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Abstract—The optimal encoding of a scalar parameter is Considering a generic prior distribution for the parameter
FhEYfOFTed l{l the plzlesenlce tohf Jamm]n% bagted Otp] an ¢t—::st|artnat|on formulate the problem of determining the optimal encoding

eoretic criterion. Namely, the aim is to obtain the optimd en- ; i
coding function at the transmitter that minimizes the expedation strat_egy _at tthhe transmltterfthat mlnln};llze?] thfg ECRB _at Lhe
of the conditional Cramér-Rao bound (ECRB) at the receiver receiver in the presence or jamming for the first ime n the
when the jammer has access to the parameter and alters the literature. The optimal encoding function of the transeriits
received signal by sending an encoded version of the paranest determined among the class of differentiable and monotone
Via calculus of variations, the optimal encoding function & increasing functions based on variational analyses (Riepo
the transmitter is characterized explicitly, and an algorthm 4 1), which leads to nonlinear encoding functions in gahe

is proposed to calculate it. Numerical examples demonstrat - - . .
be,f)eﬁtr,)s of the proposed optimal encoding appFr)oach. (cf. [6]). To determine the optimal encoding function based

Index Terms— Parameter estimation, jamming, Cramér-Rao the theoretical results, an algorithm is proposed (AlgonitL).
bound (CRB), optimization. In addition, the problem is analyzed for the general case
by removing the monotonicity assumption over the encoding

. INTRODUCTION function of the transmitter (Proposition 2).

Communication systems can be vulnerable to various types
of malicious attacks such as eavesdropping and jamming [1] IIl. SYSTEM MODEL AND PROBLEM FORMULATION
(and references therein). While eavesdroppers aim to inferA transmitter sends a scalar parametet A to a receiver
messages between transmitters and receivers, jammers trp\er a noisy and flat-fading channel in the presence of a
disrupt communications among devices in a given networkjammer. The jammer has access to paramétéas in [9]),

In the presence of eavesdropping, secure transmissionebfodes it via a differentiable, real valued functiopnA — T,
scalar and vector parameters is investigated in an estimatfnd sends the encoded parameter to the receiver. The aim is to
theoretic framework in [2]-[4]. In particular, the optimalperform accurate estimation of paramefeat the receiver in
encoding strategy for a scalar parameter is investigaté¢g]in the presence of jamming. To this aim, paramétes encoded
by minimizing the expectation of the conditional CraméeR by a differentiable, real valued functiofi: A — T at the
bound (ECRB) at the intended receiver under a constraint Gansmitter. Accordingly, the received sigrialbecomes
the mean-squared error (MSE) at the eavesdropper. In [@], th _
optimal encoding strategy for estimation theoretic segus Y =hrf(0) +hsg(0) + N (1)
analyzed, where the transmitter is allowed to perform rawhere hr and h; denote the channel fading coefficients
domization between two one-to-one and continuous encodipgtween the transmitter and the receiver and between the
functions and the eavesdropper is fully aware of the engpdifammer and the receiver, respectively, is the noise term,
strategy at the transmitter. which is modeled as a zero-mean Gaussian random variable

Among various studies on jamming of communication sysvith a known variance denoted by?, and N and ¢ are
tems, [5]-[9] formulate the problem of transmitting a paranmassumed to be independent.
eter to a receiver under jamming attacks as a zero-sum game;he prior information on parametéris represented by a
and analyze optimal policies of the transmitter, receivedt a probability density function (PDF) denoted bx(¢) for 6 € A.
jammer under various scenarios. Specifically, [5] inveség Also, the channel coefficients are supposed to be known by
the problem of transmitting a sequence of independent aitg transmitter and the receiver. In addition, it is assumed
identically distributed Gaussian random variables thioag that the receiver knows both mappingé-) and ¢(-), and
Gaussian memoryless channel in the presence of an intgllighe transmitter has the knowledge ¢f-). The motivation
jammer. The optimal policies of the receiver and the jammand justification for these assumptions are as follows:n(ia |
are determined, and the uniqueness of the solution is pravedsensor network in which jamming is caused by another trans-
[6], by relaxing the Gaussian source and channel assungptiamitter in the same network unintentionally, these assumnisti
optimal policies of the transmitter, jammer and receivar acan hold. (i) Under these assumptions, we obtain an upper
obtained. The work in [6] is extended to the zero-deldyound on the estimation performance at the receiver in the
jamming setting in [7]. presence of jamming. (This bound becomes tight when the

