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Abstract

The problem of optimal signal design for coherent detection of binary signals

in Gaussian noise is revisited under power and secrecy constraints. In partic-

ular, the aim is to select the binary transmitted signals in an optimal manner

so that the probability of error is minimized at an intended receiver while

the probability of error at an eavesdropper is maintained above a threshold

value and the signal powers are limited. It is shown that an optimal solution

exists in the form of antipodal signaling along the eigenvector correspond-

ing to the solution of a maximum (possibly generalized) eigenvalue problem,

which is specified explicitly based on the channel coefficient matrices and

the noise covariance matrices at the intended receiver and the eavesdropper.

Furthermore, optimal signal design can be performed in an efficient manner

by solving a semidefinite programming (SDP) relaxation followed by a ma-

trix rank-one decomposition. Numerical examples are provided to illustrate
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optimal solutions for three different but exhaustive cases.

Keywords: secrecy, signal design, hypothesis testing, probability of error

1. Introduction

It is well-known that the performance of optimum coherent detection of

binary signals in Gaussian noise is improved by selecting antipodal signals

along the eigenvector of the noise covariance matrix corresponding to the

minimum eigenvalue [1, Remark III.B.3]. Under identical power constraints

on the transmitted binary signals, this signal selection strategy minimizes the

average probability of error at the receiver. However, the detection perfor-

mance at the receiver may not be the sole performance criterion as is the case

with numerous applications where the physical layer secrecy is important and

the data needs to be transmitted secretly to an intended receiver in the pres-

ence of eavesdropping [2, 3]. Although physical layer secrecy is investigated

extensively in the literature based on information theoretic metrics such as

secrecy capacity [4], estimation theoretic metrics such as Fisher information

and mean-squared error (MSE) [5, 6], and secrecy constrained distributed

detection under Neyman-Pearson and Bayesian frameworks [7], effects of sig-

nal design have been considered only in a limited number of studies [8, 9],

which are based on modifying given signal constellations. To the best of our

knowledge, a theoretical analysis of the optimal signal design problem under

both power and secrecy constraints in the spirit of [1, Remark III.B.3] is

neglected. In this paper, we focus on the optimal signal design problem for

a coherent binary communications system and characterize optimal signal

vectors under secrecy and power constraints. The technical contributions

and novelty of our work can be summarized as follows: (i) A novel optimal

signal design problem is proposed for binary communications with the aim
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of minimizing the probability of error at an intended receiver under con-

straints on the probability of error at an eavesdropper and on the power

levels of the signals. (ii) It is shown that an optimal solution in the form of

antipodal signaling exists and can be obtained as the solution of a noncon-

vex homogeneous quadratic optimization problem, which admits no duality

gap. (iii) Using results from quadratic optimization literature, it is shown

that antipodal signaling is performed along the eigenvector corresponding to

the solution of a maximum (possibly generalized) eigenvalue problem. (iv)

An efficient numerical solution is provided via a semidefinite programming

(SDP) relaxation followed by a matrix rank-one decomposition. It should be

noted that the term ‘secrecy’ is employed in a broader sense in our work than

that commonly understood in an information theoretic sense. In the latter,

the aim is to ensure that the capacity of the channel to the eavesdropper is

lower than the chosen communication rate so that the error probability at

the eavesdropper goes to one exponentially fast with the block length. In

addition to being of interest from a decision theoretic viewpoint, the frame-

work proposed in this paper is applicable in cases when such an information

theoretic goal cannot be met. Although the eavesdropper is not completely

blanked out and it may decode some of the transmitted symbols correctly,

the message can still be rendered unintelligible by forcing the eavesdropper

to frequent errors.

Notation: Throughout this paper, vectors (in column form) and matrices

are denoted by boldface lower and upper case letters, such as x and A,

respectively. (·)T and tr(·) denote transpose and trace operators, respectively.

