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Parameter Encoding for ECRB Minimization in the
Presence of Jamming

Cuneyd Ozturk, Cagri Goken, and Sinan Gezici

Abstract—The optimal encoding of a scalar parameter is
performed in the presence of jamming based on an estimation
theoretic criterion. Namely, the aim is to obtain the optimal en-
coding function at the transmitter that minimizes the expectation
of the conditional Cramér-Rao bound (ECRB) at the receiver
when the jammer has access to the parameter and alters the
received signal by sending an encoded version of the parameter.
Via calculus of variations, the optimal encoding function at
the transmitter is characterized explicitly, and an algorithm
is proposed to calculate it. Numerical examples demonstrate
benefits of the proposed optimal encoding approach.

Index Terms— Parameter estimation, jamming, Craḿer-Rao
bound (CRB), optimization.

I. I NTRODUCTION

Communication systems can be vulnerable to various types
of malicious attacks such as eavesdropping and jamming [1]
(and references therein). While eavesdroppers aim to infer
messages between transmitters and receivers, jammers try to
disrupt communications among devices in a given network.

In the presence of eavesdropping, secure transmission of
scalar and vector parameters is investigated in an estimation
theoretic framework in [2]–[4]. In particular, the optimal
encoding strategy for a scalar parameter is investigated in[2]
by minimizing the expectation of the conditional Cramér-Rao
bound (ECRB) at the intended receiver under a constraint on
the mean-squared error (MSE) at the eavesdropper. In [4], the
optimal encoding strategy for estimation theoretic security is
analyzed, where the transmitter is allowed to perform ran-
domization between two one-to-one and continuous encoding
functions and the eavesdropper is fully aware of the encoding
strategy at the transmitter.

Among various studies on jamming of communication sys-
tems, [5]–[9] formulate the problem of transmitting a param-
eter to a receiver under jamming attacks as a zero-sum game,
and analyze optimal policies of the transmitter, receiver and
jammer under various scenarios. Specifically, [5] investigates
the problem of transmitting a sequence of independent and
identically distributed Gaussian random variables through a
Gaussian memoryless channel in the presence of an intelligent
jammer. The optimal policies of the receiver and the jammer
are determined, and the uniqueness of the solution is proved. In
[6], by relaxing the Gaussian source and channel assumptions,
optimal policies of the transmitter, jammer and receiver are
obtained. The work in [6] is extended to the zero-delay
jamming setting in [7].

In this letter, an optimal parameter encoding problem is
proposed for ECRB minimization in the presence of a jammer.
A scalar parameter is transmitted over a noisy and flat-fading
channel to a receiver, and the jammer, which has access to
the parameter as in [9], sends an encoded version of the pa-
rameter to the receiver for degrading estimation performance.
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Considering a generic prior distribution for the parameter, we
formulate the problem of determining the optimal encoding
strategy at the transmitter that minimizes the ECRB at the
receiver in the presence of jamming for the first time in the
literature. The optimal encoding function of the transmitter is
determined among the class of differentiable and monotone
increasing functions based on variational analyses (Proposi-
tion 1), which leads to nonlinear encoding functions in general
(cf. [6]). To determine the optimal encoding function basedon
the theoretical results, an algorithm is proposed (Algorithm 1).
In addition, the problem is analyzed for the general case
by removing the monotonicity assumption over the encoding
function of the transmitter (Proposition 2).

II. SYSTEM MODEL AND PROBLEM FORMULATION

A transmitter sends a scalar parameterθ ∈ Λ to a receiver
over a noisy and flat-fading channel in the presence of a
jammer. The jammer has access to parameterθ (as in [9]),
encodes it via a differentiable, real valued functiong : Λ → Γ,
and sends the encoded parameter to the receiver. The aim is to
perform accurate estimation of parameterθ at the receiver in
the presence of jamming. To this aim, parameterθ is encoded
by a differentiable, real valued functionf : Λ → Υ at the
transmitter. Accordingly, the received signalY becomes

Y = hT f(θ) + hJg(θ) +N (1)

where hT and hJ denote the channel fading coefficients
between the transmitter and the receiver and between the
jammer and the receiver, respectively,N is the noise term,
which is modeled as a zero-mean Gaussian random variable
with a known variance denoted byσ2, and N and θ are
assumed to be independent.

