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Abstract—We consider a wireless source localization network
in which a target node emits localization signals that are used by
anchor nodes to estimate the target node position. In addition to
target and anchor nodes, there can also exist eavesdropper nodes
and jammer nodes which aim to estimate the position of the target
node and to degrade the accuracy of localization, respectively.
We first propose the problem of eavesdropper selection with the
goal of optimally placing a given number of eavesdropper nodes
to a subset of possible positions in the network to estimate the
target node position as accurately as possible. As the performance
metric, the Cramér-Rao lower bound (CRLB) related to the
estimation of the target node position by eavesdropper nodes
is derived, and its convexity and monotonicity properties are
investigated. By relaxing the integer constraints, the eavesdropper
selection problem is approximated by a convex optimization
problem and algorithms are proposed for eavesdropper selection.
Moreover, in the presence of parameter uncertainty, a robust
version of the eavesdropper selection problem is developed.
Then, the problem of jammer selection is proposed where the
aim is to optimally place a given number of jammer nodes
to a subset of possible positions for degrading the localization
accuracy of the network as much as possible. A CRLB expression
from the literature is used as the performance metric, and
its concavity and monotonicity properties are derived. Also, a
convex optimization problem and its robust version are derived
after relaxation. Moreover, the joint eavesdropper and jammer
selection problem is proposed with the goal of placing certain
numbers of eavesdropper and jammer nodes to a subset of
possible positions. Simulation results are presented to illustrate
performance of the proposed algorithms.

Index Terms—Localization, eavesdropping, jamming, estima-
tion, secrecy.

I. I NTRODUCTION

A. Literature Review

In wireless localization networks, position information is
commonly extracted based on signal exchanges between an-
chor nodes with known positions and target (source) nodes
whose position are to be estimated [2], [3]. Based on the
signaling procedure, wireless localization networks are classi-
fied into two groups asself localizationandsource (network-
centric) localization networks [2]. In the self localization
scenario, target nodes estimate their positions via signals
transmitted from anchor nodes whereas in source localization
networks, anchor nodes estimate positions of target nodes from
signals emitted by target nodes.

Wireless localization networks can be vulnerable to various
attacks such as eavesdropping, jamming, sybil, and wormhole
attacks [4]–[7]. For example, eavesdropper nodes may listen
to signals transmitted from target nodes and estimate their
positions, which breaches location secrecy [5], [6]. In wireless
localization networks, location secrecy cannot be guaranteed
via encryption since location related information can be
gathered by eavesdropper nodes by just listening to signal
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exchanges rather than intercepting packets [6]. As another
type of attack, jammer nodes can degrade the localization
accuracy of a network by transmitting jamming signals [7].
If jamming levels exceed certain limits, location information
can be useless for specific applications due to its inaccuracy. In
this paper, the focus is on eavesdropping and jamming attacks
in wireless source localization networks.

In the literature, there exist only a few studies related to
physical-layer location secrecy or eavesdropping in wireless
localization networks [5], [6], [8]. In [5], a location secrecy
metric (LSM) is proposed by considering only the position of
a target node and the measurement model of an eavesdropper
node. The aim of the eavesdropper node is to obtain an
estimate of the target node position based on its measurement
model, where the estimate can be either a point or a set of
points. The definition of the LSM is based on the escaping
probability of the target node from the eavesdropper node, i.e.,
the probability that the position of the target node is not an
element of the set of estimated positions by the eavesdropper
node. In practice, the measurement model of an eavesdropper
node depends on several parameters in addition to the position
of the target node [8]. For example, an eavesdropper node
can extract location information based on signal exchanges
between target and anchor nodes by using time difference
of arrival (TDOA) approaches. In that case, the time offset
becomes another unknown parameter. Hence, the definition of
the LSM is extended in [8] by also taking channel conditions
and time offsets into account. For some specific scenarios,
LSM is calculated and algorithms are proposed to protect
location secrecy by diminishing the estimation capabilityof
an eavesdropper node [8]. In [6], considering round-trip-
measurements in a network, an eavesdropping model is pre-
sented by using TDOA approaches. Also, power allocation
frameworks for anchor and target nodes are presented to
degrade the estimation performance of an eavesdropper node
while maintaining the localization accuracy of the network[6].

Related to jamming and anti-jamming techniques in wireless
localization networks, a great amount of research has been
conducted in the literature [7], [9]–[22]. Placement of jammer
nodes in wireless localization networks can serve for different
purposes [10]. Namely, the aim of placing jammer nodes can
be either to reduce the localization accuracy of the network
(i.e., adversarial) [7], [11], [12], [22], [23], or to protect the
network from eavesdropper attacks [9], [13]–[18], [20]. In[7],
optimal power allocation schemes are developed for jammer
nodes under peak and total power limits by maximizing the av-
erage or minimum Cramér-Rao lower bounds (CRLBs) in self
localization networks. The same problem is considered in [12]
for source localization networks. In [22], the average CRLB
of target nodes is maximized while keeping their minimum
CRLB above a certain threshold for self-localization networks.
In [7], [12], [22], it is assumed that positions and the number
of jammer nodes are fixed. When positions of jammer nodes
can be changed, their optimal placement can be considered for



2

achieving the best jamming performance. In [11], the optimal
jammer placement problem is investigated for wireless self-
localization networks in the presence of constraints on possible
locations of jammer nodes. On the other hand, in [20], jammer
nodes are placed to reduce the received signal quality of
eavesdropper nodes while not preventing the operation of the
actual network.

Game theoretic approaches are also utilized for determining
jamming strategies [10], [21]. In [10], an attacker tries to
maximize the damage on network activity while the aim of
a defender is to secure a multi-hop multi-channel network.
The action of the attacker is determined by the selection
of jammer node positions and a channel hopping strategy
whereas the action of the defender is based on the channel
hopping strategy. In [21], two different power control games
between anchor nodes and jammer nodes are formulated for
self-localization networks based on the average CRLB and
the worst-case CRLB criteria. Nash equilibria of the proposed
games are analyzed and it is shown that both games have at
least one pure-strategy Nash equilibrium.

In the literature, eavesdropping and jamming attacks have
not been considered jointly for wireless localization networks.
However, for communications networks, [24]–[26] investigate
effects of jamming and eavesdropping together. In [24], a
secure transmission scheme is proposed for a wiretap channel
when a source communicates with a legitimate unmanned
aerial vehicle (UAV) in the presence of eavesdroppers. Full
duplex active eavesdropping is assumed, i.e., wiretapperscan
perform eavesdropping and jamming simultaneously. In [25],
a multiple-input multiple-output communication system with a
transmitter, a receiver and an adversarial wiretapper is consid-
ered. The wiretapper is able to act as either an eavesdropperor
a jammer. The transmitter makes a decision between allocating
all the power to information signals or broadcasting some
artificial interference signals to jam the wiretapper. A game
theoretic formulation of this problem is also given in [25],
and its Nash equilibria are analyzed. In [26], the considered
wireless network contains wireless users, relay stations,base
station (BS), and an attacker who has the ability to act as an
eavesdropper and as a jammer. The aim of the attacker is to
degrade the secrecy rate of the network and the transmission
rate of the users. Each user connects to one of the relay stations
so that the amount of potential interference from other users is
reduced and the expected level of security for the transmission
is increased. This problem is formulated as an(N+1) person
noncooperative game whereN is the number of users and
existence of mixed-strategy Nash equilibria is shown.

B. Contributions

Although a location secrecy metric is developed in [5], [8]
and the problem of protecting location secrecy is investigated
in [6], there exist no studies that consider the problem of
eavesdropper selection. In the proposed eavesdropper selection
problem, the aim is to optimally place a given number of
eavesdropper nodes to a subset of possible positions such that
the location secrecy of target nodes is reduced as much as pos-
sible. The optimal eavesdropper selection problem is studied
from the perspective of eavesdropper nodes for determining
performance limits of eavesdropping. The CRLB for estima-
tion of target node positions by eavesdroppers is employed as
the performance metric. The eavesdropper selection problem
also carries similarities to the anchor placement problem (e.g.,

[27]–[29]), in which the aim is to determine the optimal
positions of anchor (reference) nodes for optimizing accuracy
of target localization. While the optimization is performed over
positions of anchor nodes in the anchor placement problem,
the aim is to choose the best positions from a finite set
of possible positions in the eavesdropper selection problem.
(Hence, different theoretical approaches are utilized in this
paper.)

In addition, even though jamming and anti-jamming strate-
gies are investigated extensively under various scenariosin
[7], [9]–[22], there has been no consideration aboutjammer
selection. In the proposed jammer selection problem, the goal
is to place a given number of jammer nodes to a subset
of possible positions to degrade the localization accuracyof
a wireless network where the CRLB related to estimation
of target node positions by anchor nodes is used as the
performance metric.

Moreover, despite the work in [24]–[26], which consider
both jamming and eavesdropping for wireless communication
networks based on performance metrics such as outage proba-
bility, transmission rate and secrecy rate, the presence ofjam-
mer and eavesdropper nodes together has not been investigated
for wireless localization networks. In this manuscript, wefocus
on a wireless localization network with multiple eavesdropper
and jammer nodes, and formulate thejoint eavesdropper and
jammer selectionproblem by employing the CRLB as an
estimation theoretic performance metric. The goal is to place
certain numbers of eavesdropper and jammer nodes to a subset
of possible positions in order to degrade the accuracy of the
localization network while keeping the eavesdropping capabil-
ity above a threshold. In particular, eavesdropper nodes aim
to minimize the average CRLB related to their estimation of
target node positions whereas jammer nodes seek to maximize
the average CRLB for estimating target node positions by
anchor nodes via emitting noise signals.

The main contributions of this paper can be specified as
follows:
• We formulate the eavesdropper selection, jammer selection,

and joint eavesdropper and jammer selection problems in a
wireless source localization network for the first time in the
literature.

• For the eavesdropper selection problem, a novel CRLB ex-
pression (used as a performance metric for location secrecy)
is derived related to the estimation of target node positions
by eavesdropper nodes (Proposition 1).

• We prove that the CRLB expression derived for the eaves-
dropper selection problem is convex and non-increasing with
respect to the selection vector, which specifies the selection
of positions for placing eavesdropper nodes (Proposition 2
and Lemma 1).

• For the jammer selection problem, we utilize a CRLB
expression from the literature and prove that it is concave
and non-decreasing with respect to the selection vector
(Proposition 3 and Lemma 3).

• We express the eavesdropper selection, jammer selection,
and joint eavesdropper and jammer selection problems as
convex optimization problems after relaxation.

