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Abstract—Reconfigurable intelligent surfaces (RISs) hold great
potential as one of the key technological enablers for beyond-
5G wireless networks, improving localization and communica-
tion performance under line-of-sight (LoS) blockage conditions.
However, hardware imperfections might cause RIS elements to
become faulty, a problem referred to as pixel failures, which can
constitute a major showstopper especially for localization. In this
paper, we investigate the problem of RIS-aided localization of
a user equipment (UE) under LoS blockage in the presence of
RIS pixel failures, considering the challenging single-input single-
output (SISO) scenario. We first explore the impact of such
failures on accuracy through misspecified Cramér-Rao bound
(MCRB) analysis, which reveals severe performance loss with
even a small percentage of pixel failures. To remedy this issue, we
develop two strategies for joint localization and failure diagnosis
(JLFD) to detect failing pixels while simultaneously locating
the UE with high accuracy. The first strategy relies on ℓ1-
regularization through exploitation of failure sparsity. The second
strategy detects the failures one-by-one by solving a multiple
hypothesis testing problem at each iteration, successively enhanc-
ing localization and diagnosis accuracy. Simulation results show
significant performance improvements of the proposed JLFD
algorithms over the conventional failure-agnostic benchmark,
enabling successful recovery of failure-induced performance
degradations.

Index Terms—Localization, reconfigurable intelligent surfaces,
near-field, pixel failures, hardware impairments, diagnosis.

I. INTRODUCTION

A. Background and Motivation

Reconfigurable intelligent surfaces (RISs) are envisaged as
a key enabling technology towards 6G to reduce the vulnera-
bility of mmWave and sub-THz systems to signal blockages,
providing improved communication rate and coverage [1]–[3].
Through their dynamic ability to engineer the propagation
environment, RISs can be optimized in terms of various
performance metrics, such as energy efficiency [4], [5] and
sum-rate [6], [7]. While a great deal of papers has been devoted
to RIS for communication, especially for overcoming line-of-
sight (LoS) blockages [1], [8], RISs enjoy several properties
that make them attractive for localization as well [9], [10].
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Fig. 1. Scenario under consideration, comprising a single-antenna BS, a
single-antenna UE, and an RIS. The LoS path between the BS and the UE
is blocked and the downlink communications is achieved through the RIS.
The colors on the RIS elements indicate the status of different pixels (green
means properly functioning element, while red indicates failing pixel). The
goal is to localize the UE in 3D under RIS pixel failures using a set of scalar
baseband observations, which leads to the problem of joint localization and
RIS diagnosis.

The large aperture of RISs enables high resolution in angle-of-
arrival (AoA) and angle-of-departure (AoD) estimation, while
their functioning over large bandwidths supports high delay
resolution (in addition to high data rates) [11]. When user
equipments (UEs) are close to the RIS, wavefront curvature
(also known as near-field (NF)) allows direct relative local-
ization, even when the LoS between the UE and base station
(BS) is blocked [12]–[14]. When the RIS has a known location
and orientation, this relative location can be transformed
into global coordinates, effectively rendering the RIS into an
additional analog BS [11].

In light of the above observations, a number of studies
has recently investigated RIS for NF localization [12]–[19].
In [15], performance bounds and a practical method for
narrowband NF localization of a transmitter with an RIS acting
as a lens has been presented. The studies in [14], [16] consider
a more conventional setup including a reflective RIS and a
BS to evaluate [16] and mitigate [14] the impact of phase-
dependent amplitude variations of the RIS elements on NF
localization accuracy. Taking into account the scatterers in the
links from BS to RIS and from RIS to UE, [13] employs com-
pressive sampling and optimized RIS configurations to achieve
high accuracy. Moreover, RIS phase profile optimization for
localization in NF has been proposed in [17] based on a
combination of positional and derivative beams, which reveals



considerable improvements over standard positional beams.
The work in [18] tackles a similar problem for a linear RIS.
Furthermore, direct and two-step estimators for LoS/non-line-
of-sight (NLoS) NF localization using orthogonal frequency-
division multiplexing (OFDM) transmission have been devel-
oped in [12] for a stripe-like RIS, where sub-cm level accuracy
has been demonstrated. Finally, the study in [19] derives the
theoretical limits on NF localization with hybrid RIS and
determines localization-optimal RIS configurations.

B. Related Work on Failures

An important consideration in a practical RIS, which may
comprise several hundreds of unit elements (or pixels), is that
individual elements may fail. This problem also exists in the
array processing literature. In [20], antenna array diagnosis has
been studied in a standard mmWave setup without a RIS and
several compressive sensing based techniques have been pro-
posed to identify the faulty antenna elements and the resulting
amplitude and phase distortions. The AoA estimation problem
under element failures has been considered in [21], where the
diagnosis of faulty elements is formulated as a Toeplitz matrix
reconstruction problem. Recently, several papers investigate
RIS element failures in mmWave communications [22], [23].
In [22], the authors present different types of pixel errors (e.g.,
stuck at state, out of state, etc.) and their spatial distribution
(independent, clustered, etc.). The paper also explores the
effect of pixel errors on the radiation pattern through simu-
lation analysis. The study in [23] establishes a failure model
to specify the amplitude and phase shift of faulty elements
and proposes diagnostic methods by exploiting the sparsity
property of failures. In [24], joint phase error calibration
and channel estimation algorithm has been proposed to deal
with RIS phase offsets induced by hardware impairments.
Moreover, [25] evaluates the impact of failures and phase
quantization errors on the signal-to-noise ratio (SNR) of RIS-
aided high-mobility vehicular communications.

In addition to element failures resulting from internal hard-
ware imperfections, RIS element blockages due to external
environmental effects such as dust, rain and ice have been
studied in recent works [26], [27]. In [26], blockages at both
the BS and RIS are considered and an iterative algorithm
is proposed to jointly estimate the blockage coefficients of
the BS and RIS. In [27], the authors propose a two-stage
algorithm for joint RIS diagnosis and channel estimation in
a RIS-aided mmWave multiple-input multiple-output (MIMO)
system. Despite a considerable amount of research on pixel
failures in RIS-aided communications, to the best of the
authors’ knowledge, no study has been performed to tackle
the problem of RIS-aided localization in the presence of pixel
failures. Hence, two fundamental questions arise that remain
unanswered so far: (i) how severe can the impact of RIS
element failures be on the localization accuracy?, and (ii)
is it possible to perform RIS diagnosis and UE localization
simultaneously?

C. Contributions

In this paper, we address both of these knowledge gaps,
and perform an in-depth analysis of RIS pixel failures in
terms of achievable localization accuracy. We also propose
novel algorithms to identify faulty pixels and mitigate their
impact on localization, even when the UE location is a-priori
unknown. The main contributions can be listed as follows:

• Localization under RIS Pixel Failures: For the first
time, we investigate the problem of RIS-aided localization
under pixel failures by adopting a practical failure model
based on biases in individual failing elements [22], [23].
We consider a narrowband geometric near-field scenario
where a single-antenna UE estimates its location using
downlink signals by a single-antenna BS in the presence
of a RIS with LoS blockage. The biases can change
the resulting RIS phase profiles and lead to a challeng-
ing problem of joint localization and failure diagnosis
(JLFD).

• Impact of Failures on Localization Accuracy: We carry
out a theoretical analysis on how detrimental RIS pixel
failures can be for RIS-aided localization. To quantify
the effect of failures on the localization performance,
we utilize the misspecified Cramér-Rao bound (MCRB)
[28] as a theoretical tool to serve as a fundamental
benchmark under mismatch between a true model with
pixel failures and an assumed model without failures
(i.e., the UE is unaware of failures). This analysis reveals
fundamental insights on when such failures can induce
severe degradations in localization accuracy (i.e., SNR
regimes, number of failing elements, etc.).

• Sparsity-Inspired Joint Localization and Failure Diag-
nosis Algorithms: We derive the hybrid maximum like-
lihood (ML)/maximum a-posteriori (MAP) estimator for
the JLFD problem, which involves joint estimation of the
UE location and the locations and failure coefficients (i.e.,
biases) of the faulty elements. To cope with the combina-
torial nature of the problem, we propose two novel JLFD
algorithms that exploit the sparsity of failures to provide
computationally feasible solutions. The first one, called
ℓ1-JLFD, is based on an ℓ1-regularization approach that
estimates the failure mask and the UE location using an
alternating optimization strategy. The second algorithm,
called Successive-JLFD, explicitly considers the statistics
of pixel failures and solves the optimization problem in
an iterative manner, in a spirit similar to that of OMP
based sparse channel estimation algorithms [29]–[31].
In particular, Successive-JLFD detects the failures one-
by-one at each iteration and proceeds by canceling out
their impact on the subsequent iterations, progressively
improving the performance of localization and failure
mask estimation.

Additionally, simulation results showcase the sensitivity of
localization performance to pixel failures, which indicates the
need for powerful methods to counteract such impairments. In
the challenging single-input single-output (SISO) RIS scenario
under consideration, the proposed JLFD algorithms are shown



to recover performance losses resulting from pixel failures
and achieve accuracy levels very close to theoretical limits
corresponding to the case with known failure mask (i.e.,
perfectly calibrated/diagnosed RIS).

