
1

Optimal Channel Switching and Randomization over Flat-Fading
Channels for Outage Capacity Maximization

Saad Masrur and Sinan Gezici,Senior Member, IEEE

Abstract—Channel switching and parameter randomization
can provide performance improvements for communication sys-
tems in terms of metrics such as probability of error and
channel capacity. In this study, the optimal channel switching
and randomization problem is formulated and its solution is
characterized for flat-fading Gaussian noise channels withthe
aim of outage capacity maximization under average power and
outage probability constraints. For the single user scenario, it
is proved that the optimal solution can always be realized by
performing one of the following strategies: (1) Transmission over
a single channel with no randomization. (2) Channel switching
between two channels with no randomization. (3) Randomization
between two parameter sets over a single channel. Hence, the
solution can easily be obtained by considering only these three
strategies. However, for the multiuser scenario, obtaining the
optimal solution can have very high computational complexity.
Therefore, an algorithm is proposed to calculate an approxi-
mately optimal channel switching and randomization solution
(with adjustable approximation accuracy) based on the solution
of a linearly constrained linear optimization problem.

Index Terms—Channel switching, outage capacity, time-
sharing, power allocation, flat-fading channel.

I. I NTRODUCTION

Performance of communication systems can be enhanced
via various time-sharing approaches such as channel switching
and parameter randomization [1]–[9]. In channel switching,
a transmitter and a receiver perform time-sharing among
different channels by communicating over only one channel
at a given time [1]–[3]. In this way, improvements can be
achieved in terms of the average probability of error [1],
throughput [10], or channel capacity [2]–[4]. For example,
as shown in [1], switching between two channels with a
certain time-sharing factor can be necessary in some cases
for attaining the minimum average probability of error in
an average power constrained binary communication system.
In addition, for maximizing the average Shannon capacity
between a transmitter and a receiver under average and peak
power constraints and in the presence of Gaussian channels,an
optimal approach is to implement channel switching between
at most two different channels [2].

Apart from channel switching, parameter randomization
can also enhance performance of communication systems by
employing different parameter values for certain fractions
of time; i.e., by performing time-sharing among different
parameter sets [5]–[9]. For example, power randomization
was carried out in [5] for minimizing the outage probability
in a flat block-fading Gaussian channel under an average
transmit power constraint. In the context of jamming against
digital modulation, the authors of [6] showed that the optimal
jamming signal distribution has at most two signal levels along
any signaling dimension.

In this letter, we propose the problem of optimal channel
switching and randomization for maximizing the outage capac-
ity between a transmitter and a receiver in the presence of av-
erage power and outage probability constraints. The channels
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between the transmitter and the receiver are modeled as flat-
fading and additive Gaussian noise channels, and the channel
distribution information (CDI) of each channel is assumed to
be available at both the transmitter and the receiver. On the
other hand, the channel state information (CSI) of the channels
is available only at the receiver. By employing the outage
capacity [11] as a performance metric, we derive optimal
channel switching and randomization strategies. (The outage
capacity is an important and practical metric, based on which
communication systems can be designed to support a certain
number of users with target data rates.) Main contributions
and novelty of this letter can be summarized as follows:
• The problem of optimal channel switching and randomiza-

tion according to the outage capacity metric is proposed for
the first time in the literature. (In [2], the optimal channel
switching problem was studied based on the Shannon capac-
ity metric in the absence of randomization or fading. In [5],
optimal power randomization was performed for minimizing
the outage probability in the absence of channel switching.)

• It is shown (in Proposition 1) that an optimal solution
to minimize the average outage capacity can be imple-
mented as one of the three strategies: (1) Transmission
over a single channel with no randomization. (2) Channel
switching between two channels with no randomization. (3)
Randomization between two parameter sets over a single
channel.

• For the first time in the literature, we propose and solve
the optimal channel switching and randomization problem
over flat-fading channels for multiuser systems (i.e., multiple
transmitter and receiver pairs) with the aim of maximizing
the total outage capacity of users. Unlike those in [2],
[4], [5], an optimization theoretic approach is employed to
provide a solution in the multiuser scenario.

