
1

Optimal linear MMSE estimation under correlation

uncertainty in restricted Bayesian framework

Berkan Dulek, Suleyman Taylan Topaloglu, and Sinan Gezici

Abstract

A restricted Bayes approach is proposed for linear estimation of a scalar random parameter based on a scalar

observation under uncertainty regarding the correlation between the parameter and the observation. In particular,

the optimal linear estimator that minimizes the average mean-squared error (MSE) is derived under a constraint on

the worst-case MSE by considering possible values of the correlation coefficient and its probability distribution. A

closed-form expression is derived for the optimal linear estimator in the proposed restricted Bayesian framework by

considering a generic statistical characterization of the correlation coefficient. Performance of the proposed estimator

is evaluated via numerical examples and its benefits are illustrated in various scenarios. The proposed framework

is also extended to the case of vector-valued observation and the properties of the optimal linear estimator are

characterized.

Index Terms

Correlation uncertainty, linear estimation, restricted Bayes, signal processing.

I. INTRODUCTION

OPTIMAL linear minimum mean-squared error (LMMSE) estimation of a random parameter based on

a random (possibly vector-valued) observation requires perfect knowledge of the covariance between the

desired parameter and the observation [1, Section V.C]. With this information, it becomes possible to

linearly combine the observation(s) and the mean value of the desired parameter so that the resulting

estimator attains the lowest mean-squared error (MSE) among all linear estimators. When the true value

of the covariance is not available but only known partially, conservative estimation techniques can be

B. Dulek is with the Department of Electrical and Electronics Engineering, Hacettepe University, Beytepe Campus, Ankara 06800, Turkey.

Suleyman Taylan Topaloglu and Sinan Gezici are with the Department of Electrical and Electronics Engineering, Bilkent University, Ankara

06800, Turkey. e-mails: berkan@ee.hacettepe.edu.tr, {taylan,gezici}@ee.bilkent.edu.tr. S. T. Topaloglu is

also with ASELSAN Inc., Ankara 06200, Turkey (e-mail: sttopaloglu@aselsan.com.tr).



2

adopted to provide performance guarantees on the accuracy of the resulting estimators over all possible

values that the covariance can take.

The problem of covariance uncertainty, or equivalently correlation uncertainty in the case of random

quantities with known means, has been investigated in the distributed estimation literature. In this setting,

sensor nodes compute estimates of the same parameters, which are then fused into an overall estimate in

order to attain improved estimation performance. To this end, the fusion of the state estimates of a target

based on measurements obtained by two different sensors is considered in [2] and [3] assuming joint

normal distribution for state and measurement variables. Since the same process noise in the kinematic

model of the target affects both measurements, the errors in the state estimates are correlated. As a result,

the optimal (in maximum-likelihood sense) fusion of two estimates requires perfect knowledge of the

cross-correlation between state estimation errors, which culminate in the well-known Bar-Shalom/Campo

(BC) formula. The optimal BC estimator linearly combines the local state estimates with weights computed

using the auto- and cross-covariances of the local estimators.

In order to prevent erroneous estimation results due to under-assessment of the variation of the observed

values, Ellipsoidal (such as Covariance Intersection, Largest Ellipsoid) and model-based techniques have

been employed for the problem of fusion under unknown correlation. (See [4] and [5], and references

therein.) In Ellipsoidal techniques, a covariance bound that overestimates the true covariance of the fused

estimate is provided in order to perform consistent estimation without using cross-covariance matrices [6].

Since the unknown cross-correlation is modeled as a random quantity in our paper, we focus on the model-

based techniques in the relevant literature (mostly within the framework of decentralized estimation). To

deal with correlation uncertainty, techniques that rely on properties of the correlation or application-specific

prior knowledge have been developed. For the case of scalar state estimates with two sensors, the optimal

BC estimator is expressed as a function of the correlation coefficient between the local estimates in [7].

Closed-form expressions are presented for the interval of possible means and variances of the optimal

estimator by using the fact that the correlation coefficient takes values in the interval [−1, 1]. Furthermore,

uncertainty in the correlation coefficient is modeled with a uniform distribution and the expressions for

the mean and the variance are provided by marginalizing out the correlation coefficient.

In scalar case, it follows from the definition of the correlation coefficient that the cross-covariance

is equal to the correlation coefficient multiplied with the product of the standard deviations of the

corresponding random variables as in Cov(X, Y ) = ρ σXσY . This fact is employed in a number of studies



3

to parameterize the variance of the BC estimator in terms of the unknown correlation coefficient. A gen-

eralization of the correlation coefficient to high dimensions is also presented in [8] using a Cholesky type

decomposition of the unknown cross-covariance matrix in terms of the single sensor covariance matrices.