Notations: ⊙ denotes the Hadamard (element-wise) product.
diag(x) outputs a diagonal matrix with the elements of a
vector x on the diagonals. [x]n denotes the nth entry of a
vector x, while [X]:,n represents the nth column of a matrix
X . An all-ones vector of appropriate size is indicated by 1.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

In this section, we describe the system geometry and the
signal model, introduce the RIS pixel failure model, and
formulate the problem of localization under pixel failures.

A. Geometry and Signal Model

Consider an RIS-aided downlink (DL) localization scenario
consisting of a single-antenna BS, an N -element RIS, and a
single-antenna UE, as shown in Fig. 1. The BS is located at
a known position pBS ∈ R3, while pRIS ∈ R3 denotes the
known center of the RIS and pn ∈ R3 represents the known
location of the n-th RIS element for 1 ≤ n ≤ N . The UE has
an unknown location p ∈ R3, which needs to be estimated.

For DL communications, the BS transmits narrowband
pilots s = [s1 · · · sT ]

T ∈ CT×1 over T transmission
instances under an average power constraint E

{
|st|2

}
= Es.

To motivate the deployment of a RIS, we assume that the LoS
path between the BS and the UE is blocked [1], [8], e.g., due
to buildings, cars or trees. The RIS acts as a passive reflector
with controllable phase shifts to relay the pilots from the BS
to the UE. In addition, it is assumed that no uncontrolled
multipath (i.e., those paths induced by scattering/reflection off
the passive objects in the environment) exists1. Then, the DL
communications occur only through the RIS and the DL signal
received by the UE at transmission t is given by

yt = αaT(p)diag(γt)a(pBS)st + nt , (1)

where α is the unknown channel gain, γt ∈ CN×1 is the RIS
phase profile at transmission t, and nt is zero-mean additive
white Gaussian noise with variance N0/2 per real dimension.
Moreover, a(p) ∈ CN×1 denotes the NF RIS steering vector
for a given position p, which can be expressed by taking the
RIS center pRIS to be the reference point as [33], [34]

[a(p)]n = exp

(
−j 2π

λ
(∥p− pn∥ − ∥p− pRIS∥)

)
(2)

1The effect of uncontrolled multipath can be removed from the received
signal via temporal coding of RIS phase profiles [12], [32]. Temporal coding
can be applied by setting ϕ2t−1 = ϕ̃t, ϕ2t = −ϕ̃t and forming a new set
observations ỹt = (y2t−1 − y2t)/2 for t = 1, . . . , T/2, where yt and ϕt

will be defined in (1) and (8), respectively.

for2 n ∈ {1, . . . , N}, where λ denotes the carrier wave-
length. For convenience, let us define y = [y1 · · · yT ]T,
b(p) = a(p) ⊙ a(pBS), Γ = [γ1 · · · γT ] ∈ CN×T ,
S = diag(s1, . . . , sT ) and n = [n1 · · · nT ]T. Then, the
observations in (1) can be written compactly as

y = αSΓTb(p) + n , (3)

where n ∼ CN (0, N0I).

Remark 1 (Extension to MIMO Scenarios). The SISO
signal model in (1) can be readily extended to MIMO scenarios
as (assuming analog arrays) [1]

yt = αwTHRUdiag(γt)HBRfst + nt , (4)

where w ∈ CNUE×1 and f ∈ CNBS×1 denote, respectively,
the analog combiner at the UE and the analog precoder at the
BS, and NUE and NBS are the array sizes at the UE and the
BS, respectively. In addition,

HBR = a(pBS)a
T
BS(pRIS − pBS) ∈ CN×NBS , (5)

HRU = aUE(pRIS − p)aT(p) ∈ CNUE×N (6)

represent the BS-RIS and the RIS-UE channel matrices, where
aBS(·) ∈ CNBS×1 and aUE(·) ∈ CNUE×1 denote the array
steering vectors of the BS and the UE, respectively, as a
function of displacement with respect to a given position.
Defining α̃ ≜ αwTaUE(pRIS − p)aT

BS(pRIS − pBS)f and
inserting (5) and (6), we can recast (4) as

yt = α̃aT(p)diag(γt)a(pBS)st + nt , (7)

which is equivalent to the SISO signal model in (1). Hence,
the performance analysis in Sec. III and the proposed JLFD
algorithms in Sec. IV can be applied to MIMO scenarios, as
well.

B. RIS Pixel Failure Model

To model RIS pixel/element failures, we consider biases
in individual RIS elements, where the element switches to a
valid, biased state with a certain distance from the desired
state due to bit-flipping or external biases [22], [23]. Under
such element failures, the RIS phase profile γt in (1) can be
modeled as

γt = ϕt ⊙m , (8)

where ϕt ∈ CN×1 represents the configurable RIS weights
under the designer’s control (known to the entity performing
localization), and m = [m1 · · · mN ] ∈ CN×1 denotes

2Wavefront curvature manifested in the NF steering vector (2) through
location-dependent phase shifts enables SISO localization from the narrow-
band observations in (1). Note that the spherical wavefront model in (2)
is generic and covers both the NF and far-field (FF) cases. Hence, the
performance analysis in Sec. III and the proposed methods in Sec. IV are
valid even when the UE is located beyond the Fraunhofer distance (i.e., usually
considered as the FF region [34]–[36]) d = ∥p− pRIS∥ ≥ 2D2/λ, where
D is the RIS aperture size (i.e., the largest distance between any two RIS
elements). This will be verified through simulations in Sec. VI-C2.



the unknown failure mask quantifying the effect of faulty
elements, which can be defined as [20], [23]

mn =

{
ζn, if the nth RIS element is faulty (biased)
1, if the nth RIS element is functioning

. (9)

In (9), ζn = κne
jψn denotes the failure related complex

response of the n-th element, with 0 < κn ≤ 1 and
0 ≤ ψn < 2π representing the resulting attenuation and phase
shift, respectively.

We assume a stochastic failure model where each RIS ele-
ment fails independently from each other with the probability
pfail. In addition, when the nth pixel fails, its complex response
ζn follows the distribution κn ∼ U(0, 1) and ψn ∼ U(−π, π)
[23]. Formally, each element mn of the failure mask in (9)
can be expressed as [37]

mn = cnζn + 1− cn , (10)

where the binary variable cn ∈ {0, 1} specifies the ab-
sence/presence of failure, with cn ∼ Ber(pfail), and ζn ∈ C
corresponds to the complex amplitude of the failing element
in case of failure. According to (10), when cn = 0 (i.e., no
failure), we have mn = 1, while cn = 1 (i.e., failure) sets
mn = ζn, in compliance with (9). Hence, mn has a spike-
and-slab prior [37]–[39], given by

fmn
(mn) = (1− pfail)δ(mn − 1) + pfailfζn(mn) , (11)

where mn attains the “spike” value 1 if the nth element is
functioning and is drawn from the “slab” probability density
function (pdf) fζn(m) in case of failure (see App. A for the
derivation of fζn(m)).

Defining Φ = [ϕ1 · · · ϕT ] ∈ CN×T , the RIS phase profiles
Γ in (3) can be expressed under the failure model (8) as

Γ = Φ⊙m1T , (12)

where the pdf of the failure mask can be written using (11)
and under the assumption of independently failing elements
as

fm(m) =

N∏
n=1

fmn
(mn) . (13)

With pixel failures in (12), the observation model (3) becomes

y = αS
(
ΦT ⊙ 1mT

)
b(p) + n . (14)

C. Problem Description for Joint Localization and Failure
Diagnosis

Given the observations y in (14) and the prior distribution
of the failure mask m in (13), the problem of joint localization

and RIS failure diagnosis3 is to estimate4 the UE position p,
the channel gain α and the failure mask m. To tackle this
problem, we first characterize lower bounds on localization
accuracy in the presence of pixel failures in Sec. III, with the
aim to evaluate performance losses due to such impairments.
In Sec. IV, we formulate the problem in a mathematically
rigorous manner and propose two algorithms to solve it,
followed by their complexity analysis in Sec. V.

III. LOCALIZATION PERFORMANCE EVALUATION UNDER
PIXEL FAILURES

In this section, we derive theoretical limits on localization
in the presence of pixel failures under varying levels of
knowledge regarding the failing pixels. To this end, we resort
to the MCRB [28] as a tool to assess degradation in localiza-
tion performance due to mismatch between the ideal/assumed
model with no failures and the true model with pixel failures.
In addition, we employ standard Cramér-Rao bound (CRB),
as well, to evaluate theoretical performance under perfect
knowledge of failing pixel locations and perfect/imperfect
knowledge of associated complex coefficients.

A. MCRB Analysis under Pixel Failures

In this part, we quantify localization performance for the
case where the UE is unaware of pixel failures and therefore
estimates its location by assuming that all pixels are function-
ing (i.e., m = 1 in (14)). We leverage the MCRB analysis to
characterize theoretical limits on localization accuracy under
the aforementioned conditions [14], [28].

1) True and Assumed Models: We first describe the true
and assumed models in the presence of pixel failures.

a) True Model: According to the MCRB terminology
[28], [40], the true model is given by (14), i.e.,

y = αS
(
ΦT ⊙ 1mT

)
b(p) + n , (15)

where α and p denote the true values of the unknown
parameters α and p, respectively. For a given failure mask
m, the pdf of the true model in (15) can be written as

p(y) =
1

(πN0)T
exp

{
−∥y − µ∥2

N0

}
, (16)

where µ ≜ αS
(
ΦT ⊙ 1mT

)
b(p) ∈ CT×1.