For symmetric matrices A and B, we write A ⪰ B if A − B is positive

semidefinite, and likewise, A ≻ B if A−B is positive definite. The identity

matrix is denoted by I. ∥x∥ denotes the ℓ2−norm of x, i.e., ∥x∥ =
√
xTx.
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The set of real numbers is denoted by R, the set of real vectors with dimension

k is denoted by Rk, the set of n×k real matrices is denoted by Rn×k, and the

set of k × k real symmetric matrices is denoted by Sk×k. The multivariate

real Gaussian distribution with mean vector µ and covariance matrix Σ is

denoted by N (µ,Σ). Optimal values of optimization variables are shown

with an asterisk as in x∗. The generalized eigenvector problem with k × k

matrices Ar and Ae, denoted by the ordered pair (Ar,Ae), is defined as a

solution of Arwi = λiAewi for all i ∈ {1, . . . , k}, where wi denotes the i-th

generalized eigenvector with the corresponding generalized eigenvalue λi.

2. Problem Formulation

We consider a binary hypothesis testing problem in the Bayesian frame-

work with a priori probabilities of the hypotheses H0 and H1 denoted by π0

and π1 = 1 − π0, respectively. Under hypothesis Hi, the transmitter sends

the signal si ∈ Rk, which passes through a linear channel and is corrupted

by Gaussian noise. Accordingly, the observation at the intended receiver,

denoted by yr ∈ Rn, is expressed as

Hi : yr = Frsi + nr , i ∈ {0, 1} (1)

where Fr ∈ Rn×k is the channel matrix having full column rank with n ≥ k,

and nr ∈ Rn is Gaussian with zero mean and covariance matrix Σr ≻ 0; that

is, nr ∼ N (0,Σr). In addition to the intended receiver, an eavesdropper in

the environment makes the following observation under Hi:

Hi : ye = Fesi + ne , i ∈ {0, 1} (2)

where ye ∈ Rm, Fe ∈ Rm×k, and ne ∈ Rm represent the observation, the

full-rank channel matrix with m ≥ k, and the noise vector distributed as
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ne ∼ N (0,Σe) with Σe ≻ 0 at the eavesdropper, respectively.1 Similarly to

[6] and [10], the eavesdropper is assumed to be smart in the sense that it can

learn or has perfect knowledge of the binary transmitted signals s0 and s1,

the corresponding a priori probabilities π0 and π1, the channel matrix Fe,

and the noise covariance matrix Σe.

With perfect knowledge of the system parameters at the intended receiver

and the eavesdropper, the aim of the transmitter is to design s0 and s1

so that the probability of error is minimized at the intended receiver while

keeping the probability of error at the eavesdropper above a certain level and

satisfying the transmitted signal power constraints. Under this setting, both

the intended receiver and the eavesdropper employ maximum a posteriori

(MAP) decision rules to minimize the probability of error [1]. For the signal

models in (1) and (2), the error probabilities of the MAP decision rules at

the intended receiver and the eavesdropper are obtained as [1, Sec. III.B]:

Perr
j = π0Q

(
ln(π0

π1
)

dj
+

dj
2

)
+ π1Q

(
dj
2

−
ln(π0

π1
)

dj

)
(3)

for j ∈ {r, e}, where r and e refer to the intended receiver and the eaves-

dropper, respectively, and dj is defined as

dj ≜
√

(s1 − s0)TFT
j Σ

−1
j Fj(s1 − s0) , j ∈ {r, e} .

Since Perr
j in (3) is a monotone decreasing function of dj [1, Remark III.B.3],

the transmitter aims to maximize dr while imposing an upper bound on de

1The case of complex vectors in the presence of circularly symmetric complex Gaussian

noise can be treated in a similar manner.
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for secrecy purposes. Hence, the following signal design problem is proposed:

maximize
s0∈Rk, s1∈Rk

(s1 − s0)
TAr(s1 − s0) (P1-a)

subject to (s1 − s0)
TAe(s1 − s0) ≤ η , (P1-b)

∥s0∥2 ≤ P , ∥s1∥2 ≤ P , (P1-c)

where Ar ≜ FT
r Σ

−1
r Fr, Ae ≜ FT

e Σ
−1
e Fe, η > 0 specifies the secrecy con-

straint, and P > 0 is the power limit on the transmitted signals. It is noted

that Ar and Ae are positive definite matrices since Σr and Σe are positive

definite, and Fr and Fe have full column rank. The problem is feasible for

all η > 0 and P > 0. Another remark is that the quadratic terms in (P1-a)

and (P1-b) correspond to the Chernoff information measures between the

probability distributions under the two hypotheses at the receiver and the

eavesdropper, respectively [11, Example 6.5]. Since the Chernoff information

is the highest achievable exponent in the Bayesian probability of error [12,

Section 11.9], the significance of the optimization problem (P1) is not lim-

ited to MAP decision rules but it is also important for the large sample size

regime.