• We propose algorithms to solve the proposed problems by
considering both perfect and imperfect knowledge of system
parameters, and develop robust approaches in the presence
of imperfect knowledge.
In the conference version of this paper [1], only the eaves-
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dropper selection problem is considered with shorter proofs of
propositions and without proofs of lemmas. In this paper, the
eavesdropper selection problem is investigated by providing
complete proofs for all theoretical results and performing
extensive simulations over a large network. In addition, the
jammer selection and the joint eavesdropper and jammer
selection problems are proposed and analyzed. Although the
CRLB expression for the jammer selection problem is taken
from the literature, its concavity and monotonicity properties
are derived for the first time in the literature. Based on these
properties, convexity of a jammer power allocation problem
in the literature is also implied and a robust jammer selection
problem is formulated.

C. Motivation

The investigation of the eavesdropper selection, jammer
selection, and joint eavesdropper and jammer selection prob-
lems is important to identify the adversarial capabilitiesof
eavesdropper and/or jammer nodes.

As a motivating example of an application scenario for the
eavesdropper selection problem, consider a restricted environ-
ment such as a military facility or a factory (e.g., imagine
an area in Fig. 1 covering blue squares and cross signs). In
this environment, target nodes can represent the personnelor
important equipment, which send signals to anchors nodes so
that their locations can be tracked by the wireless localization
network. A fixed number of eavesdropper nodes can be placed
at some of feasible locations outside the restricted environment
(red triangles in Fig. 1), e.g., under some camouflage. The
aim of eavesdropper nodes is to gather accurate location
information about target nodes (i.e., personnel or equipment)
for leaking critical information. To this aim, they need to
be placed at optimal locations among the feasible locations,
leading to the proposed eavesdropper selection problem.

Considering the same setting, jammer nodes can be placed
at some of feasible locations for the purpose of reducing
the accuracy of the localization network so that the network
will not be able to track critical equipment or personnel with
sufficient localization accuracy. This scenario can also be
encountered in a battle-field in order to disrupt the localization
capability of an enemy network. Similarly, the joint eavesdrop-
per and jammer selection problem can be considered for both
gathering location information about target nodes and reducing
the accuracy of the localization network.

D. Notation

Throughout the paper,X � Y denotes thatX − Y is a
positive semi-definite matrix,x � y means thatxi ≥ yi
for all i = 1, 2, . . . , n, where x = [x1 x2 . . . xn]

⊺ and
y = [y1 y2 . . . yn]

⊺, andtr{·} represents the trace of a square
matrix. Also, the following definitions are used:(i) Let f(·) be
a real-valued function ofz ∈ R

n. f(z) being non-increasing
in z means that ifz and w satisfy z � w, f(z) ≤ f(w)
holds.(ii) Let g(·) be a real-valued of function ofX ∈ Sn

+,
whereSn

+ is the set of positive semi-definite matrices inR
n×n.

Then,g(X) being non-increasing inX means that ifX and
Y satisfyX � Y, g(X) ≤ g(Y) holds.

II. SYSTEM MODEL

Consider a two-dimensional wireless source localization
network in which a target node (source) transmits signals
that are used by anchor nodes to estimate its location. The

number of anchor nodes is denoted byNA and they are
located atyj ∈ R

2 for j = 1, 2, . . . , NA. Also, there
exists some prior information about the location of the target
node such that it is located atxi ∈ R

2 with probability
wi ≥ 0 for i = 1, 2, . . . , NT , whereNT is the number of
possible locations for the target node, and

∑NT

i=1 wi = 1.
Let Ai represent the set of locations of anchor nodes that
are connected to theith target position (i.e., locationxi)
for i = 1, 2, . . . , NT . Moreover, letA(i)

L andA(i)
NL denote,

respectively, the locations of anchor nodes having line-of-sight
(LOS) and non-line-of-sight (NLOS) connections to the target
node located atxi.

In the wireless localization network, there also existN
different locations specified by the setN = {p1,p2, . . . ,pN},
at which either jammer or eavesdropper nodes can be placed.
Eavesdropper nodes listen to the signals transmitted from the
target node to the anchor nodes and aim to estimate the
location of the target node. On the other hand, jammer nodes
degrade the localization performance of the anchor nodes by
transmitting zero-mean white Gaussian noise [7], [30]. It is
assumed that at any given time, at mostNE locations inN can
be used for eavesdropping purposes, whereas at mostNJ of
them can be used for jamming purposes, whereNE+NJ ≤ N .
In other words, there exist at mostNE eavesdropper nodes and
NJ jammer nodes that can be placed at some of theN possible
locations. LetNE andNJ denote the set of locations inN
at which eavesdropper nodes and jammer nodes are placed,
respectively.

Considering a wideband wireless localization network as in
[31], the signal transmitted from theith target position (i.e.,xi)
that is intended for the anchor node located atyj is denoted
by sij(t). If an eavesdropper node is placed atpk (i.e., if
pk ∈ NE), the received signal at that eavesdropper node due
to the transmission ofsij(t) is represented byrEijk(t). This
signal is expressed as

rEijk(t) =

LE
ijk
∑

l=1

α
(E,l)
ijk sij

(

t− τ
(E,l)
ijk

)

+ nijk(t) (1)

for t ∈ [T
(E,k)
1 , T

(E,k)
2 ) and (i, j) ∈ Sk, whereT (E,k)

1 and
T

(E,k)
2 specify the observation interval for the eavesdropper

node located atpk, Sk = {(i, j) | pk ∈ NE , yj ∈ Ai}, LE
ijk

represents the number of paths between the target node located
at xi and the eavesdropper node located atpk (due to the
transmission ofsij(t)), α

(E,l)
ijk andτ (E,l)

ijk denote, respectively,
the amplitude and the delay of thelth multipath component,
andnijk(t) is zero-mean white Gaussian noise with a power
spectral density level ofσ2

k. Considering orthogonal channels
between target and anchor nodes,nijk(t) is modeled as
independent for alli, j, k [11], [12], [32]. The delays of the
paths are characterized by the following expression:

τ
(E,l)
ijk =

1

c

(

‖xi − pk‖+ b
(E,l)
ijk +∆i

)

(2)

where c is the propagation speed,b(E,l)
ijk ≥ 0 is the range

bias (b(E,1)
ijk = 0 for LOS propagation andb(E,1)

ijk > 0 for
NLOS), and∆i characterizes the time offset between the
clocks of the target node located atxi and the eavesdrop-
per nodes. It is assumed that the eavesdropper nodes are
perfectly synchronized among themselves and there exist no
clock drifts. (Please see [33], [34] for clock drift mitigation
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mechanisms.) However, there is no synchronization between
the target node and the eavesdropper nodes. Furthermore, for
any i = 1, 2, . . . , NT , we defineN (i)

L , {(j, k) | b
(E,1)
ijk = 0}

andN (i)
NL , {(j, k) | b

(E,1)
ijk 6= 0}, which are the set of anchor

and eavesdropper node indices corresponding, respectively, to
LOS and NLOS connections between the eavesdropper nodes
and the target node located atxi. (For example, ifb(E,1)

i32 = 0, it
means that the eavesdropper node at positionp2 and the target
node at positionxi are in LOS during the transmission of the
signal from that target node to the anchor node at positiony3

(i.e., during the transmission ofsi3(t)).)
On the other hand, due to the existence of jammer nodes,

the signal received at the anchor node located atyj coming
from the target node located atxi can be expressed as

rAij(t) =

LA
ij
∑

l=1

α
(A,l)
ij sij

(

t− τ
(A,l)
ij

)

+
∑

{l:pl∈NJ}

γlj

√

P J
l vlij(t)+ηij(t)

(3)
for the observation interval[T (A,j)

1 , T
(A,j)
2 ) and foryj ∈ Ai,

whereα(A,l)
ij andτ (A,l)

ij denote, respectively, the amplitude and
the delay of thelth multipath component between the target
node at locationxi and the anchor node at locationyj , LA

ij

represents the number of multipaths between the target nodeat
locationxi and anchor node at locationyj , γlj is the channel
coefficient between the anchor node at locationyj and the
jammer node located atpl, andP J

l is the transmit power of the

jammer node at positionpl. Moreover,
√

P J
l vlij(t) andηij(t)

are the jammer noise and the measurement noise, respectively.
It is assumed that both of them are independent zero-mean
white Gaussian random processes, where the average power
of vlij(t) is equal to one and that ofηij(t) is equal toσ̃j

2. It
is modeled thatvlij(t) is independent for alll, i, j andηij(t)
is independent for alli, j due to the presence of orthogonal
channels between target and anchor nodes [12]. Furthermore,
the delays of the paths are characterized by

τ
(A,l)
ij =

1

c

(

‖yj − xi‖+ b
(A,l)
ij

)

(4)

where b(A,l)
ij ≥ 0 is the range bias of thelth path between

the target node located atxi and the anchor node located
at yj . (b(A,1)

ij = 0 for LOS propagation andb(A,1)
ij > 0 for

NLOS.) Unlike the expression in (2), no clock offsets are
considered in (4) since target and anchor nodes are assumed
to be synchronized.

III. E AVESDROPPERSELECTION PROBLEM

In this section, we assume that there exist only eavesdropper
nodes in the environment, i.e.,NJ = 0, and focus on the
eavesdropper selection problem. In this case, the aim is to
choose at mostNE locations from setN for eavesdropping
purposes so that the location of the target node is estimated
as accurately as possible.

For quantifying the location estimation accuracy, the CRLB
is used as a performance metric since the mean-squared error
of the maximum likelihood (ML) estimator is asymptotically
tight to the CRLB in the high SNR regime [35]. Based on the
CRLB metric, the eavesdropper selection problem is investi-
gated in the presence of perfect and imperfect knowledge of
system parameters in the following sections.

