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Signaling Games for Log-Concave Distributions:
Number of Bins and Properties of Equilibria

Ertan Kazıklı, Serkan Sarıtaş, Sinan Gezici, Tamás Linder, and Serdar Yüksel

Abstract—We investigate the equilibrium behavior for the
decentralized cheap talk problem for real random variables and
quadratic cost criteria in which an encoder and a decoder have
misaligned objective functions. In prior work, it has been shown
that the number of bins in any equilibrium has to be countable,
generalizing a classical result due to Crawford and Sobel who
considered sources with density supported on [0, 1]. In this paper,
we first refine this result in the context of log-concave sources.
For sources with two-sided unbounded support, we prove that,
for any finite number of bins, there exists a unique equilibrium.
In contrast, for sources with semi-unbounded support, there may
be a finite upper bound on the number of bins in equilibrium
depending on certain conditions stated explicitly. Moreover, we
prove that for log-concave sources, the expected costs of the
encoder and the decoder in equilibrium decrease as the number
of bins increases. Furthermore, for strictly log-concave sources
with two-sided unbounded support, we prove convergence to the
unique equilibrium under best response dynamics which starts
with a given number of bins, making a connection with the
classical theory of optimal quantization and convergence results
of Lloyd’s method. In addition, we consider more general sources
which satisfy certain assumptions on the tail(s) of the distribution
and we show that there exist equilibria with infinitely many bins
for sources with two-sided unbounded support. Further explicit
characterizations are provided for sources with exponential,
Gaussian, and compactly-supported probability distributions.

Index Terms—Cheap talk, signaling games, Nash equilibrium,
optimal quantization, Lloyd–Max algorithm, payoff dominant
equilibria.

I. INTRODUCTION

Signaling games and cheap talk are concerned with a class
of Bayesian games where a privately informed player (encoder
or sender) transmits information (signal) to another player
(decoder or receiver), who knows the probability distribution
of the private information observed at the encoder. In these
games/problems, the objective functions of the players are
not aligned, unlike in classical communication problems. The
cheap talk problem was introduced in the economics literature
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by Crawford and Sobel [2], who obtained the striking result
that under some technical conditions on the cost functions,
the cheap talk problem only admits equilibria that involve
quantized encoding policies, i.e., the observation space is
partitioned into intervals and the encoder reveals the interval
its observation lies in, rather than revealing the observation
completely. This is in significant contrast to the usual commu-
nication/information theoretic case where the objective func-
tions are aligned. Therefore, as indicated in [2], the amount of
information that can be revealed by the encoder depends on
the similarity of the players’ interests (objective functions). In
other words, the message about the private information should
be strategically designed and transmitted by the encoder.
In this paper, we discuss extensions and generalizations of
some results concerning strategic information transmission
and cheap talk under quadratic cost criteria by focusing on
log-concave sources as well as more general sources which
satisfy certain assumptions (rather than sources with a density
supported on [0, 1] as studied in [2]).

A. Problem Definition

The focus of this paper is to address the following problems:
1) Number of Bins: In a previous work [3], it is shown

that, since the distances between the optimal decoder actions
are lower bounded due to [3, Theorem 3.2], the quantized
nature of an equilibrium holds for arbitrary scalar sources,
rather than only for sources with a density supported on [0, 1]
as studied in the seminal paper by Crawford and Sobel [2].
Hence, for bounded sources, it can easily be deduced that
the number of bins at the equilibrium must be bounded. For
example, for a uniform source on [0, 1] and quadratic objective
functions, [2] provides an upper bound on the number of
quantization bins as a function of the bias b, which appears in
the objective function of the encoder and quantifies the degree
of misalignment between the objectives of the encoder and
decoder. Accordingly, for unbounded sources, the following
problems are of interest:

• For sources with either semi-unbounded or two-sided
unbounded support on the real line, is there an upper
bound on the number of bins at an equilibrium as a
function of the bias b? As a special case, is it possible to
have only a non-informative equilibrium; i.e., the upper
bound on the number of bins is one?

• Is it possible to have an equilibrium with infinitely many
bins?

• Is the equilibrium unique for a given number of quanti-
zation bins?
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At this point, one can ask why bounding the number of bins
is important. Finding such a bound is useful since if one can
show that there only exists a finite number of bins, and if
the equilibrium is unique for a given number of bins, then
the total number of equilibria is finite; this will allow for
a feasible setting where the decision makers can coordinate
their policies. It is also interesting to investigate upper bounds
on the number of bins in equilibrium from a communication
theoretic perspective. In particular, even though the talk is
cheap, the communication between the encoder and decoder
becomes limited by the upper bound on the number of bins
in equilibrium. This can be useful in network design where
communication resources may not be wasted when they are
not needed.

Furthermore, in a recent work, where signaling games
and cheap talk problems are generalized to dynamic (multi-
stage) setups, a crucial property that allowed the generalization
was the assumption that the number of bins for each stage
equilibrium, conditioned on the past actions, is uniformly
bounded [4, Theorem 5]. In view of this, showing that the
number of bins is finite is a useful technical result.

2) Equilibrium Costs: Attaining the upper bound N on the
number of bins at an equilibrium implies that there exists at
least one equilibrium with each of 1, 2, . . . , N bins for the
bounded support scenario due to [2, Theorem 1], and thus, a
new question arises: among these multiple equilibria, which
ones induce smaller expected cost simultaneously for both of
the players? Results in [2] show that under certain assumptions
an equilibrium with more bins induces smaller expected costs
for both the encoder and the decoder for a source with a
density supported on [0, 1]. Accordingly, for more general
sources, the problem is to see how the expected costs of the
players in equilibrium behave with respect to number of bins.
This is known as the payoff dominant equilibrium selection
property [5]. This also allows for a well-posed coding problem
as one would like to design a coding scheme that is payoff
dominant for both the encoder and the decoder.

3) Convergence to Equilibria: The interaction between
the encoder and decoder can be viewed as a quantization
game where the encoder decides on quantization bins and the
decoder decides on reconstruction values. One might wonder
how an equilibrium point is reached in this quantization game.
For instance, the players may act sequentially by computing
their best responses, which corresponds to a repeated play of
the considered quantization game. Then, a problem of interest
is to see whether these best response iterations converge to an
equilibrium. Another related issue is that if they start from an
arbitrary quantization policy with N bins, is it the case that
these best response iterations converge to an equilibrium with
N bins?

B. Preliminaries

In this paper, we consider the communication model in-
troduced by Crawford and Sobel [2] and specialize to the
quadratic cost setup as explained below. In this model, there
are two players with misaligned objective functions. An in-
formed player (encoder) knows the value of an M-valued

random variable M and transmits an X-valued random vari-
able X to another player (decoder), who generates an M-
valued decision U upon receiving X . The policies of the
encoder and the decoder are assumed to be deterministic; i.e.,
x = γe(m) and u = γd(x) = γd(γe(m)). Let ce(m,u)
and cd(m,u) denote the cost functions of the encoder and
the decoder, respectively, when the action u is taken for
the corresponding message m. Then, given the encoding
and decoding policies, the encoder’s induced expected cost
is Je

(
γe, γd

)
= E [ce(M,U)], whereas the decoder’s in-

duced expected cost is Jd
(
γe, γd

)
= E

[
cd(M,U)

]
. Here,

we assume real valued random variables and quadratic cost
functions; i.e., M = X = R, ce (m,u) = (m− u− b)

2

and cd (m,u) = (m− u)
2, where b ∈ R denotes a bias

term which is common knowledge between the players. The
encoder essentially wishes to introduce a certain amount of
bias for the action taken by the decoder. We assume that the
encoder and the decoder announce their policies at the same
time. Then, a pair of policies (γ∗,e, γ∗,d) is said to be a Nash
equilibrium (e.g., [6]) if

Je(γ∗,e, γ∗,d) ≤ Je(γe, γ∗,d) for all γe ∈ Γe,

Jd(γ∗,e, γ∗,d) ≤ Jd(γ∗,e, γd) for all γd ∈ Γd,
(1)

where Γe and Γd are the sets of all deterministic (and Borel
measurable) functions from M to X and from X to M,
respectively. As observed from the definition in (1), under a
Nash equilibrium, each individual player chooses an optimal
strategy given the strategy chosen by the other player.

The quantized nature of Nash equilibria for cheap talk
problem [2] motivates the following definition of a scalar
quantizer.

Definition 1. An N -cell scalar quantizer, q, is a (Borel)
measurable mapping from M = R to the set {1, 2, . . . , N}
characterized by a measurable partition {B1, B2, . . . , BN}
such that Bi = {x | q(x) = i} for i = 1, 2, . . . ,M and that bin
probabilities are strictly positive. The Bi are called the bins
(or cells) of q.

Due to results obtained in [2] and [3], we know that the
encoder policy consists of convex bins at a Nash equilibrium1.
Namely, at a Nash equilibrium, the encoder must employ
quantization policies with the cells Bi in Definition 1 being
intervals.

Now consider an equilibrium with N bins. At this equilib-
rium, let kth bin be the interval [mk−1,mk) for k = 1, . . . , N
where m0 < m1 < . . . < mN denote bin edges. Let lk
denote the length of the kth bin; i.e., lk = mk − mk−1

for k = 1, 2, . . . , N . Note that for an equilibrium with N
bins, we have m0 = mL and mN = mU for sources with
bounded support with mL and mU denoting lower or upper
boundaries, respectively. In the case of sources with semi-
unbounded support, we have m0 = mL and mN = +∞, or
m0 = −∞ and mN = mU whereas in the case of sources

1We note that, unlike Crawford and Sobel’s simultaneous Nash equilibrium
formulation, if one considers a Stackelberg formulation (see [6, p. 133] for a
definition), then the problem reduces to a classical communication problem
since the encoder is then committed a priori and the equilibrium is not
quantized; i.e., there exist affine equilibria [3], [4], [7]–[9].
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with two-sided unbounded support, we have m0 = −∞
and mN = +∞. Here, the encoder reports the interval its
observation lies in. This can be represented by a quantization
policy with γe(m) = k when [mk−1,mk) for k = 1, . . . , N .
In this representation, the decoder knows that receiving k
means the encoder observed m ∈ [mk−1,mk). Due to [2,
Theorem 1] and [3, Theorem 3.2], we have the following
equilibrium conditions for our problem. At an equilibrium,
decoder’s best response to encoder’s action is characterized
by

uk = E[M |mk−1 ≤ M < mk] (2)

for k = 1, . . . , N ; i.e., the optimal decoder action is the
centroid for the corresponding bin. From the encoder’s point
of view, the best response of the encoder to decoder’s action
is determined by the nearest neighbor condition2 as follows:

uk+1 −mk = (mk − uk)− 2b ⇔ mk =
uk + uk+1

2
+ b

(3)

for k = 1, . . . , N−1. Due to the definition of Nash equilibrium
in (1), these best responses in (2) and (3) must match each
other, and only then can the equilibrium be characterized; i.e.,
for a given number of bins, the positions of the bin edges are
chosen by the encoder, and the centroids are determined by
the decoder. Alternatively, the problem can be considered as
a quantization game in which the boundaries are determined
by the encoder and the reconstruction values are determined
by the decoder.

Based on the above, the problems we consider in this paper
can be formulated more formally as follows:

1) Number of Bins: For a given finite (or infinite) N , does
there exist an equilibrium with N bins; i.e., is it possible
to find optimal encoder actions (the boundaries of the bins)
m0,m1, . . . ,mN and decoder actions (the centroids of the
bins) u1, u2, . . . , uN which satisfy (2) and (3) simultaneously?
In relation to this problem, we introduce the following def-
inition regarding the maximum possible number of bins in
equilibrium for a given problem setup.

Definition 2. For a given source density and a certain bias b,
we define the maximum possible number of bins in equilib-
rium as follows:

Nmax(b) ≜ sup{N ≥ 1 | there exists an
equilibrium with N bins}. (4)

Remark 1. Note that Nmax(b) < ∞ implies that there is a
finite upper bound on the number of bins in equilibrium, while
if Nmax(b) = ∞, then there exist equilibria with an arbitrarily
large number of bins.

2) Equilibrium Costs: An equilibrium is more informative
(than another one) if it results in smaller expected costs
for both the encoder and the decoder. Let Je,N and Jd,N

denote the encoder cost and the decoder cost, respectively,

2Although this condition can be viewed as a nearest neighbor condition
with a bias term, we simply use the term nearest neighbor condition as in the
quantization theory literature.

at an equilibrium with N bins. Then, the aim is to see if
Jd,N > Jd,N+1 holds or not for all finite N .3

3) Convergence to Equilibria: Consider an initial arbitrary
set of ordered bin edges m0,m1, . . . ,mN that does not
necessarily lead to an equilibrium where m0 and mN corre-
spond to boundaries of the support for the source distribution.
Suppose that the encoder and decoder iteratively compute their
best responses by taking the centroid conditions and nearest
neighbor conditions (i.e., (2) and (3)) into account by which
bin edges m1,m2, . . . ,mN−1 and centroids u1, . . . , uN are
updated iteratively. Then, the aim is to see whether these
bin edges and centroids converge to an equilibrium with N
bins as a result of best response iterations. This correspond
to modified Lloyd’s Method I [10] where the modification
specific to our setting is due to the bias term in (3).

C. Related Literature

Cheap talk and signaling game problems find applications
in networked control systems when a communication chan-
nel/network is present among competitive and non-cooperative
decision makers [6], [11]. Also, there have been a number
of related results in the economics and control literature in
addition to the seminal work by Crawford and Sobel, which
are reviewed in [3], [4] (see [12] for an extensive survey). We
note that although Crawford and Sobel’s simultaneous-move
Nash formulation is considered in this paper, the signaling
games literature also focuses on the sequential-move Stack-
elberg formulation, which is also referred to as the Bayesian
persuasion problem in the economics literature [7]–[9], [13]–
[17].

In addition to seminal work in [2], there have been many
contributions to signaling game problems from a variety of as-
pects in the economics literature [18]–[27]. For instance, a set
of related works analyzes multidimensional cheap talk prob-
lems [18]–[21]. Interestingly, in contrast to one-dimensional
cheap talk model of Crawford and Sobel [2], in certain
scenarios, the sender may reveal certain information to the
decoder fully for the cheap talk problems with multiple senders
considered in [18], [20], [21]. The work in [22] considers a
cheap talk setup where with some probability the decoder
does not observe the message transmitted by the encoder
and instead observes a message coming from a distribution
which is statistically independent of the encoder’s transmission
and the source. This setup reduces to Crawford and Sobel’s
formulation [2] when the probability of error is zero. They
show the quantized nature of the equilibria with convex bins
(i.e., intervals) in such a noisy communication setting. The
work in [27] considers a cheap talk setup with two senders
communicating with a receiver and an interesting observation
is that more information revelation by one sender incentives
more information revelation by the other sender. Furthermore,
in [25], the authors consider a strategic communication setting
where the cost function of the sender depends on the conveyed
message, which leads to a departure from the cheap talk setup

3It suffices to consider the expected cost of one of the players since
Remark 8 shows that for a given equilibrium with N bins, we have that
Je,N = Jd,N + b2.
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of Crawford and Sobel [2]. In particular, it is costly for the
sender to convey inaccurate information (i.e., there is a certain
cost for lying). Unlike in [2], there exists fully revealing
equilibria under certain conditions in [25].

The quantized nature of the equilibrium connects game
theory with the quantization theory. For a comprehensive
survey regarding the history of quantization and results on the
optimality and convergence properties of different quantization
techniques (including Lloyd’s methods), we refer to [28]. In
particular, [29] shows that, for sources with a log-concave
density, Lloyd’s Method I converges to the unique optimal
quantizer. It is shown in [30] and [31] that Lloyd’s Method I
converges to the globally optimal quantizer if the source den-
sity is continuous and log-concave, and if the error weighting
function is convex and symmetric. For sources with bounded
support, the condition on the source is relaxed to include all
continuous and positive densities in [32], and convergence of
Lloyd’s Method I to a (possibly) locally optimal quantizer is
proven. The number of bins of an optimal entropy-constrained
quantizer is investigated in [33], and conditions under which
the number of bins is finite or infinite are presented. As
an application to smart grids, [34] considers the design of
signaling schemes between a consumer and an electricity
aggregator with finitely many messages (signals); the best
responses are characterized and the maximum number of
messages (i.e., quantization bins) are found using Lloyd’s
Method II via simulation. The work in [35] studies evolution
of language in social networks by modeling the problem as a
quantization game where information spreads over a network
of strategic decision makers. The authors show convergence to
equilibria via a distributed version of the Lloyd-Max algorithm
for the considered setup.

The existence of multiple quantized equilibria necessitates
a theory to specify which equilibrium point is the solution
of a given game. Two different approaches can be taken
to achieve a unique equilibrium. One of them reduces the
multiplicity of equilibria by requiring that off-the-equilibrium-
path beliefs satisfy an additional restriction (e.g., by shrinking
the set of players’ rational choices) [36], [12]. As introduced
in [5], the other approach presents a theory that selects a
unique equilibrium point for each finite game as its solution;
i.e., one and only one equilibrium points out of the set of
all equilibrium points of this kind (e.g., see [37] for the
application). Our results have implications on an equilibrium
selection criterion known as payoff dominant equilibria [5]. In
particular, we show that for the signaling game setup with log-
concave sources and quadratic cost structure, an equilibrium
with more bins is more informative since an equilibrium with
more bins leads to reduced expected costs for both of the
players. The work [38] introduces the notion of no incentive
to separate (NITS) condition for selection among multiple
equilibria for general cheap talk problems where they associate
a special meaning to the smallest source realization in certain
applications in economics.

As mentioned earlier, signaling game problems are also
investigated under Stackelberg equilibria where one of the
players is committed a priori [7]–[9], [13]–[17], [39]–[42].
For instance, the works in [8], [41], [42] consider problems

under the Stackelberg equilibrium concept with a biased sender
where the cost functions are quadratic, and the source and
bias are modeled as jointly Gaussian random variables. The
problem of strategical coordination is considered in [14]–
[16]; specifically, the information design and a point-to-point
strategic source-channel coding problems (originated from the
Bayesian persuasion game [13]) between an encoder and a
decoder with non-aligned utility functions is investigated under
the Stackelberg equilibrium. In addition, [39], [40] investigate
communication scenarios between a sender and a receiver such
that the receiver is the Stackelberg leader and aims to recover
the source sequence as correct as possible. Due to the strategic
nature of the sender, not all the transmitted information is
truthful. Under this setting, the authors investigate how much
true information can be recovered by the receiver from such
a sender. They propose the notion of information extraction
capacity from the strategic sender, which quantifies the growth
rate of the number of recovered sequences with the block-
length.