3. Optimal Signal Design

In order to find an optimal solution of (P1), the following lemma is given

first which extends the optimality result for antipodal signaling in the absence

of a secrecy constraint given in [1, Remark III.B.3].

Lemma: There exist antipodal signals, i.e., s∗1 = −s∗0, that are optimal

for the optimization problem (P1).

Proof: Since the problem (P1) is feasible for any η > 0 and P > 0, a

solution always exists. Suppose that an optimal pair (s∗0, s
∗
1) is obtained as a
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solution of (P1). Then, a pair of antipodal signals can be defined as

s̃1 = −s̃0 ≜
s∗1 − s∗0

2
· (5)

It is noted that the values of the objective function in (P1-a) and the con-

straint function in (P1-b) remain same, i.e., (s̃1 − s̃0)
TAr(s̃1 − s̃0) = (s∗1 −

s∗0)
TAr(s

∗
1 − s∗0) and (s̃1 − s̃0)

TAe(s̃1 − s̃0) = (s∗1 − s∗0)
TAe(s

∗
1 − s∗0). Fur-

thermore, ∥s̃1∥ = ∥s̃0∥ =
∥s∗1−s∗0∥

2
≤ ∥s∗1∥+∥s∗0∥

2
≤

√
P , which follows from

the triangle inequality and the power constraints in (P1-c). Hence, (s̃1, s̃0)

maximize the objective function while satisfying the constraints. □

In the light of the Lemma, s∗1 = −s∗0 = x∗ can be employed without any

loss in optimality, where x∗ is a solution to

maximize
x∈Rk

xTArx

subject to xTAex ≤ κ and ∥x∥2 ≤ P , (P2)

with κ = η/4. The optimization problem (P2) involves the maximization

of a convex quadratic function subject to two convex quadratic constraints.

The feasible region is the intersection of an ellipsoid and a sphere. Since the

maximum of a convex function over a closed bounded convex set is achieved at

an extreme point [13], solution is an extreme point of the feasible set. Before

proceeding further, we present some information for the general quadratic

optimization problem, which is known to be NP-hard:

minimize
x∈Rk

xTQ0x+ 2bT
0 x+ c0

subject to xTQix+ 2bT
i x+ ci ≤ 0 , i = 1, . . . ,m (QP)

where Qi ∈ Sk×k, bi ∈ Rk and ci ∈ R for each i = 0, 1, . . . ,m. Qi ⪰ 0 is

not assumed in (QP), meaning that the quadratic objective and constraint

7



functions need not be convex. In the case of a single constraint (i.e., m = 1),

strong duality holds provided Salter’s constraint qualification is satisfied,

i.e., if there exists an x such that xTQ1x− 2bT
1 x+ c1 < 0 [13, Appendix B].

There is also no duality gap in optimizing an indefinite quadratic function

under a single (non-convex) quadratic equality constraint, or under a con-

vex quadratic inequality constraint and a linear inequality constraint [14].

Related to our problem is also the Celis-Dennis-Tapia (CDT) quadratic sub-

problem, which minimizes a non-convex quadratic function subject to two

convex quadratic constraints, at least one of which is strictly convex [15],

i.e., Q0 ∈ Sk×k,Q1 ⪰ 0,Q2 ≻ 0 with bi ∈ Rk, ci ∈ R and m = 2 in (QP).

Since the CDT problem is non-convex, it can have a duality gap [16]. For

example, this can happen when the Hessian of the Lagrangian in the CDT

problem has one negative eigenvalue at a global solution [17].

In the following, we employ the strong duality result presented in [18,

Section 2.2] for quadratic optimization problems with m = 2, where the two

constraint functions and the objective function are all homogeneous quadratic

functions, i.e., there are no linear terms: bi = 0 for each i = 0, 1, 2 in (QP)

and at least one of Q1 and Q2 matrices is positive definite. More explicitly,

it is shown in [18, Section 2.2] that the following optimization problem

minimize
x∈Rk

xTQ0x

subject to xTQ1x ≤ 1 ,

xTQ2x ≤ 1 , (QHP)

where Q0 ∈ Sk×k,Q1 ∈ Sk×k,Q2 ≻ 0, enjoys strong duality. The optimiza-

tion problem (P2) can be put in the form of the problem (QHP) by selecting

Q0 = −Ar,Q1 = Ae/κ and Q2 = I/P . Based on this result, an optimal

solution of the signal design problem (P2) can be characterized.
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Proposition: Let Ar,Ae, η, and P be as specified in (P1) and κ = η/4.

