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I. INTRODUCTION

In vector parameter estimation, the aim is to design an @tiestimator for a number
of unknown parameters based on a set of observations. Thgndet an optimal estimator
commonly involves the calculation of posterior distrilaus or likelihood functions based on the
statistical relation between the observation and the pet@nvector. If the prior distribution of
parameters is known, the Bayesian approach can be adomtexstamators such as the minimum
mean squared error (MMSE) estimator, the minimum mean ateselrror (MMAE) estimator,
or the maximuma posterioriprobability (MAP) estimator can be derived based on thegramst
distribution, i.e., the probability distribution of the i@@eter vector given the observation [1]. On
the other hand, in the absence of prior information, parareetan be modeled as a deterministic
unknown vector and estimators such as the minimum variamtéased estimator (MVUE),
the maximum likelihood (ML) estimator, or the best lineabiased estimator (BLUE) can be
employed for vector parameter estimation [2].

Performance of the aforementioned estimators depends siansyparameters such as noise
variance and transformations acting on the parameter veatal it is usually challenging to
find exact and closed-form expressions for estimation grodrthe corresponding estimators.
Therefore, in order to assess estimation performancepusriheoretical bounds such as the
Cramér-Rao lower bound (CRLB), Ziv-Zakai lower bound ()L and Barankin-type bounds
are used as gold standards [3]. Such bounds are mainly deestrby the statistics of the
observation, which depends on system parameters. Thissnteahfor a given system model,
estimation performance can be improved only to a certaiargxXty using an optimal estimator.
In order to realize further improvements in estimation perfance, the effects of the system on
the parameter vector should be adapted. One common way @vawi such an improvement
is to perform power adaptation, i.e., transmitting diffareomponents of the parameter vector
with different power levels [4]. Since the total availableaer is usually limited [5], the problem
of power adaptation arises as a constrained optimizatiobl@m. In this manuscript, the aim is
to develop optimal power allocation strategies for vecimrameter estimation in the absence of
prior information by using Fisher information based opfiityacriteria [2, Section IV.E.1], [6],
[7, Section 9.2.1], .

Power adaptation and in general resource allocation haee bensidered for various es-

timation problems in the literature. For example, in wisslesensor networks (WSNSs), the



problem of optimal resource allocation for vector parametgimation with respect to various
performance metrics is the main focus in many studies. In fi&¢ optimal transmit power
allocation and quantization rate allocation schemes arestigated to minimize the average
mean squared error (MSE). In [9], the optimal power allawmatstrategy that minimizes the
/,-norm of the transmit power vector is derived under a maxinuamance constraint for the
best linear unbiased estimator. In addition, the optimalebmok is computed via the Lloyd
algorithm when the channel state information (CSI) is ledit which is usually the case for
large WSNs. In [4], estimation of an unknown Gaussian rangieator with known mean vector
and covariance matrix is considered in a WSN setting, wheeefusion center uses the linear
MMSE (LMMSE) estimator to estimate the parameter vectoredasn sensor observations,
which are fading channel impaired and noise corrupted eessof the transmitted parameter
vector. An upper bound on the MSE is minimized by first commuyitihe optimal bit allocation
to minimize the MSE distortion. Then, the optimal power efitton strategy is computed to
minimize the channel errors. In [10], optimal power allegatfor vector parameter estimation
is investigated with the aim of maximizing the average Bares&isher information between the
random parameter vector and the observation vector. In fddtjmal power allocation schemes
for LMMSE estimation are derived by taking channel estim@grrors into account. In [12]-[21],
the optimal power allocation problem is considered for posiestimation in wireless localization
and radar systems. In [14], the transmit power allocatiablem is formulated as a semidefinite
program by using the squared position error bound as thectdlgefunction. In [18], the total
transmit power is minimized by imposing a constraint on tHeL8 for target localization in
a distributed multiple-radar system. In addition, the do@blem of CRLB minimization for a
predefined total power budget is considered.