3In principle, all pixel failures can be detected and calibrated before
deploying the RIS. However, during normal operation, pixel failures can occur
at any time and the UE may be situated in any arbitrary location, which
requires detecting these failures dynamically while performing localization.
Consequently, the problems of failure detection and UE localization are
intertwined, giving rise to the JLFD problem under consideration. As will be
shown in Sec. VI-B and Sec. VI-C, localization ignoring failures experiences
severe degradations in accuracy.

4JLFD can be performed either at the UE or at the BS, depending on the
computational capability of the UE. For instance, when the computational
resources of the UE are limited, it can send its measurements (1) to the BS
over the uplink via the RIS, enabling the BS to perform JLFD.



b) Assumed Model: For the assumed model, we consider
an ideal RIS without pixel failures (i.e., m = 1 in (14)),
leading to

y = αSΦTb(p) + n , (17)

in which case the misspecified parametric pdf is obtained as
[28]

p̃(y|η) = 1

(πN0)T
exp

{
−∥y − µ̃(η)∥2

N0

}
, (18)

where η =
[
αR, αI,p

T
]T

represents the unknown parameters,
αR ≜ ℜ{α}, αI ≜ ℑ{α} and µ̃(η) ≜ αSΦTb(p) ∈ CT×1.

2) Pseudo-True Parameter: The pseudo-true parameter is
used in the MCRB derivation and is defined as [28]

η0 = argmin
η

D (p(y) ∥ p̃(y|η)) , (19)

which minimizes the Kullback-Leibler (KL) divergence
D (p(y) ∥ p̃(y|η)) between the true and assumed pdfs. In
(19), η0 can be found using [14, Lemma 1].

3) MCRB and LB: The covariance matrix of any
misspecified-unbiased (MS-unbiased) estimator of η0 can be
lower-bounded by the MCRB matrix [28]:

Ep{(η̂(y)− η0)(η̂(y)− η0)
T} ⪰ MCRB(η0) , (20)

where Ep {·} represents the expectation over the true pdf in
(16) and η̂(y) denotes an MS-unbiased estimator of η0 based
on the misspecified model (17), meaning that Ep {η̂(y)} = η0.
Hereafter, η̂(y) will be referred to as the failure-agnostic
estimator and employed as a benchmark in performance
evaluations in Sec. VI. The MCRB matrix in (20) is given
by

MCRB(η0) = A−1
η0

Bη0
A−1

η0
∈ R5×5 , (21)

where Aη0
∈ R5×5 and Bη0

∈ R5×5 are defined as [14], [28]

[Aη0 ]i,j = Ep
{

∂2

∂ηi∂ηj
log p̃(y|η)

∣∣∣
η=η0

}
, (22)

[Bη0 ]i,j = Ep
{
∂

∂ηi
log p̃(y|η) ∂

∂ηj
log p̃(y|η)

∣∣∣
η=η0

}
.

(23)

Using (21), the covariance matrix of η̂(y) with respect to the
true value η ≜ [αR, αI,p

T]T satisfies

Ep{(η̂(y)− η)(η̂(y)− η)T } ⪰ LB(η0) , (24)

where the lower bound (LB) is obtained as

LB(η0) = MCRB(η0) + (η − η0)(η − η0)
T . (25)

From (25), the theoretical lower bound on the localization
accuracy under pixel failures is given by

LBp = tr {[LB(η0)]3:5,3:5} . (26)

B. Standard CRB Analysis under Pixel Failures
We carry out standard CRB analysis to characterize theo-

retical performance when the UE is aware of pixel failures,

considering varying levels of knowledge on the failure mask.
Our goal is to evaluate the gap between the MCRB-based
lower bound in (26) and the standard CRB, which reveals the
degree of performance loss when pixel failures are ignored.

1) CRB-Perfect: In this case, the UE has perfect knowledge
of m in (14). The corresponding Fisher Information Matrix
(FIM) J(η1) ∈ R5×5 for η1 =

[
αR, αI,p

T
]T

in (14) can be
expressed as [41, Eq. (15.52)]

J(η1) =
2

N0
ℜ

{(
∂µ̆(η1)

∂η1

)H(
∂µ̆(η1)

∂η1

)}
, (27)

where µ̆(η1) ≜ αS
(
ΦT ⊙ 1mT

)
b(p) ∈ CT×1 and ∂µ̆(η)

∂η1
∈

CT×5. The CRB on UE location estimation is then computed
as

CRBPerfect
p = tr

{
[J−1(η1)]3:5,3:5

}
. (28)

2) CRB-KnownLoc: This case corresponds to the CRB
when the locations of failing elements are known, but the
respective failure coefficients (ζn’s in (9)) are taken as un-
knowns. Specifically, the unknown parameter vector is given
by

η2 =
[
αR, αI,p

T, {κn}n∈I , {θn}n∈I
]T

, (29)

where I denotes the set of failure indices, i.e., mn = 1 for
n /∈ I and mn ̸= 1 for n ∈ I. The corresponding FIM
J(η2) ∈ R(5+2|I|)×(5+2|I|) can be computed using

J(η2) =
2

N0
ℜ

{(
∂µ̆(η2)

∂η2

)H(
∂µ̆(η2)

∂η2

)}
, (30)

where µ̆(η2) is as defined in (27) and ∂µ̆(η2)
∂η2

∈ CT×(5+2|I|).
From (30), the CRB on localization can be obtained as

CRBKnownLoc
p = tr

{
[J−1(η2)]3:5,3:5

}
. (31)

IV. JOINT LOCALIZATION AND FAILURE DIAGNOSIS

In this section, we rigorously formulate the JLFD problem
described in Sec. II-C via a hybrid ML/MAP estimation
approach [42], considering the existence of both deterministic
(UE position and channel gain) and random (failure mask)
unknown parameters. Due to the NP-hardness of the resulting
mixed-integer problem, we develop two algorithms to solve
its certain approximated versions by exploiting RIS failure
sparsity.

A. Hybrid ML/MAP Estimator

Based on the prior distribution of m in (13), the hybrid
ML/MAP estimator for the JLFD problem formulated in
Sec. II-C can be written as [42]

(α̂, p̂, m̂) = arg max
α,p,m

fy,m(y,m;α,p) (32)

where the goal is to estimate the deterministic position p and
gain α, and the random failure mask m. In (32),

fy,m(y,m;α,p) = fy|m(y|m;α,p)fm(m) , (33)



represents the joint pdf of y and m, fy|m(y|m;α,p) is the
conditional pdf of y given m, and fm(m) is the prior pdf of
m in (13). From (13) and (14), the log-likelihood in (33) can
be expressed as

log fy,m(y,m;α,p) ∝ −
∥∥y − αS

(
ΦT ⊙ 1mT

)
b(p)

∥∥2
N0

+

N∑
n=1

log fmn(mn) . (34)

According to (10) and (11), optimization over m =
[m1 · · · mN ] ∈ CN×1, with each element having a spike-and-
slab prior pdf, should be performed by jointly estimating the
binary failure vector c = [c1 · · · cN ]T ∈ {0, 1}N (i.e., spikes)
and the failure amplitudes vector ζ = [ζ1 · · · ζN ]T ∈ CN×1

(i.e., slabs). Hence, (32) can be recast using (33) and (34) as

(α̂, p̂, ĉ, ζ̂) = arg min
α,p,c,ζ

{∥∥y − αS
(
ΦT ⊙ 1mT

)
b(p)

∥∥2
N0

−
N∑
n=1

log fmn
(mn)

}
(35a)

s.t. mn = cnζn + 1− cn, ∀n , (35b)
cn ∈ {0, 1}, ∀n , (35c)

where the prior pdf fmn
(mn) is given in (11). The prob-

lem (35) represents a mixed-integer non-linear programming
(MINLP) problem with binary variables c and continuous
variables α, p and ζ [43]–[45]. We develop two heuristic
algorithms to solve it, as described next.
B. ℓ1-Regularization Based Joint Localization and Failure
Diagnosis

The core technical challenge in solving (35) pertains to the
binary variable c, which renders the problem computationally
intractable. A possible remedy to circumvent the combinatorial
nature of the JLFD problem in (35) is to discard the prior-
related term (i.e., the second one) in the objective (35a) and
estimate m directly without estimating c and ζ separately,
using only the data-fitting term (i.e., the first one). At first
glance, this might seem attractive as m appears linearly
in the data-fitting term of (35a), which enables closed-form
estimation. However, since T < N in practice due to small
number of transmissions T and large RIS sizes N , the problem
of estimating m ∈ CN×1 from y ∈ CT×1 using only the first
term in (35a) becomes an under-determined least-squares (LS)
problem, leading to infinitely many solutions.

To tackle this challenge, we propose to make the sparsity
assumption that the number of faulty elements is small com-
pared to the RIS size [23], exploiting the fact that pfail is
usually small in practice5. Under this sparsity assumption, we

5Such sparsity assumptions have been made in both the mmWave array
diagnosis literature [20] and the RIS diagnosis studies [23]. In a RIS-aided
scenario, the sparsity assumption can be readily justified by noting that for
each observation period consisting of T transmissions as in (3), the UE
always detects and estimates additional failures that occur during the latest
observation window by having already calibrated the previous ones in the
previous periods.

propose an ℓ1-regularization based JLFD method, called ℓ1-
JLFD hereafter, where estimates of m, p and α are updated
in an alternating manner, as detailed in the following.