D. Contributions

(i) For log-concave sources with two-sided unbounded sup-
port, we prove that for any N ∈ N, there exists a unique
equilibrium with N bins regardless of the value of b, i.e.,
there is no finite upper bound on the number of bins in
equilibrium (Theorem 4).

(ii) For log-concave sources with semi-unbounded support,
we show that when the support extends to +∞ and b < 0,
or the support extends to −∞ and b > 0, there exists a
finite upper bound on the number of quantization bins
in equilibrium and that for any N less than or equal to
this upper bound there exists a unique equilibrium with
N bins (Theorem 5). Otherwise, for any N ∈ N, there
exists a unique equilibrium with N bins.

(iii) We prove that an equilibrium with more bins is more
informative for log-concave sources, i.e., the equilibrium
costs of the encoder and the decoder decrease as the
number of bins increases (Theorem 7).

(iv) We show that for a source with a strictly log-concave
density and two-sided unbounded support, if the encoder
and the decoder iteratively compute their best responses
starting from an initial set of bin edges with N bins,
then it is guaranteed that these bin edges converge to the
unique equilibrium with N bins regardless of the value
of b (Theorem 8).

(v) For sources with semi-unbounded support extending to
+∞ and under certain assumptions, we prove that there
exists a finite upper bound on the number of bins in
equilibrium when b < 0 whereas for b > 0 there exist
equilibria with infinitely many bins (Theorem 10).

(vi) For sources with two-sided unbounded support and under
certain assumptions, we show that there exist equilibria
with infinitely many bins (Theorem 12).

(vii) For log-concave sources, we prove that there exist equi-
libria with infinitely many bins in the cases when there
does not exist a finite upper bound on the number of bins
in equilibrium (Corollary 1 and Corollary 2).
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(viii) For exponential sources, we obtain an upper bound on the
number of bins in equilibrium for b < 0 (Proposition 2).
On the other hand, for b > 0, we prove that there
exists a unique equilibrium with infinitely many bins
(Theorem 13). Furthermore, the equilibrium costs are
shown to achieve their minimum at the equilibrium with
infinitely many bins (Theorem 14).

II. SOME RELEVANT PRIOR RESULTS

In this section, we review and discuss closely related prior
results in the literature. In this paper, we touch upon all of
these listed results and extend them. To begin with, in their
seminal paper [2], Crawford and Sobel prove the quantized
nature of Nash equilibria under certain technical assumptions
for sources with a density supported on [0, 1]. It should be
emphasized that the result of Crawford and Sobel holds for
more general cost functions which satisfy certain conditions.
These conditions hold for the quadratic criteria analyzed in this
paper. In the next theorem, ue(m) and ud(m) are defined as
ue(m) ≜ argminu c

e(m,u) and ud(m) ≜ argminu c
d(m,u)

where ce(m,u) and cd(m,u) denote the cost function of
the encoder and decoder, respectively, and the former term
depends also on the bias term b. As noted earlier, here we
only consider the Nash (simultaneous) setup, and not the
Stackelberg (Bayesian persuasion) setup.

Theorem 1 (Crawford and Sobel [2, Theorem 1] ). Let M be a
real-valued random variable which admits a density supported
on [0, 1]. Suppose that ue(m) ̸= ud(m) for all m. Then, there
exists at least one equilibrium with a quantization policy at
the encoder where there are N quantization bins with 1 ≤
N ≤ Nmax(b) and Nmax(b) ∈ N denoting the upper bound
on the number of bins.4 Furthermore, an encoding policy at
an equilibrium is equivalent to a quantized encoder policy in
terms of the performance at the equilibrium.

It is also possible to consider arbitrary scalar valued random
variables and to show the quantized nature of Nash equilibria
in this case, as well. Namely, the following result applies
to arbitrary scalar valued random variables, not necessarily
sources on [0, 1] that admit densities. Here, the costs functions
are assumed to be quadratic, which is also the case in this
paper.

Theorem 2 (Sarıtaş et al. [3, Theorem 3.2 and Theorem 3.4]).
Let M be a real-valued random variable with an arbitrary
probability measure. Let the strategy set of the encoder con-
sists of the set of all measurable (deterministic) functions
from M to X. Then, an equilibrium encoder policy has to be
quantized almost surely, that is, it is equivalent to a quantized
policy for the encoder in the sense that the performance of any
equilibrium encoder policy is equivalent to the performance
of a quantized encoder policy. Furthermore, the quantization
bins are convex. In addition, the quantized nature of equilibria
does not necessarily hold when the source is vector-valued.

4In [43], the authors show that while this statement is correct, the proof in
[2] relies on some incorrect statements and gives an example for which this
proof fails. A correct version of the proof is given in [43].

A set of related results involves multi-stage (dynamic)
cheap talk game setup considered in [4]. In particular, [4,
Theorem 3] establishes the quantized nature of the last stage in
a repeated cheap talk game and [4, Theorem 5] makes further
assumptions on the single-stage setup to prove that encoding
policies at all stages must be quantization policies with a finite
number of bins at each stage. In this latter result, it is assumed
that there exists an upper bound on the number of bins at the
equilibria in addition to an upper bound on the number of
equilibria for a given number of bins. It is noted that this
paper draws conclusions regarding these assumptions for log-
concave sources.

Moreover, our results in this paper are closely related
to some foundational results by Kieffer [31] where optimal
quantization in the classical sense (i.e., in a team theoretic
setup5) is considered. This problem can be viewed as a com-
munication problem where an encoder decides on quantization
bins and a decoder determines reconstruction values where
the encoder and the decoder wishes to minimize a common
cost function. In this setting, [31] shows that if the source is
log-concave there exists a unique locally optimal quantization
policy for a given number of bins under a set of assumptions
on the common cost function. The uniqueness result makes the
corresponding quantizer globally optimal for a given number
of bins.

Theorem 3 (Kieffer [31]). If the source is log-concave and the
common cost function is convex, strictly increasing and contin-
uously differentiable, then there exists a unique locally optimal
quantizer and Lloyd-Max iterations (i.e., Lloyd’s Method I)
converge to this quantizer.

Note that the special case of quadratic cost criteria with
b ̸= 0 is analyzed in this paper. For the case of b = 0 leading
to a team theoretic setup, Theorem 3 quoted above proves the
uniqueness of the optimal quantizer for a given number of
bins and in addition to convergence to this optimal quantizer
via Lloyd-Max iterations. In that respect, this paper generalizes
these uniqueness and convergence results to the game theoretic
setup where b ̸= 0. We will use Kieffer’s analysis in some
crucial steps of our paper.

III. NASH EQUILIBRIA FOR SOURCES WITH
LOG-CONCAVE DISTRIBUTIONS

Before presenting our results, we make the following defi-
nitions.

Definition 3. A probability density function f on R is said to
be (strictly) log-concave if log f is a (strictly) concave function
on the support of f where the support is an interval.

We note that distributions such as Gaussian, exponential,
Laplace, Rayleigh and uniform, which are commonly encoun-
tered in information and communication theoretic applications,
are log-concave (see Section V for more specific results
for the cases where the source is exponential, Gaussian and

5A setup is referred to as team theoretic if all the decision makers in the
system wish to minimize a common objective function, and thus share a
common goal.
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uniform). The reader is referred to [44] to see a list of common
distributions which are log-concave or log-convex.

Definition 4. For a probability density function f , we say that:
(i) f has a two-sided unbounded support if its support is R.

(ii) f has a semi-unbounded support if its support is either
an interval in the form (−∞,mU ] or an interval in the
form [mL,∞) for some mU ,mL ∈ R.

(iii) f has a bounded support if f(x) = 0 for all x /∈
[mL,mU ] for some −∞ < mL < mU < ∞.

A. Existence and Uniqueness of Equilibria

In the following theorem, we present existence and unique-
ness results for sources with a log-concave density and two-
sided unbounded support. Note that an equilibrium N = 1
bins is equivalent to the case where the encoder and decoder
do not communicate, as remarked below.

Remark 2. If there is only one bin; i.e., N = 1, then an
equilibrium is called a non-informative (babbling) equilibrium
[2]. Under such an equilibrium, the encoder transmits a
message that is independent of the source and the decoder
takes an action only by considering prior distribution of the
source (since the received message is useless).

Theorem 4. Consider a source that has a log-concave density
with two-sided unbounded support. Then, Nmax(b) = ∞ and
for any N ≥ 1, there exists a unique equilibrium with N bins.

Proof. See Section VII-A.

Remark 3. In the proof of Theorem 4, we employ the property
that the mean of a source with a log-concave density is finite.
This finite mean property follows from the fact that the tails of
a log-concave density are at most exponential [45, Lemma 1].
In the following, we restate this result for the special case of
densities defined on R.

Lemma 1 ( [45, Lemma 1] ). For a log-concave density f
defined on R, there exists a > 0 and b ∈ R such that f(x) ≤
exp(−a|x|+ b) for all x ∈ R.

Remark 4. It is noted that in the proof of Theorem 4 the source
distribution is assumed to be strictly log-concave. In fact, the
result holds for distributions which are only log-concave. In
that case, for the result to hold, it is required that the density
is not log affine everywhere. This is indeed true for a log-
concave distribution with two-sided unbounded support.

Remark 5. For a source log-concave density with two-sided
unbounded support, there also exist equilibria with infinitely
many bins (see Corollary 2). In order to prove this result, we
show that a log-concave density satisfies the assumptions made
in Section IV where the proof for existence of infinitely many
bins essentially relies on Tychonoff’s fixed-point theorem [46].

Theorem 4 reveals that there does not exist a finite upper
bound on the number of bins for an equilibrium consider-
ing log-concave sources with two-sided unbounded support.
Namely, there exist countably infinite number of distinct
equilibria for log-concave sources with two-sided unbounded
support.

In the proof of Theorem 4, we build on the idea that
one can obtain equilibria with higher number of bins by
varying the left-most or right-most bin edge depending on
the sign of the bias b. A similar approach is taken in [2,
Theorem 1] for sources with a bounded support where the
authors first prove the existence of an upper bound on the
number of bin in equilibrium denoted by Nmax(b) and then
show the existence of an equilibrium with N bins for each
N ∈ {1, . . . , Nmax(b)}. In contrast, Theorem 4 already reveals
that there does not exist a finite upper bound on the number
of bins in equilibrium in the case of log-concave sources
with two-sided unbounded support. Note also that in the case
of sources with a bounded support, the problem reduces to
proving the existence of solutions to difference equations with
given initial and terminal conditions, which do not exist in
the case of sources with two-sided unbounded support. With
these observations, we begin with proving the existence of an
equilibrium with N = 2 bins and then by varying the left-
most or right-most bin edge we increment N one by one. We
also note that in the case of sources with a bounded support
an additional monotonicity assumption (M) with regard to
the behavior of bin edges guarantees the uniqueness of an
equilibrium for a given number of bins as stated in [2,
Lemma 3]. In contrast, in Theorem 4 of this paper, we prove
the existence and uniqueness results together in the case of
(log-concave) sources with two-sided unbounded support.

The uniqueness result of Theorem 4 is related to the classi-
cal results for optimal quantization in [30] and [31] where the
aim is to find quantization bins and reconstruction values that
minimize a common cost function (i.e., team theoretic setup).
As stated in Theorem 3 of this paper, [31] particularly focuses
on optimal quantization of log-concave sources and proves the
uniqueness in such a team theoretic setup.

The existence and uniqueness results of Theorem 4 can
be generalized to sources with semi-unbounded support. In
contrast, for sources with semi-unbounded support, there may
be a finite upper bound on the number of bins depending on
the sign of b.

Theorem 5. (i) Consider a source that has a log-concave
density with a support on [mL,∞) for some mL ∈ R. If
b > 0, then Nmax(b) = ∞, and for any N ≥ 1, there
exists a unique equilibrium with N bins.

(ii) Consider a source that has a log-concave density with
a support on [mL,∞) for some mL ∈ R. If b < 0,
then Nmax(b) < ∞, and for any N satisfying 1 ≤ N ≤
Nmax(b), there exists a unique equilibrium with N bins.

(iii) Consider a source that has a log-concave density with a
support on (−∞,mU ] for some mU ∈ R. If b < 0, then
Nmax(b) = ∞, and for any N ≥ 1, there exists a unique
equilibrium with N bins.

(iv) Consider a source that has a log-concave density with
a support on (−∞,mU ] for some mU ∈ R. If b > 0,
then Nmax(b) < ∞, and for any N satisfying 1 ≤ N ≤
Nmax(b), there exists a unique equilibrium with N bins.

Proof. See Section VII-B.

Remark 6. In the case of semi-unbounded support, the result
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of Theorem 5 holds even for densities which are log affine
everywhere on its support. In fact, the exponential distribution,
which is investigated in more detail in the paper, is an example
of such a distribution.

Remark 7. For a source with a log-concave density and semi-
unbounded support, in the cases when there does not exist a
finite upper bound on the number of bins in equilibrium, there
also exist equilibria with infinitely many bins (see Corollary 1).
This result is obtained by showing that a log-concave density
satisfies the assumptions made in Section IV.

The following theorem specifies a necessary and sufficient
condition for the existence of an informative equilibrium,
which is proven in a similar manner to Theorem 5.

Theorem 6. (i) For a source that has a log-concave density
with a support on [mL,∞) for some mL ∈ R and has a
mean E[M ] = µ, the only equilibrium is non-informative
if 2b ≤ −(µ −mL). Otherwise, there exists an (unique)
equilibrium with two bins.

(ii) For a source that has a log-concave density with a
support on (−∞,mU ] for some mU ∈ R and has a
mean E[M ] = µ, the only equilibrium is non-informative
if 2b ≥ (mU − µ). Otherwise, there exists an (unique)
equilibrium with two bins.

Proof. See Section VII-C.

We note that for sources with a density supported on [0, 1]
Crawford and Sobel prove that for a given b there exists a finite
upper bound on the number of bins expressed as Nmax(b) and
that for any 1 ≤ N ≤ Nmax(b) there exists an equilibrium
with N bins in [2, Theorem 1] (see Theorem 1 of this paper).
This existence result is valid even for a source without a log-
concave density. As mentioned earlier, [2, Lemma 3] presents
a uniqueness result for sources with a bounded support under
an additional monotonicity assumption (M). In fact, [47,
Theorem 1] shows that this monotonicity condition (M) holds
for compactly supported log-concave source distributions, and
thus, establishes the uniqueness of equilibrium for a given
number of bins by using [2, Lemma 3]. We also note that our
result in Lemma 4 when applied to compactly supported log-
concave source distributions also reveals that the monotonicity
condition (M) holds.

B. Equilibrium Costs

So far, the number of bins at the equilibria has been
investigated for sources with two-sided unbounded support
and semi-unbounded support. At this point, it is interesting to
examine the behavior of the encoder’s and decoder’s expected
costs in equilibrium with respect to number of bins. In the
following theorem, we show that an equilibrium with N bins
payoff dominates an equilibrium with K bins if K < N [5].
In other words, an equilibrium with N bins leads to a smaller
expected cost for both of the player than an equilibrium with
K bins if K < N . Before presenting this result, we first
make the following remark regarding the relation between the
expected costs of the encoder and decoder in equilibrium.

Remark 8. Note that at an equilibrium of this quantization
game, the relation between the encoder cost and the decoder
cost can be expressed as follows:

Je(γ∗,e, γ∗,d) =
N∑
i=1

Pr(mi−1 ≤ M < mi)

× E
[
(M − E[M |mi−1 ≤ M < mi]− b)2|mi−1 ≤ M < mi

]
=

N∑
i=1

Pr(mi−1 ≤ M < mi)
(
b2

+ E
[
(M − E[M |mi−1 ≤ M < mi])

2|mi−1 ≤ M < mi

] )
= Jd(γ∗,e, γ∗,d) + b2.

Thus, the difference between the expected cost of the encoder
and the decoder in equilibrium is always b2 regardless of
the number of bins under the quadratic cost assumption. This
implies that if an equilibrium with more bins induces smaller
expected cost for one of the players, then it also induces
smaller expected cost for the other player.

Theorem 7. For sources with a log-concave density, an
equilibrium with more bins induces smaller expected costs
for both of the players. In other words, denoting expected
costs of the encoder and the decoder by Je,N and Jd,N at the
unique equilibrium with N bins, we have Je,N < Je,K and
Jd,N < Jd,K if K < N .

Proof. See Section VII-D.

We note that for sources with a support on [0, 1] Crawford
and Sobel establish that an equilibrium with more bins induces
smaller expected costs in [2, Theorem 3] and [2, Theorem 5]
from the perspective of encoder and decoder, respectively, un-
der the monotonicity assumption (M), which involves sources
with a bounded support. On the other hand, Theorem 7 proves
such an informativeness result for log-concave sources with
two-sided unbounded support, and this result also generalizes
to sources with semi-unbounded support as well as sources
with a bounded support.

In the proof of Theorem 7, we again use the idea of varying
the left-most or right-most bin edge building on the approach
employed in the proof of [2, Theorem 3], which considers
sources with a bounded support and makes the monotonicity
assumption (M) mentioned earlier. In our proof, we first show
that it is possible to obtain an equilibrium with N bins starting
from an equilibrium with N + 1 by varying the value of left-
most or right-most depending on the sign of b and then prove
that the expected cost is monotonic during this procedure.
Here, the log-concave source assumption ensures that the
corresponding left-most or right-most bin edge is monotonic
with respect to the number of bins in equilibrium. Moreover,
the approach taken in the proof of Theorem 7 builds also on the
proof of Theorem 4 with a slight modification which enables
us to observe the monotonic behavior of the expected costs.