It is noted that theoretical lower bounds for estimatiomeare commonly used in the literature
to define optimality criteria for developing power adapiatistrategies in estimation problems
[10], [12]-[25]. In the absence of prior information, lowbounds generated from the Fisher
information matrix (FIM) are usually adopted due to theiagiicality. As the most widely
used bound, the CRLB is obtained as the inverse of the FIM aedifies a lower limit on
the covariance matrix of any unbiased estimator with resfgethe positive semidefinite cone.
Various scalarizations of the FIM are employed in the litwra [18], [23], [25]. In particular,
the log-determinant of the FIM, the maximum (minimum) eiggdoe of the CRLB (FIM), the

maximum diagonal entry of the CRLB, the trace of the FIM, ané minimum diagonal entry



of the FIM are utilized for quantifying estimation perfornee from various perspectives such
as estimation robustness and probabilistic confinementstimeator error [7, Section 9.2.1],

[26]—-[31]. In this manuscript, the power adaptation prabl®r vector parameter estimation is
considered according to such Fisher information basednagity criteria and the corresponding
optimal strategies are characterized.

Although there exist a multitude of studies on power allmzator various estimation problems
in the literature, a general investigation of the optimalpo allocation problem for vector
parameter estimation according to various Fisher infoionabased criteria is not available to
the best of authors’ knowledge. In particular, we considgemeric additive noise model, where
the observation vector is a linear function of the paramegetor corrupted by additive noise
with an arbitrary probability distribution. Based on thisodel, we first present the FIM in
terms of the system parameters, including the power allmtgtarameters. Then, we formulate
optimal power allocation problems according to six diffearestimation performance criteria
based on the FIM, and derive various closed-form solutigves also extend our results to cases
in which nuisance parameters exist in the problem or cettgias of nonlinear transformations
are applied on the parameter vector. The main contribumasnovelty of this manuscript can
be summarized as follows:

« According to various Fisher information based optimalityezia, we propose optimal power
allocation problems for vector parameter estimation bysatering a system model, where
the parameter vector is processed by a linear transformatid corrupted by additive noise
with a generic probability distribution.

« Based on optimization theoretic approaches, we providewsarclosed-form solutions for
the proposed power allocation problems.

« We show that the proposed optimal power allocation stragegre also valid for nonlinear
system models under certain conditions and in the presenggisance parameters.

In addition, we provide numerical examples to illustrate gerformance of the proposed strate-
gies and compare them with the equal power allocation glyateshould be noted that providing
closed-form solutions for optimal power allocation is imamt for real-time applications due to
delay and computational complexity requirements.

The rest of the manuscript is organized as follows: The syst®del is presented in Section Il
and optimal power allocation strategies are derived ini@edtl. In Section IV, extensions to

nonlinear models and presence of nuisance parameters asedexred. Numerical results are



provided in Section V followed by the concluding remarks ecton VI.

[I. SYSTEM MODEL
Consider the following linedrmodel relating a vector of unknown deterministic paranseter
0 =101,...,0,]" € R* with their measurementX € R™:

X =F'PO+N (1)

In (1), F is ak x n real matrix with full row rank § < n) that is assumed to be knowl, € R"
is the additive noise vector with a joint probability degdiinction fx(-), which is independent

of 8, andP is ak x k diagonal power allocation matrix (to be optimized) expeesas

N 0
P = ' (2)
0 VPr
subject to the total power constraint .
Zpi < Py 3)
=1

where p;, denotes the power allocated to the paramétesnd ;. denotes the (available) total
power. For the linear model given in (1), the FIM of the measugnt vectoiX with respect to

the parameter vectd is obtained as [32, Lemma 5].
I(X;6) = PFI(N)F'P, (4)

whereP = PT is employed, and(IN) is a special form of the FIM, namely the FIM of the

random vectoiN with respect to a translation paramete32, Equation 8], defined as

w-xesne - [ (Y50 (M) - ®

It is noted that the FIM under translation is a function ofyottie probability density function

(pdf) of the random vectaN, and consequently§(X; 6) in (4) does not depend on the parameter
vector@. It is assumed that the noise pf§(-) satisfies certain regularity conditions so that the
FIM in (5) exists [33].

In the following, we provide closed-form solutions for aptl power allocation problems by

considering various estimation accuracy criteria basetherFIM in (4).

1Extensions to nonlinear models are presented in Section IV.