The prior information on parameterθ is represented by a
probability density function (PDF) denoted byw(θ) for θ ∈ Λ.
Also, the channel coefficients are supposed to be known by
the transmitter and the receiver. In addition, it is assumed
that the receiver knows both mappingsf(·) and g(·), and
the transmitter has the knowledge ofg(·). The motivation
and justification for these assumptions are as follows: (i) In a
sensor network in which jamming is caused by another trans-
mitter in the same network unintentionally, these assumptions
can hold. (ii) Under these assumptions, we obtain an upper
bound on the estimation performance at the receiver in the
presence of jamming. (This bound becomes tight when the
transmitter is smart and the jammer is dummy.) (iii) The
analysis under these assumptions leads to the best response
strategy of the transmitter for a given jammer strategy, which
forms an important step towards a game theoretic analysis.

To quantify the estimation accuracy at the receiver, the
ECRB is employed as a performance metric since it converges
to the MSE of the maximum a-posteriori probability (MAP)
estimator in the high SNR regime [10], does not depend on
specific estimator structures, and facilitates theoretical analy-
ses (leading to explicit expressions for the optimal encoder
function at the transmitter). The ECRB is defined as the
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expectation of the conditional Cramér-Rao bound [10] and
calculated as follows:Eθ{I(θ)−1} =

∫

Λw(θ)
1

I(θ) dθ, where
I(θ) denotes the Fisher information, i.e.,

I(θ) =

∫
(

∂ log pY |θ(y)

∂θ

)2

pY |θ(y) dy (2)

with pY |θ(y) representing the conditional PDF ofY for a given
value ofθ. For the system model in (1),pY |θ(y) is expressed as
pY |θ(y) = (2πσ2)−0.5 exp

(

−(y−hTf(θ)−hJg(θ))2/(2σ2)
)

.
Then, the Fisher information in (2) can be obtained as

I(θ) = (hT f
′(θ) + hJg

′(θ))
2
/σ2 (3)

where f ′(θ) and g′(θ) denote the derivatives off(θ) and
g(θ), respectively.1 Based on a reasoning similar to that
in [2], the ranges ofθ, g(θ), and f(θ) are modeled as
Λ = [a, b], Γ = [k, l], andΥ = [c, d], respectively, for some
a, b, c, d, k, l ∈ R. In particular, forθ ∈ [a, b], f(·) must be a
differentiable function that satisfiesc ≤ f(θ) ≤ d. By setting
lower and upper limits onf(θ), we effectively impose a peak
power constraint on the transmitted signal, which in turn limits
the average transmit power, as well. Hence, for giveng(·),
we propose the following optimization problem for parameter
encoding at the transmitter:

min
f

∫ b

a

w(θ)
σ2

(hT f ′(θ) + hJg′(θ))
2 dθ (4a)

subject to c ≤ f(θ) ≤ d , ∀ θ ∈ [a, b] (4b)

That is, the aim is to obtain the optimal encoding function at
the transmitter that minimizes the ECRB at the receiver for a
given jammer and under the constraint in (4b).

