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Noise Benefits in Joint Detection and Estimation

Problems
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Abstract

Adding noise to inputs of some suboptimal detectors or estimators can improve their performance under certain

conditions. In the literature, noise benefits have been studied for detection and estimation systems separately. In this

study, noise benefits are investigated for joint detection and estimation systems. The analysis is performed under

the Neyman-Pearson (NP) and Bayesian detection frameworks and according to the Bayesian estimation criterion.

The maximization of the system performance is formulated as an optimization problem. The optimal additive

noise is shown to have a specific form, which is derived under both NP and Bayesian detection frameworks. In

addition, the proposed optimization problem is approximated as a linear programming (LP) problem, and conditions

under which the performance of the system can or cannot be improved via additive noise are obtained. With an

illustrative numerical example, performance comparison between the noise enhanced system and the original system

is presented to support the theoretical analysis.

Index Terms–Detection, parameter estimation, linear programming, noise enhancement.

I. INTRODUCTION

Although an increase in the noise power is generally associated with performance degradation, addition

of noise to a system may introduce performance improvements under certain arrangements and conditions

in a number of electrical engineering applications including neural signal processing, biomedical sig-

nal processing, lasers, nano-electronics, digital audio and image processing, analog-to-digital converters,

control theory, statistical signal processing, and information theory, as exemplified in [1] and references

therein. In the field of statistical signal processing, noise benefits are investigated in various studies such
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as [2]– [17]. In [2], it is shown that the detection probability of the optimal detector for a described

network with nonlinear elements driven by a weak sinusoidal signal in white Gaussian noise is non-

monotonic with respect to the noise power and fixed false alarm probability; hence, detection probability

enhancements can be achieved via increasing the noise level in certain scenarios. For an optimal Bayesian

estimator, in a given nonlinear setting, with examples of a quantizer [3] and phase noise on a periodic wave

[4], a non-monotonic behavior in the estimation mean-square error is demonstrated as the intrinsic noise

level increases. In [5], the proposed simple suboptimal nonlinear detector scheme, in which the detector

parameters are chosen according to the system noise level and distribution, outperforms the matched filter

under non-Gaussian noise in the Neyman-Pearson (NP) framework. In [6], it is noted that the performance

of some optimal detection strategies display a non-monotonic behavior with respect to the noise root-mean

square amplitude in a binary hypothesis testing problem with a nonlinear setting, where non-Gaussian

noise (two different distributions are examined for numerical purposes: Gaussian mixture and uniform

distributions) acts on the phase of a periodic signal. In [16] and [17], theoretical conditions are provided

related to improvability and nonimprovability of suboptimal detectors for weak signal detection via noise

benefits.

One approach for realizing noise benefits is to tune the parameters of a nonlinear system, as employed,

e.g., in [8]–[12]. An alternative approach is the injection of a random process independent of both the

meaningful information signal (transmitted or hidden signal) and the background noise (undesired signal).

It is firstly shown by Kay in [13] that addition of independent randomness may improve suboptimal

detectors under certain conditions. Later, it is proved that a suboptimal detector in the Bayesian framework

may be improved (i.e., the Bayes risk can be reduced) by adding a constant signal to the observation

signal; that is, the optimal probability density function is a single Dirac delta function [14]. This intuition

is extended in various directions and it is demonstrated that injection of additive noise to the observation

signal at the input of an suboptimal detector can enhance the system performance [15], [18]–[34].

In this manuscript, performance improvements through noise benefits are addressed in the context of

joint detection and estimation systems by adding an independent noise component to the observation

signal at the input of a suboptimal system. Notice that the most critical keyword in this approach is

suboptimality. Under non-Gaussian background noise, optimal detectors/estimators are often nonlinear,
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difficult to implement, and complex systems [35], [36]. Hence, the main aim is to improve the performance

of a fairly simple and practical system by adding specific randomness (“noise”) at the input.

Chen et al. revealed that the detection probability of a suboptimal detector in the NP framework can

be increased via additive independent noise [15]. They examined the convex structure of the problem and

specified the nature of the optimal probability distribution of additive noise as a probability mass function

with at most two point masses. This result is generalized for M -ary composite hypothesis testing problems

under NP, restricted NP and restricted Bayes criteria [25], [29], [34]. In estimation problems, additive noise

can also be utilized to improve the performance of a given suboptimal estimator [4], [19], [30]. As an

example of noise benefits for an estimation system, it is shown that Bayesian estimator performance can be

enhanced by adding non-Gaussian noise to the system, and this result is extended to the general parameter

estimation problem in [19]. As an alternative example of noise enhancement application, injection of noise

to blind multiple error rate estimators in wireless relay networks is presented in [30].