1) Update m for fixed α and p via ℓ1-regularization: For
a given α and p, we formulate the problem of failure mask
recovery in (35) as an ℓ1-regularized LS problem (i.e., the
LASSO problem [46])

m̂ = argmin
m

∥∥y − αS
(
ΦT ⊙ 1mT

)
b(p)

∥∥2
2
+ ξ ∥m− 1∥1 ,

(36)

where ξ denotes the regularization parameter that governs the
trade-off between data-fitting and sparsity. Since most of the
elements of m are 1 due to small pfail, m − 1 will be a
sparse vector, which is enforced in (36) via ℓ1-regularization.
The problem (36) can be recast in a more convenient LASSO
form as

m̂ = argmin
m

∥y −A(α,p)m∥22 + ξ ∥m− 1∥1 , (37)

where

A(α,p) ≜ αS
(
ΦT ⊙ 1bT(p)

)
∈ CT×N . (38)

The problem (37) can be solved using off-the-shelf convex
solvers [47] or some standard methods, such as iterative
shrinkage/thresholding algorithm (ISTA) [48].

2) Update α and p for fixed m: For a given failure mask
m in (35), the problem of estimating α and p can be written
as

(α̂, p̂) = argmin
α,p

∥∥y − αS
(
ΦT ⊙ 1mT

)
b(p)

∥∥2
2
, (39)

which can be solved via [14, Alg. 1].
The overall ℓ1-JLFD algorithm, which alternates between

updating m via (37) and updating α and p via (39), is provided
in Algorithm 1.

C. Successive Joint Localization and Failure Diagnosis

The ℓ1-JLFD algorithm considered in Sec. IV-B provides a
convenient way of tackling the NP-hard JLFD problem (35);
however, it does not fully exploit the statistical characteristics
of pixel failures specified in (11)–(13). In this part, we develop
a successive failure detection and mask estimation algorithm
that detects the pixel failures one-by-one per iteration and
estimates the corresponding failure coefficients by heuris-
tically solving (35) in an iterative manner. This approach
progressively improves mask estimation and localization per-
formance over iterations. The developed algorithm effectively
exploits the prior distribution of pixel failures in (11) and
is similar in spirit to orthogonal matching pursuit (OMP)
[49] type sparse channel estimation/sensing algorithms that
extract paths/targets one-by-one, e.g., [29]–[31]. In particular,
at each iteration, we detect the pixel that is most likely to
fail assuming at most one failure, based on the posterior
probabilities of corresponding pixel failure events given the
observation y (quantified through the cost function (35a) of
the hybrid ML/MAP estimator), similar to detection of the



Algorithm 1 ℓ1-Regularization Based Joint Localization and
Failure Diagnosis (ℓ1-JLFD) Algorithm to Solve (35)

1: Input: Observation y in (14), RIS phase profiles Φ, con-
vergence threshold ε and maximum number of iterations
M .

2: Output: UE location p̂, failure mask m̂ and channel gain
α̂.

3: Initialization: Set i = 0. Initialize the failure mask to
be the all-ones vector, i.e., m(0) = 1. Compute the
corresponding p(0) and α(0) via [14, Alg. 1].

4: Iterations:
5: while i < M do
6: Given α(i) and p(i), estimate m(i+1) by solving the

LASSO problem in (37).
7: Given m(i+1), estimate p(i+1) and α(i+1) in (39) via

[14, Alg. 1].
8: if (

∥∥p(i+1) − p(i)
∥∥
2
≤ ε) or i =M then

9: Set m̂ = m(i).
10: break
11: end if
12: Set i = i+ 1.
13: end while
14: Refinement: Refine the estimates of the UE location and

channel gain for the final failure mask m̂ via [14, Alg. 1].

strongest path/target in OMP. The details of the proposed
algorithm to solve (35) are provided below.

1) Initialization: We begin by computing initial estimates
p(0), α(0) of position and channel gain. To this end, we assume
no pixel failures occur (i.e., we set the initial mask estimate
as m(0) = 1) and use [14, Alg. 1] as a small subroutine to
initialize position and channel gain given a fixed mask.

2) First Iteration: Given the initial position and channel
gain estimates p(0), α(0), in the first iteration we assume that
at most one pixel fails and formulate a multiple hypothesis
testing problem involving N + 1 different hypotheses corre-
sponding to individual failures of N pixels and the no-failure
case. That is,

H0 : no failure, (40)

Hk : kth pixel fails for k = 1, . . . , N.

Stated more formally, under the assumption of at most single
pixel failure in (40), the problem (35) branches into N + 1
subproblems, where the constraint (35c) of the kth subproblem
is given by ck = 1, cn = 0 ∀n ̸= k for k = 1, . . . , N and
cn = 0 ∀n for k = 0. This implies that according to the
constraint (35b), the mask for the kth subproblem, denoted by
m̃k, is given by

m̃0 = 1 , (41a)

[m̃k]n =

{
1, if n ̸= k

ζk, if n = k
, k = 1, . . . , N . (41b)

With the given initial estimates α̂ = α(0) and p̂ = p(0), and
m̃k defined in (41), the cost function associated to the kth

subproblem of (35) can then be formulated as

L(m̃k) =

∥∥y − α(0)S
(
ΦT ⊙ 1(m̃k)

T
)
b(p(0))

∥∥2
2

N0

−
N∑
n=1

log fmn

(
[m̃k]n

)
. (42)

We note from (41) that (42) should be minimized over the
complex coefficient ζk of the kth failing pixel for Hk for
k = 1, . . . , N , while it has a fixed value for the no-failure
hypothesis H0. Hence, the kth subproblem of (35) reads

ζ̂k = argmin
ζk

L(m̃k) (43)

for k = 1, . . . , N . Using (11), the second term in (42) can be
computed as
N∑
n=1

log fmn([m̃k]n) (44)

=

{
(N − 1) log(1− pfail) + log pfail + log fζk(ζk), if k ≥ 1

N log(1− pfail), if k = 0
.

Re-arranging the first term in (42), inserting (44) into the
second term and discarding constant terms, the kth subproblem
in (43) can be re-written as

ζ̂k = argmin
ζk

∥∥y −A(α(0),p(0))m̃k

∥∥2
2

N0
+ log|ζk| (45)

where A(α,p) is defined in (38) and the pdf of ζk is inserted
through (64). Since the first (observation-related) term in (45)
dominates over the second (prior-related) one at high SNRs,
we propose to solve a simpler version of (45):

ζ̂k = argmin
ζk

∥∥ỹ(0)
k − ζk

[
A(α(0),p(0))

]
:,k

∥∥2
2
, (46)

where ỹ
(0)
k ≜ y −

∑N
n=1,n̸=k

[
A(α(0),p(0))

]
:,n

. In obtaining
(46) from (45), we omit the second term in (45) and use (41b).
The failure coefficient in (46) can be obtained via LS as

ζ̂k =

([
A(α(0),p(0)

)]
:,k
)Hỹ

(0)
k∥∥[A(α(0),p(0))

]
:,k
)
∥∥2
2

. (47)

Now that we have obtained the failure coefficients ζk in
(47) and thus the masks in (41) for all the hypotheses in (40),
we can compute the corresponding cost functions through (42)
and select the most likely one:

k̂ = arg min
0≤k≤N

L(m̃k) , (48)

where ζk is replaced by its estimate in (47) to compute m̃k in
(41). Depending on the outcome of (48), we follow different
steps to determine the estimates of position, channel gain,
mask and the set of failing pixels, denoted by p(1), α(1), m(1),
I(1), respectively, at the end of the first iteration:

• No Failure: If k̂ = 0, we declare that there is no pixel
failure and terminate the algorithm without proceeding



to the second iteration6. This yields p(1) = p(0), α(1) =
α(0), m(1) = m(0) and I(1) = ∅.

• Failure: If k̂ ≥ 1, we update the position and channel gain
estimates via [14, Alg. 1] using the new mask m̃k̂. For
the updated position and channel gain, ζ̂k and the masks
are re-computed via (47) and (41b), and the hypothesis
selection are performed again via (48). We perform these
alternating steps until the number of allowed steps is
exceeded or the change in the position estimates becomes
negligible (typically, this takes 2− 3 steps), yielding the
selected hypothesis k̂ and the corresponding estimates
p(1), α(1) and m(1) = m̃k̂ in the end. In this case, we
set I(1) = {k̂}.

3) ith Iteration: At the ith iteration (i ≥ 2), we perform
similar operations as in the first iteration with certain changes.
Specifically, the number of hypotheses reduces to N + 1 −∣∣I(i−1)

∣∣, i.e.,

H0 : no additional failure, (49)

Hk : kth pixel fails for k ∈ {1, . . . , N} \ I(i−1) ,

where I(i−1) represents the estimated pixel failure index set
at the end of the (i− 1)th iteration.

