Eavesdropper and Jammer Selection in Wireless
Source Localization Networks

Cuneyd OzturkStudent Member, IEEEaNnd Sinan GeziciSenior Member, IEEE

Abstract—We consider a wireless source localization network
in which a target node emits localization signals that are usd by
anchor nodes to estimate the target node position. In addibin to
target and anchor nodes, there can also exist eavesdroppeodes
and jammer nodes which aim to estimate the position of the taget
node and to degrade the accuracy of localization, respectly.
We first propose the problem of eavesdropper selection withhte
goal of optimally placing a given number of eavesdropper noels
to a subset of possible positions in the network to estimatehée
target node position as accurately as possible. As the perfonance
metric, the Cramér-Rao lower bound (CRLB) related to the
estimation of the target node position by eavesdropper node
is derived, and its convexity and monotonicity properties &
investigated. By relaxing the integer constraints, the easdropper
selection problem is approximated by a convex optimization
problem and algorithms are proposed for eavesdropper sel¢ion.

exchanges rather than intercepting packets [6]. As another
type of attack, jammer nodes can degrade the localization
accuracy of a network by transmitting jamming signals [7].
If jamming levels exceed certain limits, location infornoat

can be useless for specific applications due to its inacgulrac
this paper, the focus is on eavesdropping and jamming attack
in wireless source localization networks.

In the literature, there exist only a few studies related to
physical-layer location secrecy or eavesdropping in wsel
localization networks [5], [6], [8]. In [5], a location semy
metric (LSM) is proposed by considering only the position of
a target node and the measurement model of an eavesdropper
node. The aim of the eavesdropper node is to obtain an

Moreover, in the presence of parameter uncertainty, a robus €stimate of the target node position based on its measutemen
version of the eavesdropper selection problem is developed model, where the estimate can be either a point or a set of
Then, the problem of jammer selection is proposed where the points. The definition of the LSM is based on the escaping

aim is to optimally place a given number of jammer nodes
to a subset of possible positions for degrading the localizian
accuracy of the network as much as possible. A CRLB expressio
from the literature is used as the performance metric, and
its concavity and monotonicity properties are derived. Al®, a
convex optimization problem and its robust version are denved
after relaxation. Moreover, the joint eavesdropper and janmer
selection problem is proposed with the goal of placing ceria

numbers of eavesdropper and jammer nodes to a subset of

possible positions. Simulation results are presented tolilstrate
performance of the proposed algorithms.

Index Terms—Localization, eavesdropping, jamming, estima-
tion, secrecy.

|. INTRODUCTION
A. Literature Review

probability of the target node from the eavesdropper node, i
the probability that the position of the target node is not an
element of the set of estimated positions by the eavesdroppe
node. In practice, the measurement model of an eavesdropper
node depends on several parameters in addition to thegositi
of the target node [8]. For example, an eavesdropper node
can extract location information based on signal exchanges
between target and anchor nodes by using time difference
of arrival (TDOA) approaches. In that case, the time offset
becomes another unknown parameter. Hence, the definition of
the LSM is extended in [8] by also taking channel conditions
and time offsets into account. For some specific scenarios,
LSM is calculated and algorithms are proposed to protect
location secrecy by diminishing the estimation capabitify

In wireless localization networks, position informatios j@n €avesdropper node [8]. In [6], considering round-trip-

commonly extracted based on signal exchanges between E§asurements in a network, an eavesdropping model is pre-
chor nodes with known positions and target (source) node@nted by using TDOA approaches. Also, power allocation

whose position are to be estimated [2], [3]. Based on thggmeworks for anchor and target nodes are presented to
signaling procedure, wireless localization networks dassi- degrade the estimation performance of an eavesdropper node

fied into two groups aself localizationandsource (network- While maintaining the localization accuracy of the netwféik
centric) localization networks [2]. In the self localization ~Related to jamming and anti-jamming techniques in wireless
scenario, target nodes estimate their positions via signficalization networks, a great amount of research has been
transmitted from anchor nodes whereas in source locatizaticonducted in the literature [7], [9]-{22]. Placement of jasr
networks, anchor nodes estimate positions of target nodes f nodes in wireless Iocallzatlon.networks _Can. serve for chffie
signals emitted by target nodes. purposes [10]. Namely, the aim of placing jammer nodes can
Wireless localization networks can be vulnerable to vaiolpe either to reduce the localization accuracy of the network
attacks such as eavesdropping, jamming, sybil, and womenhgie., adversarial) [7], [11], [12], [22], [23], or to pratethe
attacks [4]-[7]. For example, eavesdropper nodes maynlisteetwork from eavesdropper attacks [9], [13]-[18], [20]{Tf,
to signals transmitted from target nodes and estimate th@ptimal power allocation schemes are developed for jammer
positions, which breaches location secrecy [5], [6]. Ineiss Nnodes under peak and total power limits by maximizing the av-
localization networks, location secrecy cannot be guaetht €rage or minimum Cramér-Rao lower bounds (CRLBs) in self
via encryption since location related information can bl@calization networks. The same problem is considered 2j [1

gathered by eavesdropper nodes by just listening to sigf@il source localization networks. In [22], the average CRLB
of target nodes is maximized while keeping their minimum
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of jammer nodes are fixed. When positions of jammer nodes

Part of this work was presented at IEEE International Cemieg on - ! -
Communications (ICC), June 2020 [1]. can be changed, their optimal placement can be considered fo



achieving the best jamming performance. In [11], the optimf27]-[29]), in which the aim is to determine the optimal
jammer placement problem is investigated for wireless- seffositions of anchor (reference) nodes for optimizing aacyr
localization networks in the presence of constraints osipiess  of target localization. While the optimization is perfordhaver
locations of jammer nodes. On the other hand, in [20], jammpositions of anchor nodes in the anchor placement problem,
nodes are placed to reduce the received signal quality tbe aim is to choose the best positions from a finite set
eavesdropper nodes while not preventing the operationeof thf possible positions in the eavesdropper selection pnoble
actual network. (Hence, different theoretical approaches are utilizedhiis t
Game theoretic approaches are also utilized for detergninipaper.)
jamming strategies [10], [21]. In [10], an attacker tries to In addition, even though jamming and anti-jamming strate-
maximize the damage on network activity while the aim dies are investigated extensively under various scenamios
a defender is to secure a multi-hop multi-channel networf], [9]-[22], there has been no consideration ab@ummer
The action of the attacker is determined by the selectiselection In the proposed jammer selection problem, the goal
of jammer node positions and a channel hopping strategyto place a given number of jammer nodes to a subset
whereas the action of the defender is based on the chanofepossible positions to degrade the localization accuicy
hopping strategy. In [21], two different power control gamea wireless network where the CRLB related to estimation
between anchor nodes and jammer nodes are formulateddbrtarget node positions by anchor nodes is used as the
self-localization networks based on the average CRLB apérformance metric.
the worst-case CRLB criteria. Nash equilibria of the pragabs Moreover, despite the work in [24]-[26], which consider
games are analyzed and it is shown that both games havéath jamming and eavesdropping for wireless communication
least one pure-strategy Nash equilibrium. networks based on performance metrics such as outage proba-
In the literature, eavesdropping and jamming attacks haliity, transmission rate and secrecy rate, the presengnof
not been considered jointly for wireless localization nats. mer and eavesdropper nodes together has not been invedtigat
However, for communications networks, [24]-[26] inveatigy for wireless localization networks. In this manuscript,feeus
effects of jamming and eavesdropping together. In [24], an a wireless localization network with multiple eavesgrep
secure transmission scheme is proposed for a wiretap chararel jammer nodes, and formulate flont eavesdropper and
when a source communicates with a legitimate unmanngenmer selectionproblem by employing the CRLB as an
aerial vehicle (UAV) in the presence of eavesdroppers. Fastimation theoretic performance metric. The goal is tegla
duplex active eavesdropping is assumed, i.e., wiretapgmrs certain numbers of eavesdropper and jammer nodes to a subset
perform eavesdropping and jamming simultaneously. In,[25]}f possible positions in order to degrade the accuracy of the
a multiple-input multiple-output communication systenthwa  localization network while keeping the eavesdropping bipa
transmitter, a receiver and an adversarial wiretapperriside ity above a threshold. In particular, eavesdropper nodes ai
ered. The wiretapper is able to act as either an eavesdroppeto minimize the average CRLB related to their estimation of
a jammer. The transmitter makes a decision between alif@gattarget node positions whereas jammer nodes seek to maximize
all the power to information signals or broadcasting sontbe average CRLB for estimating target node positions by
artificial interference signals to jam the wiretapper. A gamanchor nodes via emitting noise signals.
theoretic formulation of this problem is also given in [25], The main contributions of this paper can be specified as
and its Nash equilibria are analyzed. In [26], the consideréollows:
wireless network contains wireless users, relay statibase « We formulate the eavesdropper selection, jammer selection
station (BS), and an attacker who has the ability to act as arand joint eavesdropper and jammer selection problems in a
eavesdropper and as a jammer. The aim of the attacker is tqiireless source localization network for the first time ie th
degrade the secrecy rate of the network and the transmissiolixerature.
rate of the users. Each user connects to one of the relagrstati, For the eavesdropper selection problem, a novel CRLB ex-
so that the amount of potential interference from othersiser pression (used as a performance metric for location secrecy
reduced and the expected level of security for the trangomiss s derived related to the estimation of target node position
is increased. This problem is formulated as(an+ 1) person by eavesdropper nodes (Proposition 1).
noncooperative game whe® is the number of users and. We prove that the CRLB expression derived for the eaves-

existence of mixed-strategy Nash equilibria is shown. dropper selection problem is convex and non-increasiniy wit
o respect to the selection vector, which specifies the selecti
B. Contributions of positions for placing eavesdropper nodes (Proposition 2