[1l. OPTIMAL POWER ALLOCATION FOR VECTORPARAMETER ESTIMATION
A. Average Mean Squared Error Criterion

The inverse of the FIM, known as the Cramer-Rao lower bouriLE&) provides a lower

bound on the MSE of any unbiased estima@()X) via the following matrix inequality [2]:

Cov(8(X)) > T7(X;6) (6)

~

whereCov(0(X)) = E[(8(X) — 8)(0(X) — 6)"] due to the unbiasedness and the expectation is
taken with respect to the pdf & given 8. Consequently, the lower bound on the average MSE

of the vector parameter can be stated as
E[16(X) - 6]] > tr{I"'(X; 0)} (7)

Consideration of the lower bound in (7) as a performanceimetroptimal design problems is
referred as the A-optimality criterion in the literaturd,[[22], [26].
The optimal power allocation problem that minimizes the dowound on the average MSE

subject to a sum-power constraint can be formulated as

min  tr{I"(X; 0
[uin {I(X;0)}
k

st. > pi <Py (8)

i=1
p; >0, i=1,2,... .k
For the convenience of notation, two system dependent ceatgan be defined as

J £ FI(N)F”
9)
A£J!

From (4) and (9), the FIM with respect to the parameter ve@tand the corresponding CRLB
are expressed respectively HX; ) = PJP andI~}(X;6) = P"'AP~!. Then, the objective
function in (8) can be written in terms of the power allocaticoefficients and the diagonal
entries ofA as
tr{I"*(X;0)} = tr{P'AP !}
=tr{(P71)%A}

k
Qi

iz Pi

(10)
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wherea;; denotes théth diagonal entry ofA. It is noted that the FIM is assumed to be positive-
definite for the existence of the CRLB. Therefore,andJ in (9) have positive diagonal entries.
As the objective function is convex (see (10)) and the camss are linear, the problem
in (8) is a convex optimization problem. In addition, Slaerondition holds [27]. Therefore,
Karush-Kuhn-Tucker (KKT) conditions are necessary andigant for optimality. From (10),

the Lagrangian for (8) is expressed as
k

k
ﬁ({Pz i1 {vi k+1) = Z % + U1 (sz Pz) - ZUHlpi (11)
i=1

=1
wherewvy, ..., v, are the dual variables. Then, KKT conditions for optimalig obtained as
follows [27]:

« Primal Feasibility: The optimal power allocation strategy;}* , must satisfy the con-
straintsy__, pr < Py andpf >0, Vi € {1,...,k}.

. Dual Feasibility: The dual variables must be non-negative, i¢.> 0 fori=1,... k+1.

« Stationarity: The derivatives of the Lagrangian in (11) with respecptonust be equal to
zero atp; =p; fori=1,..., k. That is,

oL
Op;

Qi * *
- —(p*)Q + Ul - Ui—‘,—l = 0 (12)
Pi=p; @

fori=1,... k.
« Complementary Slacknesat the optimal solution, the following conditions hold:

k
@<§}ﬁ—&>=o (13)

=1
vigp; =0, i=1,...,k (14)

For the condition in (13), the case of = 0 is not possible since the derivative in (12) could
be set to zero only fop; — oo in that case (for some positive;), which would violate the

primal feasibility condition. Therefore, (13) implies th& > 0 and

k
> pr =Py (15)
i=1

That is, full-power utilization is required for optimality Then, two cases are investigated

depending on the values af;'s. Let A, and .4, denote the sets of indicasfor which a;;’s

2This fact can also be seen by noting that the objective fandti (10) is a decreasing function pf’s.
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are zero and positive, respectively. Thatis, = {i € {1,...,k}|a; = 0} and A, = {i €
{1,...,k}|ay; > 0}.

Case 1:Consider an index such thati € A,. Suppose thap? > 0. Then, (14) implies that
v, = 0 and the expression in (12) becomes equalitoHowever,v} > 0 as discussed before,
which leads to a contradiction (i.e., the stationary caaditould not be satisfied). Hence, it is
concluded that

pi =0 for i€ A,. (16)

Case 2Consider an index such that € A,. In that case, it can be concluded from (12)—(14)
thatp; > 0 andv;,; =0 for i € A,. Then, (12) leads to
73 .
p;=,/— foric A, @an
U1
From (15), a relation for; can be obtained as

k
IEDIEDINE ST )
j=1 !