III. O PTIMAL ENCODING FUNCTION AT TRANSMITTER

A. f is strictly monotone increasing

If f is strictly monotone increasing,f ′(θ) > 0 for each
θ ∈ [a, b]. By adding the constraintf ′(θ) > 0 to (4), we
formulate the proposed optimization problem as follows:

min
f

∫ b

a

w(θ)(hT f
′(θ) + hJg

′(θ))
−2
dθ (5a)

subject to c ≤ f(θ) ≤ d , ∀ θ ∈ [a, b] (5b)

f ′(θ) > 0, ∀ θ ∈ [a, b] (5c)

where the constant termσ2 is removed from the objective
function for notational convenience. It is noted that the ob-
jective function in (5a) remains constant if we shift allf(θ)
values by the same scalar number. Due to the monotonicity
of f(·), if we ensure thatf(b) − f(a) ≤ d − c, we can find
the optimalf(·) up to a constant. We can then adjust this
constant term such thatf(·) remains in[c, d]. Another way of
writing f(b)− f(a) ≤ d− c is

∫ b

a f
′(θ) dθ ≤ d− c. Hence, by

replacing (5b) with
∫ b

a f
′(θ) dθ ≤ d − c, we can concentrate

on the following problem:

min
f

∫ b

a

w(θ)(hT f
′(θ) + hJg

′(θ))
−2
dθ (6a)

1Intuitively, the jammer would like to cancel the transmitted signal to set
the Fisher information to zero. However, it does not know theencoder at
the transmitter and can design its encoder based on previousexperience.
When the transmitter employs a differential encoding strategy for ease of
implementation, the jammer can also be modeled to employ a differential
encoding strategy for cancellation purposes.

subject to
∫ b

a

f ′(θ) dθ ≤ d− c (6b)

f ′(θ) > 0, ∀ θ ∈ [a, b] (6c)

Next, we replace the constraint in (6c) by the equality con-
straintf ′(θ) = ǫ+µ2(θ) for a sufficiently small numberǫ > 0
and for some functionµ(·). We also define a functiont(·) such
that

∫ b

a
f ′(θ) + t2(θ) dθ = d − c. Hence, we can reformulate

(6) as

min
f,t,µ

∫ b

a

w(θ)(hT f
′(θ) + hJg

′(θ))
−2
dθ (7a)

subject to
∫ b

a

f ′(θ) + t2(θ) dθ = d− c (7b)

f ′(θ) = µ2(θ) + ǫ , ∀ θ ∈ [a, b] (7c)

The following proposition characterizes the solution of (7).
Proposition 1: A solution to (7) admits one of the following

two alternative forms:
• eitherf ′(θ) = ǫ for all θ ∈ [a, b],
• or, there exists∅ ⊆ S ⊆ [a, b] such that

f ′(θ) = ǫ, if θ ∈ S, (8)

f ′(θ) =
(K̃w(θ))1/3 − hJg

′(θ)

hT
> 0, if θ ∈ Sc, (9)

whereSc = [a, b] \ S andK̃ is chosen such that
∫ b

a

f ′(θ) dθ = d− c. (10)

Proof: Let H(θ, f ′, µ, t, γ, λ) be given by

H(θ, f ′, µ, t, γ, λ) = w(θ)(hT f
′(θ) + hJg

′(θ))
−2

+ λ
(

f ′(θ) + t2(θ)
)

+ γ(θ)
(

µ2(θ) + ǫ− f ′(θ)
)

. (11)

where λ and γ(θ) are Lagrange multipliers. Finding the
extremals of (7) is equivalent to finding the extremals of
H[f ′, µ, t, γ], where

H[f ′, µ, t, γ] =

∫ b

a

H(θ, f ′, µ, t, γ, λ) dθ . (12)

From (11), Euler-Lagrange equations [11, p. 36] lead to2

∂H

∂f
−

d

dθ

∂H

∂f ′
= −

d

dθ

(

−
2hTw(θ)

(hT f ′(θ) + hJg′(θ))
3

+ λ− γ(θ)

)

= 0 (13)

∂H

∂µ
−

d

dθ

∂H

∂µ′
= 2γ(θ)µ(θ) = 0 (14)

∂H

∂γ
−

d

dθ

∂H

∂γ′
= µ2(θ) + ǫ − f ′(θ) = 0 (15)