Hence, given the failure mask m(i−1) and the position and
gain estimates p(i−1) and α(i−1), we tackle the JLFD problem
(35) at the ith iteration under the assumption of at most one
additional failure to decide on the most likely hypothesis in
(49). To this end, we define the masks corresponding to the
hypotheses in (49), similar to (41), as

m̃0 = m(i−1) , (50a)

[m̃k]n =


1, if n ̸= k and n ̸∈ I(i−1)

[m(i−1)]n, if n ̸= k and n ∈ I(i−1)

ζk, if n = k

. (50b)

Using (38), the cost function in (42) should then be modified
as

L(m̃k) =

∥∥y −A(α(i−1),p(i−1))m̃k

∥∥2
2

N0
−

N∑
n=1

log fmn

(
[m̃k]n

)
,

(51)

where the second term is given in App. B.
Following a similar line of reasoning as in the first iteration,

the complex coefficient of the hypothesized failing element for
Hk, k ≥ 1, can be computed via

ζ̂k = argmin
ζk

∥∥ỹ(i−1)
k − ζk

[
A(α(i−1),p(i−1))

]
:,k

∥∥2
2
, (52)

where ỹ
(i−1)
k ≜ y −

∑N
n=1,n̸=k[m̃k]n

[
A(α(i−1),p(i−1))

]
:,n

.
Similarly to (48), the most likely hypothesis can be decided

6This implies that in the absence of failures, Algorithm 2 will terminate at
the first iteration, which only requires calculating the closed-form solution in
(47) and evaluating the cost function in (48) for N+1 hypotheses. This feature
ensures a computationally cheap and adaptive JLFD solution especially when
pixel failures occur rarely.

via

k̂ = arg min
k∈{0,...,N}\I(i−1)

L(m̃k) , (53)

where L(·) is defined in (51) and m̃k is given by (50b) with
ζk replaced by ζ̂k in (52).

Based on (53), two paths can be followed:
• No Additional Failure: If k̂ = 0, no additional pixel

failure is detected at the ith iteration and we terminate
the algorithm with the current values of position, channel
gain and failure mask.

• Additional Failure: If k̂ ≥ 1, we detect a failure at
the pixel location k̂ in addition to the existing ones in
I(i−1). In this case, given the new set of failing pixels
I(i) = I(i−1)∪{k̂}, we determine the corresponding fail-
ure coefficients by solving (35) using the given position
and gain estimates p(i−1) and α(i−1), i.e.,

ζ̂(i) = argmin
ζ(i)

∥∥∥y̆(i) −A(i)ζ(i)
∥∥∥2
2
, (54)

where y̆(i) ≜ y −
∑N
n=1,n/∈I(i) [A(α(i−1),p(i−1))]:,n,

A(i) ≜ ∪n∈I(i) [A(α(i−1),p(i−1))]:,n ∈ CT×|I(i)| and
ζ(i) ∈ C|I(i)|×1. In (54), we discard the prior-related
term in (35a), approximating for high-SNR conditions,
to obtain a tractable problem, as done in (46) and (52).
Similar to the first iteration, using the resulting ζ̂(i),
we update the position and channel gain estimates, re-
compute (54) and carry out these alternating steps until
convergence.

After the algorithm terminates, we will refine the mask
estimate under the unit-disk constraint. Let Î denote the set of
failing pixels, and p̂ and α̂ the position and the channel gain
estimates at the end of the algorithm. Then, we formulate the
following problem:

min
ζ∈C|Î|×1

∥∥∥y̆ − Âζ
∥∥∥2
2

(55a)

s.t. |[ζ]n| ≤ 1, ∀n ∈ Î, (55b)

where we define y̆ ≜ y −
∑N
n=1,n/∈Î [A(α̂, p̂)]:,n, Â ≜

∪n∈Î [A(α̂, p̂)]:,n ∈ CT×|Î|. The problem (55) is convex and
thus can be solved using standard tools [47]. Then, by updating
the mask vector from (55), we can refine the final position and
channel coefficient estimates by implementing [14, Alg. 1].

The entire algorithm, called Successive-JLFD, is summa-
rized in Algorithm 2.

V. COMPLEXITY ANALYSIS

In this section, we carry out computational complexity
analysis of Algorithm 1 and Algorithm 2. It is assumed that
the search intervals over distance, azimuth, and elevation for
UE location estimation via [14, Alg. 1] are discretized into
grids of size K.

A. Complexity Analysis of Algorithm 1
The initial cost of calculating p(0) and α(0) is given by

O(TK2N) [14, Sec. 4-E]. At the ith iteration, for given α(i)



Algorithm 2 Successive Joint Localization and Failure Diag-
nosis (Successive-JLFD) Algorithm to Solve (35)

1: Input: Observation y in (14), RIS phase profiles Φ,
convergence threshold ε, maximum number of alternating
steps C and maximum number of successive iterations I .

2: Output: UE location p̂, failure mask m̂, set of failing
locations Î and channel gain α̂.

3: Initialization: Set i = 0, I(0) = ∅ and m(0) = 1.
Compute the corresponding p(0) and α(0) via [14, Alg. 1].

4: Iterations:
5: while i < I do
6: Set ℓ = 0, i = i + 1. p(i,0) = p(i−1), α(i,0) = α(i−1),

and m(i,0) = m(i−1).
7: while ℓ < C do
8: Solve (52) by plugging p(i,ℓ), α(i,ℓ) and m(i,ℓ) from

(50b).
9: Solve (53) to determine k̂.

10: Set ℓ = ℓ+ 1.
11: if k̂ = 0 then
12: Set p(i) = p(i,ℓ), α(i) = α(i,ℓ), m(i) = m(i,ℓ) and

I(i) = I(i−1).
13: break
14: else
15: Solve (54) to update the mask m(i,ℓ) with the new

failure coefficients ζ̂(i).
16: For the updated mask, update p(i,ℓ) and α(i,ℓ) via

[14, Alg. 1].
17: if ℓ ≥ C or

∥∥p(i,ℓ) − p(i,ℓ−1)
∥∥
2
≤ ε then

18: Set p(i) = p(i,ℓ), α(i) = α(i,ℓ), m(i) = m(i,ℓ),
I(i) = I(i−1) ∪ {k̂} and ℓ = C.

19: end if
20: end if
21: end while
22: if i ≥ I then
23: Terminate the algorithm with the current failing lo-

cations Î and set p̂ = p(i), α̂ = α(i) and m̂ = m(i).
24: break
25: end if
26: end while
27: Refinement: Refine the mask estimate by solving (55)

under the unit-disk constraint and refine the UE location
and channel gain via [14, Alg. 1].

and p(i), ISTA can be used to compute m(i+1) [50], [51].
In this algorithm, we initially compute the LS solution by
calculating

(
A(α(i),p(i))HA(α(i),p(i))

)−1
A(α(i),p(i))Hy,

whose computational cost is equal to O(N2T + N3). Since
A(α(i),p(i))HA(α(i),p(i)) has already been computed, the
computational cost of each ISTA iteration is simply equal to
O(N2). If N (i)

iter is the number of iterations required to achieve
convergence of ISTA in the ith iteration, then O(N2T+N3)+

O(N2N
(i)
iter ) = O

(
N2(N + T +N

(i)
iter )
)

is the total computa-

tional cost of estimating m(i+1). In addition, for given m(i+1),
O(TK2N) specifies the computational cost of calculating

p(i+1) and α(i+1) [14, Sec. 4-E]. Therefore, the overall cost
of the ith iteration is O

(
N(TK2 +N2 + TN +NN

(i)
iter )
)

.
Based on the assumption that Niter is the maximum

value of {N (i)
iter}i, the overall cost of Algorithm 1 is

O
(
MN(TK2 +N2 + TN +NNiter)

)
. If the search intervals

for distance, azimuth and the elevation are sufficiently large,
then the overall cost of Algorithm 1 is O

(
MNTK2

)
.

B. Complexity Analysis of Algorithm 2

As in Algorithm 1, the initial cost of calculating p(0) and
α(0) is given by O(TK2N) [14, Sec. 4-E]. At the beginning
of the first iteration, O(TN) provides the computation cost
of A(α(0),p(0)). Then, for any alternating step ℓ, the cost
of computing ỹ

(0)
k for each hypothesis k ∈ {1, . . . , N} is

simply O(TN). Then, the computational cost of (47) is given
by O(T ) for any hypothesis k. Finally, by utilizing (46),
the computational cost of plugging m̃k into L(·) is reduced
to O(T ). Since these computations must be performed for
each hypothesis, we can conclude that the cost of updating
the mask vector for any alternating step ℓ is simply equal
to O(TN2). As the cost of estimating the position and the
channel coefficient is equal to O(TK2N), the total cost of
the first iteration is simply equal to O(C(NTK2 + TN2)).

Similar analyses reveal that the ith iteration of Algorithm 2
requires a total cost of O(C(NTK2 +TN2)). Given that the
maximum number of iterations is equal to I , the overall cost of
Algorithm 2 is O(CI(NTK2 + TN2)). Under the condition
that the search intervals are sufficiently large, the overall cost
of Algorithm 2 is given by O

(
CINTK2

)
. Note that once the

algorithm terminates, even though we solve a convex problem
given by (55) to refine the mask and position estimates, we
only solve the problem once, and its complexity is negligible
when compared to the rest of the algorithm.

C. Complexity Comparison of Algorithm 1 and Algorithm 2

Summarizing the results in the previous subsections, the
overall complexities of Algorithm 1 and Algorithm 2 are
given by O

(
MNTK2

)
and O

(
CINTK2

)
, respectively. In

the numerical simulations, we set M and C to be equal to
each other. Thus, if K is sufficiently large, the complexity of
Algorithm 2 is roughly I times that of Algorithm 1.