JEAp JEAp

which yields
1 Py, Px,

VUL EjeAp Vj Z?:l Vi

Based on (16), (17) and (19), the optimal power allocatioatsgy to minimize the average

(19)

MSE in (8) is specified as follows:
pi=—VY ok (20)
> i=1/;

Hence, a closed-form solution to the problem in (8) is oldin

B. Shannon Information Criterion

An alternative criterion for estimation accuracy is to nmaide the log-determinant of the
FIM, i.e.,
I5(X;0) = logdetI(X; 0) (21)

which is associated with the volume of the confidence ellgpsontaining the estimation error
[27, Section 7.5.2]. This criterion is known as the Shanndormation criterion, and also the
D-optimal design in the literature [22], [26], [28], [29].
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The optimal power allocation problem with the objective odximizing the Shannon infor-

mation under the sum-power constraint can be expressed as

max logdet I(X;0)
{pi}f:1

k
s.t. Zpi < Ps (22)
=1

pi >0, i=1...k
The problem in (22) involves the maximization of a concavecfion, and the feasible region
has an interior point; hence, Slater’'s condition is satisfiéonsequently, KKT conditions are
necessary and sufficient for optimality. In order to find thatimal solution, the Shannon
information can be expressed in terms of the known matrieesn (4) and (9), the Shannon

information can be written as
log det I(X; 0) = log det PJP

= 2logdet P + log det J 23)

k
= Z logp; + logdet J
=1
As seen in (23), the Shannon information separates into @palocation dependent component
and a system dependent component, the latter being cofstanfixed F andI(IN). Therefore,
it suffices to considel " log p; in order to maximize the Shannon information. Therefore, th

problem in (22) reduces to

k
max Z log p;
i=1

{pi}§:1
. (24)
s.t. Zpi < Px
i=1

pi>0, i=1,... .k
which is a convex optimization problem. This problem is &glént to maximizing the product

of nonnegative numbers whose sum is constant. Hence, iti@olcan be obtained as

pi=—, 1=1,...k (25)
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That is, the optimal power allocation strategy accordingh® Shannon information criterion
is to allocate equal power to all the parameters at the sumepbtmit. Corresponding to the

optimal strategy, the maximum Shannon information is acdeas

P
I5(X; ) = klog (f) +logdet J . (26)

C. Worst-Case Error Variance Criterion

The worst-case error variance criterion is a measure ofstoless rather than average es-
timation accuracy and is associated with the maximum emgjasvof the CRLB [27], [30].
In order to reduce the worst-case error variance, the manireigenvalue of the CRLB can
be minimized. Optimality according to this criterion is @lknown as E-optimality, where the
minimum diameter of the FIM is maximized [22], [26], [31]. Wi variances vary significantly,
the confidence ellipsoid can have very different diametkmsgadifferent dimensions; hence, the
log-volume minimization approach in the D-optimal desigm de misleading [26], [31].

The optimal power allocation strategy that minimizes theimam eigenvalue of the CRLB
corresponds to maximizing the minimum eigenvalue of the .AHdnce, the following problem

can be considered:
max  Anin{I1(X;0)}

{pi}§:1
k
s.t. Zpi < Py (27)
=1

p;i >0, i=1...k

From (4) and (9)I(X;80) in (27) can be expressed &6X;0) = PJP, wherelJ is positive
semi-definite and is diagonal (see (2)). It can be shown that the eigenvalud3J@ are the
same as those d?2J based on their characteristic equations. However in géréere is not
a closed-form relationship between the eigenvalue®dfand J and the eigenvalues of their
product. Therefore, it is challenging to obtain a closear®olution to (27). One way to solve
(27) is to apply global optimization tools such as partickeasn optimization (PSO) or the
multistart algorithm [34]. This approach is adopted in &t/ to obtain the solution of (27).

To perform further investigations on the problem in (27), van derive a bound on the
objective function in (27). To that aim, the following lemmian be utilized to provide bounds
for the eigenvalues of the FIM|(X; ).
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Lemma 1: Let G, T € R™", G = G, TT =T, rank(G) = rank(T) =n andR = GT. Let
{vi},, {7, and {v;}", denote, respectively, the eigenvalue<hHfT and R increasing in

the absolute value. Then,

allp] < Il < <l < Jvnlp) (28)

Proof. For the Euclidean matrix norm, it is known thg&T||< ||G||||T||. In addition, the norm

of a symmetric matrix is equal to its spectral radius, i|€x||= max; |v;| and || T||= max; |x;].
Therefore, |R||= ||GT||< [|G||||IT|= |vallpa]- Since R is the product of two symmetric
matrices, it is also symmetric. ThereforlR|= |v,|.- Hence, the upper bound on the absolute
value of the maximum eigenvalue @& is obtained as~y,| < |v.||u.|. Since rank(G) =
rank(T) = n, the lower bound can be derived via inversion; thaRs! = T-'G~!. Therefore,
IR"|= ||T 'GY<