This cross-covariance matrix model, parameterized with the analogously defined ‘correlation coefficient’,

is employed in [9] to derive a conservative fusion rule which minimizes the maximal Mahalanobis distance

with respect to the BC estimator (expressed in terms of the correlation coefficient) over all values of the

correlation coefficient assuming that it lies in a subinterval of [−1, 1]. In addition, a closed form estimation

fusion rule is also proposed by assuming a uniform prior for the correlation coefficient and computing

the expectation of the BC estimator.

Uncertainty sets for the error covariance matrix of local state estimates are employed in other studies,

based on which robust fusion algorithms that minimize the worst-case fused MSE are proposed. Among

these are the uncertainty set constructed with norm-bounded additive perturbations in [10], that defined

in [11] by placing an upper bound, termed allowance of cross-covariance, on the maximum eigenvalue of

the normalized cross-covariance (NCC) matrix, and the ones defined in [12] which impose element-wise

constraints on the NCC matrix.

The main conceptual difference between the decentralized estimation framework described above and

the one considered in our paper is that the former considers the problem of fusing correlated local state

estimates under lack of knowledge about their cross-correlation which precludes the use of the optimal BC

fusion rule. Local estimates are basically observations of the fusion center. On the other hand, in our work,

we consider the LMMSE estimation of a desired random parameter based on an observation of another

random quantity. There is uncertainty regarding the correlation coefficient between the desired parameter

and the observation, and the covariance of the observation is assumed to be known. The uncertainty in the

correlation coefficient is modeled with a probability density function and we invoke results from copula

theory to restrict its support instead of using the standard [−1, 1] range.

As for the technical contribution, unlike the purely Bayesian and min-max based worst-case approaches

employed in the estimation fusion literature, we employ a restricted Bayes approach to obtain the optimal

linear estimator that minimizes the average MSE with respect to the assumed distribution while satisfying

a given constraint on the worst-case MSE for all possible values of the correlation coefficient [13]. This

allows us to strike any desired balance between the average and the worst-case estimation performances.

Necessary and sufficient conditions for the feasibility of the proposed optimization problem are stated. The
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solution for the optimal linear estimator is expressed in closed-form in terms of the minimum, maximum

and average values of the attainable correlation coefficients and the constraint on the worst-case MSE. The

theoretical results are corroborated with numerical examples and also extended to the case of vector-valued

observation.

II. PRELIMINARIES

Let X and Y be two scalar random variables with unknown joint cumulative distribution function

(CDF) FX,Y (x, y) and known marginals FX(x) and FY (y), respectively. The means and the variances of

X and Y can be computed from the known marginal CDFs and are denoted as (µX , σ
2
X) and (µY , σ

2
Y ),

respectively. The variances are assumed to be non-zero and finite. The corresponding standard deviations

are denoted as σX and σY . It is assumed that the correlation coefficient between X and Y , denoted with

ρ, is unknown. It is a well-known fact that the correlation coefficient takes values in the interval [−1, 1],

and the extreme points −1 and 1 are achieved if and only if there is an almost sure linear relationship

between X and Y .

The bounds on the correlation coefficient can be specified in a tighter form based on the attainable

correlations theorem [14, Theorem 5.25]. Let ρmin and ρmax denote, respectively, the minimum and the

maximum values that can be attained by the correlation coefficient. Then, the theorem states that the

minimum correlation ρmin is attained if and only if X and Y are countermonotonic and the maximum

correlation ρmax is attained if and only if X and Y are comonotonic. Furthermore, the values of ρmin and

ρmax are explicitly specified based on the marginal CDFs. To this end, we first recall the Fréchet bounds

for bivariate random variables [15]:

max {FX(x) + FY (y)− 1, 0} ≤ FX,Y (x, y) ≤ min {FX(x), FY (y)} , (1)

which holds for all x ∈ R and y ∈ R. It is noted that the upper bound is attained when X and Y

are comonotonic, i.e., X = F−1
X (U) and Y = F−1

Y (U), where U is a uniform random variable in the

interval (0, 1), i.e., U ∼ U(0, 1). On the other hand, the lower bound is attained when X and Y are

countermonotonic, i.e., X = F−1
X (U) and Y = F−1

Y (1 − U) for some U ∼ U(0, 1). Applying the above

bounds in the Hoeffding’s covariance identity given below [14, Lemma 5.24]

Cov(X, Y ) =

∫
R

∫
R
(FX,Y (x, y)− FX(x)FY (y)) dxdy (2)

yields the following tight lower and upper bounds on the covariance of jointly distributed X and Y :

Cov (X, Y ) ≤ Cov (X, Y ) ≤ Cov (X,Y ) , (3)
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where (X,Y ) ≜ (F−1
X (U), F−1

Y (U)) and (X, Y ) ≜ (F−1
X (U), F−1

Y (1− U)) denote, respectively, comono-

tonic and countermonotonic random variables that have the same marginals as (X, Y ) (hence, the same

means and variances). Normalizing with the product of the standard deviations of X and Y , we get the

minimum and the maximum values for the attainable correlations:

ρmin ≜ ρ(X, Y ) ≤ ρ ≤ ρ(X,Y ) ≜ ρmax . (4)

More explicitly,

ρmax =
E
[
XY

]
− µXµY√

σ2
Xσ

2
Y

, ρmin =
E [XY ]− µXµY√

σ2
Xσ

2
Y

, (5)

where E
[
XY

]
=

∫ 1

0
F−1
X (u)F−1

Y (u)du and E [XY ] =
∫ 1

0
F−1
X (u)F−1

Y (1− u)du.