Theorem 7 shows that an equilibrium with more bins leads
to a better expected cost in equilibrium for both of the players.
When b = 0 (i.e., team theoretic setup), the problem reduces
to the classical optimal quantization problem under quadratic
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cost structure and the result of Theorem 7 is in fact valid also
when b = 0. In other words, the classical optimal quantization
setup with the quadratic cost criterion is a special case of
Theorem 7.
Remark 9. In Theorem 7, we compare expected costs of
the players in equilibrium and prove that these costs are
monotonically decreasing with respect to number of bins. This
directly implies that the decoder always prefers an equilibrium
with more bins. In that respect, our result is a generalization
of [2, Theorem 3] for log-concave sources. On the other hand,
our result implies that the encoder ex ante (before observing a
realization of the source) prefers an equilibrium with more
bins. This is a generalization of [2, Theorem 5] for log-
concave sources. In that respect, our results reveal that if we
compare (ex ante) expected costs of the encoder and decoder
in equilibrium among all possible Nash equilibria, the one
with the maximum possible number of bins gives the smallest
expected cost, i.e. the most informative equilibrium.
Remark 10. Without a log-concave assumption, such a mono-
tonic behavior of the expected costs in equilibrium with respect
to number of bins may not hold in general. For instance, we
provide a simple example where there exists an equilibrium
with N = 3 bins for which the expected costs in equilibrium
is worse than an equilibrium with N = 2 bins. Although we
provide an example with a discrete distribution for simplicity,
one can also construct an example with a continuous density.
Example 1. Let the bias term be b = 0.9. Suppose that the
distribution of the source is given by the following discrete
distribution:

pM (m) =


0.8 if m = 0

0.05 if m ∈ {2, 4, 6, 8}
0 otherwise

. (5)

Consider an encoding policy with N = 2 bins where the
quantization bins are given by [0,m1) and [m1, 8] with
m1 = 3.9588. The corresponding centroids are given by
u1 = E[M |M < m1] = 0.1176 and u2 = E[M |m1 ≤
M ] = 6. Notice that the nearest neighbor condition m1 =
(u1 + u2)/2 + b is satisfied with these centroids. This leads
to an expected cost value of Jd = 0.5882 for the decoder
at the characterized equilibrium. Now consider an encoding
policy with N = 3 bins where the quantization bins are
given by [0,m1), [m1,m2) and [m2, 8] with m1 = 4.0667
and m2 = 7.9. The corresponding centroids are given by
u1 = E[M |M < m1] = 0.3333, u2 = E[M |m1 ≤ M <
m2] = 6 and u3 = E[M |m2 ≤ M ] = 8. With these
centroids, the nearest neighbor conditions are satisfied, i.e.,
m1 = (u1 + u2)/2 + b and m2 = (u2 + u3)/2 + b. This
leads to an expected cost value of Jd = 0.9 for the decoder
at the characterized equilibrium. Therefore, the characterized
equilibrium with two bins payoff dominates the characterized
equilibrium with three bins, which is in contrast to the result
of Theorem 7 involving log-concave sources.

C. Convergence to Equilibria
It is interesting to investigate if the best response iterations

converge to the unique equilibrium. Before presenting our

result, we note that in the classical optimal quantization setup
with aligned cost structure (i.e., team theoretic setup) and
a log-concave density, the uniqueness of a fixed point and
convergence to the unique fixed point via fixed point iterations
are proven in [31] (see Theorem 3 of this paper). In the
following theorem, we present a signaling games counterpart
of such a convergence result where the proof is based on
the result of [31]. In particular, when modified Lloyd-Max
iterations (i.e., by using (2) and (3)) are performed starting
from an initial set of bin edges, the unique equilibrium (for
the given number of bins) is reached for strictly log-concave
sources with two-sided unbounded support. These iterations
in the classical team theoretic setting is referred to as Lloyd’s
Method I [10] where bin edges and centroids are updated in
a parallel fashion as described below.6

A modified Lloyd-Max iteration can be defined as follows:
Let m1 < · · · < mN−1 be an initial set of bin edges and
denote m ≜ [m1, . . . ,mN−1]

T . Given these bin edges, the
decoder first determines its best response by computing the
centroids via

uk = E[M |mk−1 ≤ M < mk] (6)

for k = 1, . . . , N , where m0 = mL and mN = mU remain
the same during these iterations. We denote this operation by
BRd(m) = u where u ≜ [u1, . . . , uN ]T . Then, the encoder
computes the nearest neighbors for the resulting centroids u
via

mk =
uk + uk+1

2
+ b (7)

for k = 1, . . . , N −1. We denote this operation by BRe(u) =
m. With these best response characterizations, a modified
Lloyd-Max iteration is defined as

T (m) ≜ BRe(BRd(m)). (8)

The operation in (8) is applied iteratively to update an initial
set of bin edges. In the following theorem, we show that by
repeating these iterations, it is guaranteed that a set of bin
edges that leads to an equilibrium with N bins is obtained
under a strict log-concave source assumption.

Theorem 8. For a strictly log-concave source with two-sided
unbounded support, best response iterations (i.e., modified
Lloyd-Max iterations) through (8) starting with N bins always
converge to the unique equilibrium with N bins.

Proof. See Section VII-E.

Remark 11. We note that [31] proves convergence in a team
theoretic setup even for log-concave sources which are not
necessarily strictly log-concave. To prove this result, [31] uses
the fact that the common cost is strictly decreasing as long as
the corresponding set of bin edges is not a fixed point. Since

6Note that parallel updates in Lloyd’s Method I indeed models the scenario
where the encoder and the decoder update their policies iteratively in our
game theoretic setting. Lloyd’s Method II [10] is another heuristic technique
to obtain a quantization policy in communication theoretic settings where
bin edges and centroids are updated serially by taking the nearest neighbor
and centroid conditions into account, i.e., given a value for the first centroid,
compute the first bin edge and then compute the second centroid, and so on.
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there is no common cost in our signaling games setup, such
an approach is not feasible.

In the case of sources with semi-unbounded support, con-
vergence to the unique equilibrium is guaranteed depending
on the sign of b.

Theorem 9. (i) Consider a source that has a strictly log-
concave density with a support on [mL,∞) for some
mL ∈ R. If b > 0, then best response iterations through
(8) starting with N bins always converge to the unique
equilibrium with N bins.

(ii) Consider a source that has a strictly log-concave density
with a support on (−∞,mU ] for some mU ∈ R. If b < 0,
then best response iterations through (8) starting with N
bins always converge to the unique equilibrium with N
bins.

Proof. The result essentially follows from Theorem 8 after
observing that under the given assumptions, the bin edges are
always greater than the lower boundary or larger than the upper
boundary during best response iterations.

For sources with semi-unbounded support, if the sign of b
does not satisfy the conditions of Theorem 9, convergence is
not guaranteed, see the following remark. This is in contrast
to the case of no bias [31].

Remark 12. For sources with semi-unbounded support, even if
there exists an equilibrium with N bins for a given bias b, an
initial set of bin edges forming a partition with N bins may not
converge to the unique equilibrium with N bins. For instance,
for a source with a support on [mL,∞), if the initial values for
the first two bin edges (i.e., m1 and m2 with mL < m1 < m2)
are close to mL and the bias is negative (i.e., b < 0), then after
the first iteration, the resulting first bin edge may be less than
the value of mL. As a result, the sender reduces the number of
bin edges during the best response iterations. This implies that
even though iterations start with N bins, they may converge
to an equilibrium with K bins with K < N . In this case,
it is guaranteed that best response iterations converge to an
informative equilibrium with at least two bins (assuming it
exists).

A similar result also holds for sources with bounded sup-
port.

Remark 13. For sources with bounded support, best response
iterations starting with N bins may not converge to the unique
equilibrium with N bins regardless of the value or the sign
of b. Nevertheless, best response iterations always converge to
an informative equilibrium with at least two bins (assuming it
exists).

IV. NASH EQUILIBRIA FOR SOURCES WITH MORE
GENERAL DISTRIBUTIONS

In this section, the number of bins at the equilibria is
investigated for sources with more general distributions satis-
fying certain assumptions. First, sources with semi-unbounded
support are considered, then the results on the distributions
with two-sided unbounded support are presented.

A. Sources with Semi-Unbounded Support

Before the analysis, we make the following assumption on
the source7:

Assumption 1. The distribution of the source M satisfies the
following conditions:

(i) (Continuous density) The source admits a continuous
density.

(ii) (Finite mean with semi-unbounded support) The source
is supported on the interval [a,∞) and E[M ] = µ with
µ ∈ R.

(iii) (Monotonicity of the centroid at the tail) There exist K ≥
a and η ≥ 0 such that for any t ≥ K, we have E[M |M ≥
t] ≤ t+ η.

(iv) (Monotonicity of the pdf at the tail) M has a monoton-
ically decreasing pdf for M ≥ K; in particular, for any
t ≥ K and h ≥ 0, we have E[M |t ≤ M ≤ t + h] ≤
t+ h/2.

Theorem 10. Under Assumption 1, at an equilibrium,

(i) if b < 0, there can be at most ⌊η+(K−a)
2|b| +3⌋ bins and the

bins in the interval [K,∞) have monotonically increasing
bin-lengths.

(ii) if b > 0, there exist equilibria with infinitely many bins.

Proof. See Section VII-F.

Although Theorem 10 provides an upper bound on the
number of bins at the equilibria, it does not give a necessary
condition for the non-informative equilibrium. The following
theorem provides the details:

Theorem 11. Under Assumption 1, if b ≤ −K+η−a
2 , there

cannot be any informative equilibria; i.e., there exist only non-
informative equilibria.

Proof. See Section VII-G.

B. Sources with Two-Sided Unbounded Support

Before the analysis, we make the following assumption on
the source:

Assumption 2. The distribution of the source M satisfies the
following conditions:

(i) (Continuous density) The source admits a continuous
density.

(ii) (Finite mean with two-sided unbounded support) The
source is supported on the interval (−∞,∞) and E[M ] =
µ with µ ∈ R.

(iii) (Monotonicity at the positive tail) There exist real K and
η ≥ 0 such that for any t ≥ K, we have that E[M |M ≥
t] ≤ t + η, and M has a monotonically decreasing pdf
for M ≥ K; in particular, for any t ≥ K and h ≥ 0, we
have that E[M |t ≤ M ≤ t+ h] ≤ t+ h/2.

(iv) (Monotonicity at the negative tail) There exist real S ≤ K
and ν ≥ 0 such that for any t ≤ S, we have that
E[M |M ≤ t] ≥ t − ν, and M has a monotonically

7Even though we consider sources supported on [a,∞), the results in this
section can be extended for sources supported on the interval (−∞, a].
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increasing pdf for M ≤ S; in particular, for any t ≤ S
and h ≥ 0, we have that E[M |t−h ≤ M ≤ t] ≥ t+h/2.

The following result proves the bounds on the number of
bins and monotonicity of bin-lengths for the intervals (−∞, S]
and [K,∞) depending on the sign of the bias b:

Proposition 1. Under Assumption 2, in an equilibrium,
(i) if b > 0, the number of bins in the interval (−∞, S]

is upper bounded, and the bin-lengths are monotonically
decreasing for those bins.

(ii) if b < 0, the number of bins in the interval [K,∞) is
upper bounded, and the bin-lengths are monotonically
increasing for those bins.

Proof. See Section VII-H.

For sources with two-sided unbounded support satisfying
Assumption 2, there does not exist a finite upper bound on
the number of bins in equilibrium as shown in the following:

Theorem 12. Under Assumption 2, there exist equilibria with
infinitely many bins.

Proof. See Section VII-I.

C. Existence of Equilibria with Infinitely Many Bins for
Sources with Log-Concave Distributions

In Theorem 4 and Theorem 5, we investigate existence
of equilibria with finitely many bins for sources with a log-
concave density. In fact, in the case when there does not exist
a finite upper bound on the number of bins in equilibrium, the
existence of equilibria with infinitely many bins can be shown
by using the results in this section. Towards that goal, we show
that the assumptions made in this section are satisfied for a
log-concave density.

Lemma 2. (i) A log-concave density with a support on
[a,∞) for a ∈ R satisfies Assumption 1.

(ii) A log-concave density with two-sided unbounded support
satisfies Assumption 2.

Proof. The following considers sources with semi-unbounded
support and the proof for two-sided unbounded support is sim-
ilar. We know that a log-concave density must be continuous.
In addition, due to Lemma 1, tails of a log-concave density
are at most exponential. This implies that the mean must be
finite. Moreover, since (E[M |M ≥ t] − t) is decreasing in
t [44], it follows that E[M |M ≥ t] ≤ t + (µ − a) where
µ = E[M ]. Finally, the fourth assumption follows from the
fact that a log-concave density is unimodal [48].

The following is a corollary of Theorem 10 and Lemma 2.

Corollary 1. Consider a source with a log-concave density
supported on [a,∞) for some a ∈ R. Then, there always exist
equilibria with infinitely many bins.

The following is a corollary of Theorem 12 and Lemma 2.

Corollary 2. Consider a source with a log-concave density
with two-sided unbounded support. Then, there always exist
equilibria with infinitely many bins.

Remark 14. It is seen that the class of distributions satisfying
Assumption 1 or Assumption 2 are more general distributions
than the class of log-concave distributions. For instance,
Assumption 1 is satisfied when log-concavity is assumed
only at the tail with an additional continuity and finite mean
assumptions. Therefore, one can construct a density which is
not log-concave but satisfies Assumption 1 or Assumption 2.

V. NASH EQUILIBRIA FOR SOURCES WITH SPECIAL
LOG-CONCAVE DISTRIBUTIONS: EXPONENTIAL,

GAUSSIAN AND UNIFORM CASES

In Section III, we have investigated the cheap talk problem
for general log-concave sources. In this section, we now focus
on special distributions with a log-concave density and present
more specific results.

A. Exponential Distribution

In this subsection, the source is assumed to be exponential
and the number of bins at the equilibria is investigated. Before
delving into the technical results, we observe the following
fact:

Fact 1. Let M be an exponentially distributed random
variable with a positive parameter λ, i.e., the probability
density function (pdf) of M is f(m) = λe−λm for m ≥ 0.
The expectation and the variance of an exponential random
variable conditioned on the interval [a, b] are E[M |a <
M < b] = 1

λ + a − b−a
eλ(b−a)−1

and Var (M |a < M < b) =
1
λ2 − (b−a)2

eλ(b−a)+e−λ(b−a)−2
, respectively.

Since the exponential distribution is log-concave, the fol-
lowing result is a corollary of Theorem 5.

Corollary 3. Consider an exponentially distributed source
with parameter λ. If b > 0, then Nmax(b) = ∞, and for
any N ≥ 1, there exists a unique equilibrium with N bins.
On the other hand, if b < 0, then Nmax(b) < ∞, and for
any N satisfying 1 ≤ N ≤ Nmax(b), there exists a unique
equilibrium with N bins.

In the case of a negative bias, the number of bins at the
equilibrium is upper bounded, as stated in Corollary 3, and
the following proposition provides an upper bound on the
number of bins in this case. In fact, this proposition presents
an alternative proof for the fact that the number of bins at the
equilibrium is upper bounded when b < 0. Here, ⌊x⌋ denotes
the largest integer less than or equal to x.

Proposition 2. Suppose M is exponentially distributed with
parameter λ. Then, for b < 0, any Nash equilibrium has at
most ⌊− 1

2bλ + 1⌋ bins.

Proof. See Section VII-J.

Next, we investigate the structure of the bin edges at the
equilibrium.

Proposition 3. Consider an exponentially distributed source
with parameter λ. Let N ≥ 1 be given and suppose that the
parameters b and λ are such that there exists an equilibrium
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with N bins. Then, at this unique equilibrium, the following
holds:

(i) The bin-lengths l1 = m1, l2 = m2 − m1, . . . , lN−1 =
mN−1 −mN−2 satisfy the following:

g(lN−1) =
2

λ
+ 2b, (9a)

g(lk) =
2

λ
+ 2b− h(lk+1), for k = 1, 2, . . . , N − 2,

(9b)

where g(x) ≜ xeλx

eλx−1
and h(x) ≜ x

eλx−1
.

(ii) The bin-lengths are monotonically increasing, i.e., l1 <
l2 < · · · < lN−1.

Proof. See Section VII-K.

When the upper bound on the number of bins is investigated
further, it is possible to derive conditions for the existence of
equilibria with two or more bins. For instance, Theorem 6
gives a necessary and sufficient condition for the existence
of informative equilibria for general log-concave sources in
terms of the mean. In the special case of exponential sources,
this translates to the condition b > − 1

2λ , which ensures the
existence of equilibria with two bins. The following theorem
states this result and further refines it for the existence of
an equilibrium with three bins where the result is obtained
by characterizing the equilibrium. In addition, it is possible
to construct an equilibrium with infinitely many bins when
b > 0, as proven in the following theorem.

Theorem 13. When the source has an exponential distribution
with parameter λ, the following holds:

(i) There exists an equilibrium with at least two bins if and
only if b > − 1

2λ . Otherwise, the only equilibrium is non-
informative.

(ii) There exists an equilibrium with at least three bins if and
only if b > − 1

2λ
e−2
e−1 .

(iii) For b > 0, there exists a unique equilibrium with infinitely
many bins. In particular, all bins must have a length of
l∗, where l∗ is the solution to g(l∗) = 2

λ + 2b − h(l∗),
with g(x) = xeλx

eλx−1
and h(x) = x

eλx−1
.

Proof. See Section VII-L.

Theorem 7 shows that an equilibrium with more bins is
more informative for any log-concave density as the equi-
librium costs of the encoder and the decoder monotonically
decreases with the number of bins. The following extends this
result considering an equilibrium with finitely many bins when
b > 0.

Theorem 14. When the source has an exponential distribution
with parameter λ, the smallest expected equilibrium costs are
attained with the maximum possible number of bins:

(i) for equilibria with K and N bins where N > K, the
equilibrium with N bins induces smaller expected costs
in equilibrium for both of the players regardless of the
value of b.

(ii) for b > 0, the equilibrium with infinitely many bins yields
the smallest expected costs in equilibrium for both of the
players.

Proof. See Section VII-M.

Theorem 14 implies that the unique equilibrium with max-
imum number of bins payoff dominates all other equilibria
[5].

B. Gaussian Distribution

Let M be a Gaussian random variable with mean µ and
variance σ2; i.e., M ∼ N (µ, σ2). Let ϕ(m) = 1√

2π
e−

m2

2

be the pdf of a standard Gaussian random variable, and let
Φ(b) =

∫ b

−∞ ϕ(m)dm be its cumulative distribution function
(cdf). Then, the expectation of a truncated Gaussian random
variable is the following:

Fact 2. The mean of a Gaussian random variable M ∼
N (µ, σ2) conditioned on the interval [a, b] is E[M |a < M <

b] = µ− σ
ϕ( b−µ

σ )−ϕ( a−µ
σ )

Φ( b−µ
σ )−Φ( a−µ

σ )
.

