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Abstract—We consider a visible light positioning system in
which a receiver performs position estimation based on signals
emitted from a number of light emitting diode (LED) trans-
mitters. Each LED transmitter can be malicious and transmit
at an unknown power level with a certain probability. A max-
imum likelihood (ML) position estimator is derived based on
the knowledge of probabilities that LED transmitters can be
malicious. In addition, in the presence of training measurements,
decision rules are designed for detection of malicious LED
transmitters, and based on detection results, various ML based
location estimators are proposed. To evaluate the performance
of the proposed estimators, Craḿer-Rao lower bounds (CRLBs)
are derived for position estimation in scenarios with and without
a training phase. Moreover, an ML estimator is derived when
the probabilities that the LED transmitters can be malicious
are unknown. The performances of all the proposed estimators
are evaluated via numerical examples and compared against the
CRLBs.

Index Terms–Visible light, estimation, localization, malicious
LED transmitter, CRLB.

I. I NTRODUCTION

Recently, the usage of light emitting diodes (LEDs) as
efficient lighting sources in indoor environments has become
widespread due to their low power consumption, efficient
illumination, and long life span compared to conventional
light bulbs [2]. In addition to illumination, LEDs can also
be utilized for communications and positioning. In particular,
visible light positioning (VLP) has emerged as an attractive
approach that provides accurate location information withlow
implementation complexity. In the literature, various position
estimation algorithms are developed and theoretical accuracy
limits are investigated for VLP systems thoroughly [3]–[6]
(and references therein). Unlike in RF systems, position es-
timation based on received power measurements can achieve
high accuracy in VLP systems [7]. Therefore, the received
signal strength (RSS) parameter is commonly employed in
VLP systems due to its low measurement cost. In [8], closed-
form Cramér-Rao lower bound (CRLB) expressions are de-
rived for location and orientation estimation based on the RSS
measurements. In [9], a three-dimensional (3D) positioning
approach that utilizes both RSS and angle-of-arrival (AOA)
information is introduced for a single-input multiple-output
(SIMO) visible light system. The authors in [10] propose a
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simultaneous position and orientation estimation (SPO) algo-
rithm using RSS measurements in a multi-input multi-output
(MIMO) VLP system. The CRLB is also derived to evaluate
the performance of the proposed SPO estimator. In [11], deep
learning is employed for joint 3D position and orientation
estimation of a VLC receiver with a random orientation and
an unknown emitting power based on RSS measurements. In
[12], performance analysis of a VLP system, which uses an
aperture-based receiver, is conducted. An estimator is proposed
by utilizing both RSS and AOA information. Also, the CRLB
is derived for assessing the performance of the proposed
estimator.

In this work, we focus on a VLP system in which a
visible light communication (VLC) receiver collects power
measurements from signals coming from a number of LED
transmitters for the purpose of localization. We also consider
that the system is not completely secure and some of the LED
transmitters can be malicious (controlled by a third party).
Therefore, we aim to develop position estimation algorithms in
the presence of malicious LED transmitters. Although various
security issues in the physical layer have been investigated
for VLC systems [13]–[22], there exists no such work for
VLP systems in the literature. For example, [14] considers
the presence of an eavesdropper and proposes a way of
securing VLC links via friendly jammers. In addition, a robust
beamforming approach is developed to maximize the worst-
case secrecy rate in the presence of imperfect knowledge of
eavesdropper’s channel. In [17], a multiple-input single-output
(MISO) VLC system is investigated in the presence of mul-
tiple eavesdroppers. The transmit beamformer and jamming
precoder are optimized to improve communication secrecy. In
[18], simultaneous beamforming and jamming is utilized for
MISO VLC systems under the assumption of randomly located
eavesdropper in order to enhance the physical layer security.
The authors formulate an optimization problem with a focus
on the signal-to-interference-plus-noise ratio for the legitimate
link and solve it by a heuristic method. In [19], a physical
layer security technique is proposed for VLC systems with the
utilization of an intelligent mirror array. An achievable secrecy
rate maximization problem is formulated for the proposed
technique and optimal orientations of the mirrors are found. In
addition, the studies in [20] and [21] focus on the calculation
of the secrecy capacity for VLC systems in various scenarios.
A comprehensive survey on physical layer security for VLC
systems can be found in [22]. As an alternative approach,
information theoretic learning criteria, such as minimum error
entropy (MEE) and maximum correntropy criterion (MCC),
can also be employed for parameter estimation in visible light
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systems. For example, an MEE based channel estimator is
proposed in [23] for massive MIMO VLC systems.

In RF systems, position estimation in wireless sensor net-
works in the presence of malicious nodes has been con-
sidered in various studies [24]–[33]. In [24], independent
and collaborative Byzantine attacks are considered and two
different schemes are proposed for mitigation of these attacks.
In addition, the posterior CRLB is derived to characterize the
performance of the wireless sensor network. In [25], an RSS
based localization method is proposed in order to mitigate
the impacts of Byzantine fault and non-line-of-sight (NLOS)
bias on the positioning accuracy. In [26], coding-theory based
mitigation approach schemes are discussed in the presence of
malicious nodes in sensor networks.

Although the approaches developed for RF localization in
the presence of malicious devices can be considered for VLP
systems, specific analyses are required for VLP in the presence
of malicious LED transmitters due to distinct operating char-
acteristics and channel models of visible light systems. [4].
The main contributions and novelty of this manuscript can be
summarized as follows:

• Position estimation problems in visible light systems in
the presence of malicious LED transmitters are formu-
lated for the first time in the literature.

• A maximum likelihood (ML) estimator is derived based
on the knowledge of probabilities that LED transmitters
can be malicious.

• In the presence of training measurements, decision rules
(namely, generalized likelihood ratio tests) are developed
for detection of malicious LED transmitters, and based on
detection results, various ML based location estimators
are derived.

• CRLB expressions are derived and used as benchmarks
for scenarios with and without training measurements.

• An ML estimator is obtained for the case that the
probabilities of the LED transmitters being malicious are
unknown.

In addition, simulation results are presented to investigate the
performance of the proposed algorithms and to compare them
against each other and the CRLBs.

In the conference version of this study [1], the estimators in
Section III, Section IV-A, and Section IV-B were presented.In
this manuscript, we also provide the following extensions:(i)
An alternative detection approach is proposed in Section IV-C
by showing the existence of the uniformly most powerful
(UMP) test under certain conditions.(ii) The CRLB expres-
sions are derived under three different settings in SectionV.
(iii) For the case of unknown probabilities for malicious LED
transmitters, the ML estimator is obtained in Section VII.(iv)
More detailed simulation results are performed to investigate
the effects of various system parameters on localization per-
formance in Section VI.

The rest of the manuscript is organized as follows. The
system model is discussed in Section II. In Section III, an
ML estimator is derived based on the knowledge of the prob-
abilities of LED transmitters being malicious. In Section IV, a
training procedure is proposed for the detection of malicious
LEDs, and estimators that utilize the training measurements

are derived for two different scenarios. In Section V, theoret-
ical limits, namely, the CRLBs, on the positioning accuracy
are derived. Simulation results are presented and discussed
in Section VI. In Section VII, an extension is provided for
the case of unknown probabilities of LEDs being malicious.
Finally, the concluding remarks are presented in Section IX.

II. SYSTEM MODEL

Consider a VLP system withNL LED transmitters at known
locations denoted byliT for i ∈ {1, . . . , NL}. The LED
transmitters communicate with a VLC receiver, which aims
to estimate its unknown locationlR based on signals coming
from the LED transmitters. The VLP system is not completely
secure and it is possible that some of the LED transmitters
can be hijacked by malicious third parties. The VLC receiver
does not know which LED transmitters are malicious but it is
aware of such a possibility. Namely, it is assumed that the VLC
receiver knows the probabilities that the LED transmitterscan
be malicious. (Extensions to the case of unknown probabilities
is provided in Section VII.)