A. Problem Formulation

To formulate the eavesdropper selection problem, we intro-
duce a selection vectorzE = [zE1 zE2 . . . z

E
N ]⊺, specified as

zEk =

{

1, if pk ∈ NE

0, otherwise
(5)

where
∑N

k=1 z
E
k ≤ NE . In addition, for the target positioni,

θi is defined as follows:

θi , [x⊺

i ∆i κ
⊺

i1 κ
⊺

i2 . . .κ
⊺

iN ]⊺ (6)

whereκik is the vector obtained by concatenating the elements
of κ̃ijk vertically,κik = [κ̃⊺

ijk ]
⊺

j∈Ai
, with

κ̃ijk =







[α
(E,1)
ijk b

(E,2)
ijk . . . b

(E,LE
ijk)

ijk α
(E,LE

ijk)

ijk ]⊺, if b(E,1)
ijk = 0

[b
(E,2)
ijk α

(E,2)
ijk . . . b

(E,LE
ijk)

ijk α
(E,LE

ijk)

ijk ]⊺, otherwise.

for any i, j, k.
It is known that the estimation error vector satisfies [35]

Eθi
{(θi − θ̂i)(θi − θ̂i)

⊺} � J−1
θi

(7)

whereθ̂i is any unbiased estimate ofθi, andJθi
is the Fisher

information matrix (FIM) for the parameter vectorθi. From
(7), the CRLB for estimating the position of the target node
located atxi is obtained as

Eθi
{‖x̂i − xi‖

2} ≥ tr{[J−1
θi

]2×2} (8)

where x̂i is any unbiased estimate ofxi. It is noted from
(8) that, for the CRLB calculation, we should focus on the
equivalent Fisher information matrix (EFIM) forxi, which
is a 2 × 2 matrix denoted byJ(i)

e (xi) such that[J−1
θi

]2×2 =
(

J
(i)
e (xi)

)−1
[31]. Since[Jθi

]2×2 is a function of bothxi and

zE , it is convenient to write[Jθi
]2×2 , J

(i)
e (xi, z

E). Hence,
we formulate the proposed eavesdropper selection problem as
follows:

min
zE

NT
∑

i=1

wi tr
{(

J(i)
e (xi, z

E)
)−1}

(9a)

subject to
N
∑

k=1

zEk ≤ NE , (9b)

zEk ∈ {0, 1} for k = 1, 2, . . . , N. (9c)

Namely, the aim is to select the best locations for eavesdropper
nodes for achieving the minimum average CRLB by consider-
ing possible target node positions (xi) and their probabilities
(wi).

B. Theoretical Results and Algorithms

To simplify the notation, letf(zE) represent the objective
function in (9); that is,

f(zE) ,

NT
∑

i=1

wi tr
{(

J(i)
e (xi, z

E)
)−1}

. (10)

In the rest of this section, we first obtain a closed form
expression oftr

{(

J
(i)
e (xi, z

E)
)−1}

for any target locationi,
and then analyze monotonicity and convexity properties of
f(zE) with respect tozE .



5

Proposition 1: For a given eavesdropper selection vector
zE , the CRLB for estimating the position of the target node
located atxi is given by

tr
{(

J(i)
e (xi, z

E)
)−1}

=
p̃i(z

E)

r̃i(zE)
(11)

where

p̃i(z
E) = 3

∑

(u,k)∈N
(i)
L

∑

(v,l)∈N
(i)
L

zEk z
E
l λ

(i)
ukλ

(i)
vl p

(i)
k,l, (12)

r̃i(z
E) = 4

∑

(u,k)∈N
(i)
L

∑

(v,l)∈N
(i)
L

∑

(s,m)∈N
(i)
L

zEk z
E
l z

E
m (13)

× λ
(i)
ukλ

(i)
vl λ

(i)
smp

(i)
k,lp

(i)
l,mp

(i)
m,k, (14)

λ
(i)
jk =

8πβ2
ij

c2
(1− χ

(i)
jk )SNR

(1)
ijk, (15)

β2
ij =

∫∞

−∞ f2|Sij(f)|
2 df

∫∞

−∞ |Sij(f)|2 df
, (16)

SNR
(1)
ijk =

|α
(E,1)
ijk |

2
∫∞

−∞ |Sij(f)|2 df

2σ2
k

, (17)

p
(i)
k,l = sin2

(

φik − φil
2

)

(18)

with Sij(f) denoting the Fourier transform ofsij(t), χ
(i)
jk

being the path overlap coefficient with0 ≤ χ(i)
jk ≤ 1 [31], and

φik representing the angle from theith target location topk,
i.e.,φik = arctan xi2−pk2

xi1−pk1
(xi = [xi1 xi2]

⊺, pk = [pk1 pk2]
⊺).

Proof: See Appendix-A. �

In Proposition 1, the CRLB is expressed in closed-form as a
ratio of two polynomials in terms of the eavesdropper selection
vector, which brings benefits in terms of computational cost.
For example, it facilitates the calculation of the solutionof (9)
via an exhaustive search over all possiblezE vectors whenN
is sufficiently small. Also, it is noted that the proposed CRLB
expression in Proposition 1 depends only on the LOS signals
(see (11)–(13)), which is in accordance with the results in the
literature (e.g., [31, Prop. 1] and [36]).

Remark 1: It is observed from the CRLB expression in
(11)–(13) that if allλ(i)jk ’s are scaled by the same nonnegative

real numberξ, tr
{(

J
(i)
e (xi, z

E)
)−1}

is scaled by1/ξ for
all i = 1, 2, . . . , NT . Therefore, the optimal eavesdropper
selection strategy (i.e., the solution of (9)) remains the same
in such cases.

Remark 2: For the eavesdropper selection problem, the
probability distributionof the target node positions is assumed
to be known. Also, it is assumed that LOS/NLOS condi-
tions for possible target-eavesdropper positions andλ

(i)
jk ’s are

known. Although these assumptions may not hold in some
practical scenarios, they facilitate calculation of theoretical
limits on the best achievable performance of eavesdropper
nodes [7]. If eavesdropper nodes are smart and can learn all the
environmental parameters, the localization accuracy derived
in this work can be achieved; otherwise, the localization
accuracy (hence the eavesdropping capability) is bounded by
the obtained results.1 In addition, when theλ(i)jk terms and

1The tightness of the provided bounds in the presence of imperfect
information about the distribution of the target node location is evaluated
in Section VI-B.

LOS/NLOS conditions are not known perfectly, the robust
formulation of the eavesdropper selection problem in Section
III-C can be employed to provide a more practical formulation
(please also see Remark 6).

The following lemma characterizes the monotonicity of
f(zE) in (10) (i.e., the objective function in (9)) with respect
to zE , which is also utilized in the analysis in Section III-C
(Lemma 2).

Lemma 1:f(zE) is non-increasing inzE .

Proof: See Appendix-B. �

This result is actually quite intuitive as one expects im-
proved performance for estimating the location of a target
node as the number of eavesdropper nodes increases. Next,
we prove the convexity of the objective function in (9) with
respect tozE .

Proposition 2:f(zE) in (10) is a convex function ofzE .

Proof: See Appendix-C. �

As a consequence of Proposition 2, the optimization prob-
lem in (9) becomes a convex optimization problem by relaxing
the last constraint in (9c). Furthermore, it is deduced from
Lemma 1 that ifz∗ = [z∗1 z

∗
2 . . . z

∗
N ]⊺ is a solution of (9), then

(9b) must be satisfied with equality, i.e.,
∑N

j=1 z
∗
j = NE must

hold. Therefore, the relaxed version of (9) can be formulated
as follows:

min
zE

NT
∑

i=1

witr
{(

J(i)
e (xi, z

E)
)−1}

(19a)

subject to
N
∑

k=1

zEk = NE, (19b)

0 ≤ zEk ≤ 1 for k = 1, 2, . . . , N. (19c)

As (19) is a convex problem, its solution can be obtained via
convex optimization tools [37] (called therelaxed algorithmin
Section VI). After finding the solution of (19), we propose the
following two algorithms to obtain a solution of the original
problem in (9). First, we can simply set the largestNE

components of the solution of (19) to one, and the others to
zero (called thelargest-NE algorithm in Section VI). Second,
starting from this solution, we can use a modified version of
the Local Optimization algorithm discussed in [38] and obtain
the solution of (9) (calledthe proposed swap algorithmin
Section VI). The details of the proposed swap algorithm is
provided in Algorithm 1, wherez∗ andz∗largest-NE

denote the
optimal selection vectors obtained by the relaxed algorithm
and the largest-NE algorithm, respectively,Nmax

swap is the upper
limit for the number of swap operations, andµ determines the
stopping criterion. While performing one swap operation, one
checks whether there is a decrease in the objective functionby
simply swapping one of theNE selected positions with one
of theN −NE positions that are not selected.

Remark 3: It should be noted that the proposed swap
algorithm presented in Algorithm 1 reduces to the proposed
largest-NE algorithm if (i) the objective value achieved by
the largest-NE algorithm is sufficiently close to the bound
specified by the relaxed algorithm, or (ii) the objective value
achieved by the proposed swap algorithm after the first swap
operation is the same as that achieved by the largest-NE

algorithm.
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Algorithm 1 Proposed Swap Algorithm
Input: z∗, z∗largest-NE

, µ,Nmax
swap

Output: z∗swap.
1: Setbooleanb← true, c←0
2: if |f(z∗)− f(z∗largest-NE

)| ≤ µf(z∗) then
3: b← false,z∗swap← z∗largest-NE

4: else
5: ztemp← z∗largest-NE

6: end if
7: while b is truedo
8: c← c + 1
9: Obtain allNE(N −NE) possible selection vectors by

applying one swap operation toztemp, and compute the
corresponding objectives. Letztemp-2 be the selection
vector among those vectors which yields the minimum
objective.

10: if |f(ztemp)−f(ztemp-2)| ≤ µf(ztemp) & c < Nmax
swap then

11: b← false,z∗swap← ztemp-2.
12: else if c = Nmax

swap then
13: b← false,z∗swap← ztemp-2.
14: else
15: ztemp← ztemp-2

16: end if
17: end while

C. Robust Eavesdropper Selection Problem

In the previous section, it is assumed that the eavesdropper
nodes have the perfect knowledge of{λ(i)jk } (see (11) and
(15)). In this section, we propose a robust eavesdropper
selection problem in the presence of imperfect knowledge
about the system parameters by introducing some uncertainty
in {λ(i)jk }. For simplicity of notation, we assume thatAi =
{y1,y2, . . . ,yNA

}, i.e., all the anchor nodes are connected to
the ith target position for anyi. (The proposed approach can
easily be extended to scenarios in which this assumption does
not hold.)

To formulate a robust version of the eavesdropper selection
problem, we first defineΛE as follows:

ΛE ,
[

λ
(1)
E λ

(2)
E . . .λ

(NT )
E

]

,

where

λ
(i)
E ,

[

λ
(i)
11 . . . λ

(i)
1N λ

(i)
21 . . . λ

(i)
2N . . . λ

(i)
NA1 . . . λ

(i)
NAN

]⊺

.