II. SYSTEM MODEL

We consider the presence ofK ≥ 2 different channels
(frequency bands) for communication between a transmitter
and a receiver, which can perform channel switching (time-
sharing) among theseK channels to enhance the capacity of
the communication system. As described in [2], during channel
switching, only one channel is utilized for the communication
between the transmitter and the receiver at any given time,
and the transmitter informs the receiver about the occupied
channel for synchronization purposes.

In this work, the channels are modeled as flat-fading and
additive Gaussian noise channels with various bandwidths
and constant power spectral density levels. In particular,for
channeli, Bi and Ni/2 denote, respectively, the bandwidth
and the constant power spectral density level of the additive
Gaussian noise, wherei ∈ {1, . . . ,K}. Also, gi represents
the channel gain (i.e., the magnitude square of the channel
coefficient) related to channeli between the transmitter and
the receiver. It is assumed for eachi ∈ {1, . . . ,K} that
gi is a continuous random variable, and the support of its
probability density function (PDF) is an interval. In addition,
g1, . . . , gK are modeled as independent random variables. For
the information about the channel gains at the transmitter and
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the receiver, it is assumed that the CDI of each channel is
available at both the transmitter and the receiver; however, the
CSI of the channels is available only at the receiver.1 In this
setting, the outage capacity can be employed as a well-suited
performance metric [11].

In addition to channel switching, we also consider ran-
domization of transmit power and outage probability for each
channel by considering up toL ≥ 2 different values per chan-
nel. In this regard, we employtime-sharing factorsdenoted
by λi,j for i = 1, . . . ,K and j = 1, . . . , L, which satisfy
∑K

i=1

∑L

j=1 λi,j = 1 and λi,j ≥ 0 for all i and j. Namely,
λi,j corresponds to the fraction of time when channeli is used
with the jth set of parameters (i.e., power level and outage
probability pairs) for that channel, which can be denoted as
θi,j in general. For example, suppose thatK = 3, L = 2,
λ1,1 = 0.2, λ1,2 = 0.3, λ2,1 = 0.15, λ2,2 = 0, λ3,1 = 0.1,
andλ3,1 = 0.25. Then, over a communication duration ofT
seconds, channel1 is used with parameterθ1,1 during the time
interval of[0, 0.2T ] sec., channel1 is used with parameterθ1,2

during[0.2T, 0.5T ] sec., channel2 is used with parameterθ2,1

during [0.5T, 0.65T ] sec., channel3 is used with parameter
θ3,1 during [0.65T, 0.75T ] sec., and channel3 is used with
parameterθ3,2 during [0.75T, T ] sec. Channel switching and
randomization can provide performance improvements as they
facilitate achievement of convex combinations of the perfor-
mance metric (outage capacity) via time-sharing.

III. M AXIMIZATION OF AVERAGE OUTAGE CAPACITY
UNDER AVERAGE POWER AND OUTAGE PROBABILITY

CONSTRAINTS

The aim is to perform optimal channel switching and
randomization for the maximization of the average outage
capacity under average power and outage probability con-
straints. The outage capacity is defined as the maximum data
rate that can be transmitted over a channel with a certain
probability of outage (i.e., no proper decoding). Considering
the time interval corresponding to the time-sharing factorλi,j ,
the outage capacity of channeli can be expressed as [11]

(1− εi,j)Bi log2 (1 + γi,j) , (1)

whereεi,j is the outage probability andγi,j denotes the target
SNR level below which channeli will be in outage. The outage
probability εi,j specifies the probability that the SNR level is
below the target SNR levelγi,j , in which case proper decoding
cannot be performed. The outage probability can be calculated
as [11]

εi,j = P

(

giPi,j

NiBi

< γi,j

)

= Fgi

(

γi,jNiBi

Pi,j

)

, (2)

wherePi,j represents the power level andFgi denotes the
cumulative distribution function (CDF) ofgi.