The VLC receiver gathers power measurements from the
LED transmitters for the purpose of localization, which are
expressed as [34]

PR,i = Rp PT,i hi(lR) + ηi (1)

for i = 1, . . . , NL. In (1), Rp denotes the responsivity of
the photo detector (PD) at the VLC receiver,PT,i is the
transmit power of theith LED transmitter,hi(lR) represents
the channel coefficient between the VLC receiver and theith
LED transmitter, andηi is zero-mean Gaussian noise with a
variance ofσ2

i , which is independent ofηj for all j 6= i [34]. It
is assumed that a certain type of multiple access protocol, such
as frequency-division or time-division multiple access [35]–
[37], is employed so that the signals coming from different
LED transmitters are processed separately and their power
levels are measurement individually as in (1).

Let γi denote the probability that theith LED transmitter is
malicious. Then, the transmit power parameter in (1) is given
by

PT,i =

{
PM,i , with probabilityγi
PH,i , with probability1− γi

(2)

wherePM,i denotes the transmit power of theith LED trans-
mitter if it is malicious (i.e., controlled by a third party)and
PH,i represents the transmit power of theith LED transmitter
if it is honest (i.e., not malicious). The parameters{PH,i}NL

i=1

are known by the VLC receiver since transmit power levels in
case of honest LED transmitters are either reported to the VLC
receiver or they are set beforehand for localization purposes.
On the other hand, when an LED transmitter is malicious,
it can change its transmit power level in order to degrade
the localization performance of the VLP system. Therefore,
{PM,i}NL

i=1 are modeled as unknown parameters. Also, it is
assumed that each LED transmitter can be malicious or honest
independently of the other LED transmitters.



3

Considering a line-of-sight scenario between each LED
transmitter and the VLC receiver [4], [38], [39], the channel
coefficients in (1) can be calculated as

hi(lR) =
(mi + 1)AR

[
(lR − liT)

Tni
T

]mi

(liT − lR)
TnR

2π
∥∥lR − liT

∥∥mi+3

(3)

wheremi is the Lambertian order for theith LED transmitter,
AR is the area of the PD at the VLC receiver, andnR and
ni

T represent the orientation vectors of the VLC receiver and
the ith LED transmitter, respectively [40]. It is assumed that
the VLC receiver knows the parametersAR, Rp, nR, mi,
liT, and ni

T, and σ2
i [7], [39]. For example, the orientation

of the VLC receiver (nR) can be determined by a gyroscope
and the LED parameters (mi, l

i
T, andni

T) can be sent to the
receiver via visible light communications [7]. It is noted that
the channel coefficienthi(lR) in (3) is a nonlinear function of
the parameter of interest, i.e.,lR.

Remark 1: As implied from the preceding system model,
malicious LED transmitters modify the transmit power levels
to degrade the localization performance of the VLP system.
Even though a malicious third party can control an LED
transmitter, it is not practical for it to change other LED
parameters such asliT, ni

T, and mi as their modification
requires physical intervention to the system. For example,the
modification of liT or ni

T requires a change in the location
or the orientation of theith LED transmitter. Similarly, the
Lambertian order is fixed for a given LED model. On the other
hand, the transmit power levels of the LEDs are controlled
by the LED drivers (usually via a controller unit). Therefore,
without any physical change to the system (such as changing
the locations and orientations of the LEDs or replacing the
LEDs), a malicious third party can change the transmit power
levels by hacking the LED drivers to degrade the positioning
accuracy of the VLP system.

Remark 2: The VLP system model considered in this work
can be practical in the following cases: (i) While the transmit
power level is known for a given LED transmitter under
normal operating conditions (denoted byPH,i in (2)), there can
occur situations in which an LED can fail and provide a dif-
ferent (and unknown) power level than the reported one [41]–
[43]. With a more general perspective of being “malicious”,
which takes into account such failures of LED transmitters,
the system model in this section becomes valid. Namely, based
on some prior knowledge (such as the LED brand and type,
and previous operating experience), the probability of failure
can be determined for each LED transmitter, and the model
in (2) can be applied. In this case, it is reasonable to model
that each LED transmitter can fail (i.e., become “malicious”)
independently of the others. (ii) Consider a hijacking attack in
which the malicious third party gets the control of the whole
VLP network by accessing the VLP controller. In this case, the
malicious third party can randomly select some of the LED
transmitters and modify their transmit powers in order not to
be detected easily. Hence, the assumption of malicious LED
transmitters in this section becomes valid in such a scenario, as
well. (iii) Please also see Sections VII and VIII for extensions
of the system model.

III. POSITION ESTIMATION IN THE PRESENCE OF

MALICIOUS LED TRANSMITTERS

The aim of the VLC receiver is to estimate its loca-
tion lR based on the power measurements in (1). LetPR

represent a vector consisting of the power measurements;
i.e., PR = [PR,1 · · ·PR,NL ]

T . Also, let PM denote the
vector of unknown transmit powers in (2); that is,PM =
[PM,1 · · ·PM,NL ]

T . In practice, upper and lower limits can be
imposed on the elements ofPM considering the specifications
of the LEDs. Hence, it is assumed thatPM ∈ P , where
P = [Pmin,1, Pmax,1] × · · · × [Pmin,NL , Pmax,NL ]. Similarly,
let lR ∈ L, whereL denotes the possible locations of the
VLC receiver; e.g., all possible locations in a room or factory.
It is assumed that there exists no prior statistical information
aboutPM or lR.

The location of the VLC receiver can be estimated via the
ML estimator [44], which is stated as

(
l̂R, P̂M

)
= argmax

lR∈L,PM∈P
p(PR | lR,PM) (4)

In (4), p(PR | lR,PM) denotes the likelihood function, which
can be calculated from (1) and (2) as follows:

p(PR | lR,PM) =

NL∏

i=1

(
γi√
2πσi

e
−

(PR,i−PM,iRphi(lR))2

2σ2
i

+
1− γi√
2πσi

e
−

(PR,i−PH,iRphi(lR))2

2σ2
i

)
(5)

From (4) and (5), it can be shown, after some manipulation,
that the ML estimator for the location of the VLC receiver
becomes

l̂R = argmax
lR∈L

NL∏

i=1

(
γi√
2πσi

e
−

(PR,i−P̂M,i(lR)Rphi(lR))2

2σ2
i

+
1− γi√
2πσi

e
−

(PR,i−PH,iRphi(lR))2

2σ2
i

)
(6)

whereP̂M,i(lR) in (6) is given by

P̂M,i(lR) =





Pmin,i, if
PR,i

Rphi(lR) ≤ Pmin,i

Pmax,i, if
PR,i

Rphi(lR) ≥ Pmax,i

PR,i

Rphi(lR) , otherwise

(7)

It is noted that the maximizer of the likelihood function in (5)
overPM,i is obtained for any given value oflR as in (7), which
leads to a significant reduction in computational complexity.
Namely, the original formulation of the ML estimator in (4),
which requires optimization over an(NL + 3)-dimensional
space is reduced to a three-dimensional search in (6).

IV. POSITION ESTIMATION IN THE PRESENCE OF

MALICIOUS LED TRANSMITTERS AND TRAINING

MEASUREMENTS

In this section, we suppose that power measurements can be
taken at known locations in a given environment beforehand
for training purposes. Based on those measurements, informa-
tion related to maliciousness of each LED transmitter can be



4

collected, which can then be used for the location estimation
of the VLC receiver.

The power measurements atNV known locations, denoted
by l

(1)
R , . . . , l

(NV)
R , can be expressed as follows:

P
(j)
R,i = Rp P

(j)
T,i hi

(
l
(j)
R

)
+ η

(j)
i (8)

for i = 1, . . . , NL andj = 1, . . . , NV, whereP (j)
R,i is the power

measurement at locationl(j)R due to the signal emitted from
the ith LED transmitter,P (j)

T,i denotes the transmit power of
the ith LED transmitter during the measurement at location
l
(j)
R , andη(j)i is the noise component during the reception of

the signal coming from theith LED transmitter when the VLC
receiver is at locationl(j)R . The variance ofη(j)i is denoted by
σ2
i,j , and η

(j)
i ’s are modeled as zero-mean Gaussian random

variables that are independent for alli andj.
It is assumed that an LED transmitter is either malicious

or honest during the training and estimation stages; i.e., its
status does not change over the time interval of interest. In
addition, two scenarios, named Scenario 1 and Scenario 2,
are considered related to the transmit powers of the malicious
LED transmitters.