We also introduce the estimated versions ofλ
(i)
E as λ̂

(i)

E for
i = 1, 2, . . . , NT , which are given by

λ̂
(i)

E ,
[

λ̂
(i)
11 . . . λ̂

(i)
1N λ̂

(i)
21 . . . λ̂

(i)
2N . . . λ̂

(i)
NA1 . . . λ̂

(i)
NAN

]⊺

(20)

with λ̂(i)jk denoting the estimate ofλ(i)jk for j = 1, . . . , NA and
k = 1, . . . , N . These estimated values represent the imperfect
knowledge of theλ(i)jk parameters at the eavesdropper nodes.

Let ∆λ
(i)
E denote the error vector that generates the uncer-

tainty; that is,

λ̂
(i)

E = λ
(i)
E +∆λ

(i)
E (21)

with

∆λ
(i)
E ,

[

∆λ
(i)
11 . . . ∆λ

(i)
1N ∆λ

(i)
21 . . . ∆λ

(i)
2N

. . .∆λ
(i)
NA1 . . . ∆λ

(i)
NAN

]⊺

(22)

for i = 1, 2, . . . , NT . Also, let ∆ΛE and Λ̂E be the matri-
ces containing the error vectors and the estimation vectors,
respectively, as follows:

∆ΛE ,
[

∆λ
(1)
E ∆λ

(2)
E . . .∆λ

(NT )
E

]

(23)

Λ̂E ,
[

λ̂
(1)

E λ̂
(2)

E . . . λ̂
(NT )

E

]

. (24)

In this scenario, the notation for the objective function
f(zE) is modified asf(zE ,ΛE) to emphasize the dependence
on Λ (since∆ΛE becomes another parameter of interest in
the presence of uncertainty).

As in [39]–[41], we employ a bounded error model for the
uncertainty. In particular, for the eavesdropper selection prob-
lem in the presence of parameter uncertainty, the following
model is assumed for the error matrix∆ΛE :

∆ΛE ∈ E ,
{

∆λ(i) ∈ R
N×NA : |∆λ

(i)
jk | ≤ δ

(i)
jk , ∀i, j, k

}

(25)

where{δ(i)jk }
NT ,NA,N
i=1,j=1,k=1 determine the size of the uncertainty

regionE with δ
(i)
jk ≥ 0 for all i, j, andk.

The aim is to minimize the worst-case CRLB as in [7] and
[41]. Therefore, under this setup, the proposed optimization
problem can be formulated as

min
zE

max
∆ΛE∈E

f(zE ,ΛE) (26a)

subject to
N
∑

k=1

zEk = NE , (26b)

0 ≤ zEk ≤ 1 for k = 1, 2, . . . , N, (26c)

ΛE = Λ̂E −∆ΛE . (26d)

To solve the optimization problem in (26), the following
lemma is utilized.

Lemma 2:f(zE ,ΛE) is non-increasing inλ(i) for all i =
1, 2, . . . , NT .

Proof: See Appendix-D. �

Let the value of∆ΛE that maximizesf(zE ,ΛE) over set
E be denoted as∆Λ∗

E and let {∆λ(i),∗jk }i,j,k represent the
elements of∆Λ∗

E (see (22) and (23)). Based on Lemma 2, it
is obtained that

∆λ
(i),∗
jk = δ

(i)
jk . (27)

Therefore, solving (26) is equivalent to solving the follow-
ing optimization problem:

min
zE

f(zE , Λ̂E −∆Λ∗
E) (28a)

subject to
N
∑

k=1

zEk = NE, (28b)

0 ≤ zEk ≤ 1 for k = 1, 2, . . . , N. (28c)

It is noted that (28) is in the form of (19). Thus, the solution
approaches discussed for the eavesdropper selection problem
in the previous section can also be applied to this problem.
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IV. JAMMER SELECTION PROBLEM

In this section, we focus on the jammer selection problem
under the assumption that there exist only jammer nodes in
the environment, i.e.,NE = 0. The aim is to choose at most
NJ locations from the setN for jamming purposes so that
the target localization performance of the anchor nodes is
degraded as much as possible. By using the CRLB of the
anchor nodes related to the estimation of target node positions
as the performance metric, the jammer selection problem is
investigated in the presence and absence of perfect knowledge
about the system parameters.

A. Problem Formulation

Let zJ = [zJ1 . . . zJN ]⊺ denote a selection vector defined as

zJk =

{

1, if pk ∈ NJ

0, otherwise
(29)

where
∑N

k=1 z
J
k ≤ NJ . Via similar steps to those in [7], [31],

[41], the EFIM related to the positioning of the target node
located atxi by the anchor nodes can be obtained as follows:

J̃(i)
e (xi, z

J ) =
∑

j∈A
(i)
L

λ̃
(i)
j

σ̃2
j +

∑N

k=1 z
J
kP

J
k |γkj |

2
ϕijϕ

⊺

ij (30)

In (30), λ̃(i)j corresponds toλij in [41, Eq. 3], ϕij =
[cosϕij sinϕij ]

⊺, andϕij is the angle from theith target loca-
tion to yj , i.e.,ϕij = arctan

xi2−yj2

xi1−yj1
, whereyj , [yj1 yj2]

⊺.

Based on (30), we formulate the proposed jammer selection
problem as follows:

max
zJ

NT
∑

i=1

wi tr
{(

J̃(i)
e (xi, z

J )
)−1}

(31a)

subject to
N
∑

k=1

zJk ≤ NJ ,

N
∑

k=1

zJkP
J
k ≤ PT , (31b)

zJk ∈ {0, 1} for k = 1, 2, . . . , N (31c)

wherePT is total power budget.
For the jammer selection problem in (31), the distribution

of the target node positions is assumed to be known. It is
also assumed that the anchor node positions, LOS/NLOS
conditions for possible target-anchor positions, andλ̃

(i)
j ’s are

known. Similar statements to those in Remark 2 can be made
for the jammer selection problem, as well. As stated in [11],
jammer nodes can obtain information about the localization
parameters by various means such as using cameras to learn
the locations of anchor nodes, performing prior measurements
in the environment to form a database for the channel parame-
ters, and listening to signals between anchor and target nodes.
When this information is inaccurate, the robust formulation
of the jammer selection problem in Section IV-C can be
employed by considering uncertainty in the knowledge of
λ̃
(i)
j ’s and LOS/NLOS conditions (please also see Remark 6).

In addition, the effects of uncertainty in the anchor node
positions and in the distribution of the target node position
can be evaluated as in Section VI-B.

B. Theoretical Results

To simplify the notation, let̃f(zJ ) and{gij(zJ )}
NT ,NA

i=1,j=1 be
defined as

f̃(zJ ) ,

NT
∑

i=1

wi tr
{(

J̃(i)
e (xi, z

J )
)−1}

, (32)

gij(z
J ) ,

λ̃
(i)
j

σ̃2
j +

∑N

k=1 z
J
kP

J
k |γkj |

2
· (33)

In the rest of this section, we analyze the convexity and
monotonicity properties of̃f with respect tozJ .

Lemma 3:f̃(zJ ) is non-decreasing inzJ .
Proof: See Appendix-E. �

Lemma 4:gij(zJ ) is a convex function ofzJ for any i, j.
Proof: See Appendix-F. �

Proposition 3:f̃(zJ ) is a concave functionzJ .
Proof: See Appendix-G. �

From Lemma 3, we can conclude that ifz∗ =
[z∗1 z∗2 . . . z

∗
N ]⊺ is a solution of (31), then (31b) must be

satisfied with equality, i.e.,
∑N

k=1 z
∗
k = NJ must hold. By

relaxing the last constraint in (31c), the following optimization
problem is obtained:

max
zJ

NT
∑

i=1

wi tr
{(

J̃(i)
e (xi, z

J )
)−1}

(34a)

subject to
N
∑

k=1

zJk = NJ ,

N
∑

k=1

zJkP
J
k ≤ PT , (34b)

0 ≤ zJk ≤ 1 for k = 1, 2, . . . , N. (34c)

Since the objective function in (34a) is concave due to Propo-
sition 3 and all the constraints in (34b) and (34c) are affine,
we reach the conclusion that (34) is a convex optimization
problem. Thus, it can be solved via convex optimization tools
for finding its globally optimal solution.

After finding the solution of (34), the largest-NJ algorithm
and the proposed swap algorithm can be used for finding the
solution of (31) as in the eavesdropper selection problem.
However, in this case, we set the largestNJ components of the
solution obtained from (34) to one, and while implementing
the proposed swap algorithm, we check whether there is an
increase in the objective function by simply swapping one of
theNJ selected positions with one of theN −NJ positions
that are not selected.

Remark 4:For the formulation of (34), it is assumed that
the transmit powers of the jammer nodes are given (fixed). If
{P J

k }
N
k=1 are considered as optimization variables as well, the

following problem can be formulated (cf. (34)):

max
zJ ,q̃

NT
∑

i=1

wi tr

{(

∑

j∈A
(i)
L

g̃ij(q̃)ϕijϕ
⊺

ij

)−1}

(35a)

subject to
N
∑

k=1

zJk = NJ ,
N
∑

l=1

q̃l ≤ PT , (35b)

0 ≤ zJk ≤ 1 for k = 1, 2, . . . , N, (35c)

0 ≤ q̃l ≤ z
J
l P

peak
l for l = 1, 2, . . . , N (35d)

whereq̃l = zJl P
J
l , q̃ = [q̃1 . . . q̃N ]⊺, g̃ij(q̃) is defined as (see
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(30))

g̃ij(q̃) ,
λ̃
(i)
j

σ̃2
j +

∑N
l=1 q̃l |γlj |

2
, (36)

andP peak
l is the peak power limit for the jammer node located

at pl. It is observed that all the constraints are linear with
respect toq̃ and zJ in (35). Furthermore, as a corollary of
Proposition 3, one can conclude that the objective functionin
(35a) is a concave function of̃q. (This holds since there are no
assumptions about{P J

l }
N
l=1 in Proposition 3 while proving the

concavity of the objective functioñf(zJ ) with respect tozJ .)
Therefore, it is concluded that the optimization problem in(35)
is convex, as well. This implies that the joint jammer selection
and jammer power optimization problem can be solved via the
convex problem in (35) (after relaxing the selection vector).

Remark 5:As a special case of (35), it can be shown that
the following problem is also convex.

max
q̃

NT
∑

i=1

wi tr

{(

∑

j∈A
(i)
L

λ̃
(i)
j

σ̃2
j +

∑N

l=1 q̃l |γlj |
2
ϕijϕ

⊺

ij

)−1}

s.t.
N
∑

j=1

q̃j ≤ PT , 0 ≤ q̃l ≤ P
peak
l for l = 1, 2, . . . , N. (37)

It is noted that this problem is in the same form as the
problem discussed in [41, Eq. 9]. In [41], the convexity of
this problem is not taken into account. Instead, a series of
geometric programming approximations are proposed in order
to solve the optimization problem. Since the problem [41,
Eq. 9] is in fact convex, it can also be solved via convex
optimization tools.