In this letter, an optimal parameter encoding problem tsansmitter is smart and the jammer is dummy.) (i) The
proposed for ECRB minimization in the presence of a jammemalysis under these assumptions leads to the best response
A scalar parameter is transmitted over a noisy and flat-tadistrategy of the transmitter for a given jammer strategy,ciwhi
channel to a receiver, and the jammer, which has accessfaums an important step towards a game theoretic analysis.
the parameter as in [9], sends an encoded version of the pafo quantify the estimation accuracy at the receiver, the
rameter to the receiver for degrading estimation perfomaan ECRB is employed as a performance metric since it converges

to the MSE of the maximum a-posteriori probability (MAP)

C. Ozturk and S. Gezici are with the Dept. of Electrical andclibnics astimator in the high SNR regime [10], does not depend on

Engineering, Bilkent University, Bilkent, Ankara 06800urkey, Tel: +90 e : it :
(312) 290-3139, e-mailcuneyd gezidi@ee.bilkent.edu.tr. C. Goken is with specific estimator structures, and facilitates theorktioaly-

the Dept. of Communications and Information Technologiéselsan Inc., S€S (leading to explicit expressions for the optimal encode
Ankara 06800, Turkey, e-mail: cgoken@aselsan.com.tr. function at the transmitter). The ECRB is defined as the



b
expectation of the conditional Cramér-Rao bound [10] and biect t / "0V do < d — 6b
calculated as followsEq{Z(6)~'} = [, w(e)ﬁ df, where subject fo a fo)ddsd—c (6b)

Z(6) denotes the Fisher information, i.e., 1 (0) >0, VO € [a,b] (6c)
dlogpye(y) 2 Next, we replace the constraint in (6¢) by the equality con-
7(0) = / 90 0(y) dy ) straintf’(9) = e+ u2(0) for a sufficiently small number > 0

_ ) . ) and for some functiop(-). We also define a functiot{-) such
with py 4 (y) representing the con_dltlonal PDI_:Yifforaglven that fb #/(0) + t2() d6 = d — ¢. Hence, we can reformulate
value of6. For the system modelin (1)y4(y) is expressed as (g) a5

pyja(y) = (2m0?) 0 exp (—(y—hr f(0)—hsg(9))*/(207)).

. . . . . b
Then, the Fisher information in (2) can be obtained as ??n / w(®) (hrf(8) + th’(G))’Q do (7a)
2(60) = (hrf'(0) + hag'(9))" /0 ©) o ’
where f'(f) and ¢/(9) denote the derivatives of (4) and subject to / F'(0) +1(0)df = d —c (7b)
g(0), respectively. Based on a reasoning similar to that b 5
in [2], the ranges off, g(), and f(f) are modeled as f(0) =p(0) +¢, VO € [a,b] (7¢)

A =a,b], I' = [k,l], and T = [c, d], respectively, for some The following proposition characterizes the solution of. (7

a,b,c,d, k,1 € R. In particular, for € [a,b], f(-) mustbe a  pygposition 1: A solution to (7) admits one of the following
differentiable function that satisfies< f(#) < d. By setting wyo alternative forms:

lower and upper limits orf (), we effectively impose a peak either f'(0) = e for all 0 € [a, b],

power constraint on the transmitted signal, which in tunmiti « or, there exist§) C S C [a, b] such that
the average transmit power, as well. Hence, for giyér), ' T ’
we propose the following optimization problem for paramete fl0)=¢if 08, (8)
encoding at the transmitter: KwN/3 — h.d (0
b > 7'(6) = L) 190) o itpese, (9
: o hr
min / w(6) 5 do (4a) .
I a (hr f'(0) + hyg'(0)) whereS¢ = [a,b] \ S and K is chosen such that
subjectto ¢ < f(0) < d, V6 € [a,b) (4b)