We also mention the following properties of attainable correlations [14, Theorem 5.25]: (a) ρmin < 0 <

ρmax; (b) ρmax = 1 if and only if there exist constants a > 0 and b ∈ R such that X and aY + b have the

same marginal CDFs; likewise, ρmin = −1 holds for the same argument with a < 0; (c) if at least one

of two random variables has a symmetric probability density/mass function with respect to its mean, we

have ρmin = −ρmax.

III. LINEAR UNBIASED ESTIMATION UNDER CORRELATION UNCERTAINTY

We consider the problem of linear unbiased estimation of a scalar random variable X based on an

observation of another scalar random variable Y . The well-known optimal linear estimator that minimizes

the Bayesian MSE is given by [1]

X̂(Y ) = µX + ρ
σX

σY

(Y − µY ) . (6)

As seen from (6), the optimal estimator requires the exact knowledge of the correlation coefficient ρ as

well as the means and the variances of X and Y .

Under uncertainty on the true value of the correlation coefficient, the design of an optimal linear unbiased

estimator with respect to the restricted Bayes criterion is the subject of this paper. More explicitly, we

consider the set of all linear unbiased estimators, i.e., estimators that can be expressed in the following

form:

X̂α(Y ) = µX + α(Y − µY ) . (7)
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The corresponding MSE is obtained as

E
[
(X − X̂α(Y ))2

]
= E

[
(X − (µX + α(Y − µY )))

2
]

= σ2
X − 2αCov(X, Y ) + α2σ2

Y

= σ2
X − 2αρσXσY + α2σ2

Y ≜ Rρ(α) . (8)

In the case of the Bayesian MMSE criterion, the optimal choice of α (i.e., that minimizes Rρ(α)) is

α∗ = ρσX/σY , as seen from (6). It is noted that the MSE in (8), denoted with Rρ(α), depends on the

unknown value of the correlation coefficient ρ. We assume that the uncertainty in ρ can be modeled in the

form of a probability density function (PDF) f(ρ) with support in the interval [ρmin, ρmax], which can be

obtained from the attainable correlations theorem as explained in Section II or based on prior experience.

A uniform distribution based on Laplace’s principle of insufficient reason or an uninformative prior like

Jeffreys’ f(ρ) = c/(1 − ρ2) for ϱ ∈ [ρmin, ρmax] can be assumed for f(ρ). The latter has connections

with the PDF of the sample correlation coefficient for jointly distributed Gaussian random variables [16,

Section 3.2]. Under the restricted Bayesian framework, we seek for the optimal linear unbiased estimator

that minimizes the average MSE (averaged over the distribution of the correlation coefficient) subject to

a constraint on the worst-case MSE as expressed by the following optimization problem:

min
α∈R

ρmax∫
ρmin

Rρ(α)f(ρ)dρ

subject to Rρ(α) ≤ r ∀ρ ∈ [ρmin, ρmax] , (P1)

where r specifies an upper bound on the maximum MSE of the estimator that is subject to design. In order

to maintain generality, we assume −1 ≤ ρmin < ρmax ≤ 1. In other words, we do not restrict ρmin to be

negative and ρmax to be positive as dictated by the attainable correlations theorem. Prior information may

be available to localize ρ more accurately. The following lemma specifies the conditions for the feasibility

of the optimization problem (P1).

Lemma: The optimization problem (P1) is feasible if and only if the constraint on the worst MSE

satisfies

Case 1: r ≥ σ2
X if ρmin < 0 < ρmax,

Case 2: r ≥ σ2
X(1− ρ2min) if 0 ≤ ρmin < ρmax,

Case 3: r ≥ σ2
X(1− ρ2max) if ρmin < ρmax ≤ 0,
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Proof: The constraint in (P1) can equivalently be written as

max
ρ∈[ρmin,ρmax]

Rρ(α) ≤ r . (9)

For the optimization problem (P1) to be feasible, the constraint parameter r should be selected as

r ≥ min
α∈R

max
ρ∈[ρmin,ρmax]

Rρ(α) ≜ min
α∈R

Rρ∗(α)(α) (10)

Let ρ∗(α) denote the value of the correlation coefficient that maximizes Rρ(α) for a given value of

α ∈ R. Since Rρ(α) is linear in ρ for fixed α, its maximum value occurs at an extreme point of the

interval [ρmin, ρmax]. More explicitly, ρ∗(α) = ρmin for α > 0; ρ∗(α) = ρmax for α < 0; and Rρ(α) = σ2
X

is independent of ρ if α = 0. Hence, for α ≥ 0, we get Rρ∗(α)(α) = Rρmin
(α) = σ2

X−2αρminσXσY +α2σ2
Y .