Let vmax
r be an eigenvector of Ar corresponding to its maximum eigenvalue

and have unit-norm, i.e., ∥vmax
r ∥ = 1. If (vmax

r )TAev
max
r ≤ κ/P , an optimal

solution of (P1) is given by

s∗1 = −s∗0 =
√
P vmax

r . (Case 1)

Otherwise, let wmax represent a generalized eigenvector of (Ar,Ae) corre-

sponding to the maximum generalized eigenvalue and wmax is normalized to

satisfy (wmax)TAew
max = 1. If ∥wmax∥2 ≤ P/κ, an optimal solution of (P1)

is given by

s∗1 = −s∗0 =
√
κwmax . (Case 2)

Otherwise, an optimal solution of (P1) is given by s∗1 = −s∗0 = x∗, where x∗

is characterized by the following necessary and sufficient conditions:

• There exist λ∗ > 0 and µ∗ > 0 such that x∗ is an eigenvector of Ar −
λ∗Ae corresponding to its maximum eigenvalue, denoted as µ∗.

• x∗TAex
∗ = κ.

• ∥x∗∥2 = P . (Case 3)

Proof: Since strong duality holds for (P2), the dual problem admits no

gap with the optimal value. Lagrangian of (P2) is

L(x, λ, µ) = xT (Ar − λAe − µI)x+ λκ+ µP ,

and the dual function is

g(λ, µ) = sup
x

L(x, λ, µ) =

λκ+ µP if Ar − λAe − µI ⪯ 0

∞ otherwise
.
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The dual problem is

minimize
λ≥0,µ≥0

λκ+ µP

subject to Ar − λAe − µI ⪯ 0 . (P3)

For a problem with strong duality, x∗ and λ∗, µ∗ are primal and dual optimal

solutions if and only if x∗ and λ∗, µ∗ satisfy the Karush-Kuhn-Tucker (KKT)

conditions. Hence, the point x∗ maximizes L(x, λ∗, µ∗) over x ∈ Rk. For

Ar − λ∗Ae − µ∗I ⪯ 0, L(x, λ∗, µ∗) is maximized only if x∗ is a solution to

stationarity: (Ar − λ∗Ae − µ∗I)x∗ = 0 . (6)

Hence, x∗ is an eigenvector of Ar − λ∗Ae with the corresponding eigenvalue

µ∗; or equivalently, x∗ is a generalized eigenvector of (Ar − µ∗I,Ae) with

the corresponding generalized eigenvalue λ∗. Furthermore, from the dual

problem (P3), it is seen that λκ + µP is minimized while satisfying Ar −
λAe − µI ⪯ 0, which holds only if µ∗ is the maximum eigenvalue of Ar −
λ∗Ae; or equivalently, λ∗ is the maximum generalized eigenvalue of (Ar −
µ∗I,Ae). The remaining KKT conditions are primal feasibility: x∗TAex

∗ ≤ κ

and ∥x∗∥2 ≤ P , dual feasibility: λ∗ ≥ 0 and µ∗ ≥ 0, and complementary

slackness: λ∗ (x∗TAex
∗ − κ

)
= 0 and µ∗(∥x∗∥2−P ) = 0. Note that although

x = 0 is a solution of (6), it is not a solution of (P2) since in this case the

complementary slackness condition requires λ = 0, µ = 0, and it follows

from the constraint in (P3) that Ar ⪯ 0 resulting in a contradiction. Based

on these observations, an optimal solution to (P2) can be specified in three

different cases:

Case 1: λ∗ = 0, µ∗ > 0: In this case, x∗ is chosen along an eigenvector of

Ar corresponding to its maximum eigenvalue. Let vmax
r denote such a unit-

norm eigenvector. From complementary slackness, we also get ∥x∗∥2 = P .
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Therefore, x∗ =
√
P vmax

r . This solution will be optimal if it also satisfies the

secrecy constraint, i.e., x∗TAex
∗ ≤ κ.