Scenario 1: Each malicious LED transmitter employs a
fixed unknown power level during all the measurements (i.e.,
during the training and estimation stages). Hence, parameter
P

(j)
T,i in (8) is modeled in Scenario 1 as

P
(j)
T,i =

{
PM,i , with probabilityγi
PH,i , with probability1− γi

(9)

for j ∈ {1, . . . , NV}.
Scenario 2: In this scenario, a malicious LED transmitter

is modeled to change its transmit power frequently such that
its transmit power can vary for each measurement. Then,P

(j)
T,i

in (8) is modeled as

P
(j)
T,i =

{
P

(j)
M,i , with probabilityγi

PH,i , with probability1− γi
(10)

for j ∈ {1, . . . , NV}.
Based on the power measurements in (8), the aim is to make

a decision for each LED transmitter about its status (malicious
or honest), and to then perform localization based on a given
power measurement vectorPR (see (1)) by utilizing those
decisions. The preceding two scenarios are investigated inthe
following.

A. Detection and Estimation in Scenario 1

In Scenario 1, the following binary hypothesis-testing prob-
lem can be formulated for theith LED transmitter based on
the measurements in (8):

Hi : P
(j)
R,i = Rp PH,i hi

(
l
(j)
R

)
+ η

(j)
i , j = 1, . . . , NV

Mi : P
(j)
R,i = Rp PM,i hi

(
l
(j)
R

)
+ η

(j)
i , j = 1, . . . , NV (11)

whereHi and Mi denote the hypotheses that theith LED
transmitter is honest and malicious, respectively.

As PM,i’s are unknown, the hypothesisMi is a composite
hypothesis and the generalized likelihood ratio test (GLRT) is

a well-suited approach for this problem due to the absence of
prior distributions ofPM,i’s [44]. The GLRT for the problem
in (11) can be stated as

max
PM,i∈[Pmin,i,Pmax,i]

NV∏

j=1

e
−

(
P

(j)
R,i

−RpPM,ihi

(
l
(j)
R

))2
2σ2

i,j

√
2πσi,j

NV∏

j=1

1√
2πσi,j

e
−

(
P

(j)
R,i

−RpPH,ihi

(
l
(j)
R

))2
2σ2

i,j

Mi

R
Hi

τi (12)

whereτi denotes the threshold, which can be chosen according
to the tradeoff between the conditional probabilities of error
[44]. In particular, since the probability distribution under
Hi is completely known, the probability of deciding for
Mi when Hi is true, i.e., the false alarm probability, can
be fixed to a suitable value for setting the threshold.1 (The
effects of threshold selection on localization performance are
investigated in Section VI.) The maximization problem in the
numerator of (12) yields the following maximizer:

P̂M,i =





Pmin,i, if g
(
{P (j)

R,i}NV

j=1

)
≤ Pmin,i

Pmax,i, if g
(
{P (j)

R,i}NV

j=1

)
≥ Pmax,i

g
(
{P (j)

R,i}NV

j=1

)
, otherwise

(13)

where

g
(
{P (j)

R,i}NV

j=1

)
,

∑NV

j=1 P
(j)
R,ihi

(
l
(j)
R

)
/σ2

i,j

Rp

∑NV

j=1

(
hi

(
l
(j)
R

))2
/σ2

i,j

(14)

Then, the GLRT in (12) can be simplified, after some manip-
ulation, as follows:

Rp

(
P̂M,i − PH,i

) NV∑

j=1

P
(j)
R,ihi

(
l
(j)
R

)

σ2
i,j

(15)

+ 0.5R2
p

(
P 2
H,i −

(
P̂M,i

)2) NV∑

j=1

(
hi

(
l
(j)
R

))2

σ2
i,j

Mi

R
Hi

log(τi)

whereP̂M,i is given by (13).
Let D̂i denote the decision of the GLRT in (15), i.e., the

decision for theith LED transmitter, wherei ∈ {1, . . . , NL}.
When the power measurementsPR are taken as in (1) related
to a VLC receiver at an unknown locationlR, the problem
becomes the estimation oflR based onPR and the decisions
D̂1, . . . , D̂NL . In Scenario 1, two approaches are considered
as described in the following:

1) Algorithm 1-(a): In this algorithm, the decisions of the
GLRTs in (15) and the power estimates in (13) are assumed to
be perfect, and the probability distribution ofPR is determined
accordingly. In particular, letĤ and M̂ denote the sets
of honest and malicious LED transmitters according to the
decision of the GLRTs in (15); that is,

Ĥ = {i ∈ {1, . . . , NL} | D̂i = Hi} (16)

M̂ = {i ∈ {1, . . . , NL} | D̂i = Mi} (17)

1In particular, the threshold can be set via Monte-Carlo trials for a given
false alarm probability by generating a sufficient number ofreceived power
measurements according to theHi hypothesis (see (11)).
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Then, the likelihood function from this perspective can be
expressed as

p(PR | lR) =
∏

i∈Ĥ

1√
2πσi

e
−

(PR,i−PH,iRphi(lR))2

2σ2
i

×
∏

i∈M̂

1√
2πσi

e
−

(PR,i−P̂M,iRphi(lR))2

2σ2
i (18)

and the resulting ML estimator can be derived as

l̂R = argmin
lR∈L

∑

i∈Ĥ

(PR,i − PH,iRphi(lR))
2

2σ2
i

+
∑

i∈M̂

(PR,i − P̂M,iRphi(lR))
2

2σ2
i

(19)

whereP̂M,i is as in (13) fori ∈ M̂.
2) Algorithm 1-(b): In this algorithm, the estimates in (13)

are still assumed to be perfect but possible errors in the
decisions of the GLRTs in (15) are taken into consideration.
Specifically, the probability that theith LED transmitter is
malicious is calculated as follows:

γ̂i = P(Mi | D̂i) =
γiP(D̂i |Mi)

γiP(D̂i |Mi) + (1− γi)P(D̂i | Hi)
(20)

where γi = P(Mi) as defined before. In other words, in
Algorithm 1-(b), the probabilities are updated according to
the decisions produced by the GLRTs in the training stage.
Hence,γi and γ̂i can be regarded, respectively, as the prior
and posterior probabilities that theith LED is malicious.
Accordingly, the ML estimator can be obtained as follows:

l̂R = argmax
lR∈L

NL∏

i=1

(
γ̂i√
2πσi

e
−

(PR,i−P̂M,iRphi(lR))2

2σ2
i

+
1− γ̂i√
2πσi

e
−

(PR,i−PH,iRphi(lR))2

2σ2
i

)
(21)

whereγ̂i is given by (20) and̂PM,i is as in (13). It should be
noted thatP(D̂i |Mi) andP(D̂i | Hi) can be calculated for
the GLRT in (15) based on analytical approaches or simply
via Monte-Carlo trials.

B. Detection and Estimation in Scenario 2

In this scenario, the hypothesis-testing problem for theith
LED transmitter can be stated as

Hi : P
(j)
R,i = Rp PH,i hi

(
l
(j)
R

)
+ η

(j)
i , j = 1, . . . , NV

Mi : P
(j)
R,i = Rp P

(j)
M,i hi

(
l
(j)
R

)
+ η

(j)
i , j = 1, . . . , NV (22)

Then, the GLRT is given by

max
{P

(j)
M,i

}
NV
j=1

NV∏

j=1

1√
2πσi,j

e
−

(
P

(j)
R,i

−RpP
(j)
M,i

hi

(
l
(j)
R

))2
2σ2

i,j

NV∏

j=1

1√
2πσi,j

e
−

(
P

(j)
R,i

−RpPH,ihi

(
l
(j)
R

))2
2σ2

i,j

Mi

R
Hi

κi (23)

whereκi denotes the threshold. The maximization problem
in the numerator of (23) can be solved in closed form, which
leads to the following simplified form of the GLRT after some
manipulation:

NV∑

j=1

1

σ2
i,j

(
RpP

(j)
R,ihi

(
l
(j)
R

)(
P̂

(j)
M,i − PH,i

)
(24)