From (2), the outage capacity in (1) can be stated as

Ci(Pi,j , εi,j) = (1− εi,j)Bi log2

(

1 +
Pi,jF

−1
gi

(εi,j)

NiBi

)

, (3)

1The CSI of the channels can be obtained at the receiver based on
pilot (training) based channel estimation approaches. Since flat block-fading
channels are considered, channel estimation can be performed at the beginning
of each block. Also, CDI can be obtained based on previous channel estimates
and/or statistical channel models related to the operatingenvironment. In
particular, by utilizing previous channel estimates, the receiver can form
statistical knowledge about the channel parameters, and share this knowledge
with the transmitter via a feedback mechanism.

whereF−1
gi

denotes the inverse CDF ofgi. For channeli,
Pi,j andεi,j (or, equivalently,γi,j ) can be regarded as design
parameters that are subject to power limits and acceptable
levels of outage probability, respectively. Accordingly,the
optimal channel switching and randomization problem for
outage capacity maximization is proposed as follows:

max
{λi,j ,Pi,j ,εi,j}

K,L

i,j=1

K
∑

i=1

L
∑

j=1

λi,jCi(Pi,j , εi,j) (4a)

subject to
K
∑

i=1

L
∑

j=1

λi,jPi,j ≤ Pav , (4b)

K
∑

i=1

L
∑

j=1

λi,jεi,j ≤ εav , (4c)

Pi,j ∈ [0, Ppk] , ∀i ∈ Sc, ∀j ∈ Sr , (4d)

εi,j ∈ [0, εpk] , ∀i ∈ Sc, ∀j ∈ Sr , (4e)
K
∑

i=1

L
∑

j=1

λi,j = 1 , (4f)

λi,j ≥ 0 , ∀i ∈ Sc, ∀j ∈ Sr , (4g)

where Sc , {1, . . . ,K}, Sr , {1, . . . , L}, Pav is the
average power constraint,εav is the average outage probability
constraint,Ppk is the peak power constraint, andεpk is peak
outage probability constraint. Due to practical reasons, it is
assumed thatPav < Ppk. Although the problem in (4) is a
challengingnon-convexoptimization problem over a3KL-
dimensional space in general, we characterize its solution,
denoted by{λ∗

i,j , P
∗
i,j , ε

∗
i,j}

K,L
i,j=1, in the following proposition.

Proposition 1: Consider the following problem:

max
{ν,P1,P2,ε1,ε2}

ν Cmax(P1, ε1) + (1− ν)Cmax(P2, ε2) (5a)

subject to νP1 + (1− ν)P2 ≤ Pav , (5b)

νε1 + (1 − ν)ε2 ≤ εav , (5c)

P1 ∈ [0, Ppk], P2 ∈ [0, Ppk] , (5d)

ε1 ∈ [0, εpk], ε2 ∈ [0, εpk], ν ∈ [0, 1] , (5e)

where Cmax(P, ε) = max
i∈Sc

Ci(P, ε) . (6)

Let (ν∗, P ∗
1 , P

∗
2 , ε

∗
1, ε

∗
2) denote the solution of(5), and let ℓ

andm be defined as

ℓ = argmax
i∈Sc

Ci

(

P ∗
1 , ε

∗
1

)

, m = argmax
i∈Sc

Ci

(

P ∗
2 , ε

∗
2

)

. (7)

Then, the solution of(4) can be specified as one of the
following strategies:
• Conventional Strategy– Single Channel with no Random-

ization: If ν∗ = 1 or if ℓ = m and (P ∗
1 , ε

∗
1) = (P ∗

2 , ε
∗
2),

then a solution of(4) can be stated asλ∗
ℓ,1 = 1, P ∗

ℓ,1 = P ∗
1 ,

ε∗ℓ,1 = ε∗1, and λ∗
i,j = 0 for all (i, j) 6= (ℓ, 1).2 Similarly,

if ν∗ = 0, a solution of (4) can be stated asλ∗
m,1 = 1,

P ∗
m,1 = P ∗

2 , ε∗m,1 = ε∗2, andλ∗
i,j = 0 for all (i, j) 6= (m, 1).

Namely, one of the channels is used exclusively without any
randomization.