Case 2: λ∗ > 0, µ∗ = 0: In this case, x∗ is chosen along a generalized

eigenvector of (Ar,Ae) corresponding to the maximum generalized eigen-

value. Let wmax denote such a generalized eigenvector, normalized to satisfy

(wmax)TAew
max = 1. Since x∗TAex

∗ = κ by complementary slackness, we

get x∗ =
√
κwmax. This solution will be optimal if the power constraint

holds as well, i.e., ∥x∗∥2 ≤ P .

Case 3: λ∗ > 0, µ∗ > 0: If a solution is not obtained from Cases 1

and 2, then by strong duality and the feasibility of the primal and the dual

problems, the existence of x∗ and λ∗ > 0, µ∗ > 0 is guaranteed. In this case,

x∗ is chosen along an eigenvector ofAr−λ∗Ae corresponding to its maximum

eigenvalue µ∗. From complementary slackness, both constraints are satisfied

with equality, i.e., x∗TAex
∗ = κ and ∥x∗∥2 = P .

By the Lemma, s∗1 = −s∗0 = x∗ yields an optimal solution of (P1). □

In the Proposition, the characterization of a solution to the optimal signal

design problem is provided. While a closed form solution is not available, a

numerical solution can be obtained efficiently by transforming the problem

into the SDP form. To this end, it is noted that (P2) is equivalent to

maximize
X∈Sk×k,x∈Rk

tr(ArX)

subject to tr(AeX) ≤ κ , tr(X) ≤ P , and X = xxT , (P4)

where a new variable X = xxT is introduced and the quadratic terms are ex-

pressed as xTAix = tr(Aixx
T ) = tr(AiX) for i ∈ {r, e}. The SDP relaxation
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of (P4) (and hence (P2)) is given by:

maximize
X∈Sk×k

tr(ArX)

subject to tr(AeX) ≤ κ , tr(X) ≤ P , and X ⪰ 0 . (P5)

It is straightforward to check that the SDP problem (P5) is the Lagrangian

dual of the dual problem specified in (P3). Combining the strong duality

between (P2) and (P3) with strong duality between the dual SDP’s (P3)

and (P5), it is concluded that strong duality holds between the original non-

convex problem (P2) and the SDP problem (P5) (since (P2) is strictly fea-

sible). Hence, an optimal solution of (P2) can be obtained from a matrix

rank-one decomposition of a solution of its SDP relaxation specified in (P5).

4. Numerical Results and Concluding Remarks

In this section, we present some examples that illustrate the properties

of an optimal solution specified in the Proposition. The simulations are per-

formed in Matlab programming environment. The maximum (generalized)

eigenvalue problem described in Case 1 (and respectively, Case 2) of the

Proposition is solved using the eig command. The feasibility of the returned

results is checked to see whether they satisfy the constraints. If the answer

is in the affirmative, an optimal solution of (P2) is obtained such that only

one of the two constraints is binding. If neither of the results obtained from

Cases 1 and 2 of the Proposition is feasible, we proceed with Case 3 where

a solution is obtained based on the SDP relaxation followed by a matrix

rank-one decomposition. A solution of the corresponding SDP problem is

obtained using CVX, a Matlab software package for specifying and solving
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convex programs [19]. In the simulations, the positive definite matrixAr (and

likewise Ae) is formed as Ar = QrΛQT
r , where Qr is a k × k orthonormal

matrix obtained from the QR-decomposition of a random Gaussian matrix

with zero-mean and unit variance independent and identically distributed

entries, and Λ is a k × k diagonal matrix where its i-th diagonal entry for

i = 1, 2, . . . , k is generated independently from the Rayleigh distribution with

scale parameter i. The code is shared as supplementary material.

For illustrative purposes, in this part, the signal dimension is set as k = 2,

while a solution can still be rapidly obtained in the case of higher dimensional

signals owing to the polynomial complexity. The constraints in (P2) are set

to κ = 1 (i.e., η = 4) and P = 1. Fig. 1 illustrates the three different cases

that can be observed for the solution of the optimal signal design problem.

Different values are assumed for Ar and Ae matrices in each case. All the

points that satisfy the (first) eavesdropper constraint in (P2) reside inside

the red ellipses. Likewise, all the points that satisfy the (second) power

constraint in (P2) are located inside the green circles. The set of feasible

points is the intersection of these two sets.