VI. NUMERICAL RESULTS

In this section, we present numerical results to evaluate the
theoretical bounds derived in Sec. III and the performance of
the proposed algorithms in Sec. IV.

A. Simulation Setup

We consider an RIS with N = 20×20 elements, where the
inter-element spacing is λ/2 and the area of each element
is λ2/4 [15]. The RIS aligns with the X-Y plane and is
located at pRIS = [0 0 0]T m. In addition, the entries of the
RIS phase configurations, ϕt’s in (8), are generated uniformly
and independently between −π and π. Moreover, we set the



number of transmissions as T = 20 and the carrier frequency
as fc = 28GHz, leading to λ = 10.71mm. The BS is located
at pBS = 10× [1 1 1]T/∥[1 1 1]∥2 m, while the UE is located
at 4×[1 1 1]T/∥[1 1 1]∥2 m. For convenience, we assume that
st =

√
Es ∀t. Also, the SNR is defined as SNR = |α|2Es/N0.

In Algorithm 1, we set ξ = 2
√

SNR and M = 5. While
implementing Algorithm 2, the number of maximum allowed
iterations, I , is selected as 2Npfail. The reasoning behind this
selection can be explained as follows. Since the number of
pixel failures estimated by Algorithm 2 is upper bounded by
I , we need to choose I such that Pr{Number of failures >
I} ≤ ϵ, where ϵ > 0 is a small number. More specifically,

Pr{#of failures > I} = 1−
I∑

m=0

(pfail)
m(1− pfail)

N−m
(
N

m

)
should be small. In accordance with the sparsity assumption,
we consider pfail ∈ (0, 0.02] in our simulations. For these
values of pfail and for I = 2Npfail, Pr{#of failures > I} ≤
0.08. Moreover, we set C = 5 in Algorithm 2 and ε = 0.001
in both algorithms. Finally, the search intervals for UE location
estimation via [14, Alg. 1] are set to [0, 50] m for distance and
[0, π/2] for azimuth/elevation and the number of grid points
is taken as K = 501.

B. Theoretical Performance Evaluation Under Pixel Failures

In Fig. 2, we report the theoretical limits on UE location
estimation, derived in (26), (28) and (31), as a function of
pfail and SNR. While obtaining the figures, the locations of
faulty RIS elements for any given pfail are fixed at random. For
instance, if pfail = 2%, we randomly assign Npfail = 8 failure
locations and fix them. Then, we obtain the corresponding
curves by averaging over 100 distinct failure profiles (i.e., by
considering 100 distinct realizations of (κn, ψn) pairs in (9)
for the fixed failure locations).

We observe that CRBPerfect
p and CRBKnownLoc

p exhibit
very similar values in the considered SNR and pfail regimes.
This suggests that once the locations of the failing RIS
elements are known, knowing the respective failure coeffi-
cients ζn = κne

jψn brings only a marginal improvement
in localization performance. Hence, the main bottleneck in
RIS diagnosis with a UE having an a-priori unknown location
lies in detection of the status (failing/functioning) of N RIS
elements from T ≪ N scalar observations, rather than
estimation of their failure coefficients. In addition, we see
that the gap between the LB and CRB curves becomes larger
with increasing pfail (i.e., as the mismatch between the true
model in (15) and the assumed model in (17) increases), as
expected. When the UE is unaware of pixel failures, severe
performance degradations can occur, especially at high SNRs
(e.g., more than two orders-of-magnitude accuracy loss at
SNR = 30dB for pfail > 1%). Therefore, even with small
percentage of failures, employing failure-agnostic algorithms
might lead to significant penalties in localization. Moreover,
looking at the LB curves in Fig. 2(b), we observe that the
localization performance saturates above a certain SNR level,
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Fig. 2. Theoretical limits on localization RMSE in (26), (28) and (31) versus
(a) pfail for various SNR values, and (b) SNR for various pfail values. As
CRBPerfect

p and CRBKnownLoc
p change only marginally with respect to

pfail, they are plotted for a single value of pfail in (b) to declutter the figure.

reaching an SNR-independent bias value quantified by the
second term in (25). This results from the mismatch between
the true and assumed models, i.e., the price paid due to failures
being ignored. Overall, we can conclude that RIS pixel failures
can significantly degrade the localization performance, which
necessitates the design of effective algorithms to mitigate their
impact.

The high sensitivity of localization to pixel failures can
be attributed to the fact that in the considered narrowband
SISO setup with LoS blockage, information on UE location p
derives only from the phase shifts across the RIS elements, as
seen from the NF steering vector a(p) in (2) and the associated
observations in (1). As pixel failures distort the phase profiles
as specified in (8), the information that can be extracted from a
set of scalar observations at the UE becomes quite inaccurate.

C. Performance of Algorithm 1 and Algorithm 2

In this part, we examine the localization RMSE performance
of the following algorithms:
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Fig. 3. Localization RMSEs obtained by the failure-agnostic MS-unbiased
estimator η̂(y) in (24) and the proposed algorithms, along with the theoretical
bounds in (26) and (31), with respect to SNR for (a) pfail = 0.5%, and (b)
pfail = 1%.

• Failure-Agnostic Estimator: The failure-agnostic esti-
mator η̂(y) in (24), corresponding to the case where the
UE is unaware of pixel failures. This will be used as
a benchmark to demonstrate performance gains of the
proposed JLFD algorithms.

• ℓ1-JLFD: The proposed JLFD algorithm based on ℓ1
regularization in Algorithm 1.

• Successive-JLFD: The proposed successive failure de-
tection and UE localization algorithm in Algorithm 2.

We will also evaluate the mask recovery performances of
Algorithm 1 and Algorithm 2. In Monte Carlo simulations, for
a given pfail value, ⌊Npfail⌋ pixels out of N are randomly cho-
sen as failing and the corresponding failure coefficients repre-
sented by (κn, ψn) are randomly generated. Given this single
realization of the failure mask m, the algorithm performances
are evaluated by averaging over 200 distinct noise realizations.
In addition, the mask recovery performance is characterized
through the normalized mean-squared-error (NMSE), defined
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Fig. 4. Mask recovery performances (mask NMSE in (56)) of Algorithm 1
and Algorithm 2 versus SNR for pfail = 0.5% and pfail = 1%.

as

NMSE =
∥m̂−m∥22

∥m∥22
, (56)

where m̂ denotes the mask estimate.
1) Performance with respect to SNR: In Fig. 3, we show the

localization RMSEs achieved by the MS-unbiased estimator in
(24) (i.e., the failure-agnostic benchmark), Algorithm 1 and
Algorithm 2 as a function of SNR, along with the theoretical
bounds, for pfail = 0.5% and pfail = 1%. The corresponding
mask NMSE performances of Algorithm 1 and Algorithm 2
are illustrated in Fig. 4. First, we see that the failure-agnostic
MS-unbiased estimator in (24) achieves the corresponding
LB asymptotically at high SNRs, which corroborates the
MCRB analysis in Sec. III-A. In addition, it is observed
that Algorithm 2 significantly outperforms the failure-agnostic
estimator and attains the corresponding CRB at an SNR of
0 and 10 dB for pfail = 0.5% and pfail = 1%, respec-
tively, which demonstrates the effectiveness of the proposed
successive JLFD strategy in recovering failure-induced per-
formance degradations. Hence, Algorithm 2 can successfully
yield accurate estimates of UE location in the presence of pixel
failures and provide performance achievable under perfect
knowledge of the failure mask m in (8), corresponding to
a perfectly calibrated RIS. Moreover, by comparing Fig. 3(a)
and Fig. 3(b), it appears that Algorithm 1 exhibits performance
similar to that of Algorithm 2 for pfail = 0.5%, while it fails
to achieve the theoretical limit for pfail = 1% and reaches a
plateau in localization accuracy above a certain SNR level.
This results from limited usage of the failure statistics in the
ℓ1-regularization approach, in contrast with full exploitation
of the statistics in the successive-JLFD approach. It is worth
noting that the advantage of the ℓ1-regularization strategy lies
in its low computational complexity, as investigated in Sec. V7.
Finally, the mask NMSE performances in Fig. 4 confirm the

7Run-time analysis during the simulations show that Algorithm 1 and
Algorithm 2 take 3.7 and 12.9 times longer than the failure-agnostic estimator,
respectively.
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Fig. 5. Localization RMSEs obtained by the failure-agnostic MS-unbiased
estimator η̂(y) in (24) and the proposed algorithms, along with the theoretical
bounds in (26) and (31), with respect to UE distance, where pfail = 1% and
SNR = 20dB.

localization RMSE results in Fig. 3. Namely, Algorithm 1
cannot satisfactorily recover the failure mask for pfail = 1%,
leading to gaps between the RMSE and the CRB in Fig. 3(b),
while the mask NMSE of Algorithm 2 decreases consistently
with SNR for both pfail values.