∂H

∂t
−

d

dθ

∂H

∂t′
= 2λt(θ) = 0. (16)

(13) implies that there exists a constantK ∈ R such that

2hTw(θ)

(hT f ′(θ) + hJg′(θ))
3 + γ(θ) = K + λ . (17)

Multiplying both sides of (17) withµ(θ) and using (14) and

2The partial derivative notation is used for derivatives with respect to
functions; otherwise, the regular derivative notation is employed.
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(15), we obtain

2hTw(θ)µ(θ)

(hTµ2(θ) + hT ǫ+ hJg′(θ))
3 = (K + λ)µ(θ). (18)

It is noted from (11) that the following relations hold:Hf =
∂H
∂f = 0, Hff ′ = ∂2H

∂f∂f ′
= 0, Hff = ∂2H

∂f2 = 0, andHf ′f ′ =
∂2H
∂f ′2 =

6h2
Tw(θ)

(hT f ′(θ)+hJg′(θ))4
> 0. Then, the second variation

δ2H|f (η) is given by

δ2H|f (η) =
1

2

∫ b

a

[

η2
(

Hff −
d

dθ
Hff ′

)]

+ η′2Hf ′f ′ dθ

=
1

2

∫ b

a

η′2Hf ′f ′ dθ > 0 (19)

for any perturbationη(θ) [11, p. 25]. It is noted that as (19)
holds for any perturbation, it also holds for the admissible
perturbations. Hence, it is deduced that the interval[a, b]
contains no points conjugate toa [11, Thm. 2, p. 109].
Based on (19), anyf(·) satisfying (13)–(16) also satisfies the
sufficient conditions to be a minimizer of (7) [11, p. 116].
Hence, it is concluded that the resultingf(·) is a minimizer
of (7). Therefore, the aim becomes finding a solutionf(·) that
satisfies the Euler-Lagrange equations. To obtain a solution,K
can be set to zero; i.e.,K = 0. Then, based on (16), there exist
two cases; namely,λ = 0 or λ 6= 0: (i) λ = 0: From (18),
µ(θ) = 0 is obtained for anyθ. Hence,f ′(θ) = ǫ for all
θ ∈ [a, b] due to (15).(ii) λ 6= 0: From (16),t(θ) = 0 for any

θ. Hence, the solutionf(·) should satisfy
∫ b

a f
′(θ) dθ = d− c.

Moreover,µ(·) should satisfy the following equation:

µ(θ)
[

(

hTµ
2(θ) + hT ǫ+ hJg

′(θ)
)3

− K̃w(θ)
]

= 0 (20)

whereK̃ = 2hT /λ, meaning that there exists a setS ⊆ [a, b]
such thatf ′(θ) is specified by (8) and (9), and̃K is chosen
to satisfy (10). �

By comparing the ECRB values corresponding to the encod-
ing functions obtained for the two alternatives in Proposition 1,
we can select the encoding function that yields the lower
ECRB. Next, the following corollary is presented.

Corollary 1: If θ is uniformly distributed andg(·) is a linear
mapping, the optimal encoding function is given by

f(θ) = c+ (d− c)(θ − a)/(b− a) (21)

regardless of the values ofhJ andhT .
Proof: Under the conditions in the corollary, the ratio

(

(K̃w(θ))1/3 − hJg
′(θ)

)

/hT becomes a constant value that
is independent ofθ, which we callL. If we chooseL =
(d − c)/(b − a) andS = ∅, it is seen that all of the Euler-
Lagrange equations are satisfied. Therefore,f ′(θ) must be
equal to (d − c)/(b − a) for all θ ∈ [a, b]. Hence,f(θ) is
given byf(θ) = f(a) + (d− c)(θ− a)/(b− a). By choosing
f(a) = c, we find a solution that satisfies all of the Euler-
Lagrange equations and is feasible for (5). �

To find the encoding function specified by Proposition 1,
we should determine setS and parameter̃K such that (8)–
(10) are satisfied. To determineS, Algorithm 1 is proposed.
In Algorithm 1, if S(0) is not empty, in each iterationi ≥ 1,
we exclude the interval in whichαi(θ) < 0. Since we have
d− c− ǫ(b− a) =

∫

[a,b]
αi(θ) dθ <

∫

R(i) αi(θ) dθ andK̃(i+1)

is computed such that the integral ofαi+1(θ) over the region
R(i) is equal tod−c−ǫ(b−a), it is evident thatK̃(i) ≥ K̃(i+1).