The value of the objective function at the optimal solution x∗ is com-

puted and the ellipse that is formed by all the points that yield the same

value is plotted with blue color. The optimal signal pair (s∗1, s
∗
0) = (x∗,−x∗)

is depicted with bold asterisk. As expected, the optimal solution occurs at

an extreme point of the feasible set. It can also be visually inferred that the

value of the objective function, i.e., xTArx, is maximized at x = x∗. In other

words, the ellipse characterized by the equation xTArx = c attains its maxi-

mum value for c over the feasible set when c∗ = x∗TArx
∗. Equivalently, c∗ is

the minimum value such that all points in the feasible set are contained within

the ellipse described by the equation xTArx = c∗. For the example presented
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in Fig. 1a, optimal signals are obtained as s∗1 = −s∗0 = (−0.9908, 0.1351) and

the eavesdropper constraint is not binding (i.e., Case 1 of the Proposition is

optimal). For the example presented in Fig. 1b, optimal signals are obtained

as s∗1 = −s∗0 = (0.2269, 0.8015) and the power constraint is not binding (Case

2). Lastly, for the example presented in Fig. 1c, optimal signals are obtained

as s∗1 = −s∗0 = (0.9773, 0.2120) and both constraints are binding (Case 3).

Next, we present a contour plot for the maximum value of the objective

function as a function of the constraint parameters κ and P . Similar to

the previous part, positive definite matrices Ar and Ae are generated ran-

domly. Fig. 2a depicts the solution of the optimal signal design problem for

κ = 1 and P = 1. Then, for fixed Ar and Ae, as the values of κ and P

change, solution of the optimization problem visits all three cases yielding

the contours of the maximum objective values plotted in Fig. 2b. Further-

more, based on this setting, the probabilities of error at the intended receiver

and at the eavesdropper are plotted as functions of the power constraint in

Fig. 3 by considering various secrecy constraints. The case of omitting the

secrecy constraint (i.e., κ = ∞) is also included for comparison purposes. It

is noted from the figure that, in compliance with the theoretical results, the

probability of error at the intended receiver is affected by a given secrecy con-

straint after the transmit power exceeds a certain threshold. In particular,

for κ = 0.1, the proposed framework enforces that the error probability at

the eavesdropper is not smaller than 0.3759. In this case, for P < 0.06, the

error probability at the eavesdropper is greater than 0.3759 (depicted with

solid black color with dot markers in Fig. 3) meaning that this constraint is

not binding and the error probability at the intended receiver (depicted with

solid black color without markers in Fig. 3) decreases with increasing power

limit by signaling along the eigenvector of Ar corresponding to the maximum
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eigenvalue as specified in Case 1. For P ≥ 0.06, the error probability con-

straint at the eavesdropper becomes active as well, i.e., Perr
e = 0.3759. For

0.06 ≤ P ≤ 0.86, it is seen that the error probability at the intended receiver

still decreases with increasing power limit, but not as rapidly as the case that

ignores the eavesdropper constraint, for which Perr
r and Perr

e are depicted with

dotted brown curves without markers and with circular markers, respectively,

in Fig. 3. In the interval 0.06 ≤ P ≤ 0.86, both constraints are binding and

Case 3 of the Proposition applies. Eventually, for P > 0.86, the power con-

straint becomes loose. The error probability at the intended receiver stays

constant at 0.1023 as it cannot be decreased by solely increasing the power

limit and without further decreasing the error probability constraint at the

eavesdropper, corresponding to Case 2 of the Proposition.

As a final remark, we note that although the problem formulation can be

generalized in a straightforward manner to the case of multiple eavesdroppers

or uncertainty associated with eavesdropper matrix Ae (can be modeled to

take values from a finite set), this would result in additional convex quadratic

constraints in the proposed optimization problem and the developed tech-

niques may not be generalized in a straightforward manner due to lack of

strong duality results.
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(c) Case 3

Figure 1: Solution of the optimal signal design problem illustrated for three different cases

described in the Proposition using κ = 1 and P = 1.
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Figure 2: (a) Optimal solution for κ = 1 and P = 1. (b) Contour plot for the maximum

value of the objective function corresponding to optimal solution as a function of the

constraint parameters κ and P .
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Figure 3: Probabilities of error at the intended receiver and at the eavesdropper versus

the power limit P for various secrecy constraints.
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