+ 0.5R2
p

(
hi

(
l
(j)
R

))2(
P 2
H,i −

(
P̂

(j)
M,i

)2)
)Mi

R
Hi

log(κi)

where

P̂
(j)
M,i =





Pmin,i , if
P

(j)
R,i

Rphi

(
l
(j)
R

) ≤ Pmin,i

Pmax,i , if
P

(j)
R,i

Rphi

(
l
(j)
R

) ≥ Pmax,i

P
(j)
R,i

Rphi

(
l
(j)
R

) , otherwise

(25)

Let D̂i denote the decision of the GLRT in (24) fori ∈
{1, . . . , NL}. When the power measurementsPR are taken
as in (1) related to a VLC receiver at an unknown location
lR, the estimation oflR can be performed via the following
algorithms in Scenario 2:

1) Algorithm 2-(a): In this algorithm, the decisions of the
GLRTs in (24) are assumed to be correct and the likelihood
function is stated as

p(PR | lR,PM) =
∏

i∈Ĥ

1√
2πσi

e
−

(PR,i−PH,iRphi(lR))2

2σ2
i

×
∏

i∈M̂

1√
2πσi

e
−

(PR,i−PM,iRphi(lR))2

2σ2
i (26)

whereĤ andM̂ are as defined in (16) and (17), respectively,
for the GLRTs in (24). Then, the corresponding ML estimator
is derived as

l̂R =argmin
lR

∑

i∈Ĥ

(PR,i − PH,iRphi(lR))
2

2σ2
i

+
∑

i∈M̂

(PR,i − P̂M,i(lR)Rphi(lR))
2

2σ2
i

(27)

whereP̂M,i(lR) is as in (7) fori ∈ M̂.
2) Algorithm 2-(b): In this algorithm, possible errors in the

decisions of the GLRTs in (24) are considered by updating the
probabilities that the LED transmitters can be malicious asin
(20). Then, the ML estimator is designed as in Section III by
replacingγi’s with γ̂i’s. Consequently, Algorithm 2-(b) can be
expressed as in (6) and (7) by replacingγi’s in (6) with γ̂i’s
obtained from (20).

Remark 3: It is noted that the estimates obtained in the
training stage for the power levels of the malicious LED
transmitters in (25) are not employed during the estimation
stage since the power levels of the malicious LED transmitters
vary in Scenario 2 (i.e., they become different in the estimation
stage).

Remark 4: It is noted that Algorithm 1-(a) and Algorithm 2-
(a) can be implemented without using the probabilities thatthe
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LED transmitters can be malicious. However, the knowledge
of these probabilities is required for Algorithm 1-(b) and
Algorithm 2-(b). In practice, the knowledge of the probabilities
that the LED transmitters are malicious can be obtained in
various ways: (i) For the case in which an LED transmitter
becomes “malicious” due a failure in the LED chip (see
Remark 2), the probability that an LED can fail can be learned
based on some prior knowledge depending on the LED brand
and type or based on previous operating experience. (ii) For
the case in which an LED transmitter becomes malicious due
to hijacking, the probability of such an event can be estimated
based on the history of VLP networks operating in similar
environments/conditions.

C. Alternative Detection Approach for Scenario 1

In Section IV-A, the GLRT is obtained as in (15) and
its threshold is set according to the tradeoff between the
conditional probabilities of error, namely,P(D̂i |Mi) and
P(D̂i | Hi). As an alternative approach, the uniformly most
powerful (UMP) test can be derived in Scenario 1 if there
exists prior information that a malicious LED transmitter does
not increase the power level with respect to the power level of
an honest LED transmitter; that is, if the following condition
is satisfied:

PM,i ≤ PH,i , ∀i (28)

Under this condition, the likelihood ratio test for the
hypothesis-testing problem in (11) can be expressed as

exp

{
∑NV

j=1

(
P

(j)
R,i

−RpPH,ihi(l
(j)
R )
)2

2σ2
ij

}

exp

{
∑NV

j=1

(
P

(j)
R,i

−RpPM,ihi(l
(j)
R )
)2

2σ2
ij

}
Mi

R
Hi

ηi (29)

whereηi denotes the threshold. Taking the natural logarithm
of both sides leads to

NV∑

j=1

Rphi(l
(j)
R )P

(j)
R,i(PM,i − PH,i)

σ2
i

(30)

+

NV∑

j=1

R2
ph

2
i (l

(j)
R )
(
P 2
H,i − P 2

M,i

)

2σ2
i

Mi

R
Hi

log ηi

Based on the condition in (28), the expression in (30) can be
simplified as

NV∑

j=1

P
(j)
R,ihi(l

(j)
R )

σ2
ij

Hi

R
Mi

η̃i (31)

where η̃i is defined as η̃i ,
(
log ηi −∑NV

j=1 R
2
ph

2
i (l

(j)
R )(P 2

H,i − P 2
M,i)/(2σ

2
i )
)
/(Rp(PM,i − PH,i)).

For the test in (31), the false alarm probability can be derived
analytically as follows. Under hypothesisHi in Scenario 1
(see (11)), the received powerP (j)

R,i follows a Gaussian

distribution with meanRpPH,ihi(l
(j)
R ) and varianceσ2

ij ; i.e.,

P
(j)
R,i ∼ N

(
RpPH,ihi(l

(j)
R ), σ2

ij

)
(32)

SinceP (j)
R,i ’s are independent for differentj’s, we get

NV∑

j=1

P
(j)
R,ihi(l

(j)
R )

σ2
ij

∼ N




NV∑

j=1

RpPH,ih
2
i (l

(j)
R )

σ2
ij

,

NV∑

j=1

h2
i (l

(j)
R )

σ2
ij




(33)

Accordingly, setting the false alarm probability to a givenlevel
α leads to

1−Q



η̃i −

∑NV

j=1
RpPH,ih

2
i (l

(j)
R )

σ2
ij√∑NV

j=1
h2
i
(l

(j)
R )

σ2
ij


 = α (34)

Then, solving forη̃i yields the following threshold:

η̃i =

√√√√
NV∑

j=1

h2
i (l

(j)
R )

σ2
ij

Q−1(1−α) +

NV∑

j=1

RpPH,ih
2
i (l

(j)
R )

σ2
ij

(35)

Since the test in (31) with the threshold specified by (35) is
a likelihood ratio test (as it is equivalent to (29)) and does
change with respect to the unknown parameterPM,i, it is
a UMP test for the problem in (11) [44]. Hence, when the
assumption in (28) holds, the UMP test exists for Scenario 1
and can be obtained as described in this section (which can
be used instead of the GLRT in (15)). It should be noted that
if the condition in (28) is reversed, i.e., ifPM,i > PH,i, ∀i, a
UMP test can again be derived based on a similar argument.
However, it is more likely for a malicious third party to reduce
the transmit powers of the LED transmitters to degrade the
positioning accuracy.

V. CRLB DERIVATIONS

In this section, CRLB expressions are derived for three
different cases to establish benchmarks for performance of
the proposed algorithms in the absence and presence of
training measurements. In the first case, it is assumed that
the transmit powers of all the LEDs, i.e.,{PT,i}NL

i=1, are
perfectly known. This bound applies to Scenario 1, in which
the transmit power of each malicious LED transmitter is
fixed and can be estimated via training measurements. In the
second case, it is assumed that the transmit power of malicious
LED transmitters are unknown but their indices are known.
This bound corresponds to Scenario 2, in which there exist
training measurements and malicious LED transmitters modify
their transmit powers for each measurement. In the third
case, the CRLB is derived for the scenario without training
measurements, which corresponds to the setting consideredin
Section III. Overall, via three different CRLB derivations, we
take into account various levels of knowledge related to the
transmit powers of the malicious LED transmitters and the
indices of malicious LEDs.