Since the Gaussian pdf is log-concave with two-sided un-
bounded support, we state the following result as a corollary
of Theorem 4, Corollary 2 and Theorem 7.

Corollary 4. When the source has a Gaussian distribution
as M ∼ N (µ, σ2), for any N ≥ 1, there always exists a
unique equilibrium with N bins regardless of the value of b.
In addition, there always exist equilibria with infinitely many
bins. Moreover, the expected costs of the encoder and the
decoder in equilibrium decrease when more bins are used.

Since the pdf of a Gaussian random variable is symmetrical
about its mean µ, and monotonically decreasing in the interval
[µ,∞), the following can be obtained in a similar manner to
Proposition 1:

Proposition 4. Consider the unique equilibrium with N bins
for a Gaussian source M ∼ N (µ, σ2). Then,

(i) if b < 0, the bin-lengths in the interval [µ,∞) are
monotonically increasing and the number of bins in this
interval is upper bounded by σ

2|b| ,
(ii) if b > 0, the bin-lengths in the interval (−∞, µ] are

monotonically decreasing and the number of bins in this
interval is upper bounded by σ

2b .

Proof. See Section VII-N.

As Corollary 4 states, there exist equilibria with infinitely
many bins when the source is Gaussian. The following states
a property related to the bin-lengths for such equilibria.
Remark 15. At the equilibrium with infinitely many bins, as
the bin edges get very large in absolute value (i.e., mi → ∞
for b > 0 and mi → −∞ for b < 0 as i → ∞), the bin-lengths
converge to 2|b|.
Proof. See Section VII-O.

C. Uniform Distribution

As an example for source with a compactly supported den-
sity, we restate results by Crawford and Sobel [2, Section 4]
for the interesting scenario with a uniformly distributed source.
The following result provides an expression for the upper
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bound on the number of bins. Here, ⌈x⌉ denotes the smallest
integer greater than or equal to x.

Theorem 15 (Crawford and Sobel [2]). When M is uniformly
distributed in the interval [0, 1], the upper bound on the
number of bins at the equilibrium is given by Nmax(b) =⌈
− 1

2 +
1
2

(
1+ 2

|b|

)1/2⌉
, and for any N ∈ {1, . . . , Nmax(b)},

there exists a unique equilibrium with N bins. In particular,
when |b| ≥ 1/4, the only equilibrium is non-informative with
a single bin.

Since the uniform distribution can be viewed to be log-
concave, an equilibrium with more bins induces smaller ex-
pected costs for both the encoder and decoder compared to an
equilibrium with less bins, as stated in the following:

Theorem 16 (Crawford and Sobel [2]). When M is uniformly
distributed in the interval [0, 1], the expected costs of the
encoder and the decoder in equilibrium decrease as the
number of bins increases.

One way of proving Theorem 16 is to express the costs at
the equilibrium and analyze the behavior of the cost with re-
spect to the number of bins, as mentioned in [2]. Nevertheless,
[2] shows this result by using the fact that the monotonicity
condition (M) is satisfied for the uniform source scenario.

VI. CONCLUDING REMARKS

In this paper, the Nash equilibria of cheap talk have been in-
vestigated for general log-concave sources. It has been shown
that for any finite N , there exists a unique equilibrium with N
bins for sources with two-sided unbounded support. Similarly,
it has been proven that for sources with semi-unbounded
support, when the support extends to +∞ and b > 0, or the
support extends to −∞ and b < 0, for any finite N , there
exists a unique equilibrium with N bins. On the other hand,
in the converse case for sources with semi-unbounded support,
it has been proven that there exists a finite upper bound on
the number of bins in an equilibrium. Furthermore, it has been
shown that, as the number of bins increases, the expected costs
of the encoder and the decoder in equilibrium decrease, i.e., a
more informative equilibrium is obtained. Moreover, we have
proven that best response iterations converge to the unique
equilibrium for sources with strictly log-concave density and
two-sided unbounded support, generalizing the classical con-
vergence results in optimal quantization via Lloyd’s Method
I. In addition, it has been shown that for exponential sources
there exists a unique equilibrium with infinitely many bins
when b > 0. Moreover, sources which are not necessarily
log-concave but satisfy certain assumptions have also been
considered. For these source, the existence of a finite upper
bound on the number of bins has been investigated, and a finite
upper bound has been derived whenever it exists. For the case
that there is no finite upper bound, the existence of equilibria
with infinitely many bins has been established.

VII. PROOFS

A. Proof of Theorem 4

We first discuss the existence of an equilibrium with a single
bin. A quantizer with a single bin means that the encoder does
not reveal any information related to the source. The optimal
receiver action in this case becomes the mean of the source.
This pair of encoding and decoding policies leads to a Nash
equilibrium. In this case, since the encoder does not convey
information related to the source, the resulting equilibrium is
a babbling equilibrium. Moreover, such an equilibrium always
exists regardless of whether the source distribution is log-
concave or not.

In order to prove that there exists an equilibrium with N
bins where N ≥ 2, we take the following approach. We first
show the existence of an equilibrium with two bins and then
show that one can obtain an equilibrium with N + 1 bins
starting from an equilibrium with N bins. These reveal that
there exists an equilibrium with any finite number of bins. In
addition, while obtaining the existence result, we also prove
the uniqueness of an equilibrium for a given number of bins. In
the following proof, we assume that the source is strictly log-
concave. Nevertheless, our result also holds for a source with
a log-concave density. In this case, one of the inequalities in
Lemma 4 must be strict for the result to hold and this is indeed
the case for a density with two-sided unbounded support.

To begin with, we restate the centroid condition and nearest
neighbor condition that need to be satisfied at an equilibrium.
An ordered set of bin edges m1 < · · · < mN−1 leads to
an equilibrium with N bins if the following conditions are
satisfied: ∫ m1

−∞
(u1 −m)f(m)dm = 0, (10)∫ mi+1

mi

(ui+1 −m)f(m)dm = 0, for i = 1, . . . , N − 2,

(11)∫ ∞

mN−1

(uN −m)f(m)dm = 0, (12)

ui+1 = 2mi − ui − 2b, for i = 1, . . . , N − 1 (13)

where u1, . . . , uN denote receiver actions. The aim is to show
the existence of bin edges m1, . . . ,mN−1 and receiver actions
u1, . . . , uN that satisfy (10)-(13) for any N ≥ 2 and also to
prove that these bin edges and receiver actions are indeed
unique. To that aim, we need some auxiliary results which are
presented in the following lemmas. The first lemma derives
a set of inequalities which always holds for a strictly log-
concave density.

Lemma 3. For a random variable M with a strictly log-
concave density f , the following inequalities are always
satisfied:

Pr(M < u) >(u− E[M |M < u])f(u) for any u ∈ R
(14)

Pr(M > u) >(E[M |u < M ]− u)f(u) for any u ∈ R
(15)

Pr(v < M < u) > (u− E[M |v < M < u])f(u)
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+ (E[M |v < M < u]− v)f(v) (16)

for any u, v ∈ R with v < u.

Before presenting the proof, we note that a variant of
the inequalities (14) and (15) can be found in the literature
considering log-concave densities with bounded support [44].
On the other hand, these inequalities need to be derived for the
general case of densities with two-sided unbounded support for
our purpose. Moreover, it is required to prove the additional
property in (16), which is crucial in obtaining the monotonic
behavior of the bin edges m2, . . . ,mN with respect to a
change in m1 in Lemma 4.

Proof. We note that the inequalities (14) and (15) follow
from (16) and Lemma 1, where the latter states that a log-
concave density has at most exponential tails. This exponential
tail property implies that uf(u) → 0 as u → ∞ and that
vf(v) → 0 as v → −∞. In addition, since a source with a
log-concave density has a finite mean, for a given v ∈ R, we
have that (E[M |v < M < u])f(u) → 0 as u → ∞. Similarly,
for a given u ∈ R, we have that (E[M |v < M < u])f(v) → 0
as v → −∞. Hence, by taking u → ∞ in (16), the inequality
in (15) is proven. Similarly, by taking v → −∞ in (16),
we obtain the inequality in (14). Therefore, in order to prove
the lemma, it suffices to prove that (16) holds. In the proof,
we use the property that for a differentiable and strictly log-
concave density f , we have that f ′(x)

f(x) is strictly monotonically
decreasing in x, which directly follows from the definition of
being log-concave. In the following, we first prove the result
under an additional differentiable density assumption and then
show that the result holds for any log-concave density.

It is seen that the inequality in (16) is equivalent to

g(u) ≜ (F (u)− F (v))2 + (u− v)
(
F (v)f(u)− F (u)f(v)

)
− f(u)

∫ u

v

F (m)dm+ f(v)

∫ u

v

F (m)dm > 0. (17)

For fixed v, the derivative of g(u) with respect to u is given
by

g′(u) = f(u)(F (u)− F (v))− f ′(u)
∫ u

v

F (m)dm

+ (u− v)
(
F (v)f ′(u)− f(u)f(v)

)
=

∫ u

v

h(m)dm, (18)

where

h(m) ≜ f(u)f(m)− f ′(u)F (m) + F (v)f ′(u)− f(u)f(v).

Next, we show that the integrand h(m) is always positive for
m > v:

h(m) = f(u)
(
f(m)− f(v)

)
− f ′(u)

∫ m

v

f(t)dt

= f(u)
(
f(m)− f(v)

)
− f(u)

f ′(u)
f(u)

∫ m

v

f(t)dt

> f(u)
(
f(m)− f(v)

)
− f(u)

∫ m

v

f ′(t)
f(t)

f(t)dt

= f(u)
(
f(m)− f(v)

)
− f(u)

(
f(m)− f(v)

)
= 0,

(19)

where the inequality follows from the fact that f is a strictly
log-concave density. This implies that g′(u) > 0 when u > v.
Since g(u) = 0 when u = v and g′(u) > 0 when u > v, it
follows that g(u) > 0 for all u > v. This shows that (16) is
satisfied for all u > v.

Now, we show that the result holds for any strictly log-
concave density. Since f is log-concave, it follows that log f
is left and right differentiable. This implies that f is left and
right differentiable, as well. Denote the left and right derivative
of f by f ′

− and f ′
+, respectively. Let log f(x) ≜ ℓ(x) for

notational convenience. Since f is strictly log-concave, we
have that ℓ′−(x) =

f ′
−(x)

f(x) and ℓ′+(x) =
f ′
+(x)

f(x) are strictly
monotonically decreasing in x. We also know that g defined
in (17) has left and right derivatives since f has left and right
derivatives. Then, by taking the left derivative of g with respect
to u for fixed v, we get

g′−(u) =
∫ u

v

(
f(u)f(m)− f ′

−(u)F (m)

+ F (v)f ′
−(u)− f(u)f(v)

)
dm.

Then, a similar analysis as in (19) yields g′−(u) > 0 when u >

v, where we use the fact that f ′
−(x)

f(x) is strictly monotonically
decreasing and that

∫m

v
f ′
−(t)dt = f(m) − f(v) since log f ,

and therefore elog f , is an absolutely continuous function in
the interior of the support of f (see e.g. [49, p. 34-35] for
the absolute continuity of convex/concave functions). Also,
we analogously obtain g′+(u) > 0 when u > v. We also know
that g(u) = 0 if u = v. Hence, we get g(u) > 0 for all u > v,
as desired.

Next, we use the inequalities derived in Lemma 3 to
establish a monotonicity property of centroids and subsequent
bin edges with respect to a shift in the first bin edge. Before
presenting the lemma, for notational convenience, we make
the following definitions which specify a collection consisting
of a set of bin edges either in an ascending or descending
order such that the nearest neighbor conditions with the
corresponding centroids are satisfied at all bin edges except
at the last bin edge.

Definition 5. (i) Let m1 < m2 < · · · < mN , u1 =
E[M |M < m1] and ui = E[M |mi−1 ≤ M < mi]
for i = 2, . . . , N . Define MN

A as the collection of all
{mi}Ni=1 for which the nearest neighbor conditions at the
boundaries m1, . . . ,mN−1 are satisfied with the corre-
sponding centroids u1, . . . , uN , i.e., 2mi = ui+ui+1+2b
for i = 1, . . . , N − 1.

(ii) Let m1 > m2 > · · · > mN , u1 = E[M |m1 ≤ M ] and
ui = E[M |mi ≤ M < mi−1] for i = 2, . . . , N . Define
MN

D as the collection of all {mi}Ni=1 for which the near-
est neighbor conditions at the boundaries m1, . . . ,mN−1

are satisfied with the corresponding centroids u1, . . . , uN ,
i.e., 2mi = ui + ui+1 + 2b for i = 1, . . . , N − 1.

Notice that when a set of bin edges belongs to MN
A or

MN
D , it does not necessarily mean that this set of bin edges
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leads to an equilibrium. For this set of bin edges to form
an equilibrium, the nearest neighbor condition at the last bin
edge should also be satisfied. In our proof, we show that by
varying the value of the first bin edge, it is possible to satisfy
the last nearest neighbor condition. In fact, in the proof, it
will be apparent that there exists a unique value for the first
bin edge that leads to an equilibrium with N bins and these
unique values are monotone in N . This monotonicity property
of the bin edges is also used to prove monotonically decreasing
behavior of the expected costs with respect to the number of
bins in Theorem 7.

Lemma 4. Suppose that there exists a set of bin edges
{mi}Ni=1 which belongs to MN

A (resp. MN
D ) with the corre-

sponding set of centroids {ui}Ni=1. Let ūN+1 = E[M |mN ≤
M ] (resp. ūN+1 = E[M |M < mN ]) denote the centroid of the
last bin and let ũN+1 = 2mN − uN − 2b denote the receiver
action that satisfies the nearest neighbor condition at the bin
edge mN . Then, the following hold:

dmi

dui
> 1, for i = 1, . . . , N, (20)

dui+1

dmi
> 1, for i = 1, . . . , N − 1, (21)

dũN+1

dmN
> 1, (22)

dmN

dūN+1
> 1. (23)

Proof. We prove the result for the case of {mi}Ni=1 ∈ MN
A

and the case of {mi}Ni=1 ∈ MN
D can be proven in a similar

manner. The centroid condition requires that∫ m1

−∞
(u1 −m)f(m)dm = 0, (24)∫ mi+1

mi

(ui+1 −m)f(m)dm = 0, for i = 1, . . . , N − 1,

(25)∫ ∞

mN

(ūN+1 −m)f(m)dm = 0. (26)

Since it is assumed that the nearest neighbor conditions at
m1, . . . ,mN−1 are satisfied, we have

ui+1 = 2mi − ui − 2b, for i = 1, 2, . . . , N − 1. (27)

By differentiating (24) with respect to u1, we get

F (m1) + u1f(m1)
dm1

du1
− d

du1

∫ m1

−∞
mf(m)dm = 0, (28)

where the integral is finite since E[M ] is finite. From (28), it
follows that

dm1

du1
=

∫m1

−∞ f(m)dm

(m1 − u1)f(m1)
> 1, (29)

where dm1

du1
is finite and the inequality follows from (14) in

Lemma 3. Then, dm1

du1
> 1 and (27) imply that du2

dm1
> 1. Next,

we show that if dui+1

dmi
> 1, then dmi+1

dui+1
> 1 by using (25).

Differentiating (25) with respect to ui+1 leads to∫ mi+1

mi

f(m)dm =(ui+1 −mi)f(mi)
dmi

dui+1

+ (mi+1 − ui+1)f(mi+1)
dmi+1

dui+1
. (30)

From Lemma 3, we know that∫ mi+1

mi

f(m)dm >(ui+1 −mi)f(mi)

+ (mi+1 − ui+1)f(mi+1). (31)

By combining (30) and (31), we get

(ui+1 −mi)f(mi)
dmi

dui+1
+ (mi+1 − ui+1)f(mi+1)

dmi+1

dui+1

> (ui+1 −mi)f(mi) + (mi+1 − ui+1)f(mi+1)

⇔
(

dmi

dui+1
− 1

)
(ui+1 −mi)f(mi)

>

(
1− dmi+1

dui+1

)
(mi+1 − ui+1)f(mi+1). (32)

From (32), it is seen that dui+1

dmi
> 1 leads to dmi+1

dui+1
> 1 since

(ui+1−mi)f(mi) > 0 and (mi+1−ui+1)f(mi+1) > 0. Next,
dmi+1

dui+1
> 1 and (27) imply that dui+2

dmi+1
> 1. By iteratively using

(27), (30) and (31) in this manner, one can show (20) and (21).
Moreover, dmN

duN
> 1 and ũN+1 = 2mN − uN − 2b lead to

(22). Finally, differentiating (26) with respect to ūN+1, we get

dmN

dūN+1
=

∫∞
mN

f(m)dm

(ūN+1 −mN )f(mN )
> 1, (33)

where dmN

dūN+1
is finite and the inequality follows from

Lemma 3.

Now, equipped with Lemma 4, we are ready to prove the
theorem. We first prove the existence of a unique equilibrium
with two bins. In this case, for a bin edge m, the centroids
of the resulting bins are denoted by u1(m) = E[M |M < m]
and u2(m) = E[M |m ≤ M ]. The point where the sender is
indifferent between these receiver actions is given by

m̃(m) =
u1(m) + u2(m)

2
+ b. (34)

For an equilibrium, it is required that m = m̃(m). Lemma 4
states that dm

du1
> 1 and dm

du2
> 1 hold due to the fact that

the source distribution follows a strictly log-concave density
and these imply that dm

dm̃ > 1 due to (34). This last property
is crucial in obtaining the uniqueness of the equilibrium. In
the following, we construct an interval such that m̃(·) maps
this interval into itself and then use the Brouwer’s fixed point
theorem [50] to show the existence of an equilibrium. Towards
that goal, let mα be a bin edge for which mα ̸= m̃(mα).
Without loss of generality, suppose that mα < m̃(mα). Let
mβ ≜ u2(m

α)−mα+µ+2b. Note that u1(m
α) and u2(m

α)
are finite for a finite mα as the source has a finite mean.
Observe that mα < mβ holds since

mα < 2m̃(mα)−mα

= u2(m
α) + u1(m

α) + 2b−mα

< u2(m
α) + µ+ 2b−mα = mβ ,

where the first inequality is by assumption and the second
inequality is due to u1(m) = E[M |M < m] < E[M |M <
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∞] = µ. We also have m̃(mβ) < mβ as shown in the
following:

2(m̃(mβ)−mβ) = u2(m
β)−mβ + u1(m

β)−mβ + 2b

< u2(m
α)−mα + u1(m

β)−mβ + 2b

< u2(m
α)−mα + µ+ 2b−mβ = 0,

where the first inequality follows from the facts that mα <
mβ and u2(m) − m is monotonically decreasing in m due
to (23) in Lemma 4, and the second inequality is due to
u1(m) = E[M |M < m] < E[M |M < ∞] = µ. By using
m̃(mβ) < mβ together with the the fact that m̃(m) is mono-
tone in m, we have m̃(m) ∈ (mα,mβ) for any m ∈ [mα,mβ ].
Therefore, by Brouwer’s fixed point theorem [50], there exists
m ∈ (mα,mβ) such that m = m̃(m) holds since m̃(m) is
continuous and maps the interval [mα,mβ ] into itself. The
uniqueness, on the other hand, follows from dm

dm̃ > 1, which
makes (m̃(m) − m) monotonically decreasing in m. If the
initial choice of bin edge mα satisfies m̃(mα) < mα, a similar
procedure can be applied. This shows the existence of a unique
equilibrium with two bins.