= Hu B Through the same reasonin@®.~ 1||_ L Hence, the relation of

|w11\ < \wllu | is obtained, which yields the lower bound in (28). O

Lemma 1 can be used to derive a lower bound on the objectivaifumin (27) as follows:

Muin{L(X:0)} = Mo (P20} > Aoy (3} _muin (29)

where \,;i,{J} denotes the minimum eigenvalue &f In (29), the absolute value operators in
(28) are not used since all the eigenvalues are non-negaiivéhe eigenvalues &2 are taken
as{pi,...,pr} based on (2).

Instead of maximizing the minimum eigenvaluel¢X; ) in (27), consider the maximization
of the lower bound on it. As noted from (29), the lower boundtib@ minimum eigenvalue of
I(X; 8) depends on the minimum power allocated to an individualrpater. Therefore, instead

of (27), we get the following convex optimization problem:

max min _p;
{pi}i'c:l je{l 7777 k}

s.t. Zpi < P5 (30)

pi >0, i=1,....k
The problem in (30) is a minimax problem over a scaledimplex. Therefore, its solution is
an equalizer rule [2], leading tp} = p; = --- = p; with Zlep;* = Pys. Hence, the solution
of (30) is given byp; = Ps/k for i = 1,...,k; that is, the optimal power allocation strategy

to maximize (minimize) the lower (uppeboundon the minimum (maximum) eigenvalue of



15

the FIM (CRLB) is the equal power allocation strategy. Capustly, the lower bound on the
minimum eigenvalue oi(X; 8) becomes\,;,{J} P /k.

Remark 1. The preceding analysis indicates that the equal power atioa strategy solves the
problem of maximizing dower bound on the objective function i§27). Hence, it does not
necessarily yield the optimal power allocation strategihd numerical example in Section V-C

illustrates this fact.)

D. Worst-Case Coordinate Error Variance Criterion

As an alternative measure of robustness, one can conselamtst-case coordinate error vari-
This criterion is referred as G-optimality [7], [26], anchias the effect of reducing the worst-case
error variance as well.

From (10), thejth diagonal entry of the CRLB can be expressed as

aj;

(X;0));, = (31)
Dj

Therefore, the problem of minimizing the maximum diagonahe of the CRLB can be formu-
lated as

min  max %

{pi}§:1 je{l 7777 k} p]

k
s.t. Zpi < Py (32)

p; >0, i=1,...,k
The problem in (32) is a convex optimization problem, it canshhown that the solution of (32)
satisfiesy " | pi = Py and
Qi
whereq is a constant (i.e., an equalizer solution [35]). Then, peter« in (33) obtained from
k

k
;pf:ézanzpz (34)

i=1

—a, Vie{l,... k (33)

which yields
_ tr{A}
a= B (35)

Hence, the optimal power allocation strategy is given by

* Py a;;

e IR (36)
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When the optimal power allocation strategy is employed,diagonal entries of the CRLB are

the same, and the worst-case coordinate error variancenesco= tr{A}/Ps.

E. Average Fisher Information Criterion

When the aim is to estimate a vector of parameters, the awé&iigber information indicates the
overall usefulness of the observation vector to estimag#rameter vector. The informativeness
of the observation vector to estimate tlte parameter corresponds to tile diagonal entry of the
FIM. Therefore, the average Fisher information is relatethe trace of the FIM. Accordingly,
the optimal power allocation problem for maximizing thecwaof the FIM is formulated as

follows:

max tr{I(X; @
(nax {I(X;0)}

k
s.t. Zpi < Px (37)
=1

p; >0, i=1,....k
From (4) and (9), the objective function in (37) can be reeritin terms of the known matrices

as
k
tr{I(X; 0)} = tr{PIP} = > " piji (38)

i=1

wherej; = [J];;. Based on (38), the problem in (37) can be converted to arlipesgram (LP)

by defining
p £ diag(PP’) = [p1 .. .pk]T (39)
j £ diag(J) = [jur - jukl”, (40)
and expressing (37) as
max j'p
p
st. 17p < Py (41)
p=>0

The solution of (41) is provided in the following propositio
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Proposition 1: Let:* denote the index of the maximum elemeijtinf(40); i.e., " = argmaxeq1,.. x} Ju-
Then, the optimal power allocation strategy that maximihesaverage Fisher information under

the sum-power constraint is given Ipy = [p; - - - p;]*, where

. Py, i=1*
b = (42)
0, otherwise
fori = 1,...,k. (In case of multiple maxima, the indices of any non-emphsetican be

selected.)