C. Robust Jammer Selection Problem

In the previous section, the jammer nodes are assumed to
have the perfect knowledge of{λ̃(i)j }

NT ,NA

i=1,j=1 in (30). Similar to

Section III-C, some uncertainty in{λ̃(i)j }
NT ,NA

i=1,j=1 is introduced
for a robust formulation. (No uncertainty is considered for
|γkj |2’s in (30) since they mainly depend on the known
positions of the jammer and anchor nodes.) For simplicity, it
is assumed thatAi = {y1,y2, . . . ,yNA

}, i.e., all the anchor
nodes are connected to theith target position for anyi.

To formulate the robust jammer selection problem, we
first define ΛJ , [λ

(1)
J λ

(2)
J . . .λ

(NT )
J ], where λ

(i)
J ,

[λ̃
(i)
1 λ̃

(i)
2 . . . λ̃

(i)
NA

]⊺ for i = 1, . . . , NT . The estimated versions

of λ(i)
J are defined aŝλ

(i)

J for i = 1, 2, . . . , NT , whereλ̂
(i)

J

denotes the estimate ofλ(i)
J . Let ∆λ

(i)
J represent the error

vector that generates uncertainty, that is,λ̂
(i)

J = λ
(i)
J +∆λ

(i)
J

with
∆λ

(i)
J , [∆λ̃

(i)
1 ∆λ̃

(i)
2 . . .∆λ̃

(i)
NA

]⊺ (38)

for i = 1, 2, . . . , NT . Also, ∆ΛJ andΛ̂J are defined as

∆ΛJ , [∆λ
(1)
J ∆λ

(2)
J . . .∆λ

(NT )
J ], (39)

Λ̂J , [λ̂
(1)

J λ̂
(2)

J . . . λ̂
(NT )

J ]. (40)

In this scenario, the notation for the objective function
f̃(zJ ) is modified asf̃(zJ ,ΛJ ) in order to emphasize the

dependence onΛJ . We use the same bounded error model as
in Section III-C for the error matrix∆ΛJ :

∆ΛJ ∈ Ẽ ,
{

∆λ
(i)
J ∈ R

NA : |∆λ̃
(i)
j | ≤ δ̃

(i)
j ,

∀i = 1, 2, . . . , NT and∀j = 1, 2, . . . , NA

}

(41)

where {δ̃(i)j }
NT ,NA

i=1,j=1 determine the size of the uncertainty

region Ẽ with δ̃
(i)
j ≥ 0 for all i = 1, 2, . . . , NT and

j = 1, 2, . . . , NA.
The aim is to maximize the minimum CRLB that can

be achieved inẼ . Therefore, under this setup, the proposed
optimization problem can be formulated as

max
zJ

min
∆ΛJ∈Ẽ

f̃(zJ ,ΛJ) (42a)

subject to
N
∑

k=1

zJk = NJ ,

N
∑

k=1

zJkP
J
k ≤ PT , (42b)

0 ≤ zJk ≤ 1 for k = 1, 2, . . . , N, (42c)

ΛJ = Λ̂J −∆ΛJ . (42d)

To solve the optimization problem in (42), the following
lemma is utilized.

Lemma 5:f̃(zJ ,ΛJ) is non-increasing inλ(i)
J for all i =

1, 2, . . . , NT .
Proof: See Appendix-H. �

Let the value of∆ΛJ that minimizesf̃(zJ ,ΛJ ) over setẼ
be denoted as∆Λ∗

J and let{∆λ̃(i),∗j }i,j represent the elements
of ∆Λ∗

J (see (38) and (39)). Based on Lemma 5, it is obtained
that∆λ̃(i),∗j = −δ̃

(i)
j . Therefore, solving (42) is equivalent to

solving the following optimization problem:

max
zJ

f̃(zJ , Λ̂J −∆Λ∗
J) (43a)

subject to
N
∑

k=1

zJk = NJ ,

N
∑

k=1

zJkP
J
k ≤ PT , (43b)

0 ≤ zJk ≤ 1 for k = 1, 2, . . . , N. (43c)

This problem is exactly in the same form as the problem in
(34), hence, it is a convex optimization problem. Therefore, the
solution methods proposed for the jammer selection problem
can also be used for the problem in (43).

Remark 6:The imperfect knowledge of LOS/NLOS condi-
tions can be incorporated into theλ(i)jk and λ̃(i)j parameters
in Sections III and IV. (In the case of a NLOS link, the
correspondingλ(i)jk and λ̃(i)j parameters become zero; i.e., no
position related information is gathered from that link.) Hence,
the cases with imperfect knowledge of LOS/NLOS conditions
can be treated in the robust eavesdropper and jammer selection
approaches in Sections III-C and IV-C.

V. JOINT EAVESDROPPER ANDJAMMER SELECTION

In this section, we consider the eavesdropper and jammer
selection problems jointly and place jammer and eavesdropper
nodes by considering both the localization performance of
the anchor nodes (which is to be degraded) and the accuracy
of the eavesdropper nodes for estimating the location of the
target node (which is to be enhanced). In this part, it is
assumed that the jammer nodes do not cause any interference
at the eavesdropper nodes; e.g., by using directional antennas
towards the anchor nodes. In addition, we make the same
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assumptions as in the eavesdropper selection problem and the
jammer selection problem.

Based on the selection vectorszE andzJ , the joint eaves-
dropper and jammer selection problem can be formulated as

max
zJ ,zE

f̃(zJ ) (44a)

subject to f(zE) ≤ ρ,
N
∑

k=1

zEk = NE , (44b)

N
∑

k=1

zJk = NJ ,

N
∑

k=1

zJkP
J
k ≤ PT , (44c)

zEk ∈ {0, 1} for k = 1, 2, . . . , N (44d)

zJk ∈ {0, 1} for k = 1, 2, . . . , N (44e)

zEk z
J
k = 0 for k = 1, 2, . . . , N (44f)

where f̃(zJ ) is as in (32),f(zE) is given by (10), andρ is
a given accuracy threshold related to eavesdropping. The last
constraint (44f) guarantees that a node can be selected either as
an eavesdropper or as a jammer. By relaxing the constraints in
(44d) and (44e), and modifying (44f), we obtain the following
optimization problem:

max
zJ ,zE

f̃(zJ ) (45a)

subject to f(zE) ≤ ρ,
N
∑

k=1

zEk = NE , (45b)

N
∑

k=1

zJk = NJ ,
N
∑

k=1

zJkP
J
k ≤ PT , (45c)

0 ≤ zEk ≤ 1 for k = 1, 2, . . . , N (45d)

0 ≤ zJk ≤ 1 for k = 1, 2, . . . , N (45e)

0 ≤ zEk + zJk ≤ 1 for k = 1, 2, . . . , N. (45f)

As consequences of Proposition 2 and 3, it is noted that the
optimization problem (45) is a convex optimization problem.

The selection ofρ depends on the requirements in a given
scenario. For instance, if learning the positions of the target
nodes is more important than jamming the localization net-
work,ρ should be small. Alternatively, one can try to minimize
f(zE) while keepingf̃(zJ ) above a certain threshold. From
Proposition 2 and 3, it can be argued that the resulting problem
would also be convex. Hence, by using convex optimization
tools, the solution of (45) or its alternative version can be
obtained. Then, starting from that solution, the largest-NJ (or,
largest-NE) and swap algorithms can be used to obtain the
solution of (44) or its alternative version.

VI. SIMULATION RESULTS

In this section, simulations are conducted to investigate
the performance of the proposed approaches. We consider
a wireless source localization network, in which the
target node is located at one of the 121 possible
positions with equal probabilities (i.e., 1/121). In
particular, the set of possible target positions is given
by {xi}121i=1 = {[2m, 2n] | −5 ≤ m,n ≤ 5,m, n ∈ Z}
meters. Also, there are 10 anchor nodes at locations
{yj}

10
j=1 ={[18 cos(ψj), 18 sin(ψj)] | ψj = 2π(j−1)/10, j =

1, 2, . . . , 10} meters. In addition, there exists 100
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Fig. 1. Illustration of the wireless source localization network.

possible positions for the eavesdropper and jammer
nodes which are selected uniformly from the region
R = ([20, 50]× [−50, 50])∪ ([−50,−20]× [−50, 50]) ∪
([−20, 20]× [−50,−30])∪([−20, 20]× [30, 50]) meters.
Such a region is selected in order to keep eavesdropper/jammer
nodes away from the localization network by considering
a practical application scenario as in Section I-C. Fig. 1
illustrates the positions of the target and anchor nodes, aswell
as the possible positions for the eavesdropper and jammer
nodes.

In the simulations, we consider the eavesdropper selection
problem, the jammer selection problem, and the joint eaves-
dropper and jammer selection problem, given by (9), (31), and
(44), respectively. For the problem in (44), we assume that
NE +NJ = N . In other words, we havezEk = 1−zJk for any
k, for the joint eavesdropper and jammer selection problem.

The following algorithms are investigated for performance
comparisons:
• Relaxed Algorithm: The relaxed versions of (9), (31), and

(44) (see (19), (34), and (45)) are solved via the fmincon(·)
command of MATLAB by using the interior point algorithm,
which has polynomial-time complexity in the worst case,
and is very fast in practice. The solution of (19) provides a
lower bound for (9), whereas the solutions of (34) and (44)
provide upper bounds for (31) and (44), respectively.

• Largest-NE Algorithm: We set the largestNE components
of the solution of (19) to one and the others to zero, and we
evaluate the performance of this resulting selection vector
using the expression in (11).

• Largest-NJ Algorithm: In this algorithm, we set the largest
NJ components of the solution of (34) to one, and the others
to zero. For the problem in (44), if the relaxed solution
pair obtained from (45) is denoted as(zErelaxed, z

J
relaxed), we

simply set the largestNJ components ofzJrelaxed to one and
the others to zero. The resulting vector is denoted aszJlargest,
andzElargest is defined as1− zJlargest, where1 is the vector of
ones. (The solution pair(zElargest, z

J
largest) may not be feasible

for (44) unless the threshold value,ρ, is sufficiently large.)
• Proposed Swap Algorithm:In this algorithm, we start from

the solutions obtained from the largest-NE or the largest-NJ

algorithms. The swap operation is performed as explained
in Sections III and IV, the details of which are given in
Algorithm 1. In all the simulations,µ in Algorithm 1 is
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selected as0.01. During one swap operation, the number
of objective function evaluations is given byNE(N −NE).
In other words, the total number of objective evaluations
is upper bounded byNmax

swap(N −NE)NE (similarly for the
jammer selection problem).