Next, the aim is to prove that it is possible to obtain an
equilibrium with N+1 bins starting from an equilibrium with
N bins. Depending on whether b is positive or negative, we
need to take slightly different approaches. In the following,
we first focus on the case where b is negative. Let

KA(x) = max
{
k | there exists x = m1 < · · · < mk−1

with {mi}k−1
i=1 ∈ Mk−1

A

}
. (35)

Denote the bin edges that attain the maximum in (35) for
a given x by mx

1 , . . . ,m
x
KA(x)−1 and denote the centroids

with these bin edges by ux
1 ≜ E[M |M < mx

1 ] and ux
i ≜

E[M |mx
i−1 ≤ M < mx

i ] for i = 2, . . . ,KA(x) − 1. In the
following, an equilibrium with N + 1 bins is obtained by
continuously decreasing mx

1 = x starting from its value for
the equilibrium with N bins. Let mA

i (N) for i = 1, . . . , N−1
denote bin edges for an equilibrium with N bins where these
bin edges are sorted in an ascending order, i.e., mA

1 (N) <
· · · < mA

N−1(N).
To begin with, we show that when mx

1 < mA
1 (N), there ex-

ists mx
1 < · · · < mx

N such that the nearest neighbor conditions
at the boundaries mx

1 , . . . ,m
x
N−1 hold with the corresponding

centroids, i.e., x < mA
1 (N) implies that KA(x) ≥ N + 1.

Towards that goal, we first show that for all mx
1 < mA

1 (N)
there exist mx

1 < · · · < mx
N−1 for which the nearest neighbor

conditions at the boundaries mx
1 , . . . ,m

x
N−2 are satisfied.

These nearest neighbor conditions are in fact satisfied when
mx

1 = mA
1 (N) and our aim is to show the existence of

boundaries which still satisfy these nearest neighbor conditions
when mx

1 is decreased. These nearest neighbor conditions
require that

ux
i+1 −mx

i = mx
i − ux

i − 2b, for i = 1, . . . , N − 2. (36)

It is always guaranteed that ux
1 < mx

1 since ux
1 = E[M |M <

mx
1 ]. From ux

1 < mx
1 , b < 0 and (36), it follows that ux

1 < mx
2 .

Then, it is always possible to find mx
2 < mA

2 (N) such that
the centroid of the bin [mx

1 ,m
x
2) is given by ux

2 , where mx
2 <

mA
2 (N) is due to the fact that mx

2 is monotonically increasing
in mx

1 . This implies that while mx
1 is decreased mx

1 < mx
2 is

guaranteed. Next, via a similar argument, ux
i < mx

i , b < 0 and
(36) imply that there exist mx

i < mx
i+1 < mA

i+1(N) such that
the nearest neighbor condition at the boundary mx

i holds for
i = 2, . . . , N − 2. Now, we show the existence of the last bin
edge mx

N for which the nearest neighbor condition at mx
N−1

holds. Let ūx
N = E[M |mx

N−1 ≤ M ] and ũx
N = 2mx

N−1 −
ux
N−1− 2b where the former term corresponds to the centroid

of the last bin and the latter term is the receiver action that
makes the nearest neighbor condition at mx

N−1 hold. We know
that ūx

N = ũx
N when mx

1 = mA
1 (N) as this bin edge leads to an

equilibrium with N bins. Since 0 <
dūx

N

dx <
dũx

N

dx by Lemma 4,
it follows that ũx

N < ūx
N for any mx

1 < mA
1 (N). Moreover,

from ux
N−1 < mx

N−1, ũx
N = 2mx

N−1 − ux
N−1 − 2b and b < 0,

it is guaranteed that mx
N−1 < ũx

N . Therefore, for any mx
1 <

mA
1 (N), there exists mx

N such that ũx
N = E[M |mx

N−1 ≤ M <
mx

N ]. These establish the existence of boundaries mx
1 , . . . ,m

x
N

for which the nearest neighbor conditions at mx
1 , . . . ,m

x
N−1

are satisfied when mx
1 < mA

1 (N), i.e., x < mA
1 (N) leads to

KA(x) ≥ N + 1.
In the previous analysis, the existence of mx

1 < · · · < mx
N

with {mx
i }Ni=1 ∈ MN

A is established when mx
1 < mA

1 (N).
Now, we prove that by continuously decreasing mx

1 starting
from mA

1 (N), it is possible to reach at a point where this
set of bin edges {mx

i }Ni=1 forms an equilibrium, i.e., the
nearest neighbor conditions at all boundaries are satisfied.
Since mx

1 = mA
1 (N) leads to an equilibrium with N bins and

all of the subsequent bin edges move in a monotone manner
with respect to mx

1 by Lemma 4, it follows that mx
N → ∞

as mx
1 approaches mA

1 (N) from the left. This observation
ensures that it is possible to find a left neighborhood of
mA

1 (N) such that a value of mx
1 in this neighborhood leads

to ūx
N+1 < ũx

N+1 where ūx
N+1 = E[M |mx

N ≤ M ] and
ũx
N+1 = 2mx

N − ux
N − 2b. In order to see this, we write

ũx
N+1 − ūx

N+1 = 2mx
N − ux

N − 2b− ūx
N+1

= mx
N − ux

N − (ūx
N+1 −mx

N )− 2b. (37)

Since (E[M |x ≤ M ] − x) is a decreasing function of x
by Lemma 4, the term (ūx

N+1 − mx
N ) decreases as mx

1

increases. Moreover, since ux
N → E[M |mA

N−1(N) < M ] as
mx

1 approaches mA
1 (N) from the left and ux

N is monotonically
increasing in mx

1 , ux
N is upper bounded by E[M |mA

N−1(N) <
M ]. Hence, the last three terms in (37) can be upper bounded
by a finite value. Thus, by choosing a value of mx

1 sufficiently
close to mA

1 (N), one can make mx
N sufficiently large, which

leads to ũx
N+1 − ūx

N+1 > 0. As a result, it holds that
ũx
N+1 > ūx

N+1 for mx
1 at a left neighborhood of mA

1 (N).
On the other hand, a sufficiently small value of mx

1 yields
ũx
N+1 < ūx

N+1. To see this, observe that since dũx
N+1

dmx
1

> 1
by Lemma 4, ũx

N+1 can be made sufficiently small by taking
mx

1 sufficiently small. However, ūx
N+1 is lower bounded by

the mean. Thus, a sufficiently small value of mx
1 makes

ũx
N+1 < ūx

N+1. In addition, we know that (ũx
N+1 − ūx

N+1)
is continuous and monotonically increasing in mx

1 . Therefore,
there exists a particular value of mx

1 for which ũx
N+1 = ūx

N+1
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Figure 1. Illustration of the proof technique while showing the existence of
equilibria with more bins when b < 0. The first plot shows an equilibrium
with two bins. In order to obtain an equilibrium with three bins, we decrease
the value of bin edge m1. In the second plot, u1 is the centroid of the bin
(−∞,m1) and ū2 is the centroid of the bin [m1,∞), and ũ2 is where the
nearest neighbor condition with u1 is satisfied at m1. Since ũ2 < ū2, we
need to introduce a second bin edge m2 so that ũ2 is the centroid of the
bin [m1,m2) and this is shown in the third plot. With this bin edge, we
obtain a new centroid ū3 of the bin [m2,∞). In order for this centroid to
coincide with ũ3, we decrease m1 further. This leads to the final plot where
an equilibrium with three bins is obtained.

holds, and hence, this particular value leads to an equilibrium
with N + 1 bins.

To sum up, it is shown that there always exists an equi-
librium with two bins and that if there exists an equilibrium
with N bins, it is possible to construct an equilibrium with
N +1 bins by continuously decreasing the left-most bin edge.
Fig. 1 illustrates this technique to obtain equilibria with more
bins. These results imply that for any N ≥ 2, there exists an
equilibrium with N bins. Moreover, the proof for the existence
also reveals that an equilibrium with N bins is unique. To
see this, observe that KA(x) is a piecewise constant and
monotonically non-increasing function with jumps by one at
discontinuities where these discontinuities lead to equilibrium
scenarios, i.e., when x ∈ [mA

1 (N +1),mA
1 (N)), we have that

KA(x) = N + 1 for N ∈ {2, 3, . . . }. Hence, this monotonic
behavior of KA(x) ensures the uniqueness of an equilibrium
for a given number of bins.

Finally, we briefly describe the generalization of the exis-
tence and uniqueness results to the case of b > 0. We take
bin edges in a descending order, i.e., m1 > · · · > mN−1,
and continuously increase m1 starting from mD

1 (N) to obtain
an equilibrium with N + 1 bins where mD

1 (N) > · · · >
mD

N−1(N) denote bin edges for an equilibrium with N bins.
Let

KD(x) = max
{
k | there exists x = m1 > · · · > mk−1

with {mi}k−1
i=1 ∈ Mk−1

D

}
. (38)

Denote the bin edges that attain the maximum in (38) for
a given x by mx

1 , . . . ,m
x
KD(x)−1 and denote the centroids

with these bin edges by ux
1 ≜ E[M |mx

1 ≤ M ] and ux
i ≜

E[M |mx
i ≤ M < mx

i−1] for i = 2, . . . ,KD(x) − 1. Via a
similar reasoning, it can be shown that when mx

1 > mD
1 (N)

there exists mx
1 > · · · > mx

N such that the nearest neighbor
conditions at mx

1 , . . . ,m
x
N−1 are satisfied. Moreover, there

exists a right neighborhood of mD
1 (N) such that a value

of mx
1 in this neighborhood leads to ũx

N+1 < ūx
N+1 where

ūx
N+1 = E[M |M < mx

N ] and ũx
N+1 = 2mx

N − ux
N − 2b. On

other hand, a sufficiently large value of mx
1 results in ũx

N+1 >

ūx
N+1. Since (ũx

N+1− ūx
N+1) is continuous and monotonically

increasing in mx
1 , there exists a particular value of mx

1 leading
to an equilibrium with N +1 bins by making ũx

N+1 = ūx
N+1.

These imply that KD(x) is a piecewise constant monotonically
non-decreasing function with jumps by one at discontinuities
which correspond to equilibrium scenarios, i.e., we have that
KD(x) = N + 1 when x ∈ (mD

1 (N),mD
1 (N + 1)] for

N ∈ {2, 3, . . . }. Therefore, for any N ≥ 2, there exists a
unique equilibrium with N bins.

B. Proof of Theorem 5

For the cases when there is no finite upper bound on the
number of bins, the existence and uniqueness results can be
obtained in a similar manner to Theorem 4. Namely, for a
density with a support on [mL,∞) and b > 0, the approach is
to increase the value of the right-most bin edge to construct
an equilibrium with N + 1 bins starting from an equilibrium
with N bins. On the other hand, for a density with a support
on (−∞,mU ] and b < 0, the value of the left-most bin edge
is decreased to obtain equilibria with large number of bins.

We now prove that there exists a finite upper bound on the
number of bins in the case of support on [mL,∞) and b < 0.
Note that if there does not exist an informative equilibrium,
then the upper bound on the number of bins is equal to one.
Suppose that the bias term is such that there exists at least
one informative equilibrium. Let m1 be the right-most bin
edge and u1 = E[M |m1 ≤ M ]. For the nearest neighbor
condition at m1 to be satisfied, there must be a receiver action
ũ2 = 2m1 − u1 − 2b. We know that (E[M |m1 ≤ M ] −m1)
monotonically decreases as m1 increases due to Lemma 4 and
approaches zero as m1 → ∞. Therefore, existence of an in-
formative equilibrium and monotonic behavior of (E[M |m1 ≤
M ]−m1) guarantee that there exists a particular value of m1,
say m̄1, which makes u1−m̄1 = E[M |m̄1 ≤ M ]−m̄1 = −2b.
Since (E[M |m1 ≤ M ] − m1) monotonically decreases as
m1 increases, we have (m1 − E[M |m1 ≤ M ] − 2b) > 0
for all m1 > m̄1. This implies that for all m1 > m̄1,
we have (m1 − E[M |m1 ≤ M ] − 2b) = ũ2 − m1 > 0.
Therefore, there cannot be an equilibrium with a right-most
bin edge m1 satisfying m1 > m̄1 since it is required to find
m2 < m1 such that the centroid of the bin [m2,m1) is given
by ũ2 > m1, which is not possible. Thus, there exists an upper
bound on the value of the right-most bin edge in equilibrium,
which reveals that the number of bins at an equilibrium is
upper bounded. Via a construction similar to Theorem 4, the
existence and uniqueness of an equilibrium with number of
bins N ∈ {1, . . . , Nmax} can be proven. The result can also
be extended to the case of support on (−∞,mU ] and b > 0.

C. Proof of Theorem 6

(i) Suppose first that 2b ≤ −(µ − mL). Recall that an
equilibrium with two bins requires that m̃(m) = m holds
for a bin edge m where

m̃(m) =
E[M |m ≤ M ] + E[M |M < m]

2
+ b. (39)
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Note that for an equilibrium with two bins we need m >
mL as otherwise there is no information conveyed related
to the source. If we take mL = m, we get

m̃(mL) =
µ+mL

2
+ b ≤ mL, (40)

where the inequality is by assumption. Moreover, we
know that (m− m̃(m)) is strictly monotonically increas-
ing in m due to Lemma 4. Therefore, for any bin edge
m > mL, we have m > m̃(m). Therefore, there does
not exist a bin edge that leads to an equilibrium with
two bins. On the other hand, when 2b > −(µ −mL), it
is possible to construct an interval for which m̃(·) maps
this interval into itself in a similar manner to Theorem 4
and then apply Brouwer’s fixed point theorem [50].

(ii) The proof is similar to (i).

D. Proof of Theorem 7

We first focus on the case of b < 0 and then generalize the
result to the case of b > 0. Theorem 4 obtains an equilibrium
with N +1 bins starting from an equilibrium with N bins by
continuously decreasing the value of the left-most bin edge.
In the following analysis, we instead start from an equilibrium
with N + 1 bins and continuously decrease the value of the
right-most bin edge to reach an equilibrium with N bins.
Then, we show that the objective function for the decoder
is monotonically decreasing in the value of the right-most
bin edge. Note that the expected costs of the encoder and
decoder in equilibrium differ only by a constant as pointed
out in Remark 8. Thus, it suffices to prove the monotonic
behavior for the expected cost of the decoder.

Recall that mD
1 (N) > · · · > mD

N−1(N) denote the bin
edges arranged in a descending order for the unique equilib-
rium with N bins. We first show that mD

1 (N) < mD
1 (N +1).

When mx
1 = mD

1 (N), we have that ũx
N = ūx

N where
ūx
N = E[M |M < mx

N−1] and ũx
N = 2mx

N−1 − ux
N−1 − 2b.

Since Lemma 4 implies that dmx
i+1

dmx
i

> 1 and dux
i+1

dmx
i

> 1 hold
for i = 1, . . . , N − 2, it is guaranteed that mx

N−1 < · · · < mx
1

holds as mx
1 is decreased. Moreover, by Lemma 4, we have

0 <
dūx

N

dm̃x
1
<

dũx
N

dm̃x
1

. Thus, mx
1 < mD

1 (N) leads to ũx
N < ūx

N .
These observations imply that x < mD

1 (N) leads to KD(x) ≤
N . Since KD(x) = N + 1 when x = mD

1 (N + 1), it follows
that mD

1 (N) < mD
1 (N +1). Now, we take mx

1 = mD
1 (N +1)

and decrease until mx
1 = mD

1 (N). Since all the subsequent bin
edges decrease monotonically as mx

1 is decreased, it follows
that mx

i → mi(N) for i = 2, . . . , N − 1 and mx
N → −∞

as mx
1 approaches mD

1 (N) from the right. Namely, in order
to obtain an equilibrium with N bins, one can decrease mx

1

starting from its value for the unique equilibrium with N + 1
bins, i.e., mD

1 (N+1), until its value for the unique equilibrium
with N bins, i.e., mD

1 (N).
Next, the aim is to show that when mx

1 ∈
(mD

1 (N),mD
1 (N + 1)) the objective function of decoder is

monotonically decreasing in mx
1 where the sender employs

the bin edges mx
N < · · · < mx

1 with mx
1 = x such that the

nearest neighbor conditions at the boundaries mx
1 , . . . ,m

x
N−1

hold with the centroids ux
1 , . . . , u

x
N+1 computed based on

these bin edges. With these bin edges, the objective function
of the receiver can be written as

Jd(x) =

∫ ∞

mx
1

(ux
1 −m)2f(m)dm

+

N−1∑
i=1

∫ mx
i

mx
i+1

(ux
i+1 −m)2f(m)dm

+

∫ mx
N

−∞
(ux

N+1 −m)2f(m)dm,

where ux
1 , ux

N+1 and ux
i denote the centroid of the bins

[mx
1 ,∞), (−∞,mx

N ) and [mx
i ,m

x
i−1) for i = 2, . . . , N ,

respectively. If we take the derivative with respect to x, we
get

dJd(x)

dx
=

N∑
i=1

dmx
i

dx
f(mx

i )
(
(ux

i+1 −mx
i )

2 − (ux
i −mx

i )
2
)
.

Since the nearest neighbor conditions at mx
1 , . . . ,m

x
N−1 are

satisfied, the following holds:

(ux
i+1 −mx

i )
2 − (ux

i −mx
i )

2 = (ux
i − ux

i+1)2b < 0

for i = 1, . . . , N−1, where the inequality follows from b < 0.
Moreover, if mx

1 = mD
1 (N + 1), then

(ux
N+1 −mx

N )2 − (ux
N −mx

N )2 = (ux
N − ux

N+1)2b < 0.