b
/ —
That is, the aim is to obtain the optimal encoding function at /a F(9)do=d-ec. (10)

the transmitter that minimizes the ECRB at the receiver for a .
Proof: Let H(6, f’, u,t,~v,A) be given by

given jammer and under the constraint in (4b).
/ - / / —
I1l. OPTIMAL ENCODING FUNCTION AT TRANSMITTER H(©, ’“’/t’%)‘)z_ w(®)(hr f (93 +hag (9))/
A. f is strictly monotone increasing +A(f1(0) +15(0) +0) (W (O) +e = ['(0)) . (11)

If f is strictly monotone increasingt’(§) > 0 for each Where A\ and v(¢) are Lagrange multipliers. Finding the
9 € [a,b]. By adding the constrainf’(d) > 0 to (4), we extremals of (7) is equivalent to finding the extremals of
formulate the proposed optimization problem as follows: ~ H[f’, i1, t,7], where

2

b b
min / w(®)(hrf'(0) + hyg' (0) °do  (5a) HIf' oty = / H(O, ' st v, \) do. (12)
subject to ¢ < f(0) <d, V0 € [a,b] (5b)  From (11), Euler-Lagrange equations [11, p. 36] ledd to
where the constant term? is removed from the objective af doof —  db ( " (hrf'(0) + hyg' ()
function for notational convenience. It is noted that the ob
jective function in (5a) remains constant if we shift gl6) + - 7(9)) =0 (13)
values by the same scalar number. Due to the monotonicity
of f(-), if we ensure thatf(b) — f(a) < d — ¢, we can find OH  doH _ 24(0)u(0) = 0 (14)
the optimal f(-) up to a constant. We can then adjust this ou  df o'
constant term such thgt-) remains in[c, d]. Another way of O0H d OH 9 ,
writing f(b) — f(a) < d—cis [’ f'(8)dd < d—c. Hence, by 9y dooy M (0) +e—f1(0)=0 (15)
replacing (5b) Withf; f/(0)d9 < d — ¢, we can concentrate OH dOH I\HO) — 0 16
on the following problem: ot door (6) =0. (16)
b Ly (13) implies that there exists a constdiite R such that
win [ w@O) £ ©) +hig @) 0 (63 Shorult)
; - +y0) =K+A. (@17

’ / 3
Lntuitively, the jammer would like to cancel the transnittsignal to set (hTf (9) +hayg (9))
the Fisher _information to zero. However, it does not know e_zhmoder at Multiplying both sides of (17) Withu(@) and using (14) and
the transmitter and can design its encoder based on preerperience.
When the transmitter employs a differential encoding stwtfor ease of
implementation, the jammer can also be modeled to employffarefitial 2The partial derivative notation is used for derivatives hwiespect to
encoding strategy for cancellation purposes. functions; otherwise, the regular derivative notation rigpoyed.



(15), we obtain
2hrw(8)(h)

(hrp2(0) + hre + hg'(0))°
It is noted from (11) that the following relations holdf; =
;—0 Hff/Gh:Twa(g)af, 0, Hff— j2 =0, andHff/
52 = TGP @) thyg (O > 0. Then, the second variation
§2H|¢(n) is given by
1

b
d

2

— (K+Mu(6).  (18)

§°H] s (n)

1 b
/ 77/2Hf/f/ dfd >0

19
: (19)
for any perturbatiom)(d) [11, p. 25]. It is noted that as (19)
holds for any perturbation, it also holds for the admissib
perturbations. Hence, it is deduced that the intervab)
contains no points conjugate te [11, Thm. 2, p. 109].