A. CRLB for Scenario 1 (Knowledge of Transmit Powers)

In this case, the transmit powers of all the LEDs, i.e.,
{PT,i}NL

i=1, are perfectly known. Therefore, the vector of
unknown parameters consists only of the PD location, i.e.,
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lR. Thus, the likelihood function forlR based on the mea-
surements in (1) can be expressed as

p(PR|lR) =
(

NL∏

i=1

1√
2πσi

)
e
−

∑NL
i=1

(PR,i−RpPT,ihi(lR))2

2σ2
i

(36)

Then, the Fisher information matrix (FIM) is given by

J(lR) = E{(∇lR log p(PR|lR))(∇lR log p(PR|lR))T } (37)

and the CRLB is expressed as [44]

E
{∥∥̂lR − lR

∥∥2} ≥ trace
{
J(lR)

−1
}
, CRLB (38)

After some manipulation, the elements of the FIM in (37) can
be calculated from (36) as follows:

[J(lR)]p,q = R2
P

NL∑

i=1

P 2
T,i

σ2
i

∂hi(lR)

∂lR(p)

∂hi(lR)

∂lR(q)
(39)

wherep, q ∈ {1, 2, 3} and lR(p) denotes thepth element of
lR. In addition, based on (3), the partial derivatives ofhi(lR)
with respect tolR(p) can be expressed as

∂hi(lR)

∂lR(p)
=

(mi + 1)AR

2π

(
gi
1p(lR)g

i
2(lR) + gi

1(lR)g
i
2p(lR)

gi
3(lR)

(40)

−
gi
1(lR)g

i
2(lR)g

i
3p(lR)

gi
3
2
(lR)

)

where

gi
1(lR) =

[
(lR − liT)

Tni
T

]mi

(41)

gi
2(lR) = (liT − lR)

TnR (42)

gi
3(lR) =

∥∥lR − liT
∥∥mi+3

(43)

gi
1p(lR) =

∂gi
1(lR)

∂lR(p)
= mi

[
(lR − liT)

Tni
T

]mi−1
ni

T(p)

(44)

gi
2p(lR) =

∂gi
2(lR)

∂lR(p)
= −nR(p) (45)

gi
3p(lR) =

∂gi
3(lR)

∂lR(p)
= (mi + 3)

∥∥lR − liT
∥∥mi+1

×
[
(lR(p)− liT(p))

]
(46)

Thus, the CRLB can be obtained from (38)–(46), yielding
a lower bound on mean-squared errors (MSEs) of unbiased
estimators forlR when the transmit powers of the LEDs
are known. Since the malicious LEDs employ fixed transmit
powers that can be learned via training measurements in
Scenario 1, the CRLB expression in this section applies to
Scenario 1; hence, it is referred to as “CRLB - Scen. 1” in
Section VI.

B. CRLB for Scenario 2 (Knowledge of Indices of Malicious
LEDs)

In this case, it is assumed that the transmit powers of the
malicious LEDs are unknown but their indices are known. The
set of indices of the malicious LEDs is expressed as

M = {i ∈ {1, . . . , NL} | ith LED is malicious} (47)

and the number of elements inM is denoted byML. Then,
the vector of unknown parameters is defined as

Θ =
[
l
T
R P T

M

]T
(48)

wherePM is the vector consisting of the transmit powers of
the malicious LEDs. Accordingly, the likelihood function for
Θ based on the measurements in (1) can be expressed as

p(PR|Θ) =

(
NL∏

i=1

1√
2πσi

)
e
−

∑NL
i=1

(PR,i−RpPT,ihi(lR))2

2σ2
i

(49)

and the FIM is given by

J(Θ) = E{(∇Θ log p(PR|Θ))(∇Θ log p(PR|Θ))T } (50)

Based on the FIM, the bound on the estimation error for the
location lR of the VLC receiver can be specified as

E
{∥∥̂lR − lR

∥∥2} ≥ trace
{
J(Θ)−1

1:3,1:3

}
, CRLBlR

(51)

wherel̂R denotes any unbiased estimator oflR. Likewise, the
bound on the estimation error for the transmit powers of the
malicious LEDs can be stated as

E
{∥∥P̂M − PM

∥∥2} ≥ trace
{
J(Θ)−1

4:ML+3,4:ML+3

}
, CRLBPM

(52)

where P̂M represents any unbiased estimator ofPM. After
some manipulation, the elements of the FIM in (50) can be
calculated from (49) as

[J(Θ)]p,q = R2
P

NL∑

i=1

1

σ2
i

∂PT,ihi(lR)

∂Θ(p)

∂PT,ihi(lR)

∂Θ(q)
(53)

where p, q ∈ {1, . . . ,ML + 3} and Θ(p) denotes thepth
element ofΘ. As in Section V-A, forp ∈ {1, 2, 3}

∂PT,ihi(lR)

∂Θ(p)
= PT,i

∂hi(lR)

∂lR(p)
(54)

where∂hi(lR)
∂lR(p) is as defined in (40), and forp ∈ {4, . . . ,ML+

3}

∂PT,ihi(lR)

∂Θ(p)
= hi(lR)

∂PT,i

∂PM(p− 3)
(55)

where

∂PT,i

∂PM(p− 3)
=

{
1 , if i ∈ M and i = p− 3

0 , otherwise
(56)

The CRLB expression specified by (51) and (54)–(56)
provides a lower bound on position estimation in Scenario 2
since the indices of malicious LED transmitters can be learned
via training measurements in that scenario. (However, the
transmit powers of malicious LEDs cannot be learned since
they change for each measurement in Scenario 2.) Therefore,
it is referred to as “CRLB - Scen. 2” in Section VI.
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C. CRLB without Training Measurements

In this case, neither the transmit powers nor the indices
of the malicious LEDs are known. Therefore, the likelihood
function in (5) is used to derive the CRLB. The natural
logarithm of (5) can be expressed as

log p(PR|Θ) =

NL∑

i=1

log (γiEM + (1− γi)EH) (57)

whereΘ is as defined in (48), and

EM ,
1√
2πσi

e
−

(PR,i−PM,iRphi(lR))2

2σ2
i (58)

EH ,
1√
2πσi

e
−

(PR,i−PH,iRphi(lR))2

2σ2
i (59)

Based on (57), the FIM is constructed as

J(Θ) = E{(∇Θ log p(PR|Θ))(∇Θ log p(PR|Θ))T } (60)

The partial derivatives in (60) can be expressed as follows:

∂ log p(PR|Θ)

∂lR(p)

=

NL∑

i=1

γiEM (PR,i − PM,iRphi(lR))PM,iRp

σ2
i p(PR|Θ)

∂hi(lR)

∂lR(p)

+

NL∑

i=1

(1− γi)EH(PR,i − PH,iRphi(lR))PH,iRp

σ2
i p(PR|Θ)

∂hi(lR)

∂lR(p)

(61)

∂ log p(PR|Θ)

∂PM(p)
=

NL∑

i=1

γiEM (PR,i − PM,iRphi(lR))Rphi(lR)

σ2
i p(PR|Θ)

(62)

The partial derivatives∂hi(lR)
∂lR(p) are the same as in (40). As

the expectation in (60) is hard to evaluate analytically, Monte
Carlo integration methods can be used to compute the CRLB
in a similar fashion to that in [45]. Namely, the FIM in (60)
can be approximated as follows:

J(Θ) ≈ 1

NMC

NMC∑

i=1

(
∇Θ log p

(
P

(i)
R |Θ

))(
∇Θ log p

(
P

(i)
R |Θ

))T

(63)

where NMC is the number of Monte-Carlo trials and
P

(i)
R is the realization ofPR in the ith trial. In (63),

∇Θ log p
(
P

(i)
R |Θ

)
is evaluated based on the expressions in

(61) and (62) for the given realizationP (i)
R . Hence, a semi-

analytic evaluation approach is employed. Finally, the CRLB
can be expressed as

E
{∥∥̂lR − lR

∥∥2} ≥ trace
{
J(Θ)−1

1:3,1:3

}
, CRLBlR

(64)

This bound is referred to as “CRLB - No Training” in Section
VI.