As mx
1 decreases, the term (ux

N+1 − mx
N )2 = (mx

N −
E[M |M < mx

N ])2 decreases by Lemma 4. On the other hand,
(ux

N −mx
N )2 increases as mx

1 decreases because dmx
N

dux
N

> 1 by
Lemma 4. These ensure that when mx

1 is decreased, we still
have

(ux
N+1 −mx

N )2 − (ux
N −mx

N )2 < 0. (41)

As a result, since f(mx
i ) and dmx

i

dx are all positive and
(
(ux

i+1−
mx

i )
2− (ux

i −mx
i )

2
)

are all negative, it follows that dJd(x)
dx <

0. This shows that the expected cost monotonically increases
as x = mx

1 decreases. Since we obtain the equilibrium with
N bins by decreasing mx

1 , the equilibrium with N + 1 bins
induces smaller expected cost than the equilibrium with N
bins.

We now generalize the result to the case of b > 0 where we
take bin edges in an ascending order, i.e., mx

1 < · · · < mx
N .

We know that mA
1 (N + 1) < mA

1 (N) in this case, which
can be proven in a similar manner to the case of b < 0.
Due to the monotonicity of the subsequent bin edges with
respect to the first bin edge, we know that mx

i → mA
i (N) for

i = 2, . . . , N − 1 and mx
N → ∞ as mx

1 approaches mA
1 (N)

from the left. Therefore, by increasing mx
1 from mA

1 (N+1) to
mA

1 (N), one can obtain the unique equilibrium with N bins
starting from the unique equilibrium with N + 1 bins.

If we write the objective function of the decoder as a
function of mx

1 = x, we get

Jd(x) =

∫ mx
1

−∞
(ux

1 −m)2f(m)dm

+

N−1∑
i=1

∫ mx
i+1

mx
i

(ux
i+1 −m)2f(m)dm
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+

∫ ∞

mx
N

(ux
N+1 −m)2f(m)dm.

Taking the derivative with respect to x yields

dJd(x)

dx
=

N∑
i=1

dmx
i

dx
f(mx

i )
(
(ux

i −mx
i )

2 − (ux
i+1 −mx

i )
2
)
.

Since the nearest neighbor conditions at mx
1 , . . . ,m

x
N−1 are

satisfied, we have that

(ux
i −mx

i )
2 − (ux

i+1 −mx
i )

2 = (ux
i+1 − ux

i )2b > 0 (42)

for i = 1, . . . , N − 1. Moreover, when mx
1 = mA

1 (N +1), we
have

(ux
N −mx

N )2 − (ux
N+1 −mx

N )2 = (ux
N+1 − ux

N )2b > 0.

As mx
1 increases, the term (ux

N+1 − mx
N )2 = (E[M |mx

N <
M ]−mx

N )2 decreases by Lemma 4. On the other hand, (ux
N −

mx
N )2 increases as mx

1 increases since dmx
N

dux
N

> 1 by Lemma 4.
These imply that when mx

1 is increased, we still have

(ux
N+1 −mx

N )2 − (ux
N −mx

N )2 > 0. (43)

As a result, we get dJd(x)
dx > 0 since f(mx

i ),
dmx

i

dx and
(
(ux

i −
mx

i )
2 − (ux

i+1 − mx
i )

2
)

are all positive. This shows that the
expected cost monotonically increases as mx

1 increases. Since
we obtain the equilibrium with N bins by increasing x = mx

1 ,
the equilibrium with N+1 bins induces smaller expected cost
than the equilibrium with N bins.

E. Proof of Theorem 8

Given an initial set of bin edges m = [m1, . . . ,mN−1]
T

with m1 < · · · < mN−1, a modified Lloyd-Max iteration
defined in (8) is expressed as

T1(m) =
E[M |M < m1] + E[M |m1 ≤ M < m2]

2
+ b

T2(m) =

E[M |m1 ≤ M < m2] + E[M |m2 ≤ M < m3]

2
+ b

...
TN−1(m)

=
E[M |mN−2 ≤ M < mN−1] + E[M |mN−1 ≤ M ]

2
+ b.

Notice that as a result of an iteration it is guaranteed that the
resulting bin edges maintain the order, i.e., T1(m) < · · · <
TN−1(m). Thus, after each iteration, the corresponding edges
form a valid partition. Let ∥x∥ = maxi |xi|. Let m and m̃
be two set of bin edges, which do not necessarily lead to an
equilibrium, with m1 < · · · < mN−1 and m̃1 < · · · < m̃N−1.
Observe that∥∥T (m)− T (m̃)

∥∥ =
∥∥(T (m)− b

)
−
(
T (m̃)− b

)∥∥
<
∥∥m− m̃

∥∥ (44)

where the inequality follows from [31, Lemma 6] since
(T (m) − b) may be viewed as a fixed point iteration con-
sidering the team theoretic setup with no bias. Notice that the
inequality in (44) is strict as the source distribution is assumed

to be strictly log-concave. We also know that there exists a
unique fixed point of T (·) from Theorem 4. Let m∗ denote
the unique fixed point. By utilizing (44), we get∥∥T (m)−m∗∥∥ =

∥∥T (m)− T (m∗)
∥∥ <

∥∥m−m∗∥∥,
which implies that ∥Tn(m) − m∗∥ is a non-negative
and monotonically decreasing sequence. Hence, the limit
limn→∞∥Tn(m) − m∗∥ exists. In the following, we show
that this limit is zero. To prove this, suppose otherwise, that
is, limn→∞∥Tn(m) − m∗∥ = c for some c > 0. Since
{Tn(m)} is bounded, there exists a convergent subsequence,
i.e., Tnk(m) → m̃ as k → ∞ where m̃ denotes the limit
point. Now, observe that

c = lim
n→∞

∥Tn(m)−m∗∥
= lim

k→∞
∥Tnk(m)−m∗∥

= ∥ lim
k→∞

Tnk(m)−m∗∥
= ∥m̃−m∗∥,

where the third equality is due to the continuity of the norm.
By using (44), we get ∥T (m̃) − m∗∥ < ∥m̃ − m∗∥ =
c. This contradicts with the assumption that the sequence
∥Tn(m) − m∗∥ converges to c > 0 as a monotonically
decreasing sequence. Thus, ∥Tn(m) − m∗∥ converges to
zero as n goes to infinity, which implies that the fixed point
iterations converge to the unique fixed point.

F. Proof of Theorem 10

(i) Note that N ≤ ⌊1 + K−a
2|b| ⌋ is obtained for mN−1 < K

since the distance between the optimal decoder actions
(reconstruction values) must be at least 2|b|, and the proof
is completed. Thus, it can be assumed that mN−1 ≥ K.
Then, uN = E[M |M ≥ mN−1] ≤ mN−1 + η holds by
Assumption 1-(iii), and it follows that

η ≥ uN −mN−1 = (mN−1 − uN−1)− 2b

≥ (uN−1 −mN−2)− 2b

= (mN−2 − uN−2)− 2(2b)

...
≥ uk+1 −mk − (N − k − 1)(2b)

≥ −(N − k − 1)(2b),

where mk is the smallest bin edge greater than or equal
to K, and the inequalities follow from Assumption 1-
(iv). Thus, these inequalities show that the bin-lengths
are monotonically increasing for the bins in the interval
[K,∞). Moreover, it follows that the number of bins in
the interval (mk,∞) is upper bounded by N−k ≤ ⌊ η

2|b|+
1⌋. Regarding the interval [a,K), there can be at most
⌊1 + K−a

2|b| ⌋ bins. Further, due to the definition of mk,
there can be at most one bin in [K,mk], which implies
k ≤ 1 + ⌊1 + K−a

2|b| ⌋. Thus, we get N ≤ ⌊K−a+η
2|b| + 3⌋.

(ii) Assume that K is in the r-th bin; i.e., mr−1 ≤ K < mr.
First, consider the bins on the right-side of the r-th bin;
i.e., the k-th bin for k > r; in other words, the bin is in
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the interval [K,∞). Due to (2), (3) and Assumption 1-
(iii), the following is obtained:

mk+1 − uk+1 = uk+2 −mk+1 + 2b

= E[M |mk+1 ≤ M < mk+2]−mk+1 + 2b

≤ E[M |mk+1 ≤ M < ∞]−mk+1 + 2b

≤ η + 2b, (45)

which implies 2b ≤ mk+1−uk+1 ≤ η+2b.8 In addition,
from Assumption 1-(iii), we have

uk+1 = E[M |mk ≤ M < mk+1]

≤ E[M |mk ≤ M < ∞]

≤ mk + η, (46)

which implies that 0 ≤ uk+1 − mk ≤ η. Thus, 2b ≤
mk+1 −mk ≤ 2η + 2b is obtained.
Now consider the bins in the interval [a,K); i.e., the k-th
bin for k ≤ r. If r = 1, it suffices the consider the length
of the left-most bin edge as other bins are in the interval
[K,∞). In this case, we get m1 − u1 = u2 −m1 +2b ≤
η + 2b and u1 = E[M |a ≤ M < m1] ≤ E[M |a ≤ M <
∞] = µ, which imply 2b ≤ m1−m0 ≤ µ+η+2b−a. If
r ≥ 2, then mr − ur = ur+1 −mr + 2b ≤ η + 2b. If we
utilize ur−mr−1 = mr−1−ur−1−2b ⇒ ur = 2mr−1−
ur−1−2b ≤ 2K−a−2b, we obtain mr ≤ ur+η+2b ≤
2K − a + η. Thus, we get mr − m0 ≤ 2K + η − 2a,
which provides an upper bound for the lengths of the left-
most bins. Hence, for any bin, the length of the bin, lk ≜
mk−mk−1, satisfies 2b ≤ lk ≤ max{2η+2b, µ+η+2b−
a, 2K + η − 2a} ≜ ∆. Based on the bin-lengths, the bin
edges can be represented by mi = a+

∑i
j=1 lj . Observe

that the set K ≜ [a+2b, a+∆]×[a+2(2b), a+2∆]×[a+
3(2b), a+3∆]× · · · (where {m1,m2,m3, · · · } ∈ K ) is
a convex and compact set by Tychonoff’s theorem [46].
Furthermore, at the equilibrium, the best responses of the
encoder and the decoder in (2) and (3) can be combined
to define a mapping as follows:

m ≜


m1

m2

...
mk

...

 =



u1+u2

2
u2+u3

2
...

uk+uk+1

2
...

+ b ≜ T (m), (47)

where uk = E[M |mk−1 ≤ M < mk] for k = 1, 2, . . . .
Since the source density is continuous, the mapping
T (m) : K → K is continuous under the point-
wise convergence, and hence, under the product topology
(the result follows by incrementing the dimension of the
product one-by-one and showing the continuity at each
step). Further, since an (countably) infinite product of real
intervals is a locally convex vector space, K is a convex
and compact space. Hence, there exists a fixed point for
the mapping T such that m∗ = T (m∗) by Tychonoff’s

8Note that non-strict inequalities are preferred over the strict ones in the
proof in order to obtain a convex and compact set, which will be used in the
fixed-point theorem to show the existence of an equilibrium.

fixed-point theorem [46], which implies that there exists
an equilibrium with infinitely many bins.

G. Proof of Theorem 11

For t ≥ K, E[M |M ≥ t] − t ≤ η holds due to
Assumption 1-(iii). If t < K, observe the following:

E[M |M ≥ t]− t ≤ E[M |M ≥ K]− a ≤ K + η − a.

Thus, for any t ≥ a, it holds that E[M |M ≥ t] ≤ t+K+η−a.
Suppose that there is an equilibrium with at least two bins. For
the k-th bin, it holds that

mk =
uk + uk+1

2
+ b

=
E[M |mk−1 ≤ M < mk] + E[M |mk ≤ M < mk+1]

2
+ b

<
mk + E[M |mk ≤ M < ∞]

2
+ b

<
mk +mk +K + η − a

2
+ b

⇒ b > −K + η − a

2
,

which proves the statement.

H. Proof of Proposition 1

(i) Let ms be the greatest bin edge less than or equal to
S; i.e., ms ≤ S < ms+1. Then, noting m0 = −∞ and
u1 = E[M |M ≤ m1], observe the following:

ν ≥ m1 − u1 = u2 −m1 + 2b

≥ m2 − u2 + 2b

= u3 −m2 + 2(2b)

...
≥ ms − us + (s− 1)(2b)

≥ 2(s− 1)b

⇒ s ≤ 1 +
ν

2b
,

which shows that the number of bins in the interval
(−∞, S] is upper bounded. Furthermore, these inequali-
ties reveal that for m < S, the bin-lengths are monoton-
ically decreasing.

(ii) Let mk be the smallest bin edge greater than or equal to
K; i.e., mk−1 < K ≤ mk, and mr be the right-most bin
edge; i.e., mr+1 = ∞ and ur+1 = E[m|mr ≤ M < ∞].
Then, observe the following:

η ≥ ur+1 −mr = mr − ur − 2b

≥ ur −mr−1 − 2b

= mr−1 − ur−1 − 2(2b)

...
≥ uk+1 −mk − (r − k)(2b)

≥ −(r − k)(2b)

⇒ r − k + 1 ≤ 1 +
η

2|b| ,
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which shows that the number of bins in the interval
[K,∞) is upper bounded. Furthermore, from these in-
equalities, it follows that for m > K, the bin-lengths are
monotonically increasing.

I. Proof of Theorem 12

The proof requires separate analyses for the positive and
the negative b values. As defined in Proposition 1, let ms be
the greatest bin edge less than or equal to S; i.e., ms ≤ S <
ms+1, mk be the smallest bin edge greater than or equal to
K; i.e., mk−1 < K ≤ mk, and mr be the right-most bin edge;
i.e., mr+1 = ∞ and ur+1 = E[m|mr ≤ M < ∞].

(i) First, assume a positive bias; i.e., b > 0. For the left-most
bin-edge m1, consider the following cases:

a) m1 ≥ K : Since u2 −m1 ≤ η and m1 − u1 = u2 −
m1 + 2b, we have m1 ≤ u1 + η + 2b. Further, since

u1 = E[M | −∞ < M < m1]

= Pr(M ≤ K| −∞ < M < m1)

× E[M | −∞ < M ≤ K]

+ Pr(K < M < m1| −∞ < M < m1)

× E[M |K < M < m1]

≤ Pr(M ≤ K| −∞ < M < m1)

× E[M | −∞ < M ≤ K]

+ Pr(K < M < m1| −∞ < M < m1)

× E[M |K < M < ∞]

≤ Pr(M ≤ K| −∞ < M < m1)K

+ Pr(K < M < m1| −∞ < M < m1)(K + η)

≤ K + η, (48)

we get m1 ≤ K+2η+2b. In this case, for any t ≥ 2,
it holds that mt − ut = ut+1 −mt + 2b ≤ η + 2b ⇒
2b ≤ mt−ut ≤ η+2b and 0 ≤ ut−mt−1 ≤ η. Thus,
the bin-lengths satisfy 2b ≤ lt = mt−mt−1 ≤ 2η+2b.
This shows that these bounds on the bin-lengths hold
for every bin in the interval [K,∞).

b) S < m1 < K : If m2 < K, then the upper bound on
the length of the second bin is m2−m1 ≤ K−S. Now,
consider the case when m2 ≥ K holds. Due to the
equilibrium conditions in (2) and (3); i.e., u1+u2

2 +b =
m1 and u2+u3

2 +b = m2, we have u2

2 +b = m1− u1

2 =
m2 − u3

2 ⇒ 2(m2 − m1) = u3 − u1 ⇒ m2 − m1 =
(u3 −m2) + (m1 − u1) ≤ η +K − u1. Since

u1 = E[M | −∞ < M < m1]

= Pr(−∞ < M ≤ S| −∞ < M < m1)

× E[M | −∞ < M ≤ S]

+ Pr(S < M < m1| −∞ < M < m1)

× E[M |S < M < m1]

≥ Pr(M ≤ S|M < m1)(S − ν)

+ Pr(S < M < m1|M < m1)S

≥ S − ν (49)

holds, we have m2 − m1 ≤ η + K − S + ν = K −
S + η + ν, which is the upper bound of the length of
the second bin.

c) m1 ≤ S : Since there can be at most one bin in the
interval [ms, S], at most K−S

2b bins in the interval
(S,K) and at most one bin in the interval [K,mk],
we have k ≤ s + K−S

2b + 2 ≤ ν
2b + K−S

2b + 3 by
Proposition 1-(i). Furthermore, for any bin in (−∞, S],
ν ≥ mt−ut = ut+1−mt+2b ⇒ 2b ≤ mt+1−mt ≤
2ν − 2b holds (note that if ν < 2b, then Case-(a)
applies; i.e., there is not any bin in (−∞, S]).
If there is not any bin edge between ms and mk; i.e.,
k = s+ 1, then, due to the equilibrium conditions (2)
and (3); i.e., us+us+1

2 +b = ms and uk+uk+1

2 +b = mk,
which imply us+1

2 + b = uk

2 + b = ms − us

2 =
mk − uk+1

2 ⇒ 2(mk − ms) = uk+1 − us ⇒ mk −
ms = (uk+1 − mk) + (ms − us) ≤ η + ν. Since
ms ≤ S < K ≤ mk, we obtain ms ≥ K − η − ν and
mk ≤ S+η+ν. Note that, under this case, the bounds
on the length of the bin containing the interval (S,K)
are K − S ≤ mk −ms ≤ η + ν.
If there is at least one bin edge between ms and
mk, we have ms ≤ S < ms+1 < K. Due to the
equilibrium conditions (2) and (3), us+us+1

2 + b = ms

and us+1+us+2

2 + b = ms+1 ⇒ us+1

2 + b = ms − us

2 =
ms+1 − us+2

2 ⇒ 2(ms+1 − ms) = us+2 − us ⇒
ms+1 −ms = (us+2 −ms+1) + (ms − us). Since

us+2 = E[M |ms+1 ≤ M < ms+2]

≤ E[M |ms+1 ≤ M < ∞]

= Pr(ms+1 ≤ M < K|ms+1 ≤ M < ∞)

× E[M |ms+1 ≤ M < K]

+ Pr(K ≤ M < ∞|ms+1 ≤ M < ∞)

× E[M |K ≤ M < ∞]

≤ Pr(ms+1 ≤ M < K|ms+1 ≤ M < ∞)K

+ Pr(K ≤ M < ∞|ms+1 ≤ M < ∞)(K + η)

≤ K + η (50)

holds, we have ms = 2ms+1 − us+2 − (ms − us) ≥
2S−(K+η)−ν ⇒ ms ≥ 2S−K−η−ν. Similar to the
analysis of the left-end of the interval (S,K) above,
we can analyze the right-end of the interval as follows:
For the right-end of the interval, we have S < mk−1 <
K ≤ mk. Due to the equilibrium conditions (2) and
(3); i.e., uk+uk+1

2 +b = mk and uk−1+uk

2 +b = mk−1,
which imply uk

2 + b = mk − uk+1

2 = mk−1 − uk−1

2 ⇒
2(mk − mk−1) = uk+1 − uk−1 ⇒ mk − mk−1 =
(uk+1 −mk) + (mk−1 − uk−1). Since

uk−1 = E[M |mk−2 ≤ M < mk−1]

≥ E[M | −∞ < M < mk−1]

= Pr(−∞ < M < S| −∞ < M < mk−1)

× E[M | −∞ < M < S]

+ Pr(S ≤ M < mk−1| −∞ < M < mk−1)

× E[M |S ≤ M < mk−1]

≥ Pr(M < S|M < mk−1)(S − ν)
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+ Pr(S ≤ M < mk−1| −∞ < M < mk−1)S

≥ S − ν (51)

holds, we have mk = (uk+1−mk)+2mk−1−uk−1 ≤
η+2K−(S−ν) ⇒ mk ≤ 2K−S+η+ν. Therefore, the
total length of the bins that contain the interval (S,K)
with the minimal number of bins (i.e., mk − ms) is
bounded by K−S ≤ mk−ms ≤ 3K−3S+2η+2ν.