In this study, noise benefits are investigated for a joint detection and estimation system, which is

presented in [37]. Without introducing any modification to the structure of the system, the aim is to improve

the performance of the joint detection and estimation system by only adding noise to the observation

signal at the input. Therefore, the detector and estimator are assumed to be given and fixed. In [37],

optimal detectors and estimators are derived for this joint system. However, the optimal structures may

be overcomplicated for an implementation. In this study, it is assumed that the given joint detection

and estimation system is suboptimal, and the purpose is defined as the examination of the performance

improvements via additive noise under this assumption. The main contributions of this study can be

summarized as follows:

• Noise benefits are investigated for joint detection and estimation systems for the first time.

• Both Bayesian and NP detection frameworks are considered, and the probability distribution of the

optimal additive noise is shown to correspond to a discrete probability mass function with a certain

number of point masses under each framework.

• For practical applications in which additive noise can take finitely many different values, a linear

programming (LP) problem is formulated to obtain the optimal additive noise.

• Necessary and sufficient conditions are derived to specify the scenarios in which additive noise can
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or cannot improve system performance.

In addition, theoretical results are also illustrated on a numerical example and noise benefits are investigated

from various perspectives.

II. PROBLEM FORMULATION

Consider a joint detection and estimation system as illustrated in Fig. 1, where the aim is to investigate

possible improvements on the performance of the system by adding “noise” N to observation X . In other

words, instead of employing the original observation X , the system operates based on the noise modified

observation Y , which is generated as follows:

Y = X +N . (1)

The problem is defined as the determination of the optimum probability distribution for the additive noise

without modifying the given joint detection and estimation system; that is, detector φ(·) and estimator

θ̂(·) are fixed. Also, the additive noise N is independent of the observation signal X .

For the joint detection and estimation system, the model in [37] is adopted. Namely, the system consists

of a detector and an estimator subsequent to it, and the detection is based on the following binary composite

hypothesis testing problem [37]:

H0 : X ∼ fX0 (x)

H1 : X ∼ fX1 (x|Θ = θ), Θ ∼ π(θ)

(2)

where X ∈ RK is the observation signal. Under hypothesis H0, the probability density function of the

observation signal is completely known, which is denoted by fX0 (x). On the other hand, under hypothesis

H1, the probability density function fX1 (x|θ) of the observation signal X is given as a function of the

unknown parameter θ. It is also assumed that the prior distribution of the unknown parameter Θ is

available as π(θ) in the parameter space Λ [37].

In Fig. 1, the detector is modeled as a generic decision rule φ(x), which specifies the decision probability

in preference to hypothesis H1 with 0 ≤ φ(x) ≤ 1.1 After the decision, there are two scenarios. If the

1Since a given (fixed) detection and estimation system is considered, the detector (decision rule) is modeled to be a generic one; that is,
any deterministic or randomized decision rule can be considered.
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decision is in favor of hypothesis H0, then there is no need for parameter estimation since the unknown

parameter value is a known value, say θ0, under H0, and this knowledge is already included in fX0 (x)

(see (2)). If the decision is hypothesis H1, then the estimator in Fig. 1 estimates the value of the unknown

parameter as θ̂(y).

In general, the optimality of the detector and estimator to minimize the decision cost and estimation

risk is an important goal in the detection and estimation theory. Optimal detectors and estimators for this

joint detection and estimation scheme in the NP hypothesis-testing framework are already obtained in

[37]. Since optimal detectors and estimators can have high computational complexity in some scenarios,

the focus in this study is to consider fixed (given) detector and estimator structures with low complexity

and to improve the performance of the given system only by adding “noise” to the observation as shown

in Fig. 1.

With respect to the problem definition, different decision schemes such as Bayesian or NP approaches

and estimation functions can be regarded in this context. If the prior probabilities of the hypotheses,

P (Hi), are unknown, an NP type hypothesis-testing problem can be defined. On the other hand, if the prior

probabilities are given, the Bayesian approach could be adopted [38]. The noise enhanced joint detection

and estimation system is analyzed in both of these frameworks in parallel throughout the manuscript. For

both frameworks, the aim is described as the optimization of the estimation performance without causing

any degradation in the detection performance. Depending upon the application, the problem can be posed

differently. It is not possible to cover all cases here, and the provided discussion can be considered to

construct and solve similar problems (dual formulations) as well.

