgtal jammer power is higher, and the
[19]: 6 :’Bﬁ(’e 3 Since the utility functions in (12) are con-Sapactty increases witlP.,.. It is also noted that while the
o o jammer noise significantly affects the capacity at low value

. ~T J .
cave functions off A, P} and P, respectively, the channel ot p "t hecomes less significant at high average transmit

switching game between play&t and playerJ becomes a av’ ; >l
convex-concave game [18], [20]In such a game, the NashPOWers: Moreover, at low total jammer powers, the capacitie

equilibrium becomes the saddle-point equilibrium; hertbe, 2If the game between the transmitter and the jammer is modated

Stackelberg game in which the transmitter is the leader aodemfirst and

1In convex-concave games, if there exist multiple Nash dayidl the value the jammer is the follower and moves after the transmittecan be solved
of the game is the same (unique) for each Nash equilibrium. via backward induction by utilizing the result in Propasiti2.



10% £~

Capacity (bps)
B

TABLE |
STRATEGIES OF TRANSMITTER AND JAMMER ATNASH EQUILIBRIA.

PL =10"Tw, Pl =10"3W

o

J _103 w3
TV P F0T W

—+—p) =10tw
tot

J
Pm‘—lO w

102 1 1

105 L

Capacity (bps)

—o—pP! =10°wW
av

—x— Pl =10t W

102 L

Pl 10w
av

10 10 102

Fig. 1. Capacity versusPL (Pt{)t) for Nash equilibria of the channel
switching game with various total jammer powers (averagasimit powers).
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P (W) 0 0 103 0

Ax 0 0 1 0
P (W) 0 0 10-1 0
Capacity 4.2143 x 10° bps

Pl =10"tw, Pl =10"twW

PJ (W) || 0.0052926 0 0.094707 0

e 0.077827 0 0.92217 0
Pr (W) || 0.0077827 0 0.092217 0
Capacity 2.4166 x 10° bps

P =10"Tw, P =10W

P7 (W) 0.64374 0.18768 7.6597 1.5088

Ax 0.064016 | 0.019341 0.75852 0.15812
PT (W) || 0.0064016 | 0.0019341 0.075852 0.015812
Capacity 9.7923 x 107 bps
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