Although a location secrecy metric is developed in [5], [8] and Lemma 1).
and the problem of protecting location secrecy is investiga « For the jammer selection problem, we utilize a CRLB
in [6], there exist no studies that consider the problem of €xpression from the literature and prove that it is concave
eavesdropper selectiom the proposed eavesdropper selection @nd non-decreasing with respect to the selection vector
problem, the aim is to optimally place a given number of (Proposition 3 and Lemma 3).
eavesdropper nodes to a subset of possible positions satch ¢hWe express the eavesdropper selection, jammer selection,
the location secrecy of target nodes is reduced as much as pognd joint eavesdropper and jammer selection problems as
sible. The optimal eavesdropper selection problem is studi Cconvex optimization problems after relaxation.
from the perspective of eavesdropper nodes for determining/Ve propose algorithms to solve the proposed problems by
performance limits of eavesdropping. The CRLB for estima- considering both perfect and imperfect knowledge of system
tion of target node positions by eavesdroppers is emploged aparameters, and develop robust approaches in the presence
the performance metric. The eavesdropper selection proble of imperfect knowledge.
also carries similarities to the anchor placement problem.{  In the conference version of this paper [1], only the eaves-



dropper selection problem is considered with shorter grodf number of anchor nodes is denoted BYy and they are
propositions and without proofs of lemmas. In this papeg, thocated aty, € R? for j = 1,2,...,Na. Also, there
eavesdropper selection problem is investigated by progidiexists some prior information about the location of the ¢arg
complete proofs for all theoretical results and performingode such that it is located at; € R? with probability
extensive simulations over a large network. In additior thv; > 0 for i« = 1,2,..., Ny, where Np is the number of
jammer selection and the joint eavesdropper and jammmsssible locations for the target node, aﬁ@if\fl w; = 1.
selection problems are proposed and analyzed. Although thet A; represent the set of locations of anchor nodes that
CRLB expression for the jammer selection problem is takette connected to théth target position (i.e., locatior;)
from the literature, its concavity and monotonicity prdfes for ; — 1.2..... Ny. Moreover, IetA(Li) and Ag\?L denote,
are derived for the first time in the literature. Based on eheﬁespectivew' the locations of anchor nodes ha\/ing ||n.e|.g|f]t

properties, convexity of a jammer power allocation probleqOS) and non-line-of-sight (NLOS) connections to the &irg
in the literature is also implied and a robust jammer sedecti node located ak;.

problem is formulated. In the wireless localization network, there also exiét
L different locations specified by the s€t= {p1,p2,...,p~n},
C. Motivation at which either jammer or eavesdropper nodes can be placed.

The investigation of the eavesdropper selection, jammEavesdropper nodes listen to the signals transmitted fham t
selection, and joint eavesdropper and jammer selectiob-prearget node to the anchor nodes and aim to estimate the
lems is important to identify the adversarial capabilitefs location of the target node. On the other hand, jammer nodes
eavesdropper and/or jammer nodes. degrade the localization performance of the anchor nodes by

As a motivating example of an application scenario for thieansmitting zero-mean white Gaussian noise [7], [30]slt i
eavesdropper selection problem, consider a restricteidogrv assumed that at any given time, at mdsi locations in\ can
ment such as a military facility or a factory (e.g., imagin®ée used for eavesdropping purposes, whereas at Mpgif
an area in Fig. 1 covering blue squares and cross signs).them can be used for jamming purposes, whégerN; < N.
this environment, target nodes can represent the personneln other words, there exist at madtz eavesdropper nodes and
important equipment, which send signals to anchors nodes$g jammer nodes that can be placed at some of\figossible
that their locations can be tracked by the wireless loctdina locations. Let\z and Ay denote the set of locations iV’
network. A fixed number of eavesdropper nodes can be plaatdwhich eavesdropper nodes and jammer nodes are placed,
at some of feasible locations outside the restricted enaient respectively.

(red triangles in Fig. 1), e.g., under some camouflage. TheConsidering a wideband wireless localization network as in
aim of eavesdropper nodes is to gather accurate locat{@1], the signal transmitted from thiéh target position (i.ex;)
information about target nodes (i.e., personnel or equigjnethat is intended for the anchor node locatedatis denoted
for leaking critical information. To this aim, they need tdy s;;(¢). If an eavesdropper node is placedmt (i.e., if
be placed at optimal locations among the feasible locations, € Ng), the received signal at that eavesdropper node due
leading to the proposed eavesdropper selection problem. to the transmission of;;(t) is represented byZEjk (t). This

Considering the same setting, jammer nodes can be plasighal is expressed as

at some of feasible locations for the purpose of reducing

E
the accuracy of the localization network so that the network 5 Liin (B0 (B
will not be able to track critical equipment or personnelhwit rie(t) = Z Qijk " Sij (t ~ Tijk ) + i (t) (1)
sufficient localization accuracy. This scenario can also be =1

where TI(E’k) and

gﬁ(f’k) specify the observation interval for the eavesdropper

node located apy, S, = {(i,J) | px € N, y; € A}, Lgk

represents the number of paths between the target nodedocat

at x; and the eavesdropper node locatedpat (due to the

D. Notation transmiss_ion 0k;; (1)), az(.Ek’l) andTi(ﬁ’l) der_10te, respectively,
Throughout the papeX » Y denotes thaiX — Y is a the amplitude and the d7elay of tii#h multipath component,

positive semi-definite matrixx = y means thaty; > andn;;(t) is _zero—meanzwhite (_Baussian noise with a power
for all i = 1,2,....n, where x — 21 a:2...xn]T_and spectral density level of;. Considering orthogonal channels

v = [y1 y2...yn]T, andtr{-} represents the trace of a SquarQetween target and anchor nodes,;(t) is modeled as

matrix. Also, the following definitions are use@) Let f(-) be 'ndependent for ali, j, k [11], [12], [32]. The delays of the
a real-valued function of € R". f(z) being non-increasing paths are characterized by the following expression:

encountered in a battle-field in order to disrupt the loaian (E,k) m(E,k) .
capability of an enemy network. Similarly, the joint eavess fort € [li"" 127) and (i, j) € S,
per and jammer selection problem can be considered for b
gathering location information about target nodes andciedu
the accuracy of the localization network.

in z means that ifz and w satisfyz = w, f(z) < f(w) Ey 1 (B,
holds. (ii) Let g(-) be a real-valued of function oX € 57, Tigk = ¢ (Hxi = Pill b+ Ai) 2)
whereS? is the set of positive semi-definite matricesRin*". . , (B,D) ,
Then, ¢(X) being non-increasing iX means that ifX and Wherec is the propagation speed, ;" > 0 is the range
Y satisfyX =Y, ¢g(X) < g(Y) holds. bias bgﬁc’l) = 0 for LOS propagation and;z(.ﬁc’l) > 0 for
NLOS), and A; characterizes the time offset between the
Il. SYsTeEm MODEL clocks of the target node located &t and the eavesdrop-

Consider a two-dimensional wireless source localizatigrer nodes. It is assumed that the eavesdropper nodes are
network in which a target node (source) transmits signgherfectly synchronized among themselves and there exist no
that are used by anchor nodes to estimate its location. Ttleck drifts. (Please see [33], [34] for clock drift mitigar



mechanisms.) However, there is no synchronization betweg&n Problem Formulation

the target node and the eavesdropper nodes. Furthermore, fol’o formulate the eavesdropper selection problem, we intro-

. . i . E,1
anyi=1,2,..., Nr, we defineN';” £ {(j.k) | bz('jlé '=0) duce a selection vectar” = [zF 2L ... 2E]T, specified as
and\y), 2 {(j.k) | b7;" # 0}, which are the set of anchor _
and eavesdropper node indices corresponding, respgctivel LB _ 1, if pr € Ng (5)
LOS and NLOS connections between the eavesdropper nodes k 0, otherwise

and the target node locatecsat (For example, ibgfg’l) =0,it N
means that the eavesdropper node at posiipand the target Where ;" , z;> < Ng. In addition, for the target positio)
node at positiorx; are in LOS during the transmission of thef; is defined as follows:
signal from that target node to the anchor node at posjtipn 0. 21xT A kT kT T T 6
(i.e., during the transmission &f3(t)).) P = Ai gy k] ©
On the other hand, due to the existence of jammer nod@é}grenik is_the vectorob:tained by cqncatenatingthe elements
the signal received at the anchor node locategt,atoming 0f &ijy, vertically, ki, = [£];,]7¢ 4,, with
from the target node located &t can be expressed as = =
(B.1) p(2.2)  p(BoLige)  (ELGg e (B _
LA Rijn = i bije™ - b o Yidk JTif by =
A, A. (B,2) (E,2) (E.L;;,) (E,Ljj) :
ri @) =Y al st =15+ Y gy B v ()40 (1) [ije " Qg™ byl " agy T, otherwise.
=1

{p1ENs} 3) for anyi, j, k.