For the interval (−∞, S], there are at most ⌊1+ ν
2b⌋ bins

as shown in Proposition 1 (and the length of the bins is
bounded above by 2ν− 2b, as shown in Case-(c) above).
Therefore, since we have m1 ≤ K + 2η + 2b and ms ≥
min{K − η − ν, 2S −K − η − ν} = 2S −K − η − ν,
we obtain K +2η+2b ≥ m1 ≥ 2S −K − η− ν − ⌊1+
ν
2b⌋(2ν − 2b). Furthermore, for any bin, the bin-length
lt ≜ mt − mt−1 is between ∆s ≜ min{2b,K − S} <
lt < max{2ν − 2b, 2η + 2b, η + ν,K − S + η + ν, 3K −
3S + 2η + 2ν} ≜ ∆k. Based on the left-most bin-edge
and the bin-lengths, the bin edges can be represented by
mi = m1 +

∑i
j=1 lj for i > 1. Similar to the proof of

Theorem 10, the set {ms, l1, l2, · · · } ∈ [2S−K−η−ν−
⌊1+ ν

2b⌋(2ν−2b),K+2η+2b]×[∆s,∆k]×[∆s,∆k]×· · ·
is a convex and compact set by Tychonoff’s theorem [46].
After defining a mapping similar to that in (47), it is
concluded from Tychonoff’s fixed-point theorem [46] that
there exists a fixed point. This proves that there exists an
equilibrium with infinitely many bins.

(ii) Now, assume a negative bias; i.e., b < 0. A similar
approach can be taken for this case, but for the com-
pleteness, we include the full proof below.
For the right-most bin edge mr, consider the following
cases:

a) mr < S : Since mr −ur ≤ ν and ur+1−mr = mr −
ur − 2b, we have mr ≥ ur+1 − ν + 2b. Further, since

ur+1 = E[M |mr ≤ M < ∞]

= Pr(mr ≤ M < S|mr ≤ M < ∞)

× E[M |mr ≤ M < S]

+ Pr(S ≤ M < ∞|mr ≤ M < ∞)

× E[M |S ≤ M < ∞]

≥ Pr(mr ≤ M < S|mr ≤ M < ∞)

× E[M | −∞ ≤ M < S]

+ Pr(S ≤ M < ∞|mr ≤ M < ∞)

× E[M |S ≤ M < ∞]

≥ Pr(mr ≤ M < S|M ≥ mr)(S − ν)

+ Pr(M ≥ S|M ≥ mr)S

≥ S − ν, (52)

mr ≥ S−2ν+2b is obtained. Under this case, for any
bin, it holds that ut+1−mt = mt−ut−2b ≤ ν−2b ⇒
−2b ≤ ut+1−mt ≤ ν−2b and 0 ≤ mt−ut ≤ ν. Thus,
the bin-lengths satisfy −2b ≤ lt+1 = mt+1 − mt ≤
2ν−2b. Actually, these bounds on the bin-lengths hold
for every bin in the interval (−∞, S].

b) S < mr < K : If mr−1 > S, then the upper bound of
the length of the bin before the last bin is mr−mr−1 ≤

K −S. Now, consider the mr−1 ≤ S case. Due to the
equilibrium conditions (2) and (3); i.e., ur+ur+1

2 + b =

mr and ur−1+ur

2 + b = mr−1, which imply ur

2 + b =
mr− ur+1

2 = mr−1− ur−1

2 ⇒ 2(mr−mr−1) = ur+1−
ur−1 ⇒ mr−mr−1 = (ur+1−mr)+(mr−1−ur−1).
Since

ur+1 = E[M |mr ≤ M < ∞]

= Pr(mr ≤ M < K|mr ≤ M < ∞)

× E[M |mr ≤ M < K]

+ Pr(K ≤ M < ∞|mr ≤ M < ∞)

× E[M |K ≤ M < ∞]

≤ Pr(mr ≤ M < K|M ≥ mr)K

+ Pr(M ≥ K|M ≥ mr)(K + η)

≤ K + η (53)

holds, we have mr − mr−1 ≤ K + η − S + ν =
K−S+η+ν, which is the upper bound of the length
of the bin before the last bin.

c) mr > K : For any bin in [K,∞), ν ≥ ut+1 −mt =
mt − ut − 2b ⇒ −2b ≤ ut+1 − mt ≤ ν and 0 ≤
mt−ut ≤ ν+2b, which results in −2b ≤ mt+1−mt ≤
2η + 2b (if η < −2b, then Case-(a) applies; i.e., there
is not any bin in [K,∞)).
If there is not any bin edge between ms and mk; i.e.,
k = s+1, the analysis for b > 0 holds: ms ≥ K−η−ν,
mk ≤ S + η + ν and K − S ≤ mk − ms ≤ η + ν.
Similarly, if there is at least one bin edge between ms

and mk, the analysis for b > 0 holds again: ms ≥
2S−K − η− ν, mk ≤ 2K −S+ η+ ν and K −S ≤
mk −ms ≤ 3K − 3S + 2η + 2ν.

For the interval [K,∞), there are at most ⌊1− η
2b⌋ bins

as shown in Proposition 1 (and the length of the bins is
bounded above by 2η+2b, as shown in Case-(a) above).
Therefore, since we have mr ≥ S − 2ν + 2b and mk ≥
max{S+η+ν, 2K−S+η+ν} = 2K−S+η+ν, we ob-
tain S−2ν+2b ≤ mr ≤ 2K−S+η+ν+⌊1− η

2b⌋(2η+2b).
Furthermore, for any bin, the bin-length lt ≜ mt −mt−1

is between ∆s ≜ min{−2b,K − S} < lt < max{2ν −
2b, 2η+2b, η+ν,K−S+η+ν, 3K−3S+2η+2ν} ≜ ∆k.
Based on the right-most bin-edge and the bin-lengths,
the other bin edges can be represented by mr−i =
mr −∑i

j=1 lr−j . Similar to the proof of Theorem 10,
the set {mr, lr−1, lr−2, · · · } ∈ [S − 2ν + 2b, 2K − S +
η+ ν + ⌊1− η

2b⌋(2η+ 2b)]× [∆s,∆k]× [∆s,∆k]× · · ·
is a convex and compact set by Tychonoff’s theorem
[46]. After defining a mapping similar to that in (47),
it follows from Tychonoff’s fixed-point theorem [46] that
there exists an equilibrium with infinitely many bins.

J. Proof of Proposition 2

Since uN = E[M |mN−1 ≤ M ] = mN−1 + 1
λ , it follows

that
1

λ
= uN −mN−1 = (mN−1 − uN−1)− 2b
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> (uN−1 −mN−2)− 2b

= (mN−2 − uN−2)− 2(2b)

...
> u1 −m0 − (N − 1)(2b)

> −(N − 1)(2b).

Here, the inequalities follow from the fact that the exponential
pdf is monotonically decreasing. Thus, for b < 0,

1

λ
> −(N − 1)2b ⇒(N − 1)2b >

1

−λ

⇒(N − 1) <
1

−2bλ

⇒N ≤
⌊
− 1

2bλ
+ 1

⌋
,

is obtained, which also proves that the number of bins at the
equilibrium is upper bounded.

K. Proof of Proposition 3

For the last two bins, we have

mN−1 =
uN−1 + uN

2
+ b

=

(
mN−2 +

1
λ − lN−1

eλlN−1−1

)
+
(
mN−1 +

1
λ

)
2

+ b

⇒ lN−1
eλlN−1

eλlN−1 − 1
=

2

λ
+ 2b. (54)

For the other bins; i.e., the k-th bin for k = 1, 2, . . . , N − 2,
observe the following:

uk+1 −mk = mk − uk − 2b

= (mk −mk−1)− (uk −mk−1)− 2b

⇒ 1

λ
− lk+1

eλlk+1 − 1
= lk − 1

λ
+

lk
eλlk − 1

− 2b

⇒ lk
eλlk

eλlk − 1
=

2

λ
+ 2b− lk+1

eλlk+1 − 1
. (55)

From (54) and (55), the bin-lengths at the equilibrium can be
written in a recursive form as in (9a) and (9b).

The proof for monotonically increasing bin-lengths is based
on induction. Before the induction step, in order to use (9b),
we examine the structure of g(x) = xeλx

eλx−1
and h(x) = x

eλx−1
.

First note that both functions are continuous and differentiable
on [0,∞). Further, g is a positive, strictly increasing and
unbounded function on R≥0, and h is a positive and strictly
decreasing function on R≥0. Now, notice the following prop-
erties:

g(lk) = h(lk) + lk,

g(lk) = lk
eλlk

eλlk − 1
> lk,

h(lk) =
lk

eλlk − 1
<

lk
λlk

=
1

λ
,

(56)

where the last inequality follows from ey ≥ y+1 with equality
if and only if y = 0. Now consider the length of the (N−2)nd

bin. By utilizing the properties in (56) on the recursion in (9b),
we get

g(lN−2) =
2

λ
+ 2b− h(lN−1) = g(lN−1)− h(lN−1) = lN−1

⇒ lN−1 = g(lN−2) = lN−2 + h(lN−2)

⇒ lN−2 < lN−1 < lN−2 +
1

λ
. (57)

Similarly, for the (N − 3)rd bin, the following relations hold:

g(lN−3) =
2

λ
+ 2b− h(lN−2)

= g(lN−2) + h(lN−1)− h(lN−2) = lN−2 + h(lN−1)

g(lN−3) = lN−2 + h(lN−1) < lN−2 + h(lN−2) = g(lN−2)

⇒ lN−3 < lN−2

lN−2 < lN−2 + h(lN−1) = g(lN−3)

= lN−3 + h(lN−3) < lN−3 +
1

λ

⇒ lN−3 < lN−2 < lN−3 +
1

λ
. (58)

Now suppose that lN−1 > lN−2 > . . . > lk is obtained. Then,
consider the (k − 1)st bin:

g(lk−1) =
2

λ
+ 2b− h(lk) = g(lk) + h(lk+1)− h(lk)

= lk + h(lk+1)

g(lk−1) = lk + h(lk+1) < lk + h(lk) = g(lk) ⇒ lk−1 < lk

lk < lk + h(lk+1) = g(lk−1) = lk−1 + h(lk−1) < lk−1 +
1

λ

⇒ lk−1 < lk < lk−1 +
1

λ
. (59)

Thus, the bin-lengths form a monotonically increasing se-
quence.

L. Proof of Theorem 13

Proof of (i): Consider the two bins [0,m1) and [m1,∞).
Then, the centroids of the bins (the decoder actions) are u1 =
E[M |M < m1] =

1
λ − m1

eλm1−1
and u2 = E[M |m1 ≤ M ] =

1
λ + m1. In view of (3), an equilibrium with these two bins
exists if and only if

m1 =
u1 + u2

2
+ b =

1
λ − m1

eλm1−1
+ 1

λ +m1

2
+ b

⇒ m1

2

eλm1

eλm1 − 1
=

1

λ
+ b

⇒ eλm1

(
1

λ
+ b− m1

2

)
=

1

λ
+ b. (60)

Note that in (60), m1 = 0 is always a solution; however, in
order to have an equilibrium with two bins, we need a non-zero
solution to (60); i.e., m1 > 0. For this purpose, the Lambert
W -function will be used. Although the Lambert W -function
is defined for complex variables, we restrict our attention to
the real-valued W -function; i.e., the W -function is defined as

W (xex) = x for x ≥ 0,

W0(xe
x) = x for − 1 ≤ x < 0,

W−1(xe
x) = x for x ≤ −1.
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As it can be seen, for x ≥ 0, W (xex) is a well-defined
single-valued function. However, for x < 0, W (xex) is doubly
valued, e.g., when W (xex) ∈ (− 1

e , 0), there exist x1 and x2

that satisfy x1e
x1 = x2e

x2 where x1 ∈ (−1, 0) and x2 ∈
(−∞,−1). In order to differentiate these values, the principal
branch of the Lambert W -function is defined to represent the
values greater than −1; e.g., x1 = W0(x1e

x1) = W0(x2e
x2).

Similarly, the lower branch of the Lambert W -function rep-
resents the values smaller than −1; e.g, x2 = W−1(x1e

x1) =
W−1(x2e

x2). Further, for x = −1, two branches of the W -
function coincide; i.e., −1 = W0(− 1

e ) = W−1(− 1
e ). Regard-

ing the definition above, by letting t ≜ 2λ
(
m1

2 − 1
λ − b

)
, the

solution of (60) can be found as follows:

et+2+2λb

(−t

2λ

)
=

1

λ
+ b ⇒ tet = −(2 + 2λb)e−(2+2λb)

⇒ t = W
(
−(2 + 2λb)e−(2+2λb)

)
. (61)

Note that, in (61), depending on the values of −(2+2λb), the
following cases can be distinguished:

(i) −(2 + 2λb) ≥ 0 : tet = −(2 + 2λb)e−(2+2λb) ⇒ t =
−(2+2λb) ⇒ m1 = 0, which implies a non-informative
equilibrium; i.e., an equilibrium with only one bin.

(ii) −1 < −(2 + 2λb) < 0 : Since tet = −(2 +

2λb)e−(2+2λb), there are two possible solutions:
a) If t = W0

(
−(2 + 2λb)e−(2+2λb)

)
= −(2 + 2λb), we

have m1 = 0, as in the previous case.
b) If t = W−1

(
−(2 + 2λb)e−(2+2λb)

)
⇒ t < −1 ⇒

−1 > t = 2λ
(
m1

2 − 1
λ − b

)
= λm1 − 2 − 2λb >

λm1 − 1 ⇒ λm1 < 0, which is not possible.
(iii) −(2 + 2λb) = −1 : Since tet = −(2 + 2λb)e−(2+2λb),

there is only one solution, t = −(2+2λb) = −1 ⇒ m1 =
0, which implies that the equilibrium is non-informative.

(iv) −(2 + 2λb) < −1 : Since tet = −(2 + 2λb)e−(2+2λb),
there are two possible solutions:

a) If t = W−1

(
−(2 + 2λb)e−(2+2λb)

)
= −(2+2λb), we

have m1 = 0; i.e., an equilibrium with only one bin.
b) If t = W0

(
−(2 + 2λb)e−(2+2λb)

)
, we have −1 < t <

0 ⇒ −1 < λm1 − 2 − 2λb < 0 ⇒ 1
λ + 2b < m1 <

2
λ + 2b. Thus, if we have 1

λ + 2b > 0 ⇒ b > − 1
2λ ,

then m1 must be positive, which implies the existence
of an equilibrium with two bins.

Thus, as long as b ≤ − 1
2λ , there exists only one bin at the

equilibrium; i.e., there exist only non-informative equilibria;
and the equilibrium with two bins can be achieved only if
b > − 1

2λ . In this case, m1 = 1
λW0

(
−(2 + 2λb)e−(2+2λb)

)
+

2
(
1
λ + b

)
. Note that, since −1 < W0(·) < 0, the boundary

between two bins lies within the interval 1
λ + 2b < m1 <

2
λ + 2b.

Proof of (ii): In order to have an equilibrium with at least
three bins, lN−2 > 0 must be satisfied. If we let ck ≜ 2

λ +

2b− lk+1

eλlk+1−1
, the solution to (55) is

lk =
1

λ
W0

(
−λcke

−λck
)
+ ck. (62)

From (62), if −λcN−2 < −1 is satisfied, then the solution to
lN−2 will be positive. Then,

− λcN−2 = −λ

(
2

λ
+ 2b− h(lN−1)

)
= −λ (g(lN−1)− h(lN−1)) = −λlN−1 < −1

⇒ lN−1 =
1

λ
W0

(
−(2 + 2λb)e−(2+2λb)

)
+ 2

(
1

λ
+ b

)
>

1

λ

⇒ W0

(
−(2 + 2λb)e−(2+2λb)

)
> −1− 2λb. (63)

Let t ≜ W0

(
−(2 + 2λb)e−(2+2λb)

)
, then tet = −(2 +

2λb)e−(2+2λb) and −1 < t < 0. Then, from (63), since tet is
increasing function of t for t > −1,

t >− 1− 2λb ⇒ tet = −(2 + 2λb)e−(2+2λb)

> −(1 + 2λb)e−(1+2λb)

⇒2 + 2λb < (1 + 2λb)e ⇒ b > − 1

2λ

e− 2

e− 1
. (64)

Thus, if b > − 1
2λ

e−2
e−1 , an equilibrium with at least three bins

is obtained; otherwise; i.e., b ≤ − 1
2λ

e−2
e−1 , there can exist at

most two bins at the equilibrium.
Proof of (iii): Now, we focus on equilibria with infinitely

many bins. For any equilibrium, consider a bin with a finite
length, say the kth bin, and by utilizing (9b) and (56), we have
the following inequalities:

2

λ
+ 2b =g(lk) + h(lk+1) = g(lk) + g(lk+1)− lk+1

>lk + lk+1 − lk+1 = lk ⇒ lk <
2

λ
+ 2b,

2

λ
+ 2b =g(lk) + h(lk+1) = h(lk) + lk + h(lk+1)

<
1

λ
+ lk +

1

λ
=

2

λ
+ lk ⇒ lk > 2b.