Based on (19), any(-) satisfying (13)-(16) also satisfies the N

sufficient conditions to be a minimizer of (7) [11 p. 116]
Hence, it is concluded that the resultigfg-) is a minimizer
of (7). Therefore, the aim becomes finding a solutfgn that
satisfies the Euler-Lagrange equations. To obtain a saolukio

can be set to zero; i.els’ = 0. Then, based on (16), there exis

two cases; namelyl = 0 or A # 0: (i) A =0: From (18),
w(0) = 0 is obtained for anyd. Hence, f'(§) = € for all
0 € [a,b] due to (15).(ii) A # 0: From (16) t(8) = 0 for any

6. Hence, the solutiorf(-) should satlsfyfa f'(6)do =d
Moreover,u(-) should satisfy the following equation:

() [(huﬂ(o) + hre + th’(o))?’ _

—C.

fm(e)} —0 (20)

This also means that(® C S(+1), By comparing the ECRB
values corresponding to the encoding functions obtained by
the proposed algorithm anff(6) = ¢, we can determine an
optimal encoding function.

Algorithm 1 Proposed Algorithm for Determining and f/(-)

Inpu': w(')ugl(')?hT:thE-
Output: S, f'(-).
1: To find K, solve the following integral equation

N (KO wON'/S—hre=hg'®) 4o — g _ ¢ — c(b—a)

a

T
7 (0) L3 _hpe—hyg'
(K© (0)) > hre=hs9'(®) for all § € [a, b].

2: Setao(ﬁ) = p
3: Find S = {6 € [a,b] | a0 (0) < 0}
4. if §© =0 then
5. p=0,8+ 59 a() < a(), f'(-) < al) +e
6: else
7. p=1,i+0, RY « [a,0]\ S©.
8: end if
l&: while p = 1 do )
10: i+ i+ 1, and computek by solving the integral equation

fR(% H (K(”w(9))]/i hpe—hyg'(0) d0=d—c—elb—a).
(K“)w(9))1/3 hpe—hyg'(6) for all 9 € R,

Seta;(0) = =
FlndS()—{eeLa bl | ai(#) < 0}
13: RY « [a,b]\ S¢
o if SW\ SUTY = then
: p=0,8 <89 o)« al),f () «al)+e
6: end if
17: end while

Remark 1. When f(-) is strictly monotone decreasing,
— f(-) becomes a strictly monotone increasing function. There-
fore, if we definep(0) = —f(6) for eachd, an optimization
problem in the same form as that in (5) can be formulated and
the same approach as in Section IlI-A can be employed.

Remark 2: The theoretical results in this section can
also be extended for single-input multiple-output systems

where K = 2hr /A, meaning that there exists a seiC [a, b . - !
such thatf’(6) is specified by (8) and (9), anil is chosen " A}hat (g)ase, the (kljlsher information becomeg?)
to satisfy (10). ] g1 (o f1(6) + ’( ))?/o%, where M is the number
By comparing the ECRB values corresponding to the encof- recelvers (antenna&)k is the noise variance of thith re-
ing functions obtained for the two alternatives in Progdositl, ceiver, andz andh ) denote the channel fading coefficients
we can select the encoding function that yields the lowbetween the transmltter and thieh antenna, and between
ECRB. Next, the following corollary is presented. the jammer andkth antenna, respectively. Since the Fisher
Corollary 1: If ¢ is uniformly distributed ang(-) is a linear information can be expressed as a second-degree polynomial
mapping, the optimal encoding function is given by of f'(6) as in (6), the techniques in the proof of Proposition 1
can also be employed for this case.
f0)=c+(d—c)(0—a)/(b—a)

B. f is not necessarily monotone
regardless of the values &f; andhy. In this caser < f(0) < d implies that there exist(-) and

Proof: Under the conditions in the corollary, the ratio(.) such thatf(0) = ¢+ x2(6) and f(6) = d—t2(6) for each

((Kw(8))*/ — hyg'(6))/hr becomes a constant value thap. Then, (4) can be reformulated as
is independent of), which we call L. If we chooselL =

(d—c)/(b—a) and S = 0, it is seen that all of the Euler-
Lagrange equations are satisfied. Therefgtéd) must be