for the observation intervdTl(A,j)7 2(A,j)) and fory; € A, It is known that the ejstlmat|or1 error vector satisfies [35]
whereaY andr*" denote, respectively, the amplitude and Eo,{(0;: — 6,)(0; — 0,)T} = Jg! (7)

the delay of thelth multipath component between the target o , . . .
node at locationx; and the anchor node at locatign, Lf} where@; is any unbiased estimate 8f, andJy, is the Fisher

represents the number of multipaths between the targetatodéformation matrix (FIM) for the parameter vectéy. From
locationx; and anchor node at locatign, ;; is the channel 7), the CRL.B for estimating the position of the target node
coefficient between the anchor node at locatignand the located atx; is obtained as

jammer node located @4, and P is the transmit power of the Eo, {||%; — x|} > tr{[J;]Qw} 8)

jammer node at positiop;. Moreover,, Pilou(t) andni; (t)  where %; is any unbiased estimate of;. It is noted from
are the jammer noise and the measurement noise, respectivg)) that, for the CRLB calculation, we should focus on the
It is assumed that both of them are independent zero-megfuivalent Fisher information matrix (EFIM) fa;, which
white Gaussian random processes, where the average POWEl5 . 9 matrix denoted by](i) (x;) such thatiJ; !axs =

of v;;(t) is equal to one and that of;(t) is equal tog;?. It @ -1 , o _ 0 12

is modeled thaty;; (t) is independent for all, 4, j andn;; (t) (Je”(x:))  [31]. Since[Jp, ]22 is a function of bothx; and

is independent for all,j due to the presence of orthogonak”, it is convenient to writgJg,]2x2 = I (x;,2%). Hence,
channels between target and anchor nodes [12]. Furtheymeve formulate the proposed eavesdropper selection probdem a

the delays of the paths are characterized by follows:
(ap _ 1 (4.0 , Al . _
T T (HYJ' = x| +b;; ) (4) Irzlllfn Zwl tr{ (Jg)(xi,zE)) 1} (9a)
i=1

where bff“) > 0 is the range bias of thé&h path between N
the target node located a; and the anchor node located  subject to ZZ];E < Ng, (9b)
aty;. (bl(.‘.“’l) = 0 for LOS propagation and}EA’l) > 0 for k=1
NLOS.) ﬂJnI_ike the expression in (2), no clock offsets are 2Fe{o,1} fork=1,2,...,N. (9c)
considered in (4) since target and anchor nodes are assumed o ]
to be synchronized. Namely, the aim is to select the best locations for eaveganop

nodes for achieving the minimum average CRLB by consider-
ing possible target node positions;) and their probabilities
(w;).
In this section, we assume that there exist only eavesdroppe
nodes in the environment, i.ely; = 0, and focus on the _ )
eavesdropper selection problem. In this case, the aim isBe Theoretical Results and Algorithms
choose at mosiV; locations from set\" for eavesdropping 1o simplify the notation, letf(z”) represent the objective
purposes so that the location of the target node is estimatgfction in (9): that is
as accurately as possible. N
For quantifying the location estimation accuracy, the CRLB A - -1
d fying Y f(zE)éZwitr{(JS)(xi,zE)) I®
=1

Ill. EAVESDROPPERSELECTION PROBLEM

is used as a performance metric since the mean-squared error (10)

of the maximum likelihood (ML) estimator is asymptotically

tight to the CRLB in the high SNR regime [35]. Based on thi the rest of this section, we first obtain a closed form
CRLB metric, the eavesdropper selection problem is investixpression otr{(JEJ) (xi;,2z%)) "} for any target location,
gated in the presence of perfect and imperfect knowledgeafd then analyze monotonicity and convexity properties of
system parameters in the following sections. f(z") with respect taz”.



Proposition 1:For a given eavesdropper selection vectdrOS/NLOS conditions are not known perfectly, the robust
z¥, the CRLB for estimating the position of the target nodermulation of the eavesdropper selection problem in $ecti

located atx; is given by [1I-C can be employed to provide a more practical formulatio
_ g (please also see Remark 6).
(i) -1y _ bi(z7) . . .
tr{ (I (xs,2"%))  } = 7i(2F) (11)  The following lemma characterizes the monotonicity of
! f(z") in (10) (i.e., the objective function in (9)) with respect
where to z¥, which is also utilized in the analysis in Section IlI-C
pa®) =3 3 3 AN, g (temmaz.
(RN (0,1)eN D Lemma 1:f(z%) is non-increasing ine”.
Fi(z") = 4 Z Z Z JPLELE L (13) Proof: See Appendix-B. |
) 0 ) This result is actually quite intuitive as one expects im-
(u,k)eN;” (v,1)eN” (s,m)eN] R . R
NN proved performance for estimating the location of a target
X AggAg§>Aggp;ﬁ3p§f;p£;{k, (14) node as the number of eavesdropper nodes increases. Next,
_ 8732, _ we prove the convexity of the objective function in (9) with
)\glk) = C—Q”(l - X;Q)SNRS.,L (15) respect toz”.
1% P28 df Proposition 2: f(z”) in (10) is a convex function of”.
— 0 %]
izj - 1S5 (F)Pdf (16) Proof: See Appendix-C. u
(B1) 9 (oo ) As a consequence of Proposition 2, the optimization prob-
SNRD — |O‘ijk 1? S 1Si ()2 df 17) lem in (9) becomes a convex optimization problem by relaxing
ik 207 ’ the last constraint in (9c). Furthermore, it is deduced from
@ .o bk — u Lemma 1 that ifz* = [} 23 ... z}]7 is a solution of (9), then
Py = sin (T) (18)  (9b) must be satisfied with equality, i.6;7 , =i = Ny must

_hold. Therefore, the relaxed version of (9) can be formadlate
with S;;(f) denoting the Fourier transform of;;(¢), XEZ) as follows:

being the path overlap coefficient with< x(.zk) <1[31], and ] Nt . B —1
$: representing the angle from thth target location tgpy., min > witr{ (I (xi,2")) "} (19a)
.., @i, = arctan T2=LE2 (x; = [zi1 22]T, Pr = [pr1 Pr2]T)- i=1

Proof: See Appen(fix-A. [ ] . N

In Proposition 1, the CRLB is expressed in closed-form as a subject to > 2 = Ng, (19b)
ratio of two polynomials in terms of the eavesdropper saleact k=1
vector, which brings benefits in terms of computational cost 0<zF<lfork=1,2,...,N. (19c)

For example, it facilitates the calculation of the solutaf(9)
via an exhaustive search over all possibfevectors whenV As (19) is a convex problem, its solution can be obtained via
is sufficiently small. Also, it is noted that the proposed @RL convex optimization tools [37] (called threlaxed algorithmin
expression in Proposition 1 depends only on the LOS sign&sction VI). After finding the solution of (19), we proposeth
(see (11)-(13)), which is in accordance with the results i tfollowing two algorithms to obtain a solution of the origlna
literature (e.g., [31, Prop. 1] and [36]). problem in (9). First, we can simply set the largeSi
Remark 1:1t is observed from the CRLB expression incomponents of the solution of (19) to one, and the others to
(11)—(13) that if all)\glk)’s are scaled by the same nonnegativéero (called thdargestV algorithmin Section VI). Second,
real numbers, {(J(i)( . E))—1} is scaled byl /¢ for starting from _thl_s sqlutlon, we can use a m_od|f|ed version of
. r ide X0, 2 . y the Local Optimization algorithm discussed in [38] and @bta
all i = 1,2,..., Np. Therefore, the optimal eavesdropp

- [ . . ®he solution of (9) (calledhe proposed swap algorithrim
selection strategy (i.e., the solution of (9)) remains thine Section VI) Thé ()je(tails of thg pFr)oposed svf/)ap %lgorithm is
in such cases. ’

: rovided in Algorithm 1, where* andz;, denote the
: : : ' i gestV’ -
Remgrk 2_.F_or t_he eavesdropper select_lqn p_roblem, tl«PpUmaI selection vectors obtained by the relaxed algorith
probability distributionof the target node positions is assume

. , Thax -
to be known. Also, it is assumed that LOS/NLOS cond\—nd the largestv; algorithm, respectivelyNsya, is the upper

tions for possible target-eavesdropper positions are imit for the number of swap operations, apdletermines the
: . ‘?ﬁds stopping criterion. While performing one swap operatiome o
known. Although these assumptions may not hold in so Pping b 9 b op

. . . , . MBecks whether there is a decrease in the objective funiotion
practical scenarios, they facilitate calculation of tretmal

e ; simply swapping one of thé&Vp selected positions with one
limits on the best achievable performance of eavesdrop Py bping £ P

r, .
the N — Ny positions that are not selected.
nodes [7]. If eavesdropper nodes are smart and can Ieahealle 5P

environmental parameters, the localization accuracyveeri Remark 3:It should be noted that the proposed swap
in this work can be achieved; otherwise, the localizatioflgorithm presented in Algorithm 1 reduces to the proposed
accuracy (hence the eavesdropping capabilitg/) is boungled't%rgelStNE t;lflgonlthm'trlf (i) the f(f)_bJeC::Ve ?/aluet ainleVsd b()j/
- i : e largestNy algorithm is sufficiently close to the boun
the obtained resulfs.In addition, when the\!} terms and < argestiy aig . y € he
pecified by the relaxed algorithm, or (ii) the objectiveueal
1The tightness of the provided bounds in the presence of iiegter aChleV.ed b.y the proposed swap algo_rlthm after the first swap
information about the distribution of the target node lamatis evaluated OP€Tation is the same as that achieved by the laryest-
in Section VI-B. algorithm.