• CS2 Strategy– Channel Switching between Two Channels
with no Randomization:If ℓ 6= m and ν∗ ∈ (0, 1), then
a solution of (4) can be stated asλ∗

ℓ,1 = ν∗, P ∗
ℓ,1 = P ∗

1 ,

2It is noted that the second index in the subscripts is chosen as 1 arbitrarily
as it does not affect the performance of the solution.
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ε∗ℓ,1 = ε∗1, λ∗
m,1 = 1 − ν∗, P ∗

m,1 = P ∗
2 , ε∗m,1 = ε∗2, and

λ∗
i,j = 0 for all (i, j) /∈ {(ℓ, 1), (m, 1)}. That is, channel

switching is performed between two channels without any
randomization over each channel.

• Rand2 Strategy– Randomization between two Power-
Outage Probability pairs over a Single Channel:If ℓ = m,
ν∗ ∈ (0, 1), and (P ∗

1 , ε
∗
1) 6= (P ∗

2 , ε
∗
2), then a solution of

(4) can be stated asλ∗
ℓ,1 = ν∗, P ∗

ℓ,1 = P ∗
1 , ε∗ℓ,1 = ε∗1,

λ∗
ℓ,2 = 1 − ν∗, P ∗

ℓ,2 = P ∗
2 , ε∗ℓ,2 = ε∗2, and λ∗

i,j = 0 for
all (i, j) /∈ {(ℓ, 1), (ℓ, 2)}.3 That is, randomization (time-
sharing) is performed between two different parameter sets
over a single channel (i.e., without channel switching).
Proof: By introducing a vector variable asθi,j = [Pi,j , εi,j],

the problem in (4) can be stated as

max
{λi,j ,θi,j}

K,L

i,j=1

K
∑

i=1

L
∑

j=1

λi,jCi(θi,j) (8a)

subject to
K
∑

i=1

L
∑

j=1

λi,jθi,j ≤ [Pav, εav] , (8b)

θi,j ∈ T , ∀i ∈ Sc, ∀j ∈ Sr , (8c)
K
∑

i=1

L
∑

j=1

λi,j = 1, λi,j ≥ 0, ∀i ∈ Sc, ∀j ∈ Sr, (8d)

whereT , [0, Ppk]× [0, εpk]. To characterize the solution of
(8), we first present the following problem:

max
p(θ)

∫

Cmax(θ)p(θ)dθ (9a)

subject to
∫

θp(θ)dθ ≤ [Pav, εav] , (9b)

θ ∈ T ,

∫

p(θ)dθ = 1 , p(θ) ≥ 0 , ∀θ (9c)

whereCmax(θi,j) = max
i∈Sc

Ci(θi,j) as in (6), andp(θ) denotes

the PDF ofθ. The problem in (9) provides an upper bound
on (8) since it employs the maximum ofCi’s in its objective
function and more generic weighting coefficients.

The problems in the form of (9) have been investi-
gated in various contexts in the literature; e.g., [7]–[9].
By adopting a similar approach, we define setU and set
W as follows: U =

{

(θ, Cmax(θ)) for all θ ∈ T
}

and
W =

{( ∫

θp(θ)dθ,
∫

Cmax(θ)p(θ)dθ
)

for all
∫

p(θ)dθ =
1, p(θ) ≥ 0, θ ∈ T

}

. It is noted thatW contains the
solution of (9) since it consists of all possible values of
∫

Cmax(θ)p(θ)dθ and
∫

θp(θ)dθ subject to the constraints
in (9c). Also, via the arguments in [7]–[9], it can be shown
that W is equal to the convex hull ofU ; i.e., W = hull(U).
Therefore, as a result of Carathéodory’s theorem [12], [13],
any element ofW can be expressed as a convex combination
of dim(U) + 1 = 3 elements inU , wheredim(U) = 2 since
U ⊂ R

2. In addition, as the maximizer of (9) must reside on
the boundary ofhull(U), the solution of (9) can be achieved
by a convex combination ofdim(U) = 2 elements inU by
Carathéodory’s theorem [12], [13]. Hence, an optimalp(θ) can
be specified asp(θ) = νδ(θ− θ1) + (1− ν)δ(θ− θ2), where
δ(·) denotes the Dirac delta function. By inserting this specific
p(θ) expression into (9), we obtain the following problem:

max
{ν,θ1,θ2}

ν Cmax(θ1) + (1 − ν)Cmax(θ2) (10a)