Thus, all bin-lengths are bounded from above and below: 2b <
lk < 2

λ + 2b. Now consider the fixed-point solution of the
recursion in (9b); i.e., g(l∗) = 2

λ +2b−h(l∗). Then, by letting
c ≜ 2

λ + 2b,

l∗
eλl

∗

eλl∗ − 1
= c− l∗

eλl∗ − 1
⇒ l∗

eλl
∗
+ 1

eλl∗ − 1
= c

⇒ (c− l∗)eλl
∗ − (c+ l∗) = 0. (65)

In order to investigate if (65) has a unique solution l∗ such
that 2b < l∗ < 2

λ + 2b, let Ψ(s) ≜ (c − s)eλs − (c + s) for
s ∈

(
2b, 2

λ + 2b
)

and notice that Ψ(s) is a concave function of
s for s ∈

(
2b, 2

λ + 2b
)
, Ψ(2b) > 0, Ψ(s) reaches its maximum

value in the interval
(
2b, 2

λ + 2b
)
; i.e., when Ψ′(s∗) = 0, and

Ψ( 2λ+2b) < 0; thus, Ψ(s) crosses the s-axis only once, which
implies that Ψ(s) = 0 has a unique solution in the interval(
2b, 2

λ + 2b
)
. In other words, the fixed-point solution of the

recursion in (9b) is unique; i.e., Ψ(l∗) = 0.
Hence, if the length of the first bin is l∗; i.e., l1 = l∗, then,

all bins must have a length of l∗; i.e., l1 = l2 = l3 = . . . = l∗.
Thus, there exists an equilibrium with infinitely many equi-
length bins.
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Now, suppose that l1 < l∗. Then, by (9b), h(l2) = 2
λ +2b−

g(l1). Since g in an increasing function, l1 < l∗ ⇒ g(l1) <
g(l∗). Let g(l∗)− g(l1) ≜ ∆ > 0, then,

g(l∗) + h(l∗) = g(l1) + h(l2) =
2

λ
+ 2b

⇒ ∆ = g(l∗)− g(l1) = h(l2)− h(l∗). (66)

From Proposition 3, we know that h(s) = s
eλs−1

is a

decreasing function with h′(s) = − eλs(λs−1)+1
(eλs−1)2

< 0 for s > 0

and h′(0) = − 1
2 . Since h′(s) is an increasing function of s,

h′(0) = − 1
2 , and h′(s) > − 1

2 for s > 0, it follows that
h(l∗)−h(l2)

l∗−l2
> − 1

2 ⇒ −∆
l∗−l2

> − 1
2 ⇒ l∗ − l2 > 2∆. From

(66),

∆+∆ = (g(l∗)− g(l1)) + (h(l2)− h(l∗))

= g(l∗)− g(l1) + (g(l2)− l2)− (g(l∗)− l∗)

= g(l2)− g(l1) + l∗ − l2︸ ︷︷ ︸
>2∆

⇒ g(l2)− g(l1) < 0 ⇒ l2 < l1. (67)

Proceeding similarly, l∗ > l1 > l2 > . . . can be obtained. Now,
notice that, since h(lk) is a monotone function and 2b < lk <
2
λ + 2b, the recursion in (9b) can be satisfied if

g(lk) =
2

λ
+ 2b− h(lk+1)

⇒ 2

λ
+ 2b− h(2b) < g(lk) <

2

λ
+ 2b− h

(
2

λ
+ 2b

)
.

(68)

Let l and l and defined as g(l) = 2
λ + 2b− h(2b) and g(l) =

2
λ + 2b − h

(
2
λ + 2b

)
, respectively. Thus, if lk /∈ (l, l), then

there is no solution to lk+1 for the recursion in (9b). Since the
sequence of the bin-lengths is monotonically decreasing, there
is a natural number K such that lK > l and lK+1 ≤ l, which
implies that there is no solution to lK+2. Thus, there cannot
be any equilibrium with infinitely many bins if l1 < l∗.

A similar approach can be taken for l1 > l∗: Since g is
an increasing function, l1 > l∗ ⇒ g(l1) > g(l∗). Let g(l1) −
g(l∗) ≜ ∆̃ > 0 ⇒ g(l1) − g(l∗) = h(l∗) − h(l2) = ∆̃. Then,
since h′(s) > − 1

2 for s > 0, h(l2)−h(l∗)
l2−l∗ > − 1

2 ⇒ −∆
l2−l∗ >

− 1
2 ⇒ l2 − l∗ > 2∆. From (66),

∆̃ + ∆̃ = (g(l1)− g(l∗)) + (h(l∗)− h(l2))

= g(l1)− g(l∗) + (g(l∗)− l∗)− (g(l2)− l2)

= g(l1)− g(l2) + l2 − l∗︸ ︷︷ ︸
>2∆

⇒ g(l1)− g(l2) < 0 ⇒ l1 < l2. (69)

Proceeding similarly, l∗ < l1 < l2 < . . . can be obtained.
Since the sequence of the bin-lengths is monotonically in-
creasing, there is a natural number K̃ such that lK̃ < l and
lK̃+1 ≥ l, which implies that there is no solution to lK̃+2.
Thus, there cannot be any equilibrium with infinite number
of bins if l1 > l∗. Notice that, it is possible to have an
equilibrium with finite number of bins since for the last bin
with a finite length, (9a) is used. Further, it is shown that, at
the equilibrium, any finite bin-length must be greater than or
equal to l∗; i.e., 2b < l∗ ≤ lk < 2

λ +2b must be satisfied.

M. Proof of Theorem 14

Proof of (i): Suppose that there exists an equilibrium with
N bins, and the corresponding bin-lengths are l1 < l2 < . . . <
lN = ∞ with the bin edges 0 = m0 < m1 < . . . < mN−1 <
mN = ∞. Then, the decoder cost is

Jd,N =

N∑
i=1

Var (M |mi−1 < M < mi)

× Pr(mi−1 < M < mi)

=

N∑
i=1

(
1

λ2
− l2i

eλli + e−λli − 2

)
×
(
e−λmi−1

(
1− e−λli

))
. (70)

Now, consider an equilibrium with N + 1 bins with the bin-
lengths l̃1 < l̃2 < . . . < l̃N+1 = ∞ and the bin edges 0 =
m̃0 < m̃1 < . . . < m̃N < m̃N+1 = ∞. The relation between
the bin-lengths and the bin edges can be expressed as lk =
l̃k+1 and mk = m̃k+1 − l̃1, respectively, for k = 1, 2, . . . , N
by Proposition 3. Then, the decoder cost at the equilibrium
with N + 1 bins can be written as

Jd,N+1 =

N+1∑
i=1

(
1

λ2
− l̃2i

eλl̃i + e−λl̃i − 2

)
×
(
e−λm̃i−1

(
1− e−λl̃i

))
=

(
1

λ2
− l̃21

eλl̃1 + e−λl̃1 − 2

)(
e−λm̃0

(
1− e−λl̃1

))
+

N+1∑
i=2

(
1

λ2
− l̃2i

eλl̃i + e−λl̃i − 2

)(
e−λm̃i−1

(
1− e−λl̃i

))
=

(
1

λ2
− l̃21

eλl̃1 + e−λl̃1 − 2

)(
1− e−λl̃1

)
+

N+1∑
i=2

(
1

λ2
− l2i−1

eλli−1 + e−λli−1 − 2

)
×
(
e−λ(mi−2+l̃1)

(
1− e−λli−1

))
=

(
1

λ2
− l̃21

eλl̃1 + e−λl̃1 − 2

)(
1− e−λl̃1

)
+ e−λl̃1

×
(

N∑
i=1

(
1

λ2
− l2i

eλli + e−λli − 2

)(
e−λmi−1

(
1− e−λli

)))
︸ ︷︷ ︸

Jd,N

(a)
< Jd,N

(
1− e−λl̃1

)
+ Jd,Ne−λl̃1 = Jd,N . (71)

Thus, Jd,N+1 < Jd,N is obtained, which implies that the
equilibrium with more bins is more informative. Here, (a)
follows from the following:

Jd,N =

N∑
i=1

(
1

λ2
− l2i

eλli + e−λli − 2

)
×
(
e−λmi−1

(
1− e−λli

))
>

N∑
i=1

(
1

λ2
− l̃21

eλl̃1 + e−λl̃1 − 2

)
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× Pr(mi−1 < m < mi)

=

(
1

λ2
− l̃21

eλl̃1 + e−λl̃1 − 2

)
, (72)

where the inequality holds since l̃1 < l1 < l2 < . . . < lN and
φ(s) ≜ s2

eλs+e−λs−2
is a decreasing function of s.

Proof of (ii): Now consider an equilibrium with infinitely
many bins. By Theorem 13, the bin-lengths are l1 = l2 =
. . . = l∗, where l∗ is the fixed-point solution of the recursion
in (9b); i.e., g(l∗) = 2

λ + 2b − h(l∗), and the bin edges are
mk = kl∗. Then, the decoder cost is

Jd,∞ =

(
1

λ2
− (l∗)2

eλl∗ + e−λl∗ − 2

)(
1− e−λl∗

)
+

∞∑
i=2

(
1

λ2
− (l∗)2

eλl∗ + e−λl∗ − 2

)
×
(
e−λ(i−1)l∗

(
1− e−λl∗

))
=

(
1

λ2
− (l∗)2

eλl∗ + e−λl∗ − 2

)(
1− e−λl∗

)
+ e−λl∗

×
∞∑
i=1

(
1

λ2
− (l∗)2

eλl∗ + e−λl∗ − 2

)(
e−λ(i−1)l∗

(
1− e−λl∗

))
︸ ︷︷ ︸

Jd,∞

⇒Jd,∞ =

(
1

λ2
− (l∗)2

eλl∗ + e−λl∗ − 2

)
. (73)

Since the bin-lengths at the equilibria with finitely many bins
are greater than l∗ by Theorem 13, and due to a similar reason-
ing in (71) (indeed, by replacing l̃1 with l∗), Jd,∞ < Jd,N can
be obtained for any finite N . Actually, Jd,N is a monotonically
decreasing sequence with limit limN→∞ Jd,N = Jd,∞. Thus,
the lowest equilibrium cost is achieved with infinitely many
bins.

N. Proof of Proposition 4
(i) Consider an equilibrium with N bins for a Gaussian

source M ∼ N (µ, σ2): the k-th bin is [mk−1,mk), and
the centroid of the k-th bin (i..e, the corresponding action
of the decoder) is uk = E[M |mk−1 ≤ M < mk] so that
−∞ = m0 < u1 < m1 < u2 < m2 < . . . < mN−2 <
uN−1 < mN−1 < uN < mN = ∞. Further, assume
that µ is in the t-th bin; i.e., mt−1 ≤ µ < mt. Due to
the nearest neighbor condition (the best response of the
encoder) we have uk+1 − mk = (mk − uk) − 2b; and
due to the centroid condition (the best response of the
decoder), we have uk = E[M |mk−1 ≤ M < mk] =

µ− σ
ϕ(

mk−µ

σ )−ϕ(
mk−1−µ

σ )

Φ(
mk−µ

σ )−Φ(
mk−1−µ

σ )
. Then, for any bin in [µ,∞),

since mk > µ, the following holds:

uk −mk−1 = E[M |mk−1 ≤ M < mk]−mk−1

< E[M |mk−1 ≤ M < ∞]−mk−1

= µ+ σ
ϕ(mk−1−µ

σ )

1− Φ(mk−1−µ
σ )

−mk−1

(a)
< µ+ σ

√(
mk−1−µ

σ

)2
+ 4 + mk−1−µ

σ

2
−mk−1

<
σ

2

(√(
mk−1 − µ

σ

)2

+ 4

(
mk−1 − µ

σ

)
+ 4

− mk−1 − µ

σ

)
= σ. (74)

Here, (a) in due to an inequality on the upper bound of
the Mill’s ratio [51]; i.e., ϕ(c)

1−Φ(c) <
√
c2+4+c

2 for c > 0.
Now, observe the following:

σ > uN −mN−1 = (mN−1 − uN−1)− 2b

> (uN−1 −mN−2)− 2b

...
> −(N − t)(2b),

where the inequalities follow from the fact that the
Gaussian pdf of M is monotonically decreasing on
[µ,∞), which implies that bin-lengths are monotonically
increasing in the interval [µ,∞) when b < 0. Further, for
b < 0, N − t < − σ

2b is obtained, which implies that the
number of bins in [µ,∞) is bounded by

⌊
− σ

2b

⌋
.

(ii) Similarly, for any bin in (−∞, µ], since mk < µ, the
following holds:

mk − uk = mk − E[M |mk−1 < M < mk]

< mk − E[M | −∞ < M < mk]

= mk − µ+ σ
ϕ(mk−µ

σ )

Φ(mk−µ
σ )

(a)
= σ

ϕ(µ−mk

σ )

1− Φ(µ−mk

σ )
− σ

µ−mk

σ

(b)
< σ


√(

µ−mk

σ

)2
+ 4 + µ−mk

σ

2
− µ−mk

σ


<

σ

2

(√(
µ−mk

σ

)2

+ 4

(
µ−mk

σ

)
+ 4− µ−mk

σ

)
= σ. (75)

Here, (a) holds since ϕ(x) = ϕ(−x) and Φ(x) = 1 −
Φ(−x), and (b) follows from an inequality on the upper
bound of the Mill’s ratio [51]; i.e., ϕ(c)

1−Φ(c) <
√
c2+4+c

2
for c > 0. Now, observe the following:

σ > m1 − u1 = u2 −m1 + 2b

> m2 − u2 + 2b

...
> (t− 1)(2b),

where the inequalities follow from the fact that the Gaus-
sian pdf of M is monotonically increasing on (−∞, µ],
which implies that bin-lengths are monotonically decreas-
ing in the interval (−∞, µ] when b > 0. Further, for
b > 0, t − 1 < σ

2b is obtained, which implies that the
number of bins in (−∞, µ] is bounded by

⌊
σ
2b

⌋
.
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O. Proof of Remark 15

For b > 0, we can characterize what the bins looks like as
the bin edges get very large with the following analysis:

lim
i→∞

E[M |m∗
i−1 < M < m∗

i ]−m∗
i−1

= lim
i→∞

E[M |m∗
i−1 < M < m∗

i−1 + l∗i ]−m∗
i−1

= lim
m∗

i−1→∞
µ− σ

ϕ(
m∗

i−1+l∗i −µ

σ )− ϕ(
m∗

i−1−µ

σ )

Φ(
m∗

i−1+l∗i −µ

σ )− Φ(
m∗

i−1−µ

σ )
−m∗

i−1

H
= lim

m∗
i−1→∞

µ−m∗
i−1

− σ
ϕ(

m∗
i−1+l∗i −µ

σ )
−m∗

i−1−l∗i +µ

σ
1
σ − ϕ(

m∗
i−1−µ

σ )
−m∗

i−1+µ

σ
1
σ

ϕ(
m∗

i−1+l∗i −µ

σ ) 1σ − ϕ(
m∗

i−1−µ

σ ) 1σ

= lim
m∗

i−1→∞
µ−m∗

i−1 +m∗
i−1 − µ+

l∗i

1− ϕ(
m∗

i−1
−µ

σ )

ϕ(
m∗

i−1
+l∗

i
−µ

σ )

(a)
= 0 (76)

Here, H
= represents l’Hôspital’s rule and (a) follows from

lim
m∗

i−1→∞

ϕ(
m∗

i−1−µ

σ )

ϕ(
m∗

i−1+l∗i −µ

σ )

= lim
m∗

i−1→∞
e

−
(

m∗
i−1−µ

σ

)2

+

(
m∗

i−1+l∗i −µ

σ

)2

2 = ∞.

Then, (3) reduces to

lim
i→∞

mi−E[M |mi−1 < M < mi]

= lim
i→∞

E[M |mi < M < mi+1]−mi + 2b

⇒ lim
i→∞

mi −mi−1 = lim
i→∞

mi −mi + 2b

⇒ lim
i→∞

mi −mi−1 = 2b. (77)

In other words, the distance between the centroid and the lower
edge of the bin converges to zero (i.e., the centroid of the bin
converges to the left-edge), and length of the bins converge to
2b.

Similarly, for b < 0, we can characterize what the bins looks
like as the bin edges get very large (in absolute value) with
the following analysis:

lim
i→∞

m∗
r−i − E[M |m∗

r−i−1 < M < m∗
r−i]

= lim
i→∞

m∗
r−i − E[M |m∗

r−i − l∗r−i < M < m∗
r−i]

= lim
m∗

r−i→−∞
m∗

r−i − µ+ σ
ϕ(

m∗
r−i−µ

σ )− ϕ(
m∗

r−i−l∗r−i−µ

σ )

Φ(
m∗

r−i−µ

σ )− Φ(
m∗

r−i−l∗r−i−µ

σ )
H
= lim

m∗
r−i→−∞

m∗
r−i − µ

+ σ
ϕ(

m∗
r−i−µ

σ )
−m∗

r−i+µ

σ
1
σ − ϕ(

m∗
r−i−l∗r−i−µ

σ )
−m∗

r−i+l∗r−i+µ

σ
1
σ

ϕ(
m∗

r−i−µ

σ ) 1σ − ϕ(
m∗

r−i−l∗r−i−µ

σ ) 1σ

= lim
m∗

r−i→−∞
m∗

r−i − µ−m∗
r−i + µ− l∗i

ϕ(
m∗

r−i
−µ

σ )

ϕ(
m∗

r−i
−l∗

r−i
−µ

σ )
− 1

(a)
= 0. (78)

Here, (a) follows from

lim
m∗

r−i→−∞

ϕ(
m∗

r−i−µ

σ )

ϕ(
m∗

r−i−l∗r−i−µ

σ )

= lim
m∗

r−i→∞
e

−(
m∗

r−i−µ

σ
)2+(

m∗
r−i−l∗r−i−µ

σ
)2

2 = ∞.

Similar to the b > 0 case, the distance between the centroid
and the upper edge of the bin converges to zero (i.e., the
centroid of the bin converges to the right-edge), and length
of the bins converge to −2b.
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