Algorithm 1 Proposed Swap Algorithm with

INput: 2*, i gest s » 45 Newap 7,) 2 (4) (4) (4)
. AX A/\ ANy AN AN
Output: zgy,, [ i) 1N @21 ; 2N
1: Setbooleanb + true, -0 AN - AXNY ] (22)

2 if [f(z") — (ZlargestNE)| < pf(z*) then
3: b+ false,z

else

pil fori = 1,2,...,Np. Also, let AAr and A be the matri-
swap largestN ces containing the error vectors and the estimation vectors
. respectively, as follows:
Ztemp <— ZiargestN
end if AAg 2 [AXD AXD AN (23)
while b is truedo " 1) . (2 Nop
c+—c+1 AE—P‘SE) )‘(E)- AEE )]- (24)
Obtain all Np(N — Ng) possible selection vectors by | this scenario, the notation for the objective function
applying one swap operation #gmp, and compute the ¢(,7) js modified asf(z”, A ) to emphasize the dependence
corresponding objectives. Lefemp2 be the selection on A (since AAg becomes another parameter of interest in
vector among those vectors which yields the minimunie presence of uncertainty).

objective. As in [39]-[41], we employ a bounded error model for the
100 if | f(ztemp) — f(Ztemp-2)| < 11f (Zemp) & € < Ngyapthen  uncertainty. In particular, for the eavesdropper selectimob-
11 b <« false, zgyap < Ztemp-2 lem in the presence of parameter uncertainty, the following
12:  else ifc = N2 then model is assumed for the error matm(AE'

swap
13 b false, zguep  Ziemp2 AAp € €2 {AND e RVNa : |AND| < 51 Vi, j k)

j ) b)
(25)

© e N aR
>

14: else
15: Ztemp < Ztemp-2

16:  end if where{éj(}; pNrNaN - determine the size of the uncertainty

17: end while i 1J Lk=1
. region& with 6 >0 for all 7, j, and k.

The aim is to minimize the worst-case CRLB as in [7] and
[41]. Therefore, under this setup, the proposed optinozati
C. Robust Eavesdropper Selection Problem problem can be formulated as

: E

In the previous section, it is assumed that the eavesdroppeerlzlsrl Alfxlg)ég 12" Ag) (263)
nodes have the perfect knowledge pf; Z)} (see (11) and N
(15)). In this section, we propose a robust eavesdroppersubject to Z 2F = Ng, (26b)
selection problem in the presence of imperfect knowledge k=1
about the system parameters by introducing some uncartaint 0<zf<1fork=1,2,...,N, (26¢c)
in {/\ } For simplicity of notation, we assume thal; = _a
{yl,yQ, ..., YN, } i.e., all the anchor nodes are connected to Ap=Ap—AAp. (26d)
the ith target position for any. (The proposed approach carlfo solve the optimization problem in (26), the following
easily be extended to scenarios in which this assumptios déemma is utilized.

not hold.) Lemma 2:f(zZ, Ag) is non-increasing im*) for all i =
To formulate a robust version of the eavesdropper selectiore, ..., Np.
problem, we first definé\; as follows: Proof: See Appendix-D. m
Ap 2 P\SEI) )\532) o )\(ENT>]7 Let the value ofA A that maximizesf(z”, Ag) over set

& be denoted a’A A} and Iet{A)\ﬁ)’* ik represent the
. ‘ . ‘ ‘ elements ofA A7, (see (22) and (23)). Based on Lemma 2, it
AD 2D AR A AR A A ]T s obtained that

where

. (i (@)% _
We also introduce the estimated versionshé’f) as AEE) for Aji 5Jk (27)

i=1,2,..., Nz, which are given by Therefore, solving (26) is equivalent to solving the follow
5 () 3 NORNG i i NG ing optimization problem:
Ap 2 AN AR A AT :
(20) min f(z¥, A — AAY) (28a)
with )\y denoting the estimate df(l forj=1,...,N4 and

k=1,...,N. These estimated values represent the imperfect subject to > 2 = Ng, (28b)
knowledge of the/\ parameters at the eavesdropper nodes.

Let A)\(” denote the error vector that generates the uncer- 0<z’ <1fork=12.. N (28¢)

tainty; that is, It is noted that (28) is in the form of (19). Thus, the solution
NOREING, () approaches discussed for the eavesdropper selectioneprobl
Ap =Ag +AAg (21) in the previous section can also be applied to this problem.



IV. JAMMER SELECTION PROBLEM B. Theoretical Results

To simplify the notation, leff (z”) and{g:;(z”)} Y™, be

In this section, we focus on the jammer selection proble fined i=1,j=1
gfined as

under the assumption that there exist only jammer nodes

the environment, i.e.Ng = 0. The aim is to choose at most - Nt o .

N locations from the setV" for jamming purposes so that flz’) % Zwi tr{ (I (x;,27)) "}, (32)
the target localization performance of the anchor nodes is i=1

degraded as much as possible. By using the CRLB of the N

anchor nodes related to the estimation of target node positi (33)

J

. . : . 9i(2") = =92 N JpJ P
as the performance metric, the jammer selection problem is G5 + Dk i Br 1k
investigated in the presence and absence of perfect knge/legh ihe rest of this section, we analyze the convexity and
about the system parameters. monotonicity properties of with respect toz”.

Lemma 3:f(z”’) is non-decreasing in”.

Proof: See Appendix-E. |

A. Problem Formulation Lemma 4.g;;(z”) is a convex function o’ for anyi, j.

Letz’ = [z{ ... 2{]T denote a selection vector defined as Proof: see APQenfl)f_F' . "
Proposition 3: f(z”) is a concave functioa" .

I {1, if pr €Ny (29) Proof: See Appendix-G. |

k70, otherwise From Lemma 3, we can conclude that #* =

N S _ [27 23 ...2z5]7 is a solution of (31), then (31b) must be
where}”,", 2/ < N,. Via similar steps to those in [7], [31], satisfied with equality, i.e.y""_, z; = N, must hold. By

[41], the EFIM related to the positioning of the target nodgelaxing the last constraint in (31c), the following optizaiion
located atx; by the anchor nodes can be obtained as followgioblem is obtained:

. Nt
-~ . /\(l) (i Jy —1
ng)(xi’zJ): Z ~9 N - JpJ Q‘Pij‘PiTj (30) HBX Zwi tr{ (Jg)(xi,z )) } (34a)
jea® o+ > k=1 2 B 1k i=1
L N N
~ H J J pJ
In (30), A" corresponds to\;; in [41, Eq. 3], ¢;; = subject to doal =Ny D #B < Pr, (34b)
[cos p;j sin;;|T, andy;; is the angle from théth target loca- k=1 J k=1
tion toy;, i.e., ;; = arctan %, wherey; £ [yj1 yj2]T. 0<z;<lfork=1,2,...,N. (34c)

Based on (30), we formulate the proposed jammer selecti8ince the objective function in (34a) is concave due to Propo
problem as follows: sition 3 and all the constraints in (34b) and (34c) are affine,
we reach the conclusion that (34) is a convex optimization

NT . . . . .
e f (39 (x;, 27 -1 31a prob_lem. T_hus, it can be solved via convex optimizationgool
o ;w r{( e (Xi2 )) } (312) for finding its globally optimal solution.
N N After finding the solution of (34), the largesfy algorithm
subject to Z 2] <Ny Z 2P/ < Pp, (31b) and the proposed swap algorithm can be used for finding the
P ’ Pt - solution of (31) as in the eavesdropper selection problem.
2 e {01} fork=1,2,....N (31¢) However, in this case, we set the largdst components of the

solution obtained from (34) to one, and while implementing

where Py is total power budget. the proposed swap algorithm, we check whether there is an
For the jammer selection problem in (31), the distributioficrease in the objective function by simply swapping one of

of the target node positions is assumed to be known. It fae N, selected positions with one of th¥ — IV, positions

also assumed that the anchor node positions, LOS/NL@® are not selected.

conditions for possible target-anchor positions, afid's are Remark 4:For the formulation of (34), it is assumed that

known. Similar statements to those in Remark 2 can be md#€ transmit powers of the jammer nodes are given (fixed). If

for the jammer selection problem, as well. As stated in [11]F }1_, are considered as optimization variables as well, the

jammer nodes can obtain information about the localizatidllowing problem can be formulated (cf. (34)):

parameters by various means such as using cameras to learn Ny

the locations of anchor nodes, performing prior measurésnen, ..

in the environment to form a database for the channel parame~ .§

ters, and listening to signals between anchor and targetsnod

When this information is inaccurate, the robust formulatio .

of the jammer selection problem in Section IV-C can besubject to
employed by considering uncertainty in the knowledge of

A§Z)’s and LOS/NLOS conditions (please also see Remark 6).

In addition, the effects of uncertainty in the anchor node
positions and in the distribution of the target node positio

can be evaluated as in Section VI-B.

whereg, = z/ P/, q =[G .

—1
Zwitr{< > Qij(d)cpijso;) } (35a)

jeA®

N N
Zz,;] = Ny, Z@ < Pr, (35b)

k=1 =1
0<z!/<lfork=1,2,...,N, (35¢)
0<q<z/P*fori=1,2,...,N (35d)

..qN]T, §ij(Q) is defined as (see



(30)) . dependence oA ;. We use the same bounded error model as
5\5-1) in Section 111-C for the error matrixA A ;:

~ ~ ) (36 5 i ¢ (i
5%+ S0, @l AA; e €2 {AN) e RN AN <60,

and PP**is the peak power limit for the jammer node located Vi=12,... Npandvj=12...,Na} (41)
at p;. It is observed that all the constraints are linear Wit{R/
respect toq andz’ in (35). Furthermore, as a corollary of ~ ~ ~ 7 / 0 )
Proposition 3, one can conclude that the objective fundtion "égion & with ;7 > 0 for all + = 1,2,..., Ny and
(35a) is a concave function &f (This holds since there are no/ = 1,2, - - -, NA- o o
assumptions aboyt?’ } | in Proposition 3 while provingthe ~ The aim is to maximize the minimum CRLB that can
concavity of the objective functioﬁ(zJ) with respect taz”.) be _ac_hle\_/ed int. Therefore, under this setup, the proposed
Therefore, it is concluded that the optimization problergs) CPtimization problem can be formulated as
is convex, as well. This impli_es that the joint jammer sétnpt max min f(z", Ay) (42a)
and jammer power optimization problem can be solved viathe z/ aa,eé
convex problem in (35) (after relaxing the selection vector N N

Remark 5:As a special case of (35), it can be shown that subject to Z zi = Ny, Z P < Pp, (42b)
the following problem is also convex. k=1 k=1

9i5(q) =

here {Sf)}ﬁvjl’fjv:f‘l determine the size of the uncertainty

N 50 “1 0< z,;’Ag 1fork=1,2,...,N, (42c)
InélX Zwﬂr{( Z &2—|—ZZ\? P |2g0ijgoiTj> } Aj=A;—AAj,. (42d)
= . i i —1 91 "Vl L. . . .