2) Performance with respect to UE Distance: In this part,
we evaluate the performance as a function of UE distance from
the RIS to demonstrate the impact of wavefront curvature on
accuracy. Fig. 5 shows the localization RMSE obtained by
the considered schemes with respect to UE distance d for
pfail = 1% and SNR = 20dB, where the UE location is given
by d × [1 1 1]T/∥[1 1 1]∥2 m. It is observed that as the UE
moves away from the RIS, the wavefront curvature becomes
less pronounced, leading to a degradation in localization per-
formance. This is expected, as the only information available
for localization in (1) is the wavefront curvature, which is
manifested in the NF steering vector (2). Moreover, Fig. 5
corroborates the validity of the proposed algorithms both in
the NF and FF region of the RIS, i.e., both within and beyond
the Fraunhofer distance dF = 2D2/λ = 3.86 m.

3) Convergence Behavior: To investigate the convergence
behavior of Algorithm 2, we plot in Fig. 6 and Fig. 7 the
evolution of localization and mask recovery performances
of Algorithm 2 over successive iterations for SNR = 20 dB
and pfail = 1%, together with CRBKnownLoc

p , LBp and the
localization RMSEs of the failure-agnostic benchmark and
Algorithm 1. It can be seen from Fig. 6 that starting from
the location estimate of the failure-agnostic estimator, the
proposed successive-JLFD algorithm can converge to the CRB
by detecting pixel failures one-by-one at each iteration, leading
to a successful progressive calibration procedure. We also
emphasize that the RMSE of the successive-JLFD algorithm
attains the corresponding LB at each iteration, which indicates
the superiority of the proposed successive detection approach.
In addition, it should not be surprising that the LB converges
to the CRB as more failures are detected due to decreasing
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Fig. 6. Evolution of localization RMSEs obtained by Algorithm 2 over
successive iterations, along with the theoretical bounds in (26) and (31), the
RMSEs of Algorithm 1 and the failure-agnostic estimator η̂(y) in (24), for
SNR = 20 dB and pfail = 1%. At each iteration, which corresponds to
detection of a single failure by Algorithm 2, LBp in (26) is computed by
selecting the assumed model in (18) such that the UE assumes the presence
of pixel failures detected up to and including the current iteration.
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Fig. 7. Evolution of mask recovery performances (mask NMSE in (56))
of Algorithm 2 over successive iterations, along with the mask NMSE of
Algorithm 1, for SNR = 20 dB and pfail = 1%.

mismatch between the true and assumed models in (16) and
(18), respectively. However, non-monotonicity in localization
performance as a function of the number of failures can still
arise, as observed from Fig. 6. This behavior can be explained
as follows: Localization in the considered NLoS SISO scenario
relies purely on location-dependent RIS phase shifts (see (1)
and (2)), resulting in high sensitivity to pixel failures and
their spatial configuration. This implies that in some rare
cases, increasing the number of failures might lead to better
performance since certain RIS phase changes can indeed be
conducive to localization. In this respect, the non-monotonic
behavior of the LB in Fig. 6 across the iterations (i.e., as the
number of detected/calibrated failures increases) stems from
the fact that failures may counteract or reinforce each other
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Fig. 8. Illustration of failure mask m in (9) over the 2-D RIS plane, together with the mask estimates m̂ obtained by Algorithm 1 and Algorithm 2, for
SNR = 20 dB and pfail = 1% (the real parts of the masks are presented).

depending on the specific failure mask realization, leading to
non-monotonic localization performance with respect to the
number of failures.

Regarding Fig. 6, we also note that after the 4th iteration
(corresponding to detection of Npfail = 4 pixels), Algorithm 2
terminates and does not declare any new pixel as failing, and
its performance coincides with the theoretical bound. This
can also be observed from Fig. 7, where the mask NMSE of
Algorithm 2 reaches its minimum at the 4th iteration. Overall,
the results reveal the capability of Algorithm 2 to carry out
UE localization and RIS diagnosis simultaneously, for the
challenging SISO scenario under consideration.

4) Illustrative Example for Failure Diagnosis: To provide
an illustrative example of failure mask recovery, Fig. 8 depicts
the true failure mask and the instances of the estimated
ones from Algorithm 1 and Algorithm 2 for SNR = 20 dB
and pfail = 1%. We observe that Algorithm 2 performs
significantly better than Algorithm 1 in detecting the pixel
failures, and its coefficient estimates are very close to the true
failure mask, in compliance with the aforementioned results
and discussions.

D. Performance in the Presence of Rician Fading

In this part, we investigate the localization performance
under Rician fading in the RIS-UE channel of our RIS-aided
DL localization scenario in Fig. 1 [52], [53]. To this end, we
adopt the commonly used model where the BS-RIS link is
LoS [54], [55] and the RIS-UE link is modeled as Rician
[53], [56]. In this case, the signal model in (1) can be adapted
as [53]–[56]

yt = hT
RUdiag(γt)hBRst + nt , (57)

where hBR ∈ CN×1 and hRU ∈ CN×1 denote the BS-
RIS LoS channel and the RIS-UE Rician fading channel,
respectively, which can be written as

hBR = αBRa(pBS) ∈ CN×1 , (58)

hRU = αRU

(√
K

K + 1
a(p) +

√
1

K + 1
h̃RU

)
∈ CN×1 .

(59)

Here, αBR ∈ C and αRU ∈ C represent the large-scale fading
amplitude coefficients of the the BS-RIS and the RIS-UE link,
respectively, h̃RU ∈ CN×1 represents the NLoS component
of the RIS-UE channel with h̃RU ∼ CN (0, I), and K is the
Rician factor [53]. As seen from (59), Rician fading covers
Rayleigh fading as a special case when K → 0. In this case,
the LoS component a(p) in (59) vanishes and the information
on the UE location p is lost, meaning that the UE cannot be
localized8.

To evaluate how the Rician fading model in (57) affects
the localization performance, we plot in Fig. 9 the CRB
corresponding to (57), denoted by CRBRician

p , and the lo-
calization RMSE results obtained by the considered schemes
over 200 Monte Carlo realizations with respect to K. Looking
at the CRB curve in Fig. 9, we observe that the accuracy
degrades with decreasing K as expected since the RIS-UE
channel becomes less LoS-dominant, conveying less position
information. In addition, Algorithm 2 can exhibit performance
very close to the CRB while the failure-agnostic estimator
and Algorithm 1 reach a plateau in localization accuracy as
K increases. In the low-K regime, all the three approaches
achieve similar performance since the main limiting factor
is K (i.e., the effect of pixel failures and the ability to
combat them are overshadowed by the presence of significant
NLoS components). In the high-K regime, the effect of pixel
failures becomes dominant and the proposed successive-JLFD
algorithm (Algorithm 2) significantly outperforms the failure-
agnostic benchmark and Algorithm 1 (similar to the results
with respect to SNR in Fig. 3).

8In the presence of Rayleigh fading in the RIS-UE channel, range estimation
can be performed under additional assumptions regarding the path-loss model
for αRU [57]. However, localization is still not possible in this scenario due
to the absence of angular information.
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Fig. 9. Localization RMSEs obtained by the failure-agnostic MS-unbiased
estimator η̂(y) in (24) and the proposed algorithms, along with the theoretical
bound derived for the Rician model in (57), with respect to the Rician K factor
where pfail = 1% and SNR = 30dB.

VII. CONCLUDING REMARKS

In this paper, we have addressed the problem of RIS-aided
localization under pixel failures and investigated the impact
of such failures on localization accuracy by conducting a
comparative analysis of MCRB-based theoretical limits and
standard CRB. To counteract the effect of failures, we have
proposed two algorithms, namely ℓ1-JLFD and Successive-
JLFD, for joint localization and mask recovery. Simulation
results have offered valuable insights into the sensitivity of
localization to pixel failures. In particular, we have observed
that accuracy degradation caused by pixel failures can be
significant (reaching as high as two orders-of-magnitude loss
at high SNRs) even in the presence of small percentage
of failing elements. This can be explained by noting that
localization in the considered NF setup with LoS blockage
relies completely on phase shifts across the RIS elements and
even small number of failures can severely distort the received
signal at the UE, preventing accurate location estimation.
Remarkably, the proposed algorithms can drastically reduce
the localization errors compared to the failure-agnostic esti-
mator, and asymptotically attain the corresponding theoretical
limits as the SNR increases, especially for Successive-JLFD.
Potential future work includes investigation of the effect of
spatial distribution of failures on localization accuracy and
related mitigation strategies.

APPENDIX A
PDF OF FAILURE COEFFICIENTS

Let us define the random variable ζ = κejψ, where κ ∼
U(0, 1) and ψ ∼ U(−π, π) are independent random variables,
by dropping the RIS element index n. There is a one-to-one
mapping between (κ, ψ) and (ζR, ζI), where ζR = ℜ{ζ} =
κ cos(ψ) and ζI = ℑ{ζ} = κ sin(ψ). Hence, for given ζR, ζI,
we can determine κ, ψ as follows:

κ =
√
ζ2R + ζ2I , (60)

ψ =


tan−1

(
ζI
ζR

)
, if ζR ≥ 0,

tan−1
(
ζI
ζR

)
− π, if ζR < 0, ζI < 0,

tan−1
(
ζI
ζR

)
+ π, if ζR < 0, ζI ≥ 0.