3The second indices in the subscripts are chosen as1 and2 arbitrarily.

subject toνθ1 + (1− ν)θ2 ≤ [Pav, εav] , (10b)

θ1 ∈ T , θ2 ∈ T , ν ∈ [0, 1] , (10c)
which is guaranteed to achieve the same maximum value as
(9). It is noted that the problem in (10) is the same as (5)
in Proposition 1 asθ1 = [P1, ε1] and θ2 = [P2, ε2]. Let
(ν∗, θ∗

1, θ
∗
2) denote the solution of (10), and letℓ andm be

defined as in (7), whereθ∗
1 = [P ∗

1 , ε
∗
1] andθ∗

2 = [P ∗
2 , ε

∗
2]. The

maximum value of (10) (equivalently, of (9)) can be achieved
by the problem in (4) via the conventional strategy, the CS2
strategy, or the Rand2 strategy, as specified in the proposition.
Since the problem in (9) is an upper bound on the problem
in (4), and the maximum value of (9) can be achieved by (4)
via the conventional, CS2, or Rand2 strategies, it is concluded
that the solution of (4) can be characterized by the strategies
specified in the proposition. �

Based on Proposition 1, the solution of (4) can be obtained
by searching over three possible strategies, which significantly
reduces the computation complexity of the problem. Namely,
instead of a search over a3KL-dimensional space, the optimal
solution can be obtained via a four-dimensional search as spec-
ified in the following: First, it is noted thatCmax(P, ε) in (6)
is a monotone increasing function ofP > 0 for any ε ∈ [0, 1]
since eachCi(P, ε) in (3) is monotone increasing with respect
to P . Therefore, any approach withνP1 + (1 − ν)P2 < Pav

cannot be a solution of (5) since it can always be improved
by increasing at least one of the power levels (asPav < Ppk).
Hence,νP1 + (1 − ν)P2 = Pav must be satisfied in (5). By
utilizing this equality, the problem in (5) can be simplifiedas

max
{P1,P2,ε1,ε2}

Pav − P2

P1 − P2
Cmax(P1, ε1) +

P1 − Pav

P1 − P2
Cmax(P2, ε2)

(11a)

subject to
Pav − P2

P1 − P2
ε1 +

P1 − Pav

P1 − P2
ε2 ≤ εav , (11b)

P1 ∈ (Pav, Ppk] , P2 ∈ [0, Pav] , (11c)

ε1 ∈ [0, εpk] , ε2 ∈ [0, εpk] . (11d)

Let (P ∗
1 , P

∗
2 , ε

∗
1, ε

∗
2) denote the solution of (11). Then,ν∗ is

obtained asν∗ = (Pav − P ∗
2 )/(P

∗
1 − P ∗

2 ). Also, ℓ and m
are calculated as in (7). Then, the solution of (4) corresponds
to the use of the conventional, CS2, or Rand2 strategies, as
specified in Proposition 1 based on the parametersν∗, P ∗

1 , P ∗
2 ,

ε∗1, ε∗2, ℓ, andm. (To specify the computational complexity
of solving (11) via exhaustive search, suppose thatε1 and
ε2 are discretized with a step size of∆0, and P1 and P2

are discretized with step sizes of∆1 and ∆2, respectively.
Then, the objective function in (11) should be evaluated about
ε2pkPav(Ppk − Pav)/(∆

2
0∆1∆2) times to find the solution.)

Remark 1: Proposition 1 also implies that the use of both
channel switching and randomization is not needed to achieve
the solution of (4). In other words, when optimal channel
switching is performed as in the CS2 strategy, randomiza-
tion over any of the channels does not bring any additional
benefits. Similarly, when the optimal solution is achieved via
randomization over a single channel as in the Rand2 strategy,
the average outage capacity cannot be increased further via
channel switching.