! jeAy = ! To solve the optimization problem in (42), the following

N 3 lemma is utilized. _
st.Y G <Pr, 0<g<PF*fori=12...,N. (37)  Lemma 5:f(z’, A,) is non-increasing im\{’ for all i =

= 1,2,..., Nr.
It is noted that this problem is in the same form as the Proof: See Appendix-H. u
problem discussed in [41, Eq. 9]. In [41], the convexity of Let the value ofAA; that minimizesf(z”, A;) over set
this problem is not taken into account. Instead, a series log denoted aA A’; and |8t{A)\§‘Z)’*}i,j represent the elements
geometric programming approximations are proposed inrordd A A’ (see (38) and (39)). Based on Lemma 5, it is obtained
to solve the optimization problem. Since the problem [4hat A" = —5. Therefore, solving (42) is equivalent to
Eq. 9] is in fact convex, it can also be solved via convego|ving'7the following optimization problem:
optimization tools.

max f(z/, Ay — AAY) (43a)
N N

C. Robust Jammer Selection Problem subject to Zz;j =Ny, Zz,;’P,;] < Pr, (43b)
k=1 k=1

In the previous section, the jammer nodes are assumed to 0<z/ <lfork=1,2,...,N. (43c)

have the perfect knowledge {)ig.i)}ﬁvzﬁ’éy:“l in (30). Similar to

Section [lI-C, some uncertainty ifﬁgi)}f\’:ﬁ’_]jﬁl is introduced

for a2,robust formulation. (No uncertainty is considered o8 ion methods proposed for the jammer selection problem
[7%;|*’s in (30) since they mainly depend on the known . "~iso he used for the problem in (43).

positions of the jammer and anchor nodes.) For simplidity, 1 Remark 6:The imperfect knowledge of LOS/NLOS condi-
's assumed thatl; = {y1,y2,.-.,yn,}, I.€., all the anchor tions can be incorporated into thd? and A" parameters
nodes are connected to thh target position for any. in Sections Il and IV. (In the case of a NLOS link, the

To formulate the robust jammer selection problem, w (i ¢ .
first define A, 2 P\(l) )\82) )‘(NT)] wherep)\(i) N gorr_espondmgﬂﬁ and A§_) parameters become zero; i.e., no
J J JoeNy b J position related information is gathered from that linkgride,

This problem is exactly in the same form as the problem in
34), hence, it is a convex optimization problem. Thereftre

A S\%L]T fori =1,..., Nr. The estimated versionsthe cases with imperfect knowledge of LOS/NLOS conditions
of )\(Ji) are defined a§\F;) fori = 1,2,..., Np, whereX(,l) can be treated in the robust eavesdropper and jammer selecti

denotes the estimate d((,i). Let AAf,i) represent the error approaches in Sections 11I-C and IV-C.

. < (0) : ;
vector that generates uncertainty, thatis, = AP +Aaxp V. JOINT EAVESDROPPER ANDJAMMER SELECTION

with
A)\(Ji) 2 AN AR ___AS\%)A]T (38) In this section, we consider the eavesdropper and jammer
. . selection problems jointly and place jammer and eavesdmopp
fori=1,2,...,Nr. Also, AA; and A ; are defined as nodes by considering both the localization performance of
AA, & [A)\(Jl) AA,(IQ) o AA(JNT)L (39) the anchor nodes (which is to be degraded) and the accuracy

of the eavesdropper nodes for estimating the location of the
A2 [S‘(Jl) XSQ)___X(]NT)]_ (40) target node (which is to be enhanced). In this part, it is
’ assumed that the jammer nodes do not cause any interference
_In this scenario, the notation for the objective functioat the eavesdropper nodes; e.g., by using directional aagen
f(z”) is modified asf(z’,A;) in order to emphasize thetowards the anchor nodes. In addition, we make the same



assumptions as in the eavesdropper selection problem and th

jammer selection problem. SOE N A ey
Based on the selection vectat§ andz”, the joint eaves- a0 & B L e
dropper and jammer selection problem can be formulated as 30| b D‘;D > B -
>
20+ > > >
o a
Fiod L B>
' 2 9 o SRR ob P o
N s P B SEREKIAELEK
SUbJeCt to f(z ) <p, sz = Ng, (44b) 10 - J O XXXEXXXXRXX g s
k=1 20 f B ° o . o
N N P (S >
301 > > > 5>
J JpJ bPp
> #l =Ny, > P <Pr, (440 ol e e ey
k=1 k=1 N N
S B N S G N S i S~
zf e{0,1} fork=1,2,...,N (44d) 50 40 30 20 -10 0 10 20 30 40 50
x-axis [m]
2l €{0,1} fork=1,2,...,N  (44e)
2521}] =0fork=1,2,...,N (44f) Fig. 1. lllustration of the wireless source localizatiortwark.

where f(z”) is as in (32),f(z”) is given by (10), and is
a given accuracy threshold related to eavesdropping. Téte lBossible positions for the eavesdropper and jammer
constraint (44f) guarantees that a node can be selectest aith Nodes which are selected uniformly from the region
an eavesdropper or as a jammer. By relaxing the constraintds = ([20,50] x [-50,50]) U ([-50, —20] x [-50,50]) U
(44d) and (44e), and modifying (44f), we obtain the follogin ([—20, 20] x [-50, —30]) U([-20, 20] x [30, 50]) meters.
optimization problem: Such aregion is selected in order to keep eavesdropperéamm
= nodes away from the localization network by considering
max f(z7) (45a) 4 practical application scenario as in Section I-C. Fig. 1
' illustrates the positions of the target and anchor nodeweils

N . . .

subjectto  f(z7) < p, sz _ N, (45b) ﬁ;s)dtehse possible positions for the eavesdropper and jammer
N kilN In the simulations, we consider the eavesdropper selection
7 TJ problem, the jammer selection problem, and the joint eaves-

Z z =Ny, Z by < Pr, (45¢) dropper and jammer selection problem, given by (9), (314, an

k=1 5 k=1 (44), respectively. For the problem in (44), we assume that

0<z <lfork=12..N (45d) Ng+N; = N.In other words, we have? = 1 —z] for any
0<gz/ <1fork=1,2,...,N (45e) k. fc;]r trfle”joint ea\I/eSerc])pper and jammer zelfectionfproblem.
0<:Et2) <lfork=12.. . N. (450 co-lr—npeari%o%vgl'ng algorithms are investigated for performance

As consequences of Proposition 2 and 3, it is noted that theRelaxed AlgorithmThe relaxed versions of (9), (31), and
optimization problem (45) is a convex optimization problem (44) (see (19), (34), and (45)) are solved via the fmirjeon
The selection ofy depends on the requirements in a given command of MATLAB by using the interior point algorithm,
scenario. For instance, if learning the positions of thgeaar which has polynomial-time complexity in the worst case,
nodes is more important than jamming the localization net-and is very fast in practice. The solution of (19) provides a
work, p should be small. Alternatively, one can try to minimize lower bound for (9), whereas the solutions of (34) and (44)
f(z) while keepingf(z’) above a certain threshold. From provide upper bounds for (31) and (44), respectively.
Proposition 2 and 3, it can be argued that the resulting probl « LargestiNg Algorithm We set the largesVy components
would also be convex. Hence, by using convex optimizationof the solution of (19) to one and the others to zero, and we
tools, the solution of (45) or its alternative version can be evaluate the performance of this resulting selection vecto
obtained. Then, starting from that solution, the larg¥st{or, using the expression in (11).
largestNg) and swap algorithms can be used to obtain thelLargest#V; Algorithn In this algorithm, we set the largest

solution of (44) or its alternative version. N; components of the solution of (34) to one, and the others
to zero. For the problem in (44), if the relaxed solution
VI. SIMULATION RESULTS pair obtained from (45) is denoted (asg,?xed Ziiaxed WE

In this section, simulations are conducted to investigateSimply set the largesi,; components ofg,,cqt0 one and
the performance of the proposed approaches. We considdpe others to zero. The resulting vector is denotegias.,
a wireless source localization network, in which the andzj.is defined as — zj},q., wherel is the vector of
target node is located at one of the 121 possibleones. (The solution paitzy,gee Ziiges) MY NOt be feasible
positions with equal probabilites (i.e., 1/121). In for (44) unless the threshold valug, is sufficiently large.)
particular, the set of possible target positions is given Proposed Swap Algorithmin this algorithm, we start from

by {x;}12} = {2m,2n] | -5 < m,n < 5,m,n € Z} the solutions obtained from the larges or the largesty
meters. Also, there are 10 anchor nodes at locationslgorithms. The swap operation is performed as explained
{y;};2, ={[18 cos(v;), 18sin(vy)] | ¢; = 2m(j —1)/10,j = in Sections Il and 1V, the details of which are given in

1,2,...,10} meters. In addition, there exists 100 Algorithm 1. In all the simulationsy in Algorithm 1 is
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selected a$).01. During one swap operation, the number

of objective function evaluations is given Byg (N — Ng). il e ruoes

In other words, the total number of objective evaluations ok —o— LargestN,

. max _ e Py d Swi

is upper bounded bW N — Ng)Ng (similarly for the N g T Droposed w11

jammer selection problem).