• Swap Algorithm with Random Initialization:This algorithm
is considered for comparison purposes similar to the local
optimization algorithm in [42]. In this algorithm, we use
the proposed swap algorithm (Algorithm 1) with arbitrarily
generated initial selection vectors (inputs) for the eaves-
dropper selection problem or the jammer selection problem.
While generating the random initial vectors, we randomly
chooseNE or NJ positions fromN possible eavesdrop-
per/jammer positions by using therandperm(N ,NE) or
randperm(N ,NJ) command of MATLAB with different
seeds.
For the eavesdropper selection problem, we assume that

σ2
k = σ2 for eachk. Moreover,α(E,1)

ijk andχ(i)
jk are modeled

as
∣

∣α
(E,1)
ijk

∣

∣

2
= ‖xi − pk‖

−2 and χ
(i)
jk = 0. Hence,λ(i)jk

is expressed asλ(i)jk = 4πβ2
ijEij/(c

2 ‖xi − pk‖
2 σ2), where

Eij =
∫∞

−∞
|Sij(f)|2 df is the energy of the signalsij(t) (see

Proposition 1). Then, the signal parameters are selected such
that λ(i)jk is given byλ(i)jk = 1/(‖xi − pk‖

2
σ2) [12].

For the jammer selection problem, it is assumed that
σ̃2
j = σ̃2 for eachj, λ̃(i)j = 1/(‖xi − yj‖

2
), and |γkj |

2
=

‖pk − yj‖
−2. Regarding the transmit powers of the jammer

nodes,P J
k = 10 for eachk andPT is selected as10N , i.e.,

the constraint given by
∑

k z
J
kP

J
k ≤ PT becomes ineffective.

In order to perform simulations considering the shadowing
effect,λ̃(i)j ’s andλ(i)jk ’s are multiplied with log-normal random
variables with mean parameter−2 and variance parameter
1. Similarly, |γkj |

2’s are multiplied with log-normal random
variables with mean parameter−2 and variance parameter2.

In the simulations, for each problem, the square roots of
the objectives are plotted, i.e., the average and the worst-case
CRLB values are presented in terms of meters. The simulations
are performed on an Intel Core i7 4.0 GHz PC with 16 GB
of physical memory using MATLAB R2020b on a Windows
10 operating system.

A. Simulation Results with Perfect Knowledge of Parameters

In Fig. 2, the eavesdropper selection problem is considered
and the average CRLB performance of each algorithm is
plotted versusNE for the noise levelσ2 = 0.1 andNmax

swap= 5.
For the same setting, Fig. 3 presents the average CRLB
performance of each algorithm versus1/σ2 for Nmax

swap = 5
and two different levels ofNE ’s: NE = 8 andNE = 30.
From Figs. 2 and 3, it is observed that the solution of the
relaxed problem provides a performance lower bound, as
expected, and the largest-NE algorithm and the proposed
swap algorithm perform very similarly in this scenario. On
the other hand, when the swap algorithm is executed based
on three different random initial selection vectors (with seeds
1, 2, and3), significant performance degradation is observed
in comparison with the other algorithms. This implies that
solving the relaxed problem and then obtaining the solution
of the largest-NE algorithm or the proposed swap algorithm
is critical in achieving high localization accuracy.

As σ2
k = σ2 for all k = 1, 2, . . . , N , it is noted that by

changingσ2, we in fact scale allλ(i)jk ’s with the same factor.
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Fig. 2. Average CRLB versusNE when σ2 = 0.1, Nmax
swap = 5, and the

seeds of the random initial selection vectors are1, 2, 3 for the eavesdropper
selection problem.
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Fig. 3. Average CRLB versus1/σ2 whenNE = 8, NE = 30, Nmax
swap =

5, and the seeds of the random initial selection vectors are1, 2, 3 for the
eavesdropper selection problem.

Therefore, by Remark 1, it is concluded that the objective
function is also scaled, as can be observed from Fig. 3.
Moreover, from Remark 1, it is known that the solution of
the optimal eavesdropper selection problem (hence, that of
the largest-NE algorithm) remains the same for allσ2’s when
NE is fixed. For instance, when there are8 eavesdroppers in
the network, the24, 33, 38, 39, 51, 77, 88, 92th components of
zElargest are equal to1 for bothσ2 = 0.1 andσ2 = 10.

The average CRLB performance and run time of each algo-
rithm are evaluated versusNmax

swap for σ2 = 0.1 andNE = 15.
(The figures are not presented due to the space constraint.) The
results indicate that it requires around13 swap operations for
the swap algorithm with random initialization (with seed1) to
converge to the performance of the proposed swap algorithm.
Namely, the average CRLB of the swap algorithm with random
initialization is11.4 m atNmax

swap= 1 and reduces to that of the
proposed swap algorithm (i.e.,6.27 m) atNmax

swap= 13. On the
other hand, the starting point obtained by the proposed largest-
NE algorithm (6.27 m) is not improved by the proposed swap
algorithm, i.e., the largest-NE algorithm provides the best
selection vector in this scenario (please see Algorithm 1).
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When the corresponding run times in are compared, the
benefits of the proposed swap and largest-NE algorithms are
observed. While the run time of the proposed swap algorithm
is 0.9 sec. for eachNmax

swap, that of the swap algorithm with
random initialization is10.11 sec. forNmax

swap = 13. Thanks
to the relaxed algorithm, the proposed swap algorithm starts
with a selection vector which is very close to the optimal
selection vector; hence, it obtains the solution quickly. On
the other hand, with random initial selection vectors, high
localization accuracy cannot be obtained without performing
a time-consuming search based on swap operations.

In Fig. 4, the jammer selection problem is considered and
the average CRLB performance of each algorithm is plotted
versusNJ for the noise levelσ̃2 = 0.1. For the same
setting, Fig. 5 presents the average CRLB performance of each
algorithm versus1/σ̃2 for NJ = 15. From Figs. 4 and 5, it
is observed that the solution of the relaxed problem provides
a performance upper bound, as expected, and the proposed
largest-NJ algorithm and the proposed swap algorithm per-
form similarly. However, when the proposed swap algorithm
is implemented based on three different random initial jammer
selection vectors (instead of the solution of the largest-NJ

algorithm), the obtained CRLB values reduce significantly.
This indicates the advantage of the proposed approaches over
the swap algorithm with random initialization.

The CRLB performance and run time of each algorithm
are evaluated versusNmax

swap for σ̃2 = 0.1 andNJ = 15. (The
figures are not presented due to the space constraint.) The
results indicate that after around13 swap operations, the av-
erage CRLB of the swap algorithm with random initialization
(which is initially 10.67 m.) converges that of the proposed
swap algorithm (i.e.,16.98 m). (In this scenario, the starting
point obtained by the proposed largest-NJ algorithm already
corresponds to the best selection vector.) While the run time of
the proposed swap algorithm is0.2 sec., it takes around5.24
sec. for the swap algorithm with random initialization (with
seed1) to converge to the proposed swap algorithm. Hence, the
proposed swap and largest-NJ algorithms have significantly
lower execution times than the swap algorithm with random
initialization considering the same CRLB performance. This
indicates that the proposed approach of solving the relaxed
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Fig. 5. Average CRLB versus1/σ2 when NJ = 15, Nmax
swap = 5, and

the seeds of the random initial selection vectors are1, 2, 3 for the jammer
selection problem.

algorithm and using its solution as a basis for the largest-
NJ and the swap algorithms provides significant benefits
in obtaining the solution of the optimal jammer selection
problem. In other words, the swap algorithm cannot achieve
close to optimal performance in a short amount of time by
starting from a random selection vector.

In Fig. 6, the joint eavesdropper and jammer selection
problem is investigated, and the average CRLB performances
corresponding to the objective functionsf(zE) and f̃(zJ )
are plotted for each algorithm whenρ = 50 (see (44) and
(45)). It is calculated that forNJ = 60, 70, 90, or equivalently
NE = 40, 30, 10, the solution of the largest-NE algorithm is
not a feasible solution for (44). For example, whenNJ = 60,
the average CRLB for the largest-NE algorithm is 54.06,
which is higher thanρ = 50. Also, even though the solutions
of the largest-NE algorithm are infeasible forNJ = 60, 70,
starting from these solutions, via the proposed swap algorithm,
it is possible obtain feasible selection vectors without reducing
the value off̃(zJ ). However, whenNJ = 90, via the proposed
swap algorithm, it is not possible to obtain a feasible selection
vector. Moreover, a decrease is observed in the optimal value
of f(zE) from NJ = 60 to NJ = 70, or equivalently from
NE = 40 to NE = 30. In other words, it is not possible to
claim any monotonic behavior inf(zE) with respect toNE

due to the constraint given byf(zE) ≤ ρ for the problem in
(44). Furthermore, the relaxed problem does not necessarily
provide a lower bound onf(zE) as noted from the results
at NJ = 60 and NJ = 70 (equivalently,NE = 40 and
NE = 30).

B. Effects of Uncertainty in Knowledge of Target and/or
Anchor Locations

In this part, we introduce some uncertainty to the knowledge
related to the locations of the anchor and target nodes, and
obtain the optimal selection strategies (using the relaxed
formulations) for the cases of imperfect and perfect knowl-
edge. Then, we apply the largest-NE/NJ and proposed swap
algorithms and evaluate their performance based on the actual
system parameters.

For the eavesdropper selection problem, we consider a
scenario in which the eavesdropper nodes do not know the
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probability distribution of the target node location perfectly.
(The knowledge of anchor node locations is not required
for the eavesdropper selection problem.) In particular, for
i = 1, 2, . . . , NT , the actual distribution of the target node
location is given by

w̃i = A exp

(

−
(xi1 − x01)

2

2ν2
−

(xi2 − x02)
2

2ν2

)

(46)

where w̃i = Pr{Target node is located atxi}, xi =
[xi1 xi2]

⊺, x̄ = [x01 x02]
⊺ is the mean of the tar-

get node location, andA is a normalization constant
such that

∑NT

i=1 A exp
(

− (xi1−x01)
2

2ν2 − (xi2−x02)
2

2ν2

)

= 1.
On the other hand, the eavesdropper nodes assume
that Pr{Target node is located atxi} = 1/NT for i =
1, 2, . . . , NT . It is noted that asν tends to infinity,w̃i ap-
proaches to1/NT for eachi. In other words, asν increases,
the mismatch between the true distribution and the assumed
one decreases. On the other extreme, whenν goes to zero,
the target node is located atx̄ with probability one; hence, the
uniform distribution assumption becomes quite inaccurate.