This also means thatS(i) ⊆ S(i+1). By comparing the ECRB
values corresponding to the encoding functions obtained by
the proposed algorithm andf ′(θ) = ǫ, we can determine an
optimal encoding function.

Algorithm 1 Proposed Algorithm for DeterminingS andf ′(·)

Input: w(·), g′(·), hT , hJ , ǫ.
Output: S, f ′(·).

1: To find K̃(0), solve the following integral equation
∫ b

a

(K̃(0)w(θ))1/3−hT ǫ−hJg′(θ)
hT

dθ = d− c− ǫ(b− a)

2: Setα0(θ) =
(K̃(0)w(θ))1/3−hT ǫ−hJg′(θ)

hT
for all θ ∈ [a, b].

3: Find S(0) = {θ ∈ [a, b] | α0(θ) < 0}
4: if S(0) = ∅ then
5: ρ = 0, S ← S(0), α(·)← α0(·), f

′(·)← α(·) + ǫ.
6: else
7: ρ = 1, i← 0, R(0) ← [a, b] \ S(0).
8: end if
9: while ρ = 1 do

10: i← i+1, and computeK̃(i) by solving the integral equation
∫
R(i−1)

(K̃(i)w(θ))1/3−hT ǫ−hJg′(θ)
hT

dθ = d− c− ǫ(b− a).

11: Setαi(θ) =
(K̃(i)w(θ))1/3−hT ǫ−hJg′(θ)

hT
for all θ ∈ R(i−1).

12: Find S(i) = {θ ∈ [a, b] | αi(θ) < 0}
13: R(i) ← [a, b] \ S(i)

14: if S(i) \ S(i−1) = ∅ then
15: ρ = 0, S ← S(i), α(·)← αi(·), f

′(·)← α(·) + ǫ.
16: end if
17: end while

Remark 1: When f(·) is strictly monotone decreasing,
−f(·) becomes a strictly monotone increasing function. There-
fore, if we definep(θ) , −f(θ) for eachθ, an optimization
problem in the same form as that in (5) can be formulated and
the same approach as in Section III-A can be employed.

Remark 2: The theoretical results in this section can
also be extended for single-input multiple-output systems.
In that case, the Fisher information becomesI(θ) =
∑M

k=1 (h
(k)
T f ′(θ) + h

(k)
J g′(θ))2/σ2

k, whereM is the number
of receivers (antennas),σ2

k is the noise variance of thekth re-
ceiver, andh(k)T andh(k)J denote the channel fading coefficients
between the transmitter and thekth antenna, and between
the jammer andkth antenna, respectively. Since the Fisher
information can be expressed as a second-degree polynomial
of f ′(θ) as in (6), the techniques in the proof of Proposition 1
can also be employed for this case.

B. f is not necessarily monotone
In this case,c ≤ f(θ) ≤ d implies that there existµ(·) and

t(·) such thatf(θ) = c+µ2(θ) andf(θ) = d− t2(θ) for each
θ. Then, (4) can be reformulated as

min
f

∫ b

a

w(θ)(hT f
′(θ) + hJg

′(θ))
−2
dθ (22a)

subject to f(θ) = c+ µ2(θ), ∀ θ ∈ [a, b] (22b)

f(θ) = d− t2(θ), ∀ θ ∈ [a, b] (22c)