« Swap Algorithm with Random InitializatioiThis algorithm
is considered for comparison purposes similar to the local
optimization algorithm in [42]. In this algorithm, we use
the proposed swap algorithm (Algorithm 1) with arbitrarily
generated initial selection vectors (inputs) for the eaves
dropper selection problem or the jammer selection problem.

Average CRLB [m]
~

While generating the random initial vectors, we randomly 5T

chooseNg or N; positions fromN possible eavesdrop-

per/jammer positions by using thendperm(V,Ng) or ‘ ‘ ‘ ‘ ‘ ‘ ‘ Bap
randperm(V,N,;) command of MATLAB with different e
seeds.

For the eavesdropper selection problem, we assume thigt 2. Average CRLB versusp wheno? = 0.1, NG& = 5, and the

0,% — o2 for eachk. Moreover,a(.%l) and X(lk) are modeled seeds of the random initial selection vectors are, 3 for the eavesdropper
v J selection problem.

as [a{j;" * = |lxi —pr| ™ and X\ = 0. Hence, \{})
is expressed asgjj = 4wﬂijij/(c2 % — Pk|\2 o2), where
EZ] - ffooo |S,LJ (f)|2 df IS the energy Of the 5|gnallﬂ (t) (See 102 Np =8 —8— Relaxed

T T
/ —O— La\rges‘(-NE

~—£— Proposed Swap
Swap w/ rand. init.

Proposition 1). Then, the signal parameters are selectgu su
that )\Szk) is given by/\;'lk) =1/(]l%; — pil® 012) [12].

For the jammer selection problem, it is assumed that
63 = & for eachj, A\ = 1/(|x; - y;1I°), and|yy, | =
lpx — yjH*Q. Regarding the transmit powers of the jammer
nodes,P,;’ = 10 for eachk and Pr is selected agoN, i.e.,
the constraint given by, 2/ P/ < Pr becomes ineffective.

In order to perform simulations considering the shadowing
effect, \")’s and)\yk) 's are multiplied with log-normal random
variables with mean parameter2 and variance parameter
1. Similarly, |y;;|*’s are multiplied with log-normal random S O Y !
variables with mean parameter2 and variance parameter 0 8 6 4 2 0 2 4 6 8 10

In the simulations, for each problem, the square roots of 1/o*(4B)
the objectives are plotted, i.e., the average and the veas-
CRLB values are presented in terms of meters. The simukati
are performed on an Intel Core i7 4.0 GHz PC with 16 G
of physical memory using MATLAB R2020b on a Windows
10 operating system.

Average CRLB [m]

=

o
i
T

. and the seeds of the random initial selection vectorslage 3 for the

g. 3. Average CRLB versu$/o? when Ng = 8, Np = 30, NG& =
vesdropper selection problem.

, , . Therefore, by Remark 1, it is concluded that the objective

A. Simulation Results with Perfect Knowledge of Parametefgnction is also scaled, as can be observed from Fig. 3.

In Fig. 2, the eavesdropper selection problem is considergidreover, from Remark 1, it is known that the solution of
and the average CRLB performance of each algorithm tise optimal eavesdropper selection problem (hence, that of
plotted versusVy for the noise leveb? = 0.1 and Njizh= 5. the largestN algorithm) remains the same for alf’s when
For the same setting, Fig. 3 presents the average CRIB; is fixed. For instance, when there ateeavesdroppers in
performance of each algorithm versugs? for Nggvgxp = 5 the network, the24, 33,38, 39,51, 77, 88, 92th components of
and two different levels ofVg's: Np = 8 and Np = 30. z[ . are equal tal for botho® = 0.1 ando® = 10.
From FIgS 2 and 3, it is observed that the solution of the The average CRLB performance and run time of each a|go-
relaxed problem provides a performance lower bound, ggm are evaluated versusi for 02 = 0.1 and Np = 15.
expected, and the largeatr algorithm and the proposed(The figures are not presentecfdue to the space constrdiet.) T
swap algorithm perform very similarly in this scenario. Omesults indicate that it requires arouh8 swap operations for
the other hand, when the swap algorithm is executed basaé swap algorithm with random initialization (with se&xito
on three different random initial selection vectors (witeds converge to the performance of the proposed swap algorithm.
1, 2, and3), significant performance degradation is observegamely, the average CRLB of the swap algorithm with random
in comparison with the other algorithms. This implies thahitialization is11.4 m at N2 — 1 and reduces to that of the

. A . swa
solving the relaxed problem and then obtaining the solutigitoposed swap algorithm (i.e5,27 m) at N — 13. On the

. . swap
of the largest¥y; algorithm or the proposed swap algorithmpther hand, the starting point obtained by the proposeerg
is critical in achieving high localization accuracy. N algorithm (.27 m) is not improved by the proposed swap

As o} = o* forall k = 1,2,..., N, it is noted that by algorithm, i.e., the larges¥s algorithm provides the best
changingo?, we in fact scale allkg.lk)’s with the same factor. selection vector in this scenario (please see Algorithm 1).
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30%
175¢ —&— Relaxed
281 g
17 ¢ 9 —o— Largest-N,;
26l ~—P— Proposed Swap
16.5 Swap w/ rand. init.
_ 16 Seeds = 1, 2, 3. _ 24 +
E E
155 [
o o 22
o o
O 15 O
% % 20 -
© 145 F I
$ $
< 14 <i8f
D
135 — 85— Relaxed i Seeds = 1, 2, 3.
—o— Largest-N 3
131p ~—$H— Proposed Swap
Swap w/ rand. init.
: T 14 | | | | |
8 10 12 14 16 18 20 0 1 2 3 4 5 6 7 8 9 10
Ny 1/5%(dB)

Fig. 4. Average CRLB versud’; whens? = 0.1, N&vap= 5, and the seeds Fig. 5. Average CRLB versug /o2 when Ny = 15, Niva, = 5, and
of the random initial selection vectors ate2, 3 for the jammer selection the seeds of the random initial selection vectors Rar2, 3 for the jammer
problem. selection problem.

When the corresponding run times in are compared, t orithm and using its solution as a basis for the largest-
benefits of the proposed swap and larg¥st-algorithms are ' @nd the swap algorithms provides significant benefits
observed. While the run time of the proposed swap aIgorith'H’n obtaining the solution of the optlma! jammer selectl_on
is 0.9 sec. for eachVI"& that of the swap algorithm with problem. In other words, the swap algorithm cannot achieve

random initialization is10.11 sec. for N — 13, Thanks Cl0S€ to optimal performance in a short amount of time by

i swap . H 5
to the relaxed algorithm, the proposed swap algorlthmstaﬁlart'ng from a faf?d.om selection vector. . .
In Fig. 6, the joint eavesdropper and jammer selection

with a selection vector which is very close to the optimal . .
selection vector; hence, it obtains the solution quickiy Ooroblem is investigated, and the average CRLB performances

i i i i E £ J
the other hand, with random initial selection vectors, higﬂorreTponglrflg to ﬂ;]e ?ble,crt]'ve flr‘]nCt'Srff{Z ) and f(z )d
localization accuracy cannot be obtained without perfagni &€ Plotted for each algorithm when = 50 (see (44) an

a time-consuming search based on swap operations. (45)). Itis calculated that folN,; = 60, 70,90, or equivalently
g b op N = 40, 30, 10, the solution of the larges¥z algorithm is

In Fig. 4, the jammer selection problem is considered ands 2 feasible solution for (44). For example, whp = 60,
the average CRLB performance of each algorithm is plott(-E e average CRLB for the largeat; algorithm is 54.06,

versus N; for the noise levels? = 0.1. For the same AR, .
> ! which is higher tharp = 50. Also, even though the solutions
setting, Fig. 5 presents the average CRLB performance tbrfe%q the IarggstNE alrgporithm are infeasible fc?NJ — 60,70,

. o b ; .
algorithm versusl/g* for Ny = 15. From Figs. 4 and 5, it starting from these solutions, via the proposed swap dlyuari

is observed that the solution of the relaxed problem pl’(B/Idﬁ is,possible obtain feasible selection vectors withoduieEng
a performance upper bound, as expected, and the propot%ed

= ' :
largest/V; algorithm and the proposed swap algorithm per: €value off (z"). However, whenV, = 90, via the proposed

form similarly. However, when the proposed swap algorith%wap algorithm, it is not possible to obtain a feasible g&lac

is implemented based on three different random initial jmmvector.EMoreover, a decrease s observed |n_the optimakvalu
. . . of f(z”) from N; = 60 to N; = 70, or equivalently from

selection vectors (instead of the solution of the larg€gt- N — 40 to N» = 30. In other words. it is not possible to

algorithm), the obtained CRLB values reduce significantly, % — E = o ' P

S Yaim any monotonic behavior iffi(z”) with respect toNg
This indicates t_he ad\(antage of the _prppo_sed approaches V& to the constraint given b§(zF) < p for the problem in
the swap algorithm with random initialization.