Proposition 1 states that in order to maximize the averagethel whole power must be
allocated to the parameter corresponding to the maximugod& entry ofJ. When the optimal
power adaptation strategy is used, the average Fishematan achieves a maximum value of

Py, max; js.

F. Worst-Case Coordinate Fisher Information Criterion

Depending on the system properties, the observation veetorbe more informative about
some parameters and less informative about the otherseGoestly, the estimation performance
of individual parameters can vary to some extent. Such tanis can be undesirable as certain
performance requirements should be satisfied for estimatiall parameters. To alleviate this
effect, one approach is to maximize the minimum Fisher metion contained the observation
vector w.r.t. individual parameters. Such an optimizaiinecreases the robustness of estimation
against accuracy variations.

The minimum Fisher information contained in the observati@ctor w.r.t. individual pa-
rameters is called the worst-case coordinate Fl, whichesponds to the minimum diagonal
entry of the FIM, that ismin;cq,xy [I(X; 0)]2,72,. Based on this objective function, the following

maximization problem is defined under the sum-power coimstra

max  min [I(X;6)]
{piYe, ie{l,..k}

k
s.t. Zpi < P5 (43)
i=1

pi>0, i=1,...k

Based on (38), the objective function in (43) can be written a

min [I(X; 0)], ; = min p; ji; (44)

7
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Then, (43) is observed to have a very similar form to the mwbin (30). Hence, the same steps
can be followed and it can be shown that the solution of (48%fses Zlep;* = Py and

p:jii = da Vi € {17 - 7k} (45)

wherea is a constant that is specified by

k k-
Y=Y 2=pr (46)
i=1

i Jii

From (46),a is obtained as

. P
Ei:l Jii
Therefore, the optimal power allocation strategy becomes
P
Jii 2211 u

When the optimal power allocation strategy is used, the tnaase Fisher information achieves
a maximum value oiPz/Zf”:l J% It is noted that the optimal power allocation strategy iB)(4

equalizes the Fisher information containedinw.r.t. theith element o for all i € {1,..., k};
that is, p;jii = P />, & foralli € {1,... k}.

IV. EXTENSIONS
A. Presence of Nuisance Parameters

In some vector parameter estimation scenarios, only a sobgarameters can be of interest
for estimation purposes. Let onlyout of thek parameters be relevant and the remainingr
parameters be nuisance parameters. We assume that theceusaameters must be transmitted
with unit power and power adaptation is not available fomth&Vithout loss of generality, we

can arrange the vector of parameters to be transmitted as
0 = (49)

where8., € R" denotes the vector of relevant parameters, @pd R*~" represents the vector

of nuisance parameters. Then, the power allocation ma&oimes

P, 0
P-— (50)
0 Ik—r
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wherel,._,. denotes thék — r) x (k — r) identity matrix. Under the same system model, matrix

J defined in (9) can be expressed as

J, B
J= (51)
BT J,
whereJ., € R™" andJ, € R*="*(* =) gre the components dfcorresponding to the parameters
of interest and the nuisance parameters, respectivelymatidx B € R™**~") and its transpose

are the cross-terms. Similarly, matrix in (9), i.e., A = J~!, can also be arranged as

A, C
A= (52)
CT A,
where C € R™ (=7 and its transpose are the cross-terms. Based on (50), (@d)(52), the

FIM and the CRLB can be expressed as

P.J P, P.B

I(X;0)=PJp=| "7 7 77 (53)
B'P, J,

P 'A Pt PJ'C

I(X;0) = P'AP ! =
c'p ! A,

(54)

The related terms of the FIM and the CRLB are the ones invghonly the parameters of
interest. In this setting, only the firstrows and the first- columns are taken into account; that
is,
L,(X;0)=P,J,P, (55)
I;l(X; 0) = P;lA,YPgl (56)

where A, = (J, — BJ'B”)~! [36]. As seen from above, the power allocation strategies
developed in Section Il (which are developed in the abserigeuisance parameters) can also

be used in this case.