In the simulations, we assume thatx01 = x02 = 0 and
Nmax

swap = 5. In Fig. 7, the average CRLB performance of
each algorithm is plotted versusν in dB (i.e., 10 log10 ν) for
NE = 15, σ2 = 0.1, andµ = 0.01. It is observed that as long
as the information about the distribution of the target node
location is not very inaccurate (i.e.,ν is not very small), the
proposed approach does not have a significant performance
loss. Also, as the mismatch between the true distribution and
the assumed one decreases (i.e., asν increases), the proposed
swap algorithm performs very similarly for both the true model
and the assumed one.

For the jammer selection problem, we assume that the
jammer nodes do not know the locations of the anchor nodes
perfectly. It is assumed that for anyyj = [yj1 yj2]

⊺, the
jammer nodes have the knowledge of an erroneous version of
yj . Let ỹj be the assumed location of thejth anchor node by
the jammer nodes. We model thatỹj is uniformly chosen from
a set{y | y = [y1 y2]

⊺, |y1 − yj1| ≤ r& |y2 − yj2| ≤ r}.
In Fig. 8, whenσ̃2 = 0.1, ν = 1, r = 1, and µ = 0.01,
the average CRLB performance of each algorithm is plotted
versusNJ . It is observed that the proposed swap algorithm is
quite robust to errors in the knowledge of anchor and target
node locations. Even though the anchor node locations and the
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distribution of the target node location are not known perfectly,
asNJ increases, the proposed swap algorithm performs very
similarly for both the true model and the assumed one.

C. Simulation Results for Robust Approaches

In this part, the robust eavesdropper selection problem in
Section III-C and the robust jammer selection problem in Sec-
tion IV-C are considered. The worst-case CRLB performances
of the algorithms are compared for both the robust and non-
robust approaches. In the robust approach, the problems given
by (28) and (43) are considered for the robust eavesdrop-
per and the robust jammer selection problems, respectively.
However, in the non-robust case, the following optimiza-
tion problems are considered:minzE f(z

E , Λ̂E) subject to
∑N

k=1 z
E
k = NE , 0 ≤ zEk ≤ 1 for k = 1, 2, . . . , N , which is

the non-robust version of the eavesdropper selection problem,
andmaxzJ f̃(z

J , Λ̂J ) subject to
∑N

k=1 z
J
k = NJ , 0 ≤ zJk ≤ 1

for k = 1, 2, . . . , N , which is the non-robust version of the
jammer selection problem.

For the eavesdropper selection problem, both the robust
and non-robust approaches are considered, and two different
selection vectors denoted aszER and zENR (corresponding to
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Fig. 9. Worst-case CRLB versusNE when σ2 = 0.1 andNmax
swap = 5 for

the robust eavesdropper selection problem.

robust and non-robust, respectively) are obtained for eachal-
gorithm. Then, forzER andzENR, the corresponding worst-case
CRLBs are computed, which are given byf(zER, Λ̂E−∆Λ∗

E)
and f(zENR, Λ̂E − ∆Λ∗

E), respectively. Similarly, for the
jammer selection problem, we define two different selection
vectors aszJR andzJNR, and evaluatẽf(zJR, Λ̂J −∆Λ∗

J ) and
f̃(zJNR, Λ̂J −∆Λ∗

J).
For the uncertainty regionE , eachλ(i)jk is modeled asλ(i)jk ∈

[(1− ǫ(i))λ̂
(i)
jk , (1+ ǫ

(i))λ̂
(i)
jk ] for someǫ(i) ∈ [0, 1]. Therefore,

the eavesdropper selection is based on(1 − ǫ(i))λ̂
(i)
jk ’s for

the robust approach whereaŝλ(i)jk ’s are used for the non-

robust approach. It is noted thatδ(i)jk in (25) can be ex-

pressed asδ(i)jk = ǫ(i)λ̂
(i)
jk . If all ǫ(i)’s are not identical (which

is commonly the case in practice), we expect performance
difference between the robust and non-robust approaches. To
that aim, we generateNT = 121 realizations of independent
uniform random variables distributed in[0, 1] for ǫ(i)’s by
using MATLAB (the seed is equal to1).

For the jammer selection problem, we use a similar setup.
For the uncertainty regioñE , we generateNT = 121 realiza-
tions of independent uniform random variables distributedin
[0, 1], denoted asκ(i), by using MATLAB (the seed is equal to
2). In this case, the jammer selection is based on the estimate
of λ̃(i)j multiplied with (1 + κ(i)).

In Figs. 9 and 10, the worst-case CRLB performances are
presented respectively for the eavesdropper selection andthe
jammer selection problems, considering both the robust and
non-robust approaches. In Fig. 9, as expected, the robust
approaches yield lower worst-case CRLBs than the non-robust
ones. On the other hand, the robust approach and the non-
robust approach perform very similarly in Fig. 10. In other
words, for this system setup, without having the perfect
knowledge ofλ̃(i)j ’s, one can achieve similar CRLB values
to those achieved by the robust approach.

VII. C ONCLUDING REMARKS

For wireless source localization networks, the eavesdrop-
per selection, jammer selection, and joint eavesdropper and
jammer selection problems have been proposed. Related to
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Fig. 10. Worst-case CRLB versus1/σ̃2 whenNJ = 5 andNmax
swap = 5 for

the robust jammer selection problem.

the eavesdropper selection problem, a novel CRLB expression
has been derived as the performance metric, and its convexity
and monotonicity properties have been proved. After relaxing
the integer constraints, a convex optimization problem has
been obtained and eavesdropper selection algorithms have
been proposed. Also, a robust approach has been developed
in the presence of uncertainty about system parameters. For
the jammer selection problem, a CRLB expression from the
literature has been utilized, and its concavity and monotonicity
properties have been derived. Similarly, a convex relaxation
approach and a robust approach have also been developed
for jammer selection. Moreover, the joint eavesdropper and
jammer selection problem has been proposed and its relaxed
version has been shown to reduce to a convex problem.
Various simulation results have illustrated the benefits of
the proposed algorithms in terms of performance and run
time. In particular, the performance achieved by the proposed
algorithms is very close to the performance bound specified
by the relaxed problems, and the corresponding run times are
significantly lower than the other alternatives such as the swap
algorithm with random initialization and the exhaustive search.
The results in this paper reveal the capabilities of jammer
and eavesdropper nodes, which can be useful for designing
wireless source localization networks and taking appropriate
precautions.

APPENDIX

A. Proof of Proposition 1

In [31, Thm. 1], the EFIM for estimating the location
of a single target node is obtained for synchronized target
and anchor nodes. Even though our network model is quite
different from the system model described in Section II of
[31], we benefit from the proof of [31, Thm. 1] in the first
part of this proof.

In the proof of [31, Thm.1], vectorqk is defined asqk =
[cosφk sinφk]

⊺. We follow the same steps as in that proof
by replacing vectorqk with vector qik, which is defined as
qik = [cosφik sinφik 1]⊺.2 Then, we can obtain the EFIM

2The reason for usingqik instead ofqk stems from the fact that in our
system model, the number of the possible target locations ismore than one.
Also, the additional term1 in qik compared toqk is due to the time offset
between the target node and the eavesdropper nodes; i.e., due to the∆i term.
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for [xi ∆i]
⊺, denoted byJ(i)

e (xi,∆i, z
E), as follows:

J(i)
e (xi,∆i, z

E) =





Ki(z
E) Di(z

E) Ci(z
E)

Di(z
E) Ei(z

E) Si(z
E)

Ci(z
E) Si(z

E) Ti(z
E)



 (47)

where

Ki(z
E) ,

∑

(j,k)∈N
(i)
L

zEk λ
(i)
jk cos2 φik, (48)

Ei(z
E) ,

∑

(j,k)∈N
(i)
L

zEk λ
(i)
jk sin2 φik, (49)

Ci(z
E) ,

∑

(j,k)∈N
(i)
L

zEk λ
(i)
jk cosφik, (50)

Si(z
E) ,

∑

(j,k)∈N
(i)
L

zEk λ
(i)
jk sinφik, (51)

Di(z
E) ,

∑

(j,k)∈N
(i)
L

zEk λ
(i)
jk sinφik cosφik, (52)

Ti(z
E) ,

∑

(j,k)∈N
(i)
L

zEk λ
(i)
jk . (53)

By applying the Schur complement formula to (47), the
following expression is obtained:

J(i)
e (xi, z

E) =

[

Ki(z
E) Di(z

E)
Di(z

E) Ei(z
E)

]

−

[

C2
i (z

E) Ci(z
E)Si(z

E)
Ci(z

E)Si(z
E) S2

i (z
E)

]

Ti(zE)
(54)

Let J(i)
1 (xi, z

E) and J
(i)
2 (xi, z

E) be defined as the first and
second terms in (54), i.e.,

J
(i)
1 (xi, z

E) ,

[

Ki(z
E) Di(z

E)
Di(z

E) Ei(z
E)

]

(55)

J
(i)
2 (xi, z

E) ,

[

C2
i (z

E) Ci(z
E)Si(z

E)
Ci(z

E)Si(z
E) S2

i (z
E)

]

Ti(zE)
(56)

After some algebra, we derive the following expression from
(54):

tr
{(

J(i)
e (xi, z

E)
)−1}

=

2
∑

(u,k)∈N
(i)
L

∑

(v,l)∈N
(i)
L

p
(i)
k,lz

E
k z

E
l λ

(i)
ukλ

(i)
vl

∑

(u,k)∈N
(i)
L

∑

(v,l)∈N
(i)
L

∑

(s,m)∈N
(i)
L

q
(i)
k,l,mz

E
k z

E
l z

E
mλ

(i)
ukλ

(i)
vl λ

(i)
sm

(57)

where

q
(i)
k,l,m = cosφik sinφil sin(φil − φik)

− cosφik sinφim sin(φil − φik)

− cosφik cosφil sinφim(sinφim − sinφik). (58)

Based on the trigonometric identity,

sin a+ sin b− sin(a+ b) = 4 sin

(

a

2

)

sin

(

b

2

)

sin

(

a+ b

2

)

we obtain the following relation:

q
(i)
k,l,m + q

(i)
k,m,l + q

(i)
l,k,m + q

(i)
l,m,k + q

(i)
m,l,k + q

(i)
m,k,l

= 16p
(i)
k,lp

(i)
l,mp

(i)
m,k . (59)