If ρmin ≤ 0, the minimum occurs at α = 0 with the value of the function equal to σ2
X . If ρmin > 0, the

minimum occurs at α = ρminσX/σY with the value of the function equal to σ2
X(1 − ρ2min). On the other

hand, for α ≤ 0, we get Rρ∗(α)(α) = Rρmax(α) = σ2
X − 2αρmaxσXσY + α2σ2

Y . If ρmax ≥ 0, the minimum

occurs again at α = 0 with the value of the function equal to σ2
X . If ρmax < 0, the minimum occurs at

α = ρmaxσX/σY with the value of the function equal to σ2
X(1 − ρ2max). Taking the minimum over both

cases (α ≥ 0 and α ≤ 0) and classifying the conditions based on the signs of ρmin and ρmax, we obtain

the results for the inequality in (10) as specified under the three cases in the lemma. □

Before we proceed with the solution of the optimization problem (P1), a number of remarks are in

order. First, since Rρ(α) is linear in the correlation coefficient ρ, its average value over the distribution of

the correlation coefficient is equal to its value evaluated at the mean value of the correlation coefficient.

More specifically,

E [Rρ(α)] =

ρmax∫
ρmin

Rρ(α)f(ρ)dρ

=

ρmax∫
ρmin

(
σ2
X − 2αρσXσY + α2σ2

Y

)
f(ρ)dρ

= σ2
X − 2αρσXσY + α2σ2

Y = Rρ(α) , (11)

where ρ denotes the mean value of the correlation coefficient, i.e., E[ρ] =
∫ ρmax

ρmin
ρf(ρ)dρ = ρ. Next, to

simplify the notation, we employ a change of optimization variable by defining α = ϱσX/σY . Under this

parameterization, the objective function can be expressed as

Rρ(α) = Rρ(ϱ) = σ2
X(1− 2ρϱ+ ϱ2) , (12)
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and the constraint function can compactly be written as

max
ρ∈[ρmin,ρmax]

Rρ(α) = max
ρ∈[ρmin,ρmax]

Rρ(ϱ) =


σ2
X(1− 2ρminϱ+ ϱ2) if ϱ ≥ 0

σ2
X(1− 2ρmaxϱ+ ϱ2) if ϱ ≤ 0

. (13)

Then, after proper normalization, the optimization problem (P1) can equivalently be expressed as

min
ϱ∈R

ϱ2 − 2ρϱ+ 1

subject to ϱ2 − 2ρminϱ+ 1 ≤ r/σ2
X if ϱ ≥ 0

ϱ2 − 2ρmaxϱ+ 1 ≤ r/σ2
X if ϱ ≤ 0 . (P2)

The following proposition presents the solution of (P2) (and hence, (P1)), i.e., the optimal linear unbiased

estimator that minimizes the average MSE under the condition that the worst-case MSE does not exceed

a certain value.

Proposition 1: Let ρ(1)max and ρ
(2)
min be defined as follows:

ρ(1)max = ρmax −
√
ρ2max + r/σ2

X − 1,

ρ
(2)
min = ρmin +

√
ρ2min + r/σ2

X − 1 . (14)

Then, the solution of (P2) (equivalently, (P1)) is given as

Case a. If r ≥ σ2
X ,

αopt =


ρσX/σY if ρ ∈ [ρ

(1)
max, ρ

(2)
min]

ρ
(2)
minσX/σY if ρ > ρ

(2)
min

ρ
(1)
maxσX/σY if ρ < ρ

(1)
max

(15)

Case b. If σ2
X(1− ρ2min) ≤ r ≤ σ2

X and 0 ≤ ρmin < ρmax,

αopt =


ρσX/σY if ρ ∈ [ρmin, ρ

(2)
min]

ρ
(2)
minσX/σY if ρ > ρ

(2)
min

(16)

Case c. If σ2
X(1− ρ2max) ≤ r ≤ σ2

X and ρmin < ρmax ≤ 0,

αopt =


ρσX/σY if ρ ∈ [ρ

(1)
max, ρmax]

ρ
(1)
maxσX/σY if ρ < ρ

(1)
max

(17)

If none of the above cases hold, then the optimization problem given in (P2) (or, (P1)) is not feasible.

Proof: Please see Appendix.
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Fig. 1. The value of the objective function evaluated at the solution of the constrained optimization problem (P1) for the lognormal setting

as a function of the constraint parameter r and different values of σX .

As a final remark in this section, we note that if the solution of the unconstrained optimization problem

satisfies the constraint, it is also optimal for the constrained optimization problem given in (P1), i.e.,

αopt = ρσX/σY . If it does not satisfy the constraint on the worst-case MSE under correlation uncertainty,

then the solution of the proposed optimization problem acts as a shrinkage operator. More specifically,

the magnitude of linear estimation coefficient α is decreased towards zero, which effectively results in a

regression towards the mean µX as can be seen from (7).