44). Furthermore, the relaxed problem does not necegsaril
The CRLB performance and run time of each algorith ) P =

max 5 rovide a lower bound orf(z”) as noted from the results
are evaluated versuSgy, for 6° = 0.1 and N; = 15. (The t N; = 60 and N; = 70 (equivalently, Ny = 40 and
figures are not presented due to the space constraint.) T, £ Z 30).

results indicate that after arouid swap operations, the av-

erage CRLB of the swap algorithm with random initialization , ,

(which is initially 10.67 m.) converges that of the proposed- Effects of Uncertainty in Knowledge of Target and/or
swap algorithm (i.e.16.98 m). (In this scenario, the starting/Anchor Locations

point obtained by the proposed largééy- algorithm already  In this part, we introduce some uncertainty to the knowledge
corresponds to the best selection vector.) While the rua tin related to the locations of the anchor and target nodes, and
the proposed swap algorithm @s2 sec., it takes aroundl.24 obtain the optimal selection strategies (using the relaxed
sec. for the swap algorithm with random initialization (wit formulations) for the cases of imperfect and perfect knowl-
seedl) to converge to the proposed swap algorithm. Hence, tedge. Then, we apply the largesiz /N ; and proposed swap
proposed swap and largest; algorithms have significantly algorithms and evaluate their performance based on thalactu
lower execution times than the swap algorithm with randosystem parameters.

initialization considering the same CRLB performance.sThi For the eavesdropper selection problem, we consider a
indicates that the proposed approach of solving the relaxsecknario in which the eavesdropper nodes do not know the
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Fig. 6. Average CRLB versud’; wheng? = ¢2 = 0.1 andp = 50 for the ) )
joint eavesdropper and jammer selection problem. Fig. (7].01Average CRLB versus (in dB) when Ng = 15, 0% = 0.1, and
w=10.01.
probability distribution of the target node location petfg.
(The knowledge of anchor node locations is not required ‘ ‘ ‘ N
for the eavesdropper selection problem.) In particular, fo 55l 1
i = 1,2,..., Ny, the actual distribution of the target node sb &
AR _
location is given by sk _
W = Aex (Iﬂ - $01)2 (171'2 - 1702)2 (46) 4 o g
;] — — — = 7
¢ p 212 212 D 135
5 A
where w; = Pr{Target node is located &}, x; = g v
[z @]T, T = [ro1z02]T is the mean of the tar- gus i e (o o)
get node location, andA is a normalization constant wt /B0 —o— Largest:N, (True Mode)
- 2 - 2 1 e
such that 2% Aexp (—Eu_to). _ (ri2—7o2) = 1. s //;/ o —homea gmpersey
On the other hand, the eavesdropper nodes assume Y, T )
that Pr{Target node is located a;} = 1/Np for i = vy | ‘
1,2,..., Np. It is noted that as’ tends to infinity,«w; ap- 5 0 15 0 %

. . N,
proaches tal /Ny for eachi. In other words, as increases,

the mismatch between the true distribution and the assumegd g average CRLB versusv; when? = 0.1, » = 1, r = 1, and
one decreases. On the other extreme, wheyoes to zero, . =0.01.

the target node is located atwith probability one; hence, the

uniform distribution assumption becomes quite inaccurate

In the simulations, we assume thag; = z¢» = 0 and distribution of the target node location are not known petije
Nawap = 5. In Fig. 7, the average CRLB performance ofis V; increases, the proposed swap algorithm performs very
each algorithm is plotted versusin dB (i.e., 10log,, v) for ~similarly for both the true model and the assumed one.

Ng = 15,02 =0.1, andp = 0.01. It is observed that as long

as the information about the distribution of the target no . .

location is not very inaccurate (i.es, is not very small), the d("a Simulation Results for Robust Approaches

proposed approach does not have a significant performancén this part, the robust eavesdropper selection problem in
loss. Also, as the mismatch between the true distributiah afection I1I-C and the robust jammer selection problem in-Sec

the assumed one decreases (i.ey @screases), the proposedion IV-C are considered. The worst-case CRLB performances
swap algorithm performs very similarly for both the true rebd of the algorithms are compared for both the robust and non-
and the assumed one. robust approaches. In the robust approach, the probleres giv

For the jammer selection problem, we assume that tR¥ (28) and (43) are considered for the robust eavesdrop-
jammer nodes do not know the locations of the anchor node@ and the robust jammer selection problems, respectively
perfectly. It is assumed that for any; = [y;1y;2]7, the However, in the non-ro_bust case, the following optimiza-
jammer nodes have the knowledge of an erroneous versiorﬂ@ij"v problems are considerediin,» f(z"”, Ar) subject to
y;. Lety; be the assumed location of thith anchor node by >.,_; 2zt = Ng, 0 < 2z < 1for k =1,2,..., N, which is
the jammer nodes. We model that is uniformly chosen from the non-robust version of the eavNesdrOpper selection @nabl
aset{y |y = 192", |y1 —yjl| < r& |ya —yj2| < r}. andmax,s f(z’,A;) subjecttoy ,_, 2/ =N, 0<z! <1
In Fig. 8, whens? = 0.1, v = 1,r = 1, andu = 0.01, for k = 1,2,..., N, which is the non-robust version of the
the average CRLB performance of each algorithm is plottgagimmer selection problem.
versusN ;. It is observed that the proposed swap algorithm is For the eavesdropper selection problem, both the robust
quite robust to errors in the knowledge of anchor and targatd non-robust approaches are considered, and two differen
node locations. Even though the anchor node locations @nd #election vectors denoted a$ and z% , (corresponding to
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Fig. 9. Worst-case CRLB versu§z wheno? = 0.1 and Nj&t = 5 for  Fig. 10. Worst-case CRLB versuys* when N; = 5 and N2 = 5 for
the robust eavesdropper selection problem. the robust jammer selection problem.

robust and non-robust, respectively) are obtained for ech the eavesdropper selection problem, a novel CRLB expnessio
gorithm. Then, forzZ andzZ ,,, the corresponding worst-casehas been derived as the performance metric, and its cogvexit
CRLBs are computed, which are given B2, Ap— AAL) and monotonicity properties have been provgd. After relgxi
and f(ZﬁR,AE — AA%), respectively. Similarly, for the the integer constraints, a convex optimization prqblem has
jammer selection problem, we define two different selecti(ﬁ‘neen obtained and eavesdropper selection algorithms have

vectors aw?, andz, , and evaluatqz(z’é,AJ —AA*)and | een proposed. Also, a rot_)ust approach has been developed
s 1A N in the presence of uncertainty about system parameters. For
flzyp, Ar — AAY).

J _ @) - @ the jammer selection problem, a CRLB expression from the
For the uncertainty regioéi, each);; is modeled as\;;’ € Jiterature has been utilized, and its concavity and moriottyn
[(1_6(1'));\;33’ (1+6(i));\§_2] for somee(® € [0, 1]. Therefore, properties have been derived. Similarly, a convex relaxati
the eavesdropper selection is based (¢n— e(i>)5\§2’s for app_roach and a FObUSt approach ha_V‘? also been developed
<) for jammer se_lectlon. Moreover, the joint eavesdro_pper and
the robust approach Wherea‘ék S are used for the non- jammer selection problem has been proposed and its relaxed
robust approach. It is noted thﬁé—? in (25) can be ex- version has been shown to reduce to a convex problem.
h Various simulation results have illustrated the benefits of
gke proposed algorithms in terms of performance and run
tine. In particular, the performance achieved by the predos

that aim, we generat&; — 121 realizations of inde endent? gorithms is very close to the performance _bound s_pecified
uniform random variables distributed i, 1] for ¢?'s by by the relaxed problems, and the corresponding run times are

using MATLAB (the seed is equal to). S|gn|f_|cantly_ lower than_the qthe_r alternatives such as \ires
For the jammer selection problem, we use a similar set gorithm with random initialization and the exhaustivarsé.

For the uncertainty regioi, we generatéVy = 121 realiza- e results in this paper rev_eal the capabilities of J'a”.‘m.ef
tions of independent uniform random variables distributed and eavesdropper nodes, which can be useful for designing

[0, 1], denoted as?), by using MATLAB (the seed is equal t0W|reless_ source localization networks and taking appederi

2). In this case, the jammer selection is based on the estim%'iecau“ons'

of A{" multiplied with (1 + (%), APPENDIX
In Figs. 9 and 10, the worst-case CRLB performances afe .

presented respectively for the eavesdropper selectiortrend /- Proof of Proposition 1

jammer selection problems, considering both the robust andn [31, Thm. 1], the EFIM for estimating the location

non-robust approaches. In Fig. 9, as expected, the rob@kta single target node is obtained for synchronized target

approaches yield lower worst-case CRLBs than the non-tob@gd anchor nodes. Even though our network model is quite

ones. On the other hand, the robust approach and the n@iferent from the system model described in Section Il of

robust approach perform very similarly in Fig. 10. In othel31], we benefit from the proof of [31, Thm. 1] in the first

words, for this system setup, without having the perfeg@rt of this proof. . .

knowledge of\\s, one can achieve similar CRLB values !N the proof of [31, Thm.1], vectog, is defined asy,, =

to those achieved by the robust approach. [cos @i sin ¢ ]T. We follow the same steps as in that proof
by replacing vectoig, with vector q,,, which is defined as

q;; = [cos i sing;x 1]7.2 Then, we can obtain the EFIM

pressed as'}) = A\, If all ¢’s are not identical (whic
is common’iy the case in practice), we expect performan
difference between the robust and non-robust approaches.

VIl. CONCLUDING REMARKS

2The reason for using,;, instead ofg, stems from the fact that in our

For ere.less. source Iocallgatlon netyv_orks, the eaveSdrg%stem model, the number of the possible target locatiomsoi® than one.
per selection, jammer selection, and joint eavesdroppér &so, the additional term in g;, compared tog, is due to the time offset

jammer selection problems have been proposed. Relatethdoveen the target node and the eavesdropper nodes; eeto theA; term.