B. Extension to Nonlinear Model

In some practical applications, the linear system modellnniay not be valid, and the
parameter vector, after power adaptation, can be procdssacdhonlinear transformatiof{-) as
follows:

X =f(P0O)+N (57)
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In this case, the FIM w.r.t. paramet@ican be expressed in the same form as (4) after repldting
with the Jacobian of the vector valued functifin) [32, Lemma 4]. More explicitly, let) = P8

in (57), and the Jacobian d&f¢) w.r.t. its argumentp is given as

[0/ 0f2 Ofn]
Op1  Op1 T O
F2 |0 o 2 (58)
on  ore Ofn
LOg,  Opr 7" O¢y -

If £(-) is continuously differentiable w.r.ip and F in (58) does not depend om’s for i =
1,...,k, F in (58) can be substituted into (4), and the developed teclas can be employed
without further modification for power adaptation in the ggace of a nonlinear system model,
as well. If F depends onp;’s, (58) is still valid; however, the objective functions ashd
be modified accordingly, leading to possibly nonconvex rajgation problems. In that case,
numerical methods can be employed. On the other harfi¢,)ifs not continuously differentiable

w.r.t. ¢, further analysis is required and new techniques shouldebveldped.

V. NUMERICAL RESULTS

In this section, we provide numerical examples for the optipower allocation strategies in
Section Ill. In all cases, the equal power allocation sgate also implemented for comparison
purposes. The noise is modeled as a zero-mean Gaussiamrareor with independent
components; that iN ~ N(0,Y), whereX = Diag(c?,...,02). For this noise model, the
FIM of N in (5) is obtained as

I(N) =X = Diag (1/07,...,1/02) (59)

In the simulationsg?'s are set tar? = 10-730-V/("=1) for j = 1,... n. The dimension of the
parameter vector;, is varied betweer2 and 30, and the dimension of the observation vector,
n, is taken to be equal to the number of parameters, i.es, n. Also, for matrix F in (1),

two different scenarios are considered. In the first scen&ti= F;, whereF, is thek x k
identity matrix ¢ = n), that is,F; = I,..,. In this scenario, we can observe the effects of power
adaptation on the estimation performance when the mainceanir error is additive noise. In

the second scenari®, = F,, which is specified as

Fy =T + V7 (60)
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with

| TexkllF
IV e
11 1 1]
1 1+4+e (1+€? ... (L4t
V=11 1+2 (1+2)? ... (142! (61)
115 15 ... LEMh
w05
k—1

That is, F, is the sum of thek x & identity matrix and the transpose of a normaliZec &
Vandermonde matrix, where the normalization factanakes sure that the Frobenius norms of
the added matrices are equal. In this scenario, the enfribe gystem matri¥" differ from each
other significantly, which implies that the system affetts individual parameters differently.

In the following, the optimal power allocation strategiee abtained according to the Fisher
information based criteria in Section Il for the considieemulation setup, and the performance
metrics are plotted against the dimension of the parametetox; £, under a unit sum-power
constraint, that isPs = 0 dB.

A. Results for Average MSE Criterion

In this case, the problem in (8) is considered, and the CRldBseged by the optimal power
allocation strategy in (20) and by the equal power allocastrategy (i.e.p; = Ps/k, i =
1,...,k) are plotted versug in Fig. 1. It is noted that as the dimension of the parameter
vector increases, the CRLB on the average MSE increasesofrdptimal and equal power
allocation strategies except for the slight initial dese@n the optimal strategy fdf = F,. It
is also observed that the optimal power allocation stratsmysistently outperforms the equal
power allocation strategy for both system matrices. As aangle, forF = F,, the CRLB is
around10~* whenk = n = 7 for the equal power allocation strategy, and the same lefel o
CRLB is attained wher = n = 14 for the optimal power allocation strategy. Hence, significa

improvements can be achieved by the optimal power allocatimategy.

B. Results for Shannon Information Criterion

For this criterion, the problem in (22) (equivalently, (249 considered, which leads to the

solution in (25). That is, the optimal and equal power altmrastrategies yield the same solution
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Fig. 1. CRLB on the average MSE verskdor the equal and optimal power allocation strategies.

in this case. The Shannon information achieved by the op{jetmal) power allocation strategy

is plotted versust in Fig. 2. It is observed that the Shannon information insesaas the
dimension of the parameter vectar, increases. The increase in Shannon information is linear
for both system matrices, and the achieved Shannon inf@matores are nearly the same for
F=F, andF = F,.