IV. NUMERICAL EXAMPLES

In this section, we present numerical examples for the constrained optimization problem given in (P1). In

[14, Example 5.26], minimal and maximal correlations are obtained for two lognormal random variables,

where lnX ∼ N (0, σ2
X) and lnY ∼ N (0, 1). Since lnX ∼ σX lnY , the condition (b) mentioned at the

end of Section II is not satisfied (unless σX ̸= 1), and hence, it holds that ρmin > −1 and ρmax < 1. In

particular, it is shown in [14, Example 5.26] that the minimal and the maximal correlations are, respectively,

given as

ρmin =
e−σX − 1√

(e− 1)(eσ
2
X − 1)

, ρmax =
eσX − 1√

(e− 1)(eσ
2
X − 1)

We note that ρmin < 0 and ρmax > 0 for all σX > 0. As σX increases, ρmax first increases (until σX = 1

which results in the highest attainable correlation, i.e., ρmax = 1) and then decreases to zero while ρmin
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monotonically increases to zero [14, Fig. 5.8]. The attainable correlation values in the interval [ρmin, ρmax]

are mostly positive for all values of σX > 0. Due to the asymmetry between ρmin and ρmax, ρ is not

necessarily zero and the results developed in Case (a) of Proposition 1 can be employed in applications

involving linear estimation of lognormal random variables under correlation uncertainty.

An example employing lognormal random variables is practically relevant in wireless communications

since log-normal distribution is used to model shadowing effects [17]. More specifically, it may be desirable

to estimate the shadowing at a particular location based on the knowledge of the shadowing at another

nearby location. It is well-known that the autocovariance function of the shadowing values between two

locations separated by a distance δ is given by A(δ) = σ2
ϕdB

e−δ/dc , where dc is the decorrelation distance

at which autocovariance decreases by a factor of e and σ2
ϕdB

denotes the variance of lognormal shadowing

[17]. Although this formula can be employed to provide an estimate for the correlation coefficient of

shadowing between two locations, uncertainty can be introduced due to imprecise knowledge of dc. Hence,

the proposed framework becomes relevant in this practical scenario. The mean correlation coefficient, ρ,

can be computed from A(δ) along with the bounds of the attainable correlation values, ρmin and ρmax, as

explained above.

We start by investigating the effect of the constraint parameter. The lognormal setting explained in the

previous paragraph is considered first. A uniform PDF is assumed for the correlation coefficient, which

yields ρ = (ρmin + ρmax)/2. It can be shown that ρ > 0 for all σX > 0. r ≥ σ2
X is required for feasibility

and, as mentioned above, Case (a) of Proposition 1 applies. Since ρ
(1)
max ≤ 0 and ρ > 0, we either have

αopt = ρσX/σY if ρ ≤ ρ
(2)
min or αopt = ρ

(2)
minσX/σY if ρ > ρ

(2)
min. Three different choices are employed for

the standard deviation of X , namely, σX ∈ {1.5, 2, 2.5}, and σY = 1 is assumed throughout this section.

The results are presented in Fig. 1. As expected, the average MSE evaluated at the objective function

decreases as the constraint on the worst-case MSE is relaxed. Since ρ
(2)
min is an increasing function of

the constraint threshold r, the condition ρ ≤ ρ
(2)
min will be eventually satisfied as r is kept increasing

and the objective function will remain constant at σ2
X(1 − ρ2), the average MSE value corresponding to

the solution of the unconstrained optimization problem. In Fig. 1, the performance of the unconstrained

optimal linear estimator with respect to the average value of the correlation coefficient is also plotted for

comparison since it is the solution to the unconstrained optimization problem.

Next, we consider a case where prior information suggests the presence of negative correlation between

the random variables as specified by the parameter values ρmin = −0.8, ρ = −0.6 and ρmax = −0.3. In
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Fig. 2. The value of the objective function evaluated at the solution of the constrained optimization problem (P1) for the negative correlation

scenario as a function of the constraint parameter r and different values of σX .

this case, r ≥ σ2
X(1− ρ2max) is required for feasibility. Based on the provided parameter values, it can be

seen that αopt = ρ
(1)
maxσX/σY for σ2

X(1 − ρ2max) ≤ r < σ2
X and αopt = ρσX/σY for r ≥ σ2

X . The results

are presented in Fig. 2.

We also consider the effect of varying σ2
X , which in turn changes the values of the maximal and the

minimal correlations together with the average value under the uniform distribution assumption. It is seen

from Fig. 3 that the worst-case MSE can be confined within one-thousandth of σ2
X in the expense of a

small increase on the average MSE performance.