VI. SIMULATION RESULTS

In this section, simulations are conducted to evaluate
the performance of the proposed approaches. A room
with dimensions4 × 4 × 3 meters (width, depth and height,
respectively) is considered. The number of LED transmitters is
taken asNL = 9 and they are placed at the following locations:
{(−1, 1, 3), (0, 1, 3), (1, 1, 3), (−1, 0, 3), (0, 0, 3), (1, 0, 3),
(−1,−1, 3), (0,−1, 3), (1,−1, 3)} (all in meters) such that
they cover the room in a symmetric manner, where(0, 0, 0)
corresponds to the center of the room floor. The orientation
vectors,ni

T’s, are taken as[0, 0,−1]T ∀i such that all the
LEDs face downwards. Also,mi’s are set to 1∀i. Although
the derivations in Section III and Section IV are generic for
any three-dimensional setup, the VLC receiver is considered
to be at a fixed height of0.85 meters in the simulations
(i.e., a two-dimensional localization scenario is considered
[46]). Moreover, the orientation of the receiver is specified as
nR = [0, 0, 1]T , i.e., it faces upwards, the area of the PD is
taken asAR = 1 cm2, and the responsivity of the PD is set
to Rp = 1. Moreover, the noise variances are assumed to be
the same, that is,σ2

i = σ2 for i = 1, . . . , NL.
Since the localization problem can be ill-posed when the

number of honest LED transmitters is below3, the probabil-
ities that the LED transmitters can be malicious are set as
follows:

γi =

{
0, if i = 1, 6, 7

γ, otherwise
(65)

Namely, in the simulations, it is guaranteed that there exist
at least3 honest LED transmitters for any given scenario. It
should be noted that the indices of these3 “always honest”
LED transmitters is not known by the VLC receiver and that
the other LED transmitters can also be honest with probability
(1− γ) independently of each other.

To investigate the performance of the proposed ML es-
timator in (6) (which is designed for the scenario without
training measurements), the location of the VLC receiver is
set to lR = [0.5 0.5 0.85]T meters and various values ofγ
are considered. For eachγ, 104 different sets of honest and
malicious LED realizations are obtained according to (65),
and the powers of the malicious LED transmitters,PM,i’s, are
generated as uniform random variables in the set[1W, 3W ],
whereas the honest LED transmit power is set to5W . In
addition,Pmin,i is set to1W andPmax,i is set to10W , which
are the estimation parameters used in (7), (13), and (25).

In Fig. 1, the root-mean squared error (RMSE) performance
of the proposed ML estimator in (6) is plotted versusγ for
σ2 = 10−11. For comparison purposes, we also consider the
case in which the VLC receiver is unaware of the security issue
and assumes that all the LED transmitters are honest. In this
case, the VLC receiver employs the model in (1) withPT,i =
PH,i for i = 1, . . . , NL, which results in the following ML es-
timator: l̂R = argmin

lR∈L

∑NL

i=1 (PR,i − PH,iRphi(lR))
2/(2σ2

i ).

This ML estimator is labeled as “ML – Unaware” in Fig. 1.
As another way of comparison, the ML estimator in the
presence of perfect knowledge of malicious LED transmitters
is considered, which is given by (27) when̂H andM̂ are equal
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Fig. 1: RMSE versusγ for σ2 = 10−11.
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Fig. 2: RMSE versus10 log10(1/σ
2) for γ = 0.5.

to the correct sets of honest and malicious LED transmitters,
respectively. This ML estimator is labeled as “ML – Perfect”
in Fig. 1. The results in the figure show that the proposed
estimator in (6) provides performance improvements (espe-
cially when γ is not small) over the estimator that assumes
that all the LED transmitters are honest. Also, the estimator
that perfectly knows which LED transmitters are malicious
provides a performance lower bound, as expected. In addition,
the estimators have higher RMSE values asγ increases due to
the increased level of uncertainty about transmission powers.
In Fig. 1, we also present the CRLB in the absence of training
measurements (“CRLB - No Training”) and the CRLB when
the indices of malicious LED transmitters are known (“CRLB -
Scen. 2”). The CRLB with no training measurements provides
a lower bound on the performance of the proposed ML
estimator. On the other hand, the CRLB for Scenario 2 presents
a performance limit for “ML – Perfect”, which is also designed
under the assumption of known indices of malicious LED
transmitters. It is noted that the CRLB in the absence of
training measurements is a tight limit for the RMSE of the
proposed ML estimator only whenγ is close to zero or one.

In Fig. 2, the RMSE performance of the estimators is plotted
versus the noise level,10 log10(1/σ

2). It is observed that the
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F
 = 0.5

Fig. 3: RMSE versus10 log10(1/σ
2) for Scenario 1 (γ = 0.5).

RMSE of the proposed ML estimator in (6) gets close to the
CRLB and the RMSE of the “ML – Perfect” as the noise
variance decreases. However, the RMSE of “ML – Unaware”
estimator does not improve significantly as the noise variance
gets lower as it assumes that all the LED transmitters are
honest. In addition, it is noticed that for large values of noise
variances, the RMSEs of all the estimators are below the
CRLBs. This is due to the fact that the possible locations
of the VLC receiver in the room are limited to4 × 4 meters
in two dimensions, and the ML estimators perform the search
over this space. On the other hand, the CRLB derivations do
not assume any prior information about the location of the
VLC receiver; hence, can lead to larger values than RMSEs
in very noisy cases.

To evaluate the performance of the algorithms in Section
IV-A (Scenario 1), a similar setup is used. The algorithms in
this section require a training phase. For this purpose,NV is
set to one and the training location is chosen as the center
of the room in two dimensions at a height of0.85meter,
i.e., (0, 0, 0.85)meters. Again,104 different sets of honest
and malicious LED realizations are used to obtain average
performance results. The same LED transmitter powers as in
the previous part are used in both the training and estimation
phases since, in Scenario 1, transmit powers of malicious
LED transmitters do not change over time. In addition, to
set the values ofτi for the decision rule in (15), a Neyman-
Pearson type approach is followed. Namely, for each noise
varianceσ2, τi’s are determined so as to set the false alarm
probability of each decision rule to a fixed value ofPF for
each LED transmitter. In the simulations, two different values
of PF are considered, namely,PF = 0.001 and PF = 0.5.
Based on the obtained thresholds, the conditional error and
correct decision probabilities, i.e.,P(D̂i |Mi) andP(D̂i | Hi),
are calculated using105 Monte-Carlo trials and employed in
Algorithm 1-(b). To provide comparisons, the “ML – Perfect”
estimator is also considered, which knows not only the mali-
cious LED transmitters but also their transmit powers in this
scenario (Scenario 1). Fig. 3 shows the RMSE performance of
the algorithms versus the noise level,10 log10(1/σ

2), where
γ = 0.5. It is observed that, forPF = 0.001, Algorithm
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1-(a) has the same performance as the “ML – Unaware”
estimator up to around100 dB and then gets close to “ML
– Perfect” at low noise variances. ForPF = 0.5, Algorithm 1-
(a) performs worse than “ML – Unaware” up to around100 dB
but afterwards it achieves lower RMSEs than Algorithm 1-(a)
with PF = 0.001 up to around113 dB. However, for higher
values of10 log10(1/σ

2), Algorithm 1-(a) withPF = 0.001
outperforms Algorithm 1-(a) withPF = 0.5. Moreover, it is
noted from Fig. 3 that the performance of Algorithm 1-(b)
is not affected significantly by the false alarm probabilityPF

(equivalently, the thresholds). This is because, in Algorithm 1-
(b), the probability that an LED transmitter is malicious,γ, is
updated based on the observations (see (20)). Thus, Algorithm
1-(b) is robust to changes in the threshold valuesτi as opposed
to Algorithm 1-(a), which is a practical advantage.

For performance evaluation of the algorithms in Section
IV-B (Scenario 2),104 different sets of honest and malicious
LED realizations are employed with aγ value of 0.5. As
opposed to Scenario 1, in this scenario, the transmit powers
of malicious LEDs are different at each measurement both in
the training and estimation phases. Again,NV is chosen as
one by considering the same training point as in the previous
case. The training is performed according to the decision rule
in (24). To determine theκi values, the same approach as in
Scenario 1 is taken by settingPF = 0.001 and PF = 0.5.
Then, based on theκi values, the conditional probabilities
P(D̂i |Mi) andP(D̂i | Hi) are calculated using105 Monte-
Carlo trials and employed in Algorithm 2-(b). The results
in Fig. 4 reveal that forPF = 0.001, the performance of
Algorithm 2-(a) is the same as “ML – Unaware” up to100 dB
and then converges to “ML – Perfect” at low noise variances.
However, forPF = 0.5, Algorithm 2-(a) performs closely
to “ML – Perfect” at high noise variances but achieves a
significantly inferior performance at low noise variances.In
addition, it is observed that the performance of Algorithm 2-
(b) is not affected significantly by the false alarm ratePF as in
Scenario 1. Thus, Algorithm 2-(b) is robust to changes inκi

values. Based on Fig. 3 and Fig. 4, it can be noted that if the
false alarm probability can be adapted according to the noise
variance, the performance of Algorithms 1-(a) and Algorithm
2-(a) can be enhanced. Namely, lower (higher) false alarm
rates can be chosen for lower (higher) noise variances.