IV. EXTENSION TO MULTIUSER SYSTEMS

In this section, we consider a multiuser system withU
transmitter-receiver pairs, i.e., users, which aim to commu-
nicate over theK available channels with the ability of
performing channel switching and randomization. The aim
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is to maximize the total outage capacity of the users under
average power and outage probability constraints by jointly
optimizing the parameters of all the users in a centralized fash-
ion. Accordingly, the following problem is proposed (cf. (4)):

max
{λ

(u)
i,j

,P
(u)
i,j

,ε
(u)
i,j

}K,L,U

i,j,u=1

U
∑

u=1

K
∑

i=1

L
∑

j=1

λ
(u)
i,j C

(u)
i

(

P
(u)
i,j , ε

(u)
i,j

)

(12a)

subject to
K
∑

i=1

L
∑

j=1

λ
(u)
i,j P

(u)
i,j ≤ P (u)

av , ∀u ∈ Su , (12b)

K
∑

i=1

L
∑

j=1

λ
(u)
i,j ε

(u)
i,j ≤ ε(u)av , ∀u ∈ Su , (12c)

P
(u)
i,j ∈

[

0, P
(u)
pk

]

, ∀i ∈ Sc, ∀j ∈ Sr, ∀u ∈ Su , (12d)

ε
(u)
i,j ∈

[

0, ε
(u)
pk

]

, ∀i ∈ Sc, ∀j ∈ Sr, ∀u ∈ Su , (12e)
K
∑

i=1

L
∑

j=1

λ
(u)
i,j ≤ 1, ∀u ∈ Su , (12f)

λ
(u)
i,j ≥ 0 , ∀i ∈ Sc, ∀j ∈ Sr, ∀u ∈ Su , (12g)
U
∑

u=1

L
∑

j=1

λ
(u)
i,j ≤ 1, ∀i ∈ Sc , (12h)

whereSu , {1, . . . , U}, and the capacity function and the
parameters are defined as in (4) with the addition of superscript
(u) for denoting the user index. The constraint in (12h) is
required in multiuser scenarios to make sure that the total
time-sharing factor over each channel does not exceed one.

The problem in (12) is very challenging to solve in general
since its solution cannot be reduced to a set of three strate-
gies as in Section III and exhaustive search has prohibitive
complexity. However, we can employ a convex relaxation
approach [7], [14] to approximate the non-convex problem
in (12) with a convex problem with the ability to adjust the
approximation accuracy. To this aim, instead of the continuum
of values for theP (u)

i,j andε(u)i,j terms, we consider a set ofNu

possible (known) values for them specified as
(

P
(u)
i,j , ε

(u)
i,j

)

∈
{

(P̃
(u)
1 , ε̃

(u)
1 ), . . . , (P̃

(u)
Nu

, ε̃
(u)
Nu

)
}

for eachu ∈ Su. Accordingly,
we define the following vectors:

λ̃ =
[

λ̃
(1)

· · · λ̃
(U)
]

and C̃ =
[

C̃
(1)

· · · C̃
(U)
]

, (13)

where λ̃
(u)

=
[

λ
(u)
1,1 · · ·λ

(u)
1,Nu

· · · · · ·λ
(u)
K,1 · · ·λ

(u)
K,Nu

]

, (14)

C̃
(u)

=
[

C
(u)
1 (P̃

(u)
1 , ε̃

(u)
1 ) · · ·C

(u)
1 (P̃

(u)
Nu

, P̃
(u)
Nu

) · · · · · ·

C
(u)
K (P̃

(u)
1 , ε̃

(u)
1 ) · · ·C

(u)
K (P̃

(u)
Nu

, P̃
(u)
Nu

)
]

(15)

for u ∈ Su. Based on these definitions, (12) is approximated as

max
λ̃

C̃
T
λ̃ (16a)

subject toRλ̃ �
[

P (1)
av · · ·P (U)

av

]T
, (16b)

Eλ̃ �
[

ε(1)av · · · ε(U)
av

]T
, (16c)

Bλ̃ � 1U , λ̃ � 0 , Gλ̃ � 1K , (16d)

with 1X representing a column vector of ones withX

elements,R = blkdiag
(

1
T
K ⊗ P̃

(1)
, . . . ,1T

K ⊗ P̃
(U)
)