We conclude this section with an example that demonstrates how the proposed framework ensures that

the worst-case MSE is controlled to remain below a feasible threshold value while the optimal linear

MMSE estimator based on the mean value of the correlation coefficient fails in this respect. To this

end, we assume ρmin = −0.6, ρmax = 0.9, ρ = 0.4 with r = 1.2σ2
X , where σ2

X = 1. Case (a) of

Proposition 1 applies in this case with ρ
(1)
max ≈ −0.105 and ρ

(2)
min ≈ 0.148. Since ρ > ρ

(2)
min, the optimal

linear estimation coefficient is obtained as αopt = ρ
(2)
minσX/σY . In Fig. 4, the MSE performance of the

optimal estimator, i.e., Rρ(α
opt), is plotted as a function of the true correlation coefficient ρ together

with the MSE performance of the optimal estimator for the unconstrained problem, i.e., Rρ(ρσX/σY ).

As seen from the figure, the constraint on the MSE is violated by the estimator employing the mean
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Fig. 3. The values of the objective function evaluated at the solutions of the unconstrained and the constrained optimization problems for

the lognormal setting as a function of σX . The constraint threshold is fixed at 1.001σ2
X .

value of the correlation coefficient (i.e., the optimal estimator for the unconstrained case) for all values

of ρ < 0.05 while the proposed estimator never exceeds the MSE constraint. On the other hand, the

average MSE performance (i.e., the MSE performance at the mean value of the correlation coefficient,

which is ρ = 0.4) of the estimator corresponding to the unconstrained case is superior to that of the

proposed estimator corresponding to the constrained problem. Hence, a robustness in MSE over the range

of possible correlation coefficients is achieved at the expense of higher MSE performance at the expected

value of the correlation coefficient. Nevertheless, among all linear estimators that satisfy the worst-case

MSE constraint, the proposed solution is the one that achieves the minimum estimation MSE at the mean

value of the correlation coefficient.

It is also of interest to compare the performance of the proposed solution with the trivial estimator

X̂ = µX corresponding to α = 0 (hence, observation Y is not used), which has constant MSE equal to

σ2
X over the range of all possible correlation coefficients. For the considered example, r > σ2

X , hence

X̂ = µX is a feasible estimator. As expected, the MSE of the proposed solution at the mean value ρ = 0.4

is lower than that of the trivial estimator. Furthermore, since the MSE performance of the proposed

estimator varies linearly with the value of the true correlation coefficient ρ, its MSE performance beats

that of the trivial estimator for all ρ > 0.0875.
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Fig. 4. MSE performance of the optimal estimators for the constrained and unconstrained optimization problems as a function of the true

value of the correlation coefficient ρ.

Lastly, a simple, yet tight, lower bound is provided by considering optimal LMMSE estimation based

on the true value of the correlation coefficient, i.e., by assuming that ρ is perfectly known, which yields

Rρ(ρ
σX

σY
) = σ2

X(1− ρ2),∀ρ ∈ [ρmin, ρmax]. The MSE performance of the proposed optimal estimator, i.e.,

Rρ(αopt), is tangent to the lower bound at ρ = ρ
(2)
min ≈ 0.148 which lies in between 0 and ρ = 0.4,

exemplifying the operation of the proposed estimator as a shrinkage operator.

V. EXTENSION TO VECTOR-VALUED OBSERVATION

In this section, we present a characterization of the optimal solution when the observation is vector-

valued, i.e., Y = (Y1, . . . , Yn) ∈ Rn for some integer n > 1.1 In this case, a linear unbiased estimator

can be written in the following form:

X̂α(Y ) = µX +αT (Y − µY ) , (18)

where α ∈ Rn is the coefficient vector subject to design. With a change of variables, we substitute

α = σX(DY )
−1ϱ, where DY is the n×n diagonal matrix with its i-th diagonal entry equal to the standard

1All vectors are column vectors. Row vectors are denoted by taking the transpose, i.e., (·)T .
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deviation of the i-th observation Yi, i.e., [DY ]i,i = σYi
, and ϱ = (ϱ1, . . . , ϱn) is the new parameter vector.

Similar to (8), it can be shown that the corresponding MSE is expressed as

Rρ(ϱ) = σ2
X

(
1− 2ρTϱ+ ϱTRY ϱ

)
, (19)

where ρ = (ρ1, . . . , ρn) is vector of true cross-correlation coefficients between X and Y with ρi =

Cov(X, Yi)/(σXσYi
), and RY is the n×n correlation coefficient matrix of Y with [RY ]i,j = Cov(Yi, Yj)/(σYi

σYj
).