To observe the effects of the VLC receiver position on
the accuracy, the VLC receiver is placed(0, 0, 0.85)meters
and moved along the straight line towards the location
(1, 1, 0.85)meters, whereγ is set to 0.5. The simulations
are conducted for two different values of the noise variance,
namely,σ2 = 10−11 andσ2 = 10−12. In Fig. 5-(a), Algorithm
1-(a) achieves lower RMSEs withPF = 0.5 than with
PF = 0.001. Conversely, in Fig. 5-(b), Algorithm 1-(a) with
PF = 0.001 outperforms that withPF = 0.5. On the other
hand, the RMSE performances of Algorithm 1-(b) are very
similar at both false alarm probabilities due to its probability
update operation, as discussed previously. In addition, itis
observed that the RMSEs of the estimators get larger as the
VLC receiver moves away from the center. This simulation is
repeated for Scenario 2 and the results are presented in Fig.6.
In Fig. 6-(a), Algorithm 2-(a) withPF = 0.5 performs better
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(0, 0, 0.85)m, whereγ = 0.5 and VLC receiver moves on the straight line
towards(1, 1, 0.85)m. (a)σ2 = 10−11 , (b) σ2 = 10−12.

than Algorithm 2-(a) withPF = 0.001. On the contrary, in
Fig. 6-(b), Algorithm 2-(a) withPF = 0.5 performs poorly
as the VLC receiver moves away from the center, whereas
Algorithm 2-(a) with PF = 0.001 performs closely to the
CRLB. Again, Algorithm 1-(b) achieves very similar RMSEs
for both false alarm probabilities and the RMSE values of
the estimators and the CRLB tend to increase as the VLC
receiver moves away from the center of the room. These results
illustrate the robustness of Algorithm 1-(b) and Algorithm2-
(b) against the threshold values used in the detection step.In
addition, Algorithm 1-(a) and Algorithm 2-(a) are observedto
be sensitive to the threshold values, and it is concluded that
lower false alarm probabilities should be used for setting their
thresholds as the noise level decreases; i.e., the SNR increases.

Moreover, the UMP test proposed in Section IV-C for
Scenario 1 can be investigated as thePM,i values are lower
than or equal toPH,i, ∀i for the considered setting (namely,
PM,i ∈ [1W, 3W ] and PH,i = 5W); hence, the condition
in (28) is satisfied. The false alarm probability is set to0.5
in the simulations to highlight the advantage of employing
the UMP test. It can be seen from Fig. 7 that the UMP
test specified by (31) and (35) achieves higher detection



11

0 0.5 1
10-2

10-1

100
R

M
S

E
 (

m
)

CRLB - Scen. 2
ML - Perfect
ML - Unaware
Alg. 2-(a) w/ PF  = 0.001

Alg. 2-(b) w/ PF  = 0.001

Alg. 2-(a) w/ PF  = 0.5

Alg. 2-(b) w/ PF  = 0.5

0 0.5 1
10-2

10-1

100

R
M

S
E

 (
m

)

CRLB - Scen. 2
ML - Perfect
ML - Unaware
Alg. 2-(a) w/ PF  = 0.001

Alg. 2-(b) w/ PF  = 0.001

Alg. 2-(a) w/ PF  = 0.5

Alg. 2-(b) w/ PF  = 0.5

Fig. 6: For Scenario 2, RMSE versus distance of VLC receiver from location
(0, 0, 0.85)m, whereγ = 0.5 and VLC receiver moves on the straight line
towards(1, 1, 0.85)m. (a)σ2 = 10−11, (b) σ2 = 10−12 .

80 85 90 95 100 105 110 115 120 125 130
0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

, GLRT

P
F
, GLRT

P
D

, UMP

P
F
, UMP
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versus10 log10(1/σ

2) for PF = 0.5.

probabilities than the GLRT in (15) for the large values of
the noise variances while keeping the false alarm probability
the same. Thus, the UMP test can lead to improved RMSE
performance at high noise levels. In Fig. 8, it is observed
that Algorithm 1-(a) that utilizes the UMP test, labeled as
“Algorithm 1-(a), UMP”, outperforms Algorithm 1-(a), which
employs the GLRT test. Hence, enhanced localization accuracy
can be achieved via the UMP test when the condition in
(28) is satisfied. However, Algorithm 1-(b) with the UMP
test, labeled as “Algorithm 1-(b), UMP”, does not provide
significant performance improvements since Algorithm 1-(b)
is robust to the changes in theτi values.

Furthermore, we conduct simulations to investigate the
effects of the number of training locations, i.e.,NV, used in the
algorithms in Sec. IV on the positioning accuracy. The noise
variance is fixed as10 log10(1/σ

2) = 110 dB to illustrate the
effects of increasing the number of training locations. The
value of NV is changed from1 to 16 while keeping the
rest of the parameters the same. For the choice of training
locations, we employ a uniform grid array in two dimensions
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Fig. 8: RMSE versus10 log10(1/σ
2) for Scenario 1 (γ = 0.5).

at a height of0.85 meter across the room for eachNV.2 It is
observed from Fig. 9 that for the false alarm rate of0.001,
Algorithm 1-(a) is outperformed by Algorithm 1-(b) whenNV

is small; however, it achieves lower RMSEs than Algorithm 1-
(b) and converges to the performance of the ML estimator
that perfectly knows the transmit powers of the malicious
LEDs (labeled as “ML – Perfect”) asNV increases. Similarly,
when the false alarm rate is0.5, Algorithm 1-(b) has better
(worse) positioning accuracy than Algorithm 1-(a) for small
(large) values ofNV. In general, it is noted that from Fig. 9
that after the value ofNV = 8, there are not any significant
improvements in the performance of the algorithms. A similar
simulation is also performed for Scenario 2 in Sec. IV-B with
the same parameters. It can be seen from Fig. 10 that for
the false alarm rate of0.001, Algorithm 2-(a) is outperformed
by Algorithm 2-(b) whenNV is small; however, it achieves
lower RMSEs than Algorithm 2-(b) asNV increases. On the
other hand, when the false alarm rate is0.5, Algorithm 2-
(b) outperforms Algorithm 2-(a) for all values ofNV, and
its performance is not affected significantly by the number of
training locations. Similar to Scenario 1, the performances of
the algorithms do not have any significant improvements after
the value ofNV = 6 in Scenario 2.

VII. E XTENSION TO THECASE OFUNKNOWN γi ’ S

In this section, we consider the case in which the probabili-
ties of the LED transmitters being malicious, i.e.,γ1, . . . , γNL ,
are unknown. Letzi denote whether theith LED transmitter
is malicious or not; that is,

zi =

{
0 , if ith LED is honest

1 , if ith LED is malicious
(66)

which is a Bernoulli random variable with parameterγi. Then,
using the definition in (2),PT,i can be expressed as

PT,i = (1 − zi)PH,i + ziPM,i (67)

In this case, the unknown parameters arelR, PM, andz,
wherez denotes the vector ofzi values fori = 1, . . . , NL.

2Obtaining the optimum arrangement of training locations can be consid-
ered as an important theoretical problem, which is out of scope of this work.
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Thus, the likelihood function ofPR given these parameters
can be stated as

p(PR|lR,PM, z) =
∏

i∈Hz

1√
2πσi

e
−

(PR,i−PH,iRphi(lR))2

2σ2
i

×
∏

i∈Mz

1√
2πσi

e
−

(PR,i−PM,iRphi(lR))2

2σ2
i

(68)

where setsHz andMz are defined as

Hz = {i ∈ {1, . . . , NL} | zi = 0} (69)

Mz = {i ∈ {1, . . . , NL} | zi = 1} (70)

Then, for the estimation without a training phase (as in Section
III) in the case of unknownγi’s, the following ML estimator
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Fig. 11: RMSE versusγ for σ2 = 10−11.

is derived:

(̂lR, P̂M, ẑ) = argmax
lR,PM,z

p(PR|lR,PM, z) (71)

= argmin
lR,z

∑

i∈Hz

(PR,i − PH,iRphi(lR))
2

σ2
i

+
∑

i∈Mz

(PR,i − P̂M,i(lR)Rphi(lR))
2

σ2
i

(72)

whereP̂M,i(lR) for anyz is given by

P̂M,i(lR) =





Pmin,i, if
PR,i

Rphi(lR) ≤ Pmin,i

Pmax,i, if
PR,i

Rphi(lR) ≥ Pmax,i

PR,i

Rphi(lR) , otherwise

(73)

It should be noted that there are2NL possible values of
z1, . . . , zNL . Hence, the ML estimator in (72) has high com-
putational complexity for large values ofNL.