(21)

min

b
i /aw(o)(hTf’(o)+h,;g’(9))*2d9 (22a)

equal ;0 %3 C)éc ((b)— agdfor %9 e)/[f(zl;b]- ';'egce, hf () is subject to f(0) = ¢+ p2(6),76 € [a, b] (22b)
given by = f(a)+(d—¢)(8 —a)/(b—a). By choosing
f(a) = ¢, we find a solution that satisfies all of the Euler- f(0) =d—1%(8),¥6 € [a,0] (22¢)

Lagrange equations and is feasible for (5). B The following proposition characterizes the solution o2)(2

To find the encoding function specified by Proposition 1, Proposition 2: If P = {6 | f(#) = ¢ or f(#) = d} has zero
we should determine sef and parameteK’ such that (8)- measure and there existss R such that
(10) are satisfied. To determing Algorithm 1 is proposed. _ _ _ _
In Algorithm 1, if S(© is not empty, in each iteration> 1,  max c—v(0) — fla) < &< min (o) f(a), (23)
we exclude the interval in which;(#) < 0. Since we have 9€leY] W (0) O€la.b] W (0)

d—c—eb—a)= [, i(0)d) < [p ai(0)do and K(+Y  then anyf(6) = f(a )+(0) +EW (0) that satisfies the Euler-
is computed such that the integral @f;;(f) over the region Lagrange equations is an optimal solut|on for (22), where
R is equal tal—c—e(b—a), itis evident thatk () > K1, 4(0) 2 —h(g(0) — g(a))/hr and W (0) 2 [ w(r)/3 dr.



Proof: Let F(0, f, f', u,t,v"),~?) be given by In Fig. 1, the optimal encoding functionsf(#), are
o plotted for g(d) = 6 and g(d) = 6> when hr/h; €
F@, £, f m:t,9N 43 = w(0) (hr f'(0) + hyg' (0) " + {0.01,0.1,1,10,100}. It is observed thaf (f) = 0 regardless
A O) (12 (0) + ¢ — £(8) + YD (0)(f(0) — d+ t2(8)) (24) of the value ofir/h; wheng(f) = 6; that is, f(6) is2 also
N @) o _linear in accordance with Corollary 1. Wherd) = 6 and
where (V) (6) and v(*)(¢) are Lagrange multipliers. Find- .. — 1, it is known via (8) and (9) thaif'(0) = « if
ing the extremals of (22) is equivalent to finding thg) ¢ 5 and f/(f) = v — 20 if 6 € [0,1] \ S for some
extremals of F(f, f',p,t,7"),4®), which is given by , ¢ R. By choosings = 2 and S = f§, we obtain the desired

Ff, fpt,y M, ~3) = f: FO,f,f,mt,y,~2)db. solution. Hence, the optimal encoding function is given by
From (24), the Euler-Lagrange equations can be obtained f48) = 20 — 02 in that case, as can be verified from Fig. 1.
oF _d oF _ _ . (1)(p @ gy d (__ 2hrw(®) } _  Also, ashr gets significantly larger thah;, the jamming
/ ’7 +’Y + / ’ . . . J . .
of doof (0) (O)+ g (hr f(0)+hyg'(0))° becomes inconsequential and the optimal encoding function
0, £ — d9F — 9,0y = 0, & - LIE . P U . L
' B o oW A ) ot o at’ converges to the linear one. This is intuitive since it is\wno
20072 (0) = 0, 55 — Fzar = H2(0) +c— f(6) = via [2, Prop.1] that in the absence of jamming, the optimal
0, and 8‘9{2) — die% = f(0) — d + t3(9) = 0. encodingfunctionis alinear mapping for uniformly distried
As P defined in Ppoposition 2 is assumed to have zeRframeters.
measure, we concentrate on the caseu¢f) # 0 and 1 U T &t
t(d) # 0. From the first Euler-Lagrange equation above, 0ol [
for some 5 € R, theefollowing relation is obtained: osf a
2hrw(0) _ _ 07t
Tl s = B+ [, (- V() +4@ (1) dr = 5+
Jiao10p (=D (r) + 43 (7)) dr = B. Therefore,f'(§) = sul
((Bw(8))Y/3 — hyg'(8))/hr, where3 = 2hy /3. Then, f(6) o]
2 1/3 ’
is expressed a$(9) = f(a) + f: (ﬁw(‘r)) }:,Tih]g (T) dT' Let il —4— g(0) = 6°,hy = 0.01h;
€2 33 /hp. Then, f(#) can be written as f e |
1 1%1:3&muwi?’"}n 1
f(o) = f(a) + 1!](0) + gw(o) (25) OO 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
0