14

for [x; A;]T, denoted by]éi) (xi,A;,z"), as follows: we obtain the following relation:
Ki(z5) Di(z") Ci(z") O a4 a o+ a0+ g
106, Ana®) = [Dila®) Eiaf) SiaB)| oyt SR T
Ci(z¥)  Si(zF) Ti(zP) = 16p;, lpl mPrmk - (59)
where Then, we can rearrange the denominator of (57) as follows:
Kiz")2 3 2P0 cos? g, @8 S S S PP EAINING @
(j,k)e/\/,i“ (u,k)e N(i) (v, l)GN(i) (s,m)e ./\/( 2
E;(z") & Z z,f)\glk) sin? i, (49) 16 Z Z Z p,;lpl mpm WA 22 5)\1(;,1/\ DA
(k)N (u,k) N (0,)eN) (s,m)eN?
i 1>k m>l1
Ci(z®) 2 N 2PN cos g, (50)
i) (¢ )\ () (4
G OIS et BN,
0 (u k) eN) (0,)eN ) (s,m)eN?
Siz") e Y }zf)\gk) sin gy, (51) (60)
(G, k)eND

where(a) follows from (59) and(b) is due to the symmetry

) i) (i) (4 B, By (0)4(0) ()
NN EryG) o o _ in the summand termpk 11 P W2E2EZENIN N By
Di(zF) & Y 2fA5sin ik cos ik, (52)  replacing the denominator of (57) with the final expression i

(G k)ENT” (60), the CRLB expression in (11)—(13) is obtained. W
Tz") 2 Y PN (53)
Gk)eN'D B. Proof of Lemma 1

As wZ > 01 in (10), the aim is to show that

_ tr{ ( J(l (xi, 2 E))_} is non-increasing in z”. Since

By applying the Schur complement formula to (47), th@ri J(l (x;, 2 —1} is non-increasing with respect to
(xi, 2

following expression is obtained:
g exp , , it is sufficient to prove the following implication:

i Ki(z") Di(z”
I (i, 2") = {DE% EEEE))} 2" - w = 30, 2") = I (xi,w)  (61)
[ C?(2") ci(zE)gi(zE)] In other words, from (54), we must prove that
(E (E 2(,F . . . .
CLGEDSEE ST T gy 30 6aP) - 30 i w) - 38 (0,27 4 3 (i w) = 0

Ti ZE
_ =%) It is noted that for anyy = [y; 2|7 € R2, the following
Let 3\ (x;,27) and J{" (xl, E) be defined as the first andequalities hold:

second terms in (54), i.e TJ() 5 e 5 D, B,
(xi,2")y = yi Ki(2") + 20192 Dy (27) + y3 E,(2"),

@) (g F (ZE) Di(z")
3,0 2 [ D) (55) 62
2
C2(2” C;(27)S; (2" ; y1Ci(2") + y25i(2")
ot el Y730 (.25 )y — 1S(=7)) ©3)
39 (x;, 27) & Ci(z")S(2") T(27) (56) T;(z")
2 T;(z*) Therefore, by combining (62) and (63), the following redati
After some algebra, we derive the following expression frofah be obtained:
(54): YT (i, 27) = IO (i, W)y = ha(2”) — hi(w)  (64)
i —1
tr{ (Je O (xi, 2 ) = where
(2) () y (4)
23 N oy e PriZh A Mkt hi(z )éyK( )+2y1y2D( By 4+ 42E,(z")  (65)
ORI DD D e et et _ 1Gi@P) + :8i(27))’ 66
(u,k)ENT (0,1)ENT (s,m)EN L T (zP) ' (66)
(57)
Hence, it is sufficient to show that;(z”) is a non-decreasing
where function of z”. It is noted that
(i I _ .
9eim — COS ¢’Lk S1n ¢zl Sln((bzl - ¢zk> 8h1 (Z ) NO) . 2
L =A i i
— COS Qi 81N Dy SIN(Di1 — D) 9z £ (y1.c08 Gt + y25in i)
— COS Pk, COS Pjg SN Pjpy, (SIN Py — siN D). (58) _ 50 2(11Ci(2") + y25i(2")) (y1 cos dir. + y2 sin Pi)
Based on the trigonometric identity, § Ti(2")

E EY)2
b b <)) W1Ci(2") + y25:(27))
sina + sin b — sin(a + b) = 4 sin (g) sin (§> sin (a; ) A T;(zP)? (67)
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where A" is given by A\ = Y e A{) > 0. Then, D. Proof of Lemma 2

via the agthmetic mean-geometric mean inequality, it isnse |t is sufficient to show thatr{(']g) (Xi,ZE))_l} is non-
that%ﬁ,ﬂ) >0 foranyk =1,2,..., N. Therefore, we have increasing in)\%‘) for anyi = 1,2,..., Ny (see (10)). As
the desired conclusion thgtz”) is non-increasing iz”. B a consequence of Proposition 1, we can immediately observe
thattr{ (3¢ (x;, 7)) "'} is non-increasing in\?) if and only
if tr{(JS)(xi,zE))_l} is non-increasing inz® due to the
C. Proof of Proposition 2 symmetric expression in (11). (That is, the elements\{t
As w; > 0 fori = 1,2,...,Nr in (10), it is sufficient and z” affect the expression in (11) in the same manner.)

to prove thattr{(Jg) (Xi,ZE))il} is a convex function of Therefore, via Lemma 1, we obtain the desired result. B

zP. It is known thattr{X '} is a convex function ofX

for any positive semi-definiteX [37]. Also, tr{X~!} is E. Proof of Lemma 3

non-increasing inX. Therefore, it is sufficient to prove that It is observed from the expression in (30) thatzif >

Jéz)(xi,zE) is a concave function af”. w, then jg”(xi,vv) - jé”(xi,zJ) holds for anyi =
To explain why this is sufficient, we define functignas 1,2,..., N7. Since the functiortr{(-)~'} is non-increasing

g(X) £ tr{X~1}. Then, we are interested in the convexity o its argument andv; > 0 for any i, it is concluded that

9(I9 (x;,27)) with respect taz®. In other words, we should f(2”) in (32) is non-decreasing ia’. u

prove that for any € [0,1], andz®, w € RY,

930 (x;,v2" + (1 = v)w)) < vg(I) (x;,27))

+ (1= v)g(I (x;, w)) e a
(68) Pgij(z’) 2N PP vl gl

F. Proof of Lemma 4
From (33), the second-order derivatives are calculated as

= : (73)
. . Ja~J ~92 N JDJ 2
If 39 (x;,25) is a concave function of”, thenJ ) (x;, vzP + 0z, 0z (@7 + 21 2 B Insl7)?
(1-v)w) > A (x5,2") + (1 - V_)Jg) (x;, w) holds. Since pefine a vector aw; 2 [P |y1,> ... PJ |yn,|*]T for j =
9(-) is non-increasing and convex in its argument, it then leadlsy N, Then, for anyy € RY, it follows from (73) that

to (68). o
In order to prove thali"” (x;, z”) is a concave function of V2.5 (2" )y = 2/\5)
zP, we should show that for any € [0,1] andz?, w e RY, ¥ ¥ 952 )Y = 32+ N TP y,]?)3
the following relation is true: ’ e (74)
_ _ _ 5 I o o -
IO (x;. v2P +(1— = I (x;. 25) + (1= ) ID (x; ~ ThereforeV=g;;(z”) is a positive semi-definite matrix; hence,
e (X y V2 ( ’Y)W) Z Ve (X yZ ) ( FY) e (X a(‘gg) 9ij (ZJ) is a convex function ot~ . [

Based on the relations in (54)—(56), the inequality in (68) c -
be reduced to the following: G. Proof of Proposition 3

i i i Asw; > 0fori=1,2,..., Np, itis sufficient to prove that
J() i E 1— J() i >_J() i E 1— > Wi = v 24 s VT )
8y (i 25) + (1=7)J2” (i, w) 2 Iy (i v2 7+ 72;‘8) tr{ (3 (xi,27)) "1 is a concave function o’ for anyi.

yTvjviy > 0.

sinced”) (x;,2") is linear inz”. We know thattr{(jff) (xi, _Z']))fl} is_tlzoncave with respect to
It is deduced from (63) that for proving (70), it is sufficientz” if and only if tr{ — (ng) (xi,z7)) "} convex with respect
to show that to z”. Hence, two auxiliary functions are defined as follows:
(y1Ci(2") + yQSi(ZE))2 L) (y1Ci(w) + KJQSi(W))Q ¢: R**? 5 R such thatt(X) = tr{X '} (75)
Ti(z") ! Ti(w) ¢i : RN — R?*? such thate; (z”) = —JW(x,,2”).  (76)

2
> (1 Cils) +425i(5)) (71) Based on the preceding definitions{ — (3" (x;,z7)) "'} =
Ti(s) &(ci(z”)). It is known thaté(-) is convex and non-increasing
wheres = 2z + (1 — y)w. By applying the Cauchy- in its argument [37]. Thus, it is sufficient to prove thatz”)
Schwarz inequality to the left-hand-side of (71), the foflog  is concave with respect t&’, or equivalently,]éz) (xi,27) is
inequality is obtained: convex with respect ta”’.

» 22 9 To that aim, we should prove that for amy, w € R" and
(11Ci(2") + y25i(2")) (1.Ci(w) +28:(W))” _ 5 € [0,1], the following relation holds:

+(1-7) ) ) o
2 ’7’]8) (Xisz)—’—(l_’?)Jgi) (Xi,ﬁ’) = ng) (Xi,’?ZJ—f—(l—’?){"V).
(7(y10i(ZE) +125i(z7)) + (1 — ) (1. Ci(w) + y2Si(W))) (77)

>

For anyy = [y1 y2]T, it follows from (30) and (33) that
(v1zP) + (1 = Tiw)

T@) (v T\ — o = 2
72 Y xiz)y = XA:L 9i5(2”) (41 cos @ij + y2sin ;).

je i
As C;i(+), Si(+), andT;(-) are linear in their arguments, (72) (78)
is actually the same as (71), which was to be proved. Hen&y, combining Lemma 4 and (78), the desired conclusion is
the desired conclusion in reached. B reached. |



H. Proof of Lemma 5
It suffices to show thattr{(jéi)(xi,zJ))_l} is non-

huxeagnginxg)foranyi::]ﬂQ,“.,Ahu\thh is evident
from (30). |
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