The following proposition characterizes the solution of (22).
Proposition 2: If P = {θ | f(θ) = c or f(θ) = d} has zero

measure and there existsξ ∈ R such that

max
θ∈[a,b]

c− ψ(θ) − f(a)

W (θ)
< ξ < min

θ∈[a,b]

d− ψ(θ)− f(a)

W (θ)
, (23)

then anyf(θ) = f(a)+ψ(θ)+ξW (θ) that satisfies the Euler-
Lagrange equations is an optimal solution for (22), where
ψ(θ) , −hJ(g(θ)− g(a))/hT andW (θ) ,

∫ θ

a w(τ)
1/3 dτ .
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Proof: Let F (θ, f, f ′, µ, t, γ(1), γ(2)) be given by

F (θ, f, f ′, µ, t, γ(1), γ(2)) = w(θ)(hT f
′(θ) + hJg

′(θ))
−2

+

γ(1)(θ)(µ2(θ) + c− f(θ)) + γ(2)(θ)(f(θ) − d+ t2(θ)) (24)

where γ(1)(θ) and γ(2)(θ) are Lagrange multipliers. Find-
ing the extremals of (22) is equivalent to finding the
extremals of F(f, f ′, µ, t, γ(1), γ(2)), which is given by
F(f, f ′, µ, t, γ(1), γ(2)) =

∫ b

a F (θ, f, f
′, µ, t, γ(1), γ(2)) dθ.

From (24), the Euler-Lagrange equations can be obtained as
∂F
∂f −

d
dθ

∂F
∂f ′

= −γ(1)(θ)+γ(2)(θ)+ d
dθ

(

2hTw(θ)

(hT f ′(θ)+hJg′(θ))3

)

=

0, ∂F
∂µ − d

dθ
∂F
∂µ′

= 2µ(θ)γ(1)(θ) = 0, ∂F
∂t − d

dθ
∂F
∂t′ =

2t(θ)γ(2)(θ) = 0, ∂F
∂γ(1) − d

dθ
∂F

∂γ(1)′ = µ2(θ) + c − f(θ) =

0, and ∂F
∂γ(2) − d

dθ
∂F

∂γ(2)′ = f(θ) − d + t2(θ) = 0.
As P defined in Proposition 2 is assumed to have zero
measure, we concentrate on the case ofµ(θ) 6= 0 and
t(θ) 6= 0. From the first Euler-Lagrange equation above,
for some β ∈ R, the following relation is obtained:

2hTw(θ)

(hT f ′(θ)+hJg′(θ))3
= β +

∫ θ

a

(

−γ(1)(τ) + γ(2)(τ)
)

dτ = β +
∫

[a,θ]∩P

(

−γ(1)(τ) + γ(2)(τ)
)

dτ = β. Therefore,f ′(θ) =

((β̃w(θ))1/3 − hJg
′(θ))/hT , whereβ̃ = 2hT /β. Then,f(θ)

is expressed asf(θ) = f(a) +
∫ θ

a
(β̃w(τ))1/3−hJg

′(τ)
hT

dτ . Let
ξ , β̃1/3/hT . Then,f(θ) can be written as

f(θ) = f(a) + ψ(θ) + ξW (θ). (25)

We must findξ such thatc < f(θ) < d for any θ ∈ [a, b].
Equivalently,ξ must satisfy the condition in (23) of Proposi-
tion 2. If there exists noξ satisfying (23), the Euler-Lagrange
equations do not yield any solution; otherwise,f(θ) can be
found from (25). If there is such aξ, similar to the proof of
Proposition 1, one can see thatFf = Fff ′ = Fff = 0 and
Ff ′f ′ > 0 for eachθ. Hence, via similar arguments, we can
argue thatf is the local minimizer of (22). �

As a corollary to Proposition 2, ifθ is distributed uniformly,
g is a linear function ofθ, and the condition in Proposition 2
holds, it is concluded that the encoding function at the trans-
mitter is linear as in the monotone case. Furthermore, onceg(·)
andw(·) are known, the knowledge ofψ(·) andW (·) also be-
comes available. Hence,maxθ∈[a,b] (c− ψ(θ) − f(a)) /W (θ)
andminθ∈[a,b] (d− ψ(θ) − f(a)) /W (θ) can easily be found
in terms of f(a). By adjusting the value off(a), one can
determine whether the condition in (23) is satisfied.