We must find¢ such thatc < f(8) < d for any 6 € [a,b].

. . . . _Fig. 1. f(0) versusf for two different encoding functions of jammer.
Equivalently,¢ must satisfy the condition in (23) of Proposi-

tion 2. If there exists ng@ satisfying (23), the Euler-Lagrange 102 ‘ ‘ ‘ ‘ :
equations do not yield any solution; otherwis&f) can be
found from (25). If there is such & similar to the proof of w0k
Proposition 1, one can see thB} = Fry = Fyy = 0 and o
Fyrp0 > 0 for eachd. Hence, via similar arguments, we can _ wefolooo TR
argue thatf is the local minimizer of (22). | 3
As a corollary to Proposition 2, i is distributed uniformly, w0
g is a linear function of), and the condition in Proposition 2
holds, it is concluded that the encoding function at thegran w?
mitter is linear as in the monotone case. Furthermore, gfi¢e
andw(-) are known, the knowledge af(-) andW (-) also be- O a5 a0 s o : 0
comes available. Henceyaxgcpq ) (¢ — ¢(0) — f(a)) /W(0) {omlir /i) _ _
and miné)e[a,b] (d—(0) — f(a)) )W(@) can easily be found Fig. 2. ECRB versud0log,y(hr/h) for different encoding functions.

in terms of f(a). By adjusting the value off(a), one can ) ) )
determine whether the condition in (23) is satisfied. ~ For comparison purposes, we consider the encoding func-
Remark 3: Since the optimal encoding functions in Propostion in [2], which is optimal in the absence of jamming (and
tions 1 and 2 are local minimizers, we can compare the ECRB8UId be used if the transmitter were unaware of jamming).
achieved by these encoding functions and choose the one {Rahat case, the encoding function, denoted/t§§), has the
achieves the lower ECRB. following derivative [2]: /() = (d — c)w(@)/ffw(@)l/?’ dé.
In Fig. 2, the ECRB values achieved lfy¢) (proposed in this
work) and f(6) are plotted versuar/h; for g(6) = 6 and
g(0) = 0%. Forg() = 0, () = f(0); hence, the same ECRB
In this section, a numerical example is presented wheerformance is attained. Fg(f) = 62, the proposed encoding
parameterd is uniformly distributed betweef and 1; that function leads to lower ECRB values especially far < h,
is, A = [a,b] with « = 0 andb = 1. In other words, demonstrating the benefits of the proposed optimal encoding
w(f) = 11if 6 € [0, 1] andw(#) = 0 otherwise. We restrict our approach. Also, fohr < h;, the ECRB values are lower for
search space to strictly monotone increasing mapping$éor the case of;(d) = 6 than the case with(6) = §2. This means
encoding functionf(-) at the transmitter. Also, two differentthat the linear mapping at the jammer is not as destructive fo
encoding functions are considered for the jammeg(@3 = ¢ the ECRB performance at the receiver as the nonlinear one in
and g(9) = 62. Hence,g(f) € T = [k,l] with k£ = 0 and this scenario. Moreover, whelar is significantly larger than
I = 1. In addition, it is assumed that the range of the encodirkg;, all the ECRB values converge since the signhal component
function f(-) is given by|0, 1]. In the simulations¢ in (7) is due to the transmitter becomes dominant at the receiver and
set t00.001 and the variance o in (1) is given byo? = 1.  the encoding functions become the same as seen in Fig. 1.

IV. NUMERICAL RESULTS AND CONCLUSIONS
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