To evaluate the performance of the proposed ML estimator
for the case of unknownγi’s, simulations are conducted for the
setting in Section VI considering no training measurements.
The results in Fig. 11 illustrate that without the knowledgeof
γ, the positioning accuracy can degrade significantly for all
values ofγ compared to the proposed ML estimator in (6) for
the case of knownγ.

VIII. E XTENSION TO CASES WITH ALL OR NONE OF

LEDS BEING MALICIOUS

In this part, we extend the results in Sections III and IV
to cover a different case. Namely, it is assumed that when a
hijacking event occurs, the malicious third party accessesthe
VLP controller and makes all the LED transmitters malicious
(i.e., modifies all the power levels). Let the probability of
such a hijacking event be denoted byγ. Then, the probability
distribution of the received powers from the LED transmitters
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in (1) for given values of the unknown position and malicious
power levels can be expressed as follows (cf. (5)):

p(PR | lR,PM) = γ

NL∏

i=1

1√
2πσi

e
−

(PR,i−PM,iRphi(lR))2

2σ2
i

+ (1− γ)

NL∏

i=1

1√
2πσi

e
−

(PR,i−PH,iRphi(lR))2

2σ2
i (74)

Then, the ML estimator for the location of the VLC receiver
is obtained as

l̂R = argmax
lR∈L

γ

NL∏

i=1

1√
2πσi

e
−

(PR,i−P̂M,i(lR)Rphi(lR))2

2σ2
i

+ (1 − γ)

NL∏

i=1

1√
2πσi

e
−

(PR,i−PH,iRphi(lR))2

2σ2
i

whereP̂M,i(lR) is as in (7). In addition, if there exist training
measurements, then a single hypothesis-testing problem can be
formulated for Scenario 2 (instead of theNL separate problems
in (22)) as follows:

H : P
(j)
R,i = Rp PH,i hi

(
l
(j)
R

)
+ η

(j)
i ,

M : P
(j)
R,i = Rp P

(j)
M,i hi

(
l
(j)
R

)
+ η

(j)
i , (75)

for j = 1, . . . , NV and i = 1, . . .NL under each hypothesis,
whereP (j)

M,i becomesPM,i in Scenario 1 (cf., theNL separate
problems in (11)). Then, the GLRT can be formulated as

max
{P

(j)
M,i

}

NL∏

i=1

NV∏

j=1

1√
2πσi,j

e
−

(
P

(j)
R,i

−RpP
(j)
M,i

hi

(
l
(j)
R

))2
2σ2

i,j

NL∏

i=1

NV∏

j=1

1√
2πσi,j

e
−

(
P

(j)
R,i

−RpPH,ihi

(
l
(j)
R

))2
2σ2

i,j

M

R
H

κ (76)

which can be simplified into the following rule for Scenario 2
(cf. (24)):

NL∑

i=1

NV∑

j=1

1

σ2
i,j

(
RpP

(j)
R,ihi

(
l
(j)
R

)(
P̂

(j)
M,i − PH,i

)

+ 0.5R2
p

(
hi

(
l
(j)
R

))2(
P 2
H,i −

(
P̂

(j)
M,i

)2)
)M

R
H

log(κ)

where P̂
(j)
M,i is as in (25) andκ is the threshold parameter.

Also, in Scenario 1,P (j)
M,i is set toPM,i, and (76) is simplified

as (cf. (15))

NL∑

i=1

(
Rp

(
P̂M,i − PH,i

) NV∑

j=1

P
(j)
R,ihi

(
l
(j)
R

)

σ2
i,j

+ 0.5R2
p

(
P 2
H,i −

(
P̂M,i

)2) NV∑

j=1

(
hi

(
l
(j)
R

))2

σ2
i,j

)
M

R
H

log(κ)

whereP̂M,i is as in (13) and (14).
In this case, when the decision is hypothesisM, no local-

ization is performed since all the power levels are classified
as incorrect (manipulated). This can be regarded as anoutage
event. When the decision isH, localization is performed based

on (1) withPT,i = PH,i for all i ∈ {1, . . . , NL}, which leads
to the “ML – Unaware” estimator in Section VI. Hence, the
main ideas in Sections III and IV can also be employed for
the case in which a malicious third party aims to modify the
power levels of all the LED transmitters.

IX. CONCLUDING REMARKS

In this manuscript, position estimation problems have been
formulated for VLP systems in the presence of malicious LED
transmitters for the first time in the literature. An ML estimator
has been derived based on the knowledge of probabilities that
LED transmitters can be malicious. In addition, in the presence
of training measurements, GLRTs have been employed for
detection of malicious LED transmitters, and based on the
decisions of the GLRTs, various ML based location estimators
have been developed. Moreover, CRLB expressions have been
derived and used as benchmarks to evaluate the performance
of the proposed estimators. Finally, an ML estimator has
been proposed for the case that the probabilities of the LED
transmitters being malicious are unknown.

As possible directions for future work, uncertainties in the
knowledge of the probabilities that the LED transmitters are
malicious (i.e.,γi’s) can be considered. Also, more general
channel models that take into account reflected and/or diffused
components (in addition to the line-of-sight component) can be
employed. In addition, information theoretic learning criteria
such as MEE and MCC can be used for VLP systems
in the presence of malicious LED transmitters to develop
new approaches. Furthermore, possible ways of dealing with
the presence of malicious LED transmitters, such as power
allocation, can be developed.

For the analyses in this study, the noise components (i.e.,
ηi in (1)) are modeled to be independent of received signal
powers, which is a valid assumption when shot noise is
negligible compared to thermal noise. (In the simulation setup
in Section VI, the shot noise is negligible.) When the received
power levels are high, shot noise can be important and the
variances of the Gaussian noise components in (1) can depend
on the received signal powers [47], [48]. In this case, the
position estimation approaches in this paper can be extended
as follows: Let the variance of the zero-mean Gaussian noise
componentηi in (1) be denoted bỹσ2

i , which is expressed
as the sum of the variances of the thermal and shot noise
components [48]. That is,

σ̃2
i = σ2

i + ςRpPT,ihi(lR) (77)

whereσ2
i is the variance of the thermal noise component,ς is

a constant for the variance of the shot noise component [47],
and the other terms are as defined in Section II. Based on
this model, the ML estimator in Section III can be updated as
follows (cf. (4) and (5)):

(
l̂R, P̂M

)
= argmax

lR∈L,PM∈P

NL∏

i=1

(
γi e

−
(PR,i−PM,iRphi(lR))2

2(σ2
i
+ςRpPM,ihi(lR))

√
2π(σ2

i + ςRpPM,ihi(lR))

+
(1− γi)e

−
(PR,i−PH,iRphi(lR))2

2(σ2
i
+ςRpPH,ihi(lR))

√
2π(σ2

i + ςRpPH,ihi(lR))

)
(78)
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Since eachPM,i can be optimized separately for a givenlR,
it is also possible to determine the optimal values ofPM,i in
terms oflR (called P̂M,i(lR)) and obtain a simplified version
of the ML estimator (similarly to (6)). For the position estima-
tion approaches in the presence of training measurements in
Section IV, extensions based on the updated variance formula
in (77) can be performed in a straightforward manner. For
example, the GLRT in (12) can be updated by replacingσ2

i,j ’s

in the numerator byσ2
i,j + ςRpPM,ihi(l

(j)
R ) and those in the

denominator byσ2
i,j + ςRpPH,ihi(l

(j)
R ).
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