,

E = blkdiag
(

1
T
K ⊗ ε̃

(1), . . . ,1T
K ⊗ ε̃

(U)
)

, B =

blkdiag
(

1
T
KN1

, . . . ,1T
KNU

)

, andG =
[

IK ⊗ 1
T
N1

· · · IK ⊗

1
T
NU

]

, whereblkdiag specifies a block diagonal matrix con-
structed by the given matrices,⊗ denotes the Kronecker prod-

uct, IK is theK×K identity matrix,P̃
(u)

=
[

P̃
(u)
1 · · · P̃

(u)
Nu

]

,

and ε̃(u) =
[

ε̃
(u)
1 · · · ε̃

(u)
Nu

]

for u ∈ Su.
It is noted that (16) is a linearly constrained linear optimiza-

tion problem. Therefore, it can be solved rapidly via linearor
convex optimization algorithms such as the simplex or the
interior point method [14]. Although (16) is an approximation
to (12), the approximation accuracy can be enhanced by
increasing the number of possible values for the

(

P
(u)
i,j , ε

(u)
i,j

)

pairs, i.e., by increasingN1, . . . , NU , with the cost of higher
computational complexity. (It is noted that the problem in (16)
has polynomial complexity in the number of variables, which
is equal toK

∑U

u=1 Nu [14].)
Remark 2: It is also possible to add fairness constraints

to (12) in the form of
∑K

i=1

∑L

j=1 λ
(u)
i,j C

(u)
i

(

P
(u)
i,j , ε

(u)
i,j

)

≥ ςu
∀u ∈ Su. In that case, the solution can be obtained by an
approximate problem as in (16) by adding linear constraints
related to fairness.

V. NUMERICAL RESULTS AND CONCLUSIONS

In this section, numerical examples are presented to cor-
roborate the theoretical results by considering two settings.
In the first setting, as in [2], we considerK = 3 channels
with the following bandwidths and noise levels:B1 = 1MHz,
B2 = 5MHz, B3 = 10MHz, N1 = 10−12 W/Hz, N2 =
10−11 W/Hz, andN3 = 10−11 W/Hz. In this setting, there
can exist one user or two users in the system. We model
the channels as independent Rayleigh fading with the channel
gains being exponentially distributed with the following CDFs
and PDFs:F

g
(u)
i

(g) = 1−e−α
(u)
i

g andp
g
(u)
i

(g) = α
(u)
i e−α

(u)
i

g

if g ≥ 0 for i ∈ {1, 2, 3} andu ∈ {1, 2}. The parameters are
given by α

(1)
1 = 0.25, α(1)

2 = 1, andα
(1)
3 = 0.75 for user

1, andα(2)
1 = 0.95, α(2)

2 = 0.35, andα(2)
3 = 0.3 for user2.

Also, the peak power and peak outage constraints are set as
Ppk = 10Pav andεpk = 10εav.

We first assume that only user1 exists in the system and in-
vestigate the outage capacity maximization problem in (4),the
solution of which is specified by Proposition 1. In Fig. 1, the
average outage capacity achieved by the solution of (4) (which
is obtained via (11)) is plotted with respect to the average
power constraint,Pav for εav = 0.01 (labeled as ‘Proposed
(single user)’ in the figure). In addition, the average outage
capacities achieved by the conventional strategy, which em-
ploys the best channel all the time at the average power limit
(and with the corresponding optimal outage probability) are
presented for comparison purposes (labeled as ‘Conventional
(single user)’).4 It is observed from Fig. 1 that employing
the best channel all the time (i.e., conventional strategy)is
not always optimal, in accordance with Proposition 1. For
example, whenPav = 10−2 mW, the proposed (optimal)
solution employs channel1 with a time-sharing factor of
0.33444 and a power level of0.029901mW (corresponding
to an outage probability of0.029901) and does not send any
power in the remaining duration (i.e., employs zero power
with a time-sharing factor of0.66556). This can be considered
as a special case of the Rand2 Strategy (or, CS2 Strategy) in
Proposition 1 withP ∗