C. Results for Worst-Case Error Variance Criterion

In this case, the problem in (27) and the alternative probte(80) are solved. The solution of
(27) is obtained via the multistart global optimizationaighm in MATLAB. On the other hand,
the equal power allocation strategy is the solution of (88)shown in Section 1lI-C. In Fig. 3,
the maximum eigenvalues of the CRLBs achieved by the optandl equal power allocation
strategies are plotted verskslt can be seen in Fig. 3 that the optimal power allocatioatsgy
can significantly outperform the equal power allocatiomatstyy, and the difference between the
two power allocation strategies increases as the numbeaarahpeters increases. One implication

of this result is that power adaptation can get more effecthen there exist more parameters
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Fig. 2. Shannon information versiésfor the optimal (equal) power allocation strategy.

to estimate. In addition, it is noted that maximizing the éovbound on the eigenvalues of the

CRLB is not sufficient to obtain the optimal power allocatistnategy, as stated in Remark 1.

D. Results for Worst-Case Coordinate Error Variance Ciiter

For this criterion, the problem in (32) is considered, whiehds to the optimal solution in
(36). The largest diagonal entry of the CRLB is plotted versifor both the optimal solution
and the equal power allocation strategy in Fig. 4. It is ndteat the trend is similar to that
in Fig. 3. Namely, the benefits of optimal power adaptatioe @bserved for the worst-case

coordinate error variance criterion, as well.

E. Results for Average Fisher Information Criterion

In this case, we focus on the problem in (37), the solution bictv is provided by (42) in
Proposition 1. The impact of the dimension of the paramegetar, k£, on the average Fisher
information is shown in Fig. 5 for both the optimal solution(#2) and the equal power allocation
strategy. It is observed that the average Fisher informatpidly decreases with whenk < 10

for both the optimal and equal power allocation strategiékile the optimal power allocation
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Fig. 3. Maximum eigenvalue of the CRLB (inverse FIM) versuor the optimal and equal power allocation strategies.
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Fig. 4. The largest diagonal entry of the CRLB (worst-caserdimate CRLB) versus: for the optimal and equal power

allocation strategies.
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Fig. 5. Average Fisher information versisfor the optimal and equal power allocation strategies.

strategy is superior to the equal power allocation for aluga of k, significant enhancements

are observed for large values bf

F. Results for Worst Case Coordinate Fisher Information

In this scenario, the minimum diagonal entry of the FIM is im@ixed as in (43), leading to
the optimal power allocation strategy in (48). The minimuiagdnal entry of the FIM is plotted
versusk for both the optimal and equal power allocation strategre§ig. 6. WhenF = F,,
the worst-case coordinate Fisher information rapidly €ases for smalk, while the trend is
more steady whel' = F,. The decrease in worst-case Fisher information slows dowtafge
values ofk. Overall, the impact of power adaptation can be observecerolearly whenk is

large.

It is noted from the simulation results that when the dimensiof the parameter and observa-
tion vectors are large, power adaptation becomes moreairdnd the optimal power allocation
strategies can provide more significant improvements dweregual power allocation strategy.

In addition, the trends show that power adaptation can atgighe adverse effects of increases



26

T T T T T

106?\ —PB— Optimal, F = F, 1
\
\

[ Equal, F = F, ]
ARY — B = Optimal, F = Fy | ]
[ '\ —V—Equal,F:FQ 1

[any
o
[62)

[any
o
— £

Minimum Individual Fisher Information

=
o
w

Fig. 6. The minimum diagonal entry of the FIM (worst-caserdimate Fisher information) versusfor the optimal and equal

power allocation strategies.

in the dimension of the parameter vector when the observagator has the same dimension

as the parameter vector.

VI. CONCLUSION

The optimal power allocation problem has been investightedector parameter estimation
in the absence of prior information according to varioush&isinformation based optimality
criteria. After deriving the FIM for a linear observation d®, six different optimal power
allocation problems have been formulated. Then, somedifsen solutions have been provided
based on optimization theoretic approaches. It has beemstiat the proposed power allocation
strategies are also valid for nonlinear system models uceleain conditions and in the presence
of nuisance parameters. Numerical examples have shownthbatise of the optimal power
allocation strategies can provide significant improvermentestimation performance over the

equal power allocation strategy.
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