We assume that the variance of each Yi is finite and non-zero, and the covariance matrix of Y is positive

definite, hence, so is RY . The optimal linear MMSE estimator is given as α∗ = σX(DY )
−1ϱ∗, where

ϱ∗ = (RY )
−1ρ is the minimizer of Rρ(ϱ). We consider the case where ρ is unknown. In order to model

the uncertainty in the cross-correlation coefficient vector, it is assumed that ρ is distributed with PDF

f(ρ) over a convex and compact set Θ ⊂ [−1, 1]⊗n, where ⊗n denotes the n-th Cartesian product. The

mean value is denoted as E[ρ] = ρ. The proposed restricted Bayesian linear estimation problem for

vector-valued observation case can be expressed as

min
ϱ∈Rn

E [Rρ(ϱ)]

subject to Rρ(ϱ) ≤ r ∀ρ ∈ Θ . (P3)

By the linearity of Rρ(ϱ) in ρ, we obtain E[Rρ(ϱ)] = Rρ(ϱ). Expanding the terms in (P3), we equivalently

get

min
ϱ∈Rn

ϱTRY ϱ− 2ρTϱ+ 1

subject to max
ρ∈Θ

ϱTRY ϱ− 2ρTϱ+ 1 ≤ r/σ2
X . (P4)

The maximization performed in the constraint function of (P4) has an interesting interpretation in

convex analysis. Since Rρ(ϱ) is linear in ρ, the optimization performed in the constraint function can be

expressed as

max
ρ∈Θ

Rρ(ϱ) = min
ρ∈Θ

ϱTρ . (20)

The solution to (20) is obtained by minimizing a linear function over a convex set. By the supporting

hyperplane theorem [18, Section 2.5.2], it yields a point on the boundary of the convex set, denoted with

ρLF. The subscript indicates that the resulting correlation coefficient vector is the least favorable one as

it maximizes the estimation MSE for the employed linear estimation coefficient ϱ, which corresponds to
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the normal vector of the hyperplane that is tangent to the convex set Θ at the point ρLF. In other words,

all cross-correlation coefficient vectors in the set Θ satisfy

ϱT (ρ− ρLF) ≥ 0 ∀ρ ∈ Θ , (21)

and ρLF can be computed either analytically or using standard tools from convex optimization. The

dependence of ρLF on the normal vector ϱ can be made explicit by denoting it as ρLF(ϱ).

We note that the objective in (P4) is a convex function of ϱ since RY > 0. Likewise, the convexity of

the constraint function follows from the fact that the pointwise maximum of a set of convex functions is

convex [18, Section 3.2.3]. Hence, the optimization problem in (P4) is convex. The following proposition

characterizes the optimal solution for the case of vector observations.

Proposition 2: The optimal solution to (P3), and equivalently to (P4), is characterized as follows:

Case 1. Let ρ∗
LF = argminρ∈Θ ρT (RY )

−1ρ. If Rρ∗
LF
((RY )

−1ρ) ≤ r, then ϱopt = (RY )
−1ρ. Otherwise,

Case 2. The optimal solution ϱopt satisfies:

i. ϱopt = (RY )
−1 (λρ∗

LF + (1− λ)ρ) for λ ∈ (0, 1], where ρ∗
LF = argminρ∈Θ (ϱopt)Tρ.

ii. Rρ∗
LF
(ϱopt) = r. More explicitly, (ϱopt)TRY ϱ

opt − 2(ρ∗
LF)

Tϱopt = r/σ2
X − 1.

Then, the optimal coefficient vector is formed as αopt = σX(DY )
−1ϱopt.

Proof: The proof is based on the observations mentioned in the previous paragraphs and uses the fact

that KKT conditions are necessary and sufficient. Case 1 checks whether the solution to the unconstrained

optimization problem satisfies the constraint on the worst-case MSE. If not, we proceed with Case 2. In

this case, forming the Lagrangian and setting the derivative equal to zero yields Case 2-i. It basically states

that the optimal solution is a convex combination of the mean cross-correlation vector ρ and the least

favorable cross-correlation vector ρ∗
LF. As described above, the least favorable cross-correlation vector

ρ∗
LF is a point on the boundary of the set Θ and there exists a supporting hyperplane passing through

this point defined by {ρ ∈ Rn : (ϱopt)T (ρ − ρ∗
LF) = 0}. Hence, it holds that (ϱopt)T (ρ − ρ∗

LF) ≥ 0

for all ρ ∈ Θ. Lastly in Case 2-ii, from complementary slackness and positive Lagrange multiplier, it is

concluded that the constraint must be satisfied with equality, i.e., Rρ∗
LF
(ϱopt) = r. □

VI. CONCLUSION

In this paper, we proposed a restricted Bayes approach for linear estimation of a scalar random parameter

based on a scalar observation when there exists correlation uncertainty between the parameter and the

observation. We derived the optimal linear estimator that minimizes the average MSE under a constraint
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on the worst-case MSE by utilizing the statistical knowledge on the correlation coefficient. We obtained

a closed-form expression for the proposed optimal linear estimator and evaluated its performance via

numerical examples which illustrated its benefits in various scenarios. We also extended the results to the

case of vector-valued observation.