2 = 0, which results in an average outage

4This corresponds to solving (5) overε1 by settingν = 1 andP1 = Pav.
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Fig. 1. Average outage capacity versusPav achieved by the solution of
(4) (labeled as ‘Proposed (single user)’) and by the Conventional Strategy in
Section III for the single user scenario. Also, the total average outage capacity
is plotted versusPav for the multiuser scenario withU = 2 users considering
both the proposed approach based on (16) and the conventional approach.

capacity of0.71742Mbps. (Such an on-off strategy can never
be optimal according to the Shannon capacity metric in [2] due
to its concavity.) As another example, whenPav = 5mW, the
proposed (optimal) solution corresponds to the CS2 Strategy,
which uses channel 1 with a time-sharing factor of0.7023 and
a power level of1.5561mW, and channel 3 with a time-sharing
factor of 0.2977 and a power level of13.125mW, leading
to an average outage capacity of10.292Mbps. However, for
the same setting, the conventional strategy employs channel 1
exclusively, and achieves an outage capacity of7.5817Mbps.
On the other hand, whenPav = 100mW, the proposed strat-
egy corresponds to the conventional strategy, which utilizes
channel 3 exclusively. It is also important to mention that the
turning points in Fig. 1 occur when a strategy starts employing
a different channel.

Next, we consider the presence of both user1 and user
2 in the system described above, and obtain the proposed
channel switching and randomization strategy in Section IV.
To implement the proposed strategy, we first generate a set of
Nu possible values of

(

P
(u)
i,j , ε

(u)
i,j

)

for u ∈ {1, 2} by forming
a vector of power levels consisting of51 values between0
andPpk (with equal spacing) and similarly a vector of outage
probabilities consisting of51 values between0 andεpk (hence,
Nu = 2601 for u ∈ {1, 2}).5 Then, the proposed strategy is
obtained by solving (16) (labeled as ‘Proposed (multiuser)’
in Fig. 1). For comparison purposes, we also illustrate the
conventional strategy in Fig. 1 (labeled as ‘Conventional (mul-
tiuser)’), which performs sequential assignments of usersto
channels over which they achieve the highest outage capacities
by considering all possible assignment orders for the users.
(In the conventional strategy, at most one user is assigned to
a channel, and the channel is completely utilized by a user
once it is assigned; i.e., no time-sharing.) It is observed from
Fig. 1 that the proposed approach for the multiuser scenario
outperforms the conventional strategy for all values ofPav,
especially for lowPav ’s.

Finally, we consider the second setting withK = 5 chan-
nels, which have the following bandwidths and noise levels:
B1 = 1MHz, B2 = 5MHz, B3 = 10MHz, B4 = 15MHz,
B5 = 20MHz, N1 = 10−12 W/Hz, N2 = 10−11 W/Hz, N3 =
10−11 W/Hz, N4 = 10−12 W/Hz, andN5 = 10−11 W/Hz. The
number of users,U , is varied from1 to 10. The channel gain
parameters for the users (i.e.,α

(u)
i ’s) are generated uniformly

5IncreasingNu further does not lead to notable performance improvement.
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Fig. 2. Average outage capacity per user versus the number users for the
proposed approach based on (16) and the conventional approach, whereK =

5 andεav = 0.01.

and independently over[0.1, 1] in MATLAB with seed 1
(namely, “0.1 + 0.9 ∗ rand(10, 5)”). As in the first setting,
Ppk = 10Pav andεpk = 10εav. Also, theNu possible values
of
(

P
(u)
i,j , ε

(u)
i,j

)

are generated as in the previous paragraph for
eachu. In Fig. 2, the average outage capacity per user is
plotted versus the number of users for three different values
of Pav, whereεav = 0.01. It is observed that the proposed
strategy based on (16) outperforms the conventional strategy
in all cases, especially for low values ofPav. It is also noted
that as the number of users increases, the average outage
capacity per user tends to decrease in general since there exist
limited resources. However, this trend is not monotone since
the channel parameters of the users are generated randomly
(i.e., a new user with favorable channel characteristics may
improve the average outage capacity per user).

As an important direction for future work, channel switch-
ing delays can be considered when determining the optimal
channel switching and randomization strategies.
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