Remark 3: Since the optimal encoding functions in Proposi-
tions 1 and 2 are local minimizers, we can compare the ECRBs
achieved by these encoding functions and choose the one that
achieves the lower ECRB.

IV. N UMERICAL RESULTS AND CONCLUSIONS

In this section, a numerical example is presented when
parameterθ is uniformly distributed between0 and 1; that
is, Λ = [a, b] with a = 0 and b = 1. In other words,
w(θ) = 1 if θ ∈ [0, 1] andw(θ) = 0 otherwise. We restrict our
search space to strictly monotone increasing mappings for the
encoding functionf(·) at the transmitter. Also, two different
encoding functions are considered for the jammer asg(θ) = θ
and g(θ) = θ2. Hence,g(θ) ∈ Γ = [k, l] with k = 0 and
l = 1. In addition, it is assumed that the range of the encoding
function f(·) is given by[0, 1]. In the simulations,ǫ in (7) is
set to0.001 and the variance ofN in (1) is given byσ2 = 1.

In Fig. 1, the optimal encoding functions,f(θ), are
plotted for g(θ) = θ and g(θ) = θ2 when hT /hJ ∈
{0.01, 0.1, 1, 10, 100}. It is observed thatf(θ) = θ regardless
of the value ofhT /hJ when g(θ) = θ; that is, f(θ) is also
linear in accordance with Corollary 1. Wheng(θ) = θ2 and
hT = hJ , it is known via (8) and (9) thatf ′(θ) = ǫ if
θ ∈ S and f ′(θ) = ν − 2θ if θ ∈ [0, 1] \ S for some
ν ∈ R. By choosingν = 2 andS = ∅, we obtain the desired
solution. Hence, the optimal encoding function is given by
f(θ) = 2θ − θ2 in that case, as can be verified from Fig. 1.
Also, ashT gets significantly larger thanhJ , the jamming
becomes inconsequential and the optimal encoding function
converges to the linear one. This is intuitive since it is known
via [2, Prop.1] that in the absence of jamming, the optimal
encoding function is a linear mapping for uniformly distributed
parameters.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1. f(θ) versusθ for two different encoding functions of jammer.
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Fig. 2. ECRB versus10 log10(hT /hJ) for different encoding functions.

For comparison purposes, we consider the encoding func-
tion in [2], which is optimal in the absence of jamming (and
would be used if the transmitter were unaware of jamming).
In that case, the encoding function, denoted byf̃(θ), has the
following derivative [2]: f̃ ′(θ) = (d− c)w(θ)

/∫ b

a
w(θ)1/3 dθ.

In Fig. 2, the ECRB values achieved byf(θ) (proposed in this
work) and f̃(θ) are plotted versushT /hJ for g(θ) = θ and
g(θ) = θ2. Forg(θ) = θ, f(θ) = f̃(θ); hence, the same ECRB
performance is attained. Forg(θ) = θ2, the proposed encoding
function leads to lower ECRB values especially forhT < hJ ,
demonstrating the benefits of the proposed optimal encoding
approach. Also, forhT < hJ , the ECRB values are lower for
the case ofg(θ) = θ than the case withg(θ) = θ2. This means
that the linear mapping at the jammer is not as destructive for
the ECRB performance at the receiver as the nonlinear one in
this scenario. Moreover, whenhT is significantly larger than
hJ , all the ECRB values converge since the signal component
due to the transmitter becomes dominant at the receiver and
the encoding functions become the same as seen in Fig. 1.
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