As future work, the proposed restricted Bayesian approach for linear estimation under correlation

uncertainty can be applied to the decentralized estimation problem where the aim is to optimally combine

correlated local state estimates at the fusion center under uncertainty about their cross-correlation. While

robust fusion algorithms that are based on the uncertainty sets for the error covariance matrix of local state

estimates exist in the relevant distributed estimation literature, a joint estimation approach that minimizes

the average estimation error with respect to a nomimal distribution while controlling the worst-case fused

MSE is not available to the best of our knowledge. Another possible venue for future work is the design of

theoretical bounds for average estimation error under uncertainty on the joint distribution (e.g., unknown

correlation coefficient in the case of linear estimators).

APPENDIX

PROOF OF PROPOSITION 1

We analyze the solution under the three cases stated in the lemma. First, we specify the range of feasible

values of ϱ ∈ R in all the cases. In Case 1 (i.e., ρmin < 0 < ρmax), it is required to have r ≥ σ2
X for

feasibility. Under this condition, the range of feasible values of ϱ can be specified explicitly. For ϱ ≥ 0,

the first inequality constraint in (P2) is satisfied for ϱ ∈ [0, ρmin +
√
ρ2min + r/σ2

X − 1] and for ϱ ≤ 0, the

second inequality constraint in (P2) is satisfied for ϱ ∈ [ρmax −
√
ρ2max + r/σ2

X − 1, 0]. Hence, the range

of feasible values of ϱ under Case 1 is specified as

Case 1: ϱ ∈
[
ρmax −

√
ρ2max + r/σ2

X − 1, ρmin +
√
ρ2min + r/σ2

X − 1

]
. (22)

In Case 2 (i.e., 0 ≤ ρmin < ρmax), it is required to have r ≥ σ2
X(1 − ρ2min) for feasibility. This case is

divided into two subcases: (2a) σ2
X(1 − ρ2min) ≤ r ≤ σ2

X , and (2b) r ≥ σ2
X . In case (2a), the second

inequality constraint in (P2) does not produce any feasible ϱ < 0, and we obtain the range of feasible

values of ϱ based solely on the first inequality constraint as

Case 2a: ϱ ∈
[
ρmin −

√
ρ2min + r/σ2

X − 1, ρmin +
√
ρ2min + r/σ2

X − 1

]
. (23)

In Case (2b), both inequality constraints in (P2) contribute to the set of feasible values of ϱ, which yields

the same result as given in Case 1. In Case 3 (i.e., ρmin < ρmax ≤ 0), it is required to have r ≥ σ2
X(1−ρ2max)
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for feasibility. Again, this case can be decomposed into two subcases: (3a) σ2
X(1− ρ2max) ≤ r ≤ σ2

X , and

(3b) r ≥ σ2
X . By a similar analysis, the range of feasible values of ϱ under Case 3a is obtained as

Case 3a: ϱ ∈
[
ρmax −

√
ρ2max + r/σ2

X − 1, ρmax +
√
ρ2max + r/σ2

X − 1

]
, (24)

and Case (3b) produces the same range of feasible values as given in Case 1. Once the set of all feasible

values of ϱ is determined under all three cases, the optimal value of ρ, denoted with ρopt, is obtained as

the value that minimizes the objective function given in (P2). Since the objective is a convex quadratic

function of ϱ with a unique minimum at ϱ = ρ, the optimal value ρopt is given by the value of ρ

in the feasible set that is closest to ρ. Under Cases 1, (2b), and (3b), which are all characterized by

the condition r ≥ σ2
X , if ρ in an element of the feasible set given in (22), then ρopt = ρ. If ρ does

not belong to the feasible set, ρopt = ρmin +
√
ρ2min + r/σ2

X − 1 if ρ > ρmin +
√

ρ2min + r/σ2
X − 1;

and ρopt = ρmax −
√

ρ2max + r/σ2
X − 1 if ρ < ρmax −

√
ρ2max + r/σ2

X − 1. Under Case (2a), which is

characterized by the condition σ2
X(1 − ρ2min) ≤ r ≤ σ2

X , if ρ in an element of the feasible set given in

(23), then ρopt = ρ. If ρ does not belong to the feasible set, ρopt = ρmin +
√

ρ2min + r/σ2
X − 1 when

ρ > ρmin +
√

ρ2min + r/σ2
X − 1. That covers all possibilities for Case (2a) since ρmin < ρ < ρmax by

definition. Under Case (3a), which is characterized by the condition σ2
X(1 − ρ2max) ≤ r ≤ σ2

X , if ρ in

an element of the feasible set given in (24), then ρopt = ρ. If ρ does not belong to the feasible set,

ρopt = ρmax −
√

ρ2max + r/σ2
X − 1 when ρ < ρmax −

√
ρ2max + r/σ2

X − 1. Again, all possibilities are

covered for Case (3a). Substituting αopt = ρoptσX/σY , using the fact that ρmin < ρ < ρmax, and arranging

the results according to these cases, the results presented in the proposition are obtained. □
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