(61)

Then, the Jacobian matrix can be calculated as

J =

[ ζR√
ζ2R+ζ2I

ζI√
ζ2R+ζ2I

−ζI
ζ2R+ζ2I

ζR
ζ2R+ζ2I

]
. (62)

This implies

fζ(ζR, ζI) = fκ(κ)fψ(ψ)|J| =
1

2π
√
ζ2R + ζ2I

(63)

for ζ2R + ζ2I ≤ 1. In a more compact form,

fζ(ζ) =

{
1

2π|ζ| , |ζ| ≤ 1

0, otherwise
. (64)

APPENDIX B
COMPUTATION OF (51)

The second term in (51) can be obtained from (11) and (50)
as follows:

N∑
n=1

log fmn([m̃k]n) = (N − 1− |I(i−1)|) log(1− pfail)

+ (|I(i−1)|+ 1) log pfail +
∑

n∈I(i−1)

log fζn([m
(i−1)]n)

+ log fζk(ζk) (65)

for k ≥ 1, and
N∑
n=1

log fmn([m̃k]n) = (N − |I(i−1)|) log(1− pfail) (66)

+ |I(i−1)| log pfail +
∑

n∈I(i−1)

log fζn([m
(i−1)]n)

for k = 0.
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[16] C. Öztürk et al., “On the impact of hardware impairments on RIS-
aided localization,” in ICC 2022 - IEEE International Conference on
Communications, 2022, pp. 2846–2851.

[17] M. Rahal et al., “Constrained RIS phase profile optimization and
time sharing for near-field localization,” in 2022 IEEE 95th Vehicular
Technology Conference: (VTC2022-Spring), 2022, pp. 1–6.

[18] M. Luan et al., “Phase design and near-field target localization for RIS-
assisted regional localization system,” IEEE Transactions on Vehicular
Technology, vol. 71, no. 2, pp. 1766–1777, 2022.

[19] X. Zhang et al., “Hybrid reconfigurable intelligent surfaces-assisted
near-field localization,” IEEE Communications Letters, pp. 1–1, 2022.

[20] M. E. Eltayeb et al., “Compressive sensing for millimeter wave antenna
array diagnosis,” IEEE Transactions on Communications, vol. 66, no. 6,
pp. 2708–2721, 2018.

[21] B. Sun et al., “Direction-of-arrival estimation under array sensor failures
with ULA,” IEEE Access, vol. 8, pp. 26 445–26 456, 2020.

[22] H. Taghvaee et al., “Error analysis of programmable metasurfaces for
beam steering,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, vol. 10, no. 1, pp. 62–74, 2020.

[23] R. Sun et al., “Diagnosis of intelligent reflecting surface in millimeter-
wave communication systems,” IEEE Transactions on Wireless Commu-
nications, vol. 21, no. 6, pp. 3921–3934, 2022.

[24] J. Zhang et al., “Phase calibration for intelligent reflecting surfaces
assisted millimeter wave communications,” IEEE Transactions on Signal
Processing, vol. 70, pp. 1026–1040, 2022.

[25] K. Wang et al., “Doppler effect mitigation using reconfigurable intel-
ligent surfaces with hardware impairments,” in 2021 IEEE Globecom
Workshops (GC Wkshps), 2021, pp. 1–6.

[26] S. Ma et al., “Joint diagnosis of RIS and BS for RIS-aided
millimeter-wave system,” Electronics, vol. 10, no. 20, 2021. [Online].
Available: https://www.mdpi.com/2079-9292/10/20/2556

[27] B. Li et al., “Joint array diagnosis and channel estimation for RIS-aided
mmwave MIMO system,” IEEE Access, vol. 8, pp. 193 992–194 006,
2020.

[28] S. Fortunati et al., “Performance bounds for parameter estimation under
misspecified models: Fundamental findings and applications,” IEEE
Signal Processing Magazine, vol. 34, no. 6, pp. 142–157, 2017.

[29] J. Lee et al., “Channel estimation via orthogonal matching pursuit
for hybrid MIMO systems in millimeter wave communications,” IEEE
Transactions on Communications, vol. 64, no. 6, pp. 2370–2386, 2016.

[30] A. Shahmansoori et al., “Position and orientation estimation through
millimeter-wave MIMO in 5G systems,” IEEE Transactions on Wireless
Communications, vol. 17, no. 3, pp. 1822–1835, 2018.

[31] E. Grossi et al., “Adaptive detection and localization exploiting the IEEE
802.11ad standard,” IEEE Transactions on Wireless Communications,
vol. 19, no. 7, pp. 4394–4407, 2020.

[32] K. Keykhosravi et al., “RIS-enabled SISO localization under user
mobility and spatial-wideband effects,” IEEE Journal of Selected Topics
in Signal Processing, pp. 1–1, 2022.

[33] F. Guidi et al., “Radio positioning with EM processing of the spherical
wavefront,” IEEE Transactions on Wireless Communications, vol. 20,
no. 6, pp. 3571–3586, 2021.

[34] A. Guerra et al., “Near-field tracking with large antenna arrays: Fun-
damental limits and practical algorithms,” IEEE Transactions on Signal
Processing, vol. 69, pp. 5723–5738, 2021.

[35] J.-W. Tao et al., “Joint DOA, range, and polarization estimation in
the Fresnel region,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 47, no. 4, pp. 2657–2672, 2011.

[36] V. R. Gowda et al., “Wireless power transfer in the radiative near field,”
IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1865–
1868, 2016.

[37] J. Ziniel et al., “Dynamic compressive sensing of time-varying signals
via approximate message passing,” IEEE Transactions on Signal Pro-
cessing, vol. 61, no. 21, pp. 5270–5284, 2013.

[38] A.-S. Sheikh et al., “A truncated EM approach for spike-and-slab sparse
coding,” Journal of Machine Learning Research, vol. 15, no. 1, pp.
2653–2687, 2014.

[39] I. J. Goodfellow et al., “Scaling up spike-and-slab models for unsu-
pervised feature learning,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 35, no. 8, pp. 1902–1914, 2013.

[40] S. Fortunati et al., “Chapter 4: Parameter bounds under misspecified
models for adaptive radar detection,” in Academic Press Library in
Signal Processing, Volume 7, R. Chellappa et al., Eds. Academic Press,
2018, pp. 197–252.

[41] S. M. Kay, Fundamentals of statistical signal processing: estimation
theory. Prentice-Hall, Inc., 1993.

[42] Y. Noam et al., “Notes on the tightness of the hybrid Cramér–Rao lower
bound,” IEEE Transactions on Signal Processing, vol. 57, no. 6, pp.
2074–2084, 2009.

[43] L. A. Wolsey, “Mixed integer programming,” Wiley Encyclopedia of
Computer Science and Engineering, pp. 1–10, 2007.

[44] P. Bonami et al., “Algorithms and software for convex mixed integer
nonlinear programs,” in Mixed Integer Nonlinear Programming, J. Lee
et al., Eds. New York, NY: Springer New York, 2012, pp. 1–39.

[45] L. Liberti, “Undecidability and hardness in mixed-integer nonlinear
programming,” RAIRO-Operations Research, vol. 53, no. 1, pp. 81–109,
2019.

[46] R. J. Tibshirani, “The LASSO problem and uniqueness,” Electronic
Journal of statistics, vol. 7, pp. 1456–1490, 2013.

[47] M. Grant et al., “CVX: Matlab software for disciplined convex program-
ming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.

[48] A. Beck et al., “A fast iterative shrinkage-thresholding algorithm for
linear inverse problems,” SIAM Journal on Imaging Sciences, vol. 2,
no. 1, pp. 183–202, Mar. 2009.

[49] S. Mallat et al., “Matching pursuits with time-frequency dictionaries,”
IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3397–3415,
1993.

[50] A. Beck et al., “A fast iterative shrinkage-thresholding algorithm
for linear inverse problems,” SIAM Journal on Imaging Sciences,
vol. 2, no. 1, pp. 183–202, 2009. [Online]. Available:
https://doi.org/10.1137/080716542

[51] C. Baquero Barneto et al., “Millimeter-wave mobile sensing and envi-
ronment mapping: Models, algorithms and validation,” IEEE Transac-
tions on Vehicular Technology, vol. 71, no. 4, pp. 3900–3916, 2022.

[52] M. Abbasi Msleh et al., “Ergodic capacity analysis of reconfigurable
intelligent surface assisted MIMO systems over Rayleigh-Rician chan-
nels,” IEEE Communications Letters, vol. 27, no. 1, pp. 75–79, 2023.

[53] K. Zhi et al., “Power scaling law analysis and phase shift optimiza-
tion of RIS-aided massive MIMO systems with statistical CSI,” IEEE
Transactions on Communications, vol. 70, no. 5, pp. 3558–3574, 2022.

[54] F. Jiang et al., “Two-timescale transmission design and RIS optimization
for integrated localization and communications,” IEEE Transactions on
Wireless Communications, pp. 1–1, 2023.

[55] A. Abrardo et al., “Intelligent reflecting surfaces: Sum-rate optimiza-
tion based on statistical position information,” IEEE Transactions on
Communications, vol. 69, no. 10, pp. 7121–7136, 2021.

[56] Z. Peng et al., “RIS-aided D2D communications relying on statistical
CSI with imperfect hardware,” IEEE Communications Letters, vol. 26,
no. 2, pp. 473–477, 2021.

[57] A. Pandey et al., “Adaptive mini-batch gradient-ascent-based localization
for indoor IoT networks under Rayleigh fading conditions,” IEEE
Internet of Things Journal, vol. 8, no. 13, pp. 10 665–10 677, 2021.