Then, we can rearrange the denominator of (57) as follows:
∑

(u,k)∈N
(i)
L

∑

(v,l)∈N
(i)
L

∑

(s,m)∈N
(i)
L

q
(i)
k,l,mz

E
k z

E
l z

E
mλ

(i)
ukλ

(i)
vl λ

(i)
sm

(a)
=

16
∑

(u,k)∈N
(i)
L

∑

(v,l)∈N
(i)
L

l>k

∑

(s,m)∈N
(i)
L

m>l

p
(i)
k,lp

(i)
l,mp

(i)
m,kz

E
k z

E
l z

E
mλ

(i)
ukλ

(i)
vl λ

(i)
sm

(b)
=

8

3

∑

(u,k)∈N
(i)
L

∑

(v,l)∈N
(i)
L

∑

(s,m)∈N
(i)
L

p
(i)
k,lp

(i)
l,mp

(i)
m,kz

E
k z

E
l z

E
mλ

(i)
ukλ

(i)
vl λ

(i)
sm

(60)

where(a) follows from (59), and(b) is due to the symmetry
in the summand term,p(i)k,lp

(i)
l,mp

(i)
m,kz

E
k z

E
l z

E
mλ

(i)
ukλ

(i)
vl λ

(i)
sm. By

replacing the denominator of (57) with the final expression in
(60), the CRLB expression in (11)–(13) is obtained. �

B. Proof of Lemma 1

As wi ≥ 0 in (10), the aim is to show that
tr
{(

J
(i)
e (xi, z

E)
)−1}

is non-increasing in zE . Since

tr
{(

J
(i)
e (xi, z

E)
)−1}

is non-increasing with respect to

J
(i)
e (xi, z

E), it is sufficient to prove the following implication:

zE � w =⇒ J(i)
e (xi, z

E) � J(i)
e (xi,w) (61)

In other words, from (54), we must prove that

J
(i)
1 (xi, z

E)− J
(i)
1 (xi,w)− J

(i)
2 (xi, z

E) + J
(i)
2 (xi,w) � 0

It is noted that for anyy = [y1 y2]
⊺ ∈ R

2, the following
equalities hold:

y⊺J
(i)
1 (xi, z

E)y = y21Ki(z
E) + 2y1y2Di(z

E) + y22Ei(z
E),

(62)

y⊺J
(i)
2 (xi, z

E)y =

(

y1Ci(z
E) + y2Si(z

E)
)2

Ti(zE)
· (63)

Therefore, by combining (62) and (63), the following relation
can be obtained:

y⊺(J(i)
e (xi, z

E)− J(i)
e (xi,w))y = hi(z

E)− hi(w) (64)

where

hi(z
E) , y21Ki(z

E) + 2y1y2Di(z
E) + y22Ei(z

E) (65)

−

(

y1Ci(z
E) + y2Si(z

E)
)2

Ti(zE)
· (66)

Hence, it is sufficient to show thathi(zE) is a non-decreasing
function of zE . It is noted that

∂hi(z
E)

∂zEk
= λ̄

(i)
k (y1 cosφik + y2 sinφik)

2

− λ̄
(i)
k

2(y1Ci(z
E) + y2Si(z

E))(y1 cosφik + y2 sinφik)

Ti(zE)

+ λ̄
(i)
k

(y1Ci(z
E) + y2Si(z

E))2

Ti(zE)2
(67)
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where λ̄(i)k is given by λ̄(i)k =
∑

j:(j,k)∈N
(i)
L

λ
(i)
jk ≥ 0. Then,

via the arithmetic mean-geometric mean inequality, it is seen
that ∂hi(z

E)
∂zE

k

≥ 0 for anyk = 1, 2, . . . , N . Therefore, we have

the desired conclusion thatf(zE) is non-increasing inzE . �

C. Proof of Proposition 2

As wi ≥ 0 for i = 1, 2, . . . , NT in (10), it is sufficient
to prove thattr

{(

J
(i)
e (xi, z

E)
)−1}

is a convex function of
zE . It is known that tr{X−1} is a convex function ofX
for any positive semi-definiteX [37]. Also, tr{X−1} is
non-increasing inX. Therefore, it is sufficient to prove that
J
(i)
e (xi, z

E) is a concave function ofzE .
To explain why this is sufficient, we define functiong as

g(X) , tr{X−1}. Then, we are interested in the convexity of
g(J

(i)
e (xi, z

E)) with respect tozE . In other words, we should
prove that for anyν ∈ [0, 1], andzE ,w ∈ R

N ,

g(J(i)
e (xi, νz

E + (1− ν)w)) ≤ νg(J(i)
e (xi, z

E))

+ (1− ν)g(J(i)
e (xi,w))

(68)

If J(i)
e (xi, z

E) is a concave function ofzE , thenJ(i)
e (xi, νz

E+

(1− ν)w) ≥ νJ
(i)
e (xi, z

E) + (1− ν)J
(i)
e (xi,w) holds. Since

g(·) is non-increasing and convex in its argument, it then leads
to (68).

In order to prove thatJ(i)
e (xi, z

E) is a concave function of
zE , we should show that for anyγ ∈ [0, 1] andzE ,w ∈ R

N ,
the following relation is true:

J(i)
e (xi, γz

E+(1−γ)w) � γJ(i)
e (xi, z

E)+(1−γ)J(i)
e (xi,w).

(69)
Based on the relations in (54)–(56), the inequality in (69) can
be reduced to the following:

γJ
(i)
2 (xi, z

E)+(1−γ)J
(i)
2 (xi,w) � J

(i)
2 (xi, γz

E+(1−γ)w)
(70)

sinceJ(i)
1 (xi, z

E) is linear inzE .
It is deduced from (63) that for proving (70), it is sufficient

to show that

γ

(

y1Ci(z
E) + y2Si(z

E)
)2

Ti(zE)
+ (1 − γ)

(

y1Ci(w) + y2Si(w)
)2

Ti(w)

≥

(

y1Ci(s) + y2Si(s)
)2

Ti(s)
(71)

where s = γzE + (1 − γ)w. By applying the Cauchy-
Schwarz inequality to the left-hand-side of (71), the following
inequality is obtained:

γ

(

y1Ci(z
E) + y2Si(z

E)
)2

Ti(zE)
+ (1− γ)

(

y1Ci(w) + y2Si(w)
)2

Ti(w)
≥

(

γ
(

y1Ci(z
E) + y2Si(z

E)
)

+ (1− γ)
(

y1Ci(w) + y2Si(w)
)

)2

(

γTi(zE) + (1− γ)Ti(w)
)

(72)

As Ci(·), Si(·), andTi(·) are linear in their arguments, (72)
is actually the same as (71), which was to be proved. Hence,
the desired conclusion in reached. �

D. Proof of Lemma 2

It is sufficient to show thattr
{(

J
(i)
e (xi, z

E)
)−1}

is non-

increasing inλ(i)
E for any i = 1, 2, . . . , NT (see (10)). As

a consequence of Proposition 1, we can immediately observe
thattr

{(

J
(i)
e (xi, z

E)
)−1}

is non-increasing inλ(i)
E if and only

if tr
{(

J
(i)
e (xi, z

E)
)−1}

is non-increasing inzE due to the

symmetric expression in (11). (That is, the elements ofλ
(i)
E

and zE affect the expression in (11) in the same manner.)
Therefore, via Lemma 1, we obtain the desired result.�

E. Proof of Lemma 3

It is observed from the expression in (30) that ifzJ �
w̃, then J̃

(i)
e (xi, w̃) � J̃

(i)
e (xi, z

J) holds for any i =
1, 2, . . . , NT . Since the functiontr{(·)−1} is non-increasing
in its argument andwi ≥ 0 for any i, it is concluded that
f̃(zJ ) in (32) is non-decreasing inzJ . �

F. Proof of Lemma 4

From (33), the second-order derivatives are calculated as

∂2gij(z
J )

∂zJk ∂z
J
l

=
2λ̃

(i)
j P J

k P
J
l |γkj |

2 |γlj |
2

(σ̃2
j +

∑N
l=1 z

J
l P

J
l |γlj |

2)3
· (73)

Define a vector asvj , [P J
1 |γ1j |

2
. . . P J

N |γNj |
2
]⊺ for j =

1, 2, . . . , NA. Then, for anyy ∈ R
N , it follows from (73) that

y⊺∇2gij(z
J )y =

2λ̃
(i)
j

(σ̃2
j +

∑N

l=1 z
J
l P

J
l |γlj |

2
)3
y⊺vjv

⊺

jy ≥ 0.

(74)
Therefore,∇2gij(z

J ) is a positive semi-definite matrix; hence,
gij(z

J ) is a convex function ofzJ . �

G. Proof of Proposition 3

As wi ≥ 0 for i = 1, 2, . . . , NT , it is sufficient to prove that
tr
{(

J̃
(i)
e (xi, z

J )
)−1}

is a concave function ofzJ for any i.

We know thattr
{(

J̃
(i)
e (xi, z

J)
)−1}

is concave with respect to

zJ if and only if tr
{

−
(

J̃
(i)
e (xi, z

J )
)−1}

convex with respect
to zJ . Hence, two auxiliary functions are defined as follows:

c̃ : R2×2 → R such that̃c(X) = tr{X−1} (75)

ci : R
N → R

2×2 such thatci(zJ ) = −J̃(i)
e (xi, z

J ). (76)

Based on the preceding definitions,tr
{

−
(

J̃
(i)
e (xi, z

J)
)−1}

=
c̃(ci(z

J )). It is known thatc̃(·) is convex and non-increasing
in its argument [37]. Thus, it is sufficient to prove thatci(zJ )
is concave with respect tozJ , or equivalently,̃J(i)

e (xi, z
J ) is

convex with respect tozJ .
To that aim, we should prove that for anyzJ , w̃ ∈ R

N and
γ̃ ∈ [0, 1], the following relation holds:

γ̃J̃(i)
e (xi, z

J)+(1− γ̃)J̃(i)
e (xi, w̃) � J̃(i)

e (xi, γ̃z
J+(1− γ̃)w̃).

(77)
For anyy = [y1 y2]

⊺, it follows from (30) and (33) that

y⊺J̃(i)
e (xi, z

J )y =
∑

j∈AL
i

gij(z
J )(y1 cosϕij + y2 sinϕij)

2.

(78)
By combining Lemma 4 and (78), the desired conclusion is
reached. �
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H. Proof of Lemma 5

It suffices to show thattr
{(

J̃
(i)
e (xi, z

J )
)−1}

is non-

increasing inλ(i)
J for any i = 1, 2, . . . , NT , which is evident

from (30). �
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