A. NP Hypothesis-Testing Framework

When the prior probabilities of the hypotheses are unknown, the NP framework can be employed for

detection. In the NP detection framework, the main parameters are the probability of false alarm and

the probability of detection [38]. Based on the hypotheses in (2) and the system model in Fig. 1, the
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probabilities of false alarm and detection can be obtained, respectively, as

P0(Ĥ1) =

∫
RK

fN(n)

∫
RK

φ(y)fX0 (y−n) dy dn (3)

P1(Ĥ1) =

∫
RK

fN(n)

∫
Λ

∫
RK

φ(y)π(θ)fX1 (y−n|θ) dy dθ dn (4)

where Pi(Ĥ1) denotes the probability that the decision is hypothesis H1, denoted by Ĥ1, when hypothesis

Hi is the true hypothesis.

Since the prior distribution of Θ is known (see (2)), the Bayesian approach is employed for the

estimation part; that is, the Bayes estimation risk is used as the performance criterion. The Bayes estimation

risk is given by

r(θ̂) = E{C[Θ, θ̂(Y )]} , (5)

which is the expectation of the cost function C[Θ, θ̂(Y )] over the joint distribution of noise modified

observation Y and parameter Θ. Squared error, absolute error, and uniform cost functions are three most

commonly used cost functions in the literature [38]; the choice may depend on the application. For the

binary hypothesis-testing problem in (2) and the system model in Fig. 1, the Bayes risk in (5) can be

expressed as

r(θ̂) =
1∑
i=0

1∑
j=0

P (Hi)Pi(Ĥj)E{C(Θ, θ̂(Y )|Hi, Ĥj} . (6)

In the joint detection and estimation system, the estimation is dependent on the detection result; hence,

the overall Bayes estimation risk is not independent of the detection performance. Due to this dependency,

the calculation of the Bayes estimation risk requires the evaluation of the conditional risks for different

true hypothesis and decided hypothesis pairs. As it is clear from (6), it is not possible to analytically

evaluate the overall Bayes estimation risk function r(θ̂) in the NP framework since the prior probabilities

of the hypotheses, P (Hi), are unknown. To avoid this complication, the conditional Bayes estimation

risk J(φ, θ̂), which is presented in [37] as the Bayes estimation risk under the true hypothesis H1 and

decision Ĥj , is adopted in the following. Furthermore, it should be noted that if the decision is not
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correct, it is expected the estimation error is relatively higher and may be regarded as useless for specific

applications. Therefore, taking into consideration only the estimation error when the decision is correct

could be justified as a rational argument. Since a probability distribution for unknown parameter Θ is not

defined under true hypothesis H0, the estimation error conditioned on the true hypothesis testing event

is equivalent to the estimation error given true hypothesis H1 and decision Ĥj . The conditional Bayes

estimation risk is defined as [37]

J(φ, θ̂) = E{C(Θ, θ̂(Y ))|H1, Ĥ1} (7)

which can be expressed based on (7) in [37], the hypotheses in (2), and the system model in Fig. 1, as

J(φ, θ̂) =

∫
RK

fN(n)
∫
Λ

∫
RK

C(θ, θ̂(y))φ(y)π(θ)fX1 (y−n|θ) dy dθ dn

P1(Ĥ1)
· (8)

After some manipulation, (3), (4) and (8) can be expressed as the expectations of certain auxiliary

functions with respect to additive noise distribution:

P0(Ĥ1) = E{T (n)} , where T (n) ,
∫
RK

φ(y)fX0 (y−n) dy (9)

P1(Ĥ1) = E{R(n)} , where R(n) ,
∫
Λ

∫
RK

φ(y)π(θ)fX1 (y−n|θ) dy dθ (10)

J(φ, θ̂) =
E{G11(n)}
E{R(n)}

, where G11(n) ,
∫
Λ

∫
RK

C(θ, θ̂(y))φ(y)π(θ)fX1 (y−n|θ) dy dθ . (11)

It is noted that R(n0), T (n0), and G11(n0)
/
R(n0) correspond respectively to the detection probability,

false alarm probability, and estimation risks of the system when the additive noise is equal to n0.

In the NP framework, the aim is to obtain the optimal probability distribution of the additive noise

that minimizes the conditional estimation risk in (8) subject to the constraints on the probability of false

alarm in (3) and the probability of detection in (4). The constraints are selected as the probabilities of

false alarm and detection of the original system without any additive noise, which correspond to R(0)

and T (0), respectively (see (9) and (10)). In other words, while minimizing the conditional estimation

risk, no degradation is allowed in the detection part of the system. The proposed optimization problem
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can be expressed as

minimize
fN (n)

E{G11(n)}
E{R(n)}

subject to E{T (n)} ≤ T (0) and E{R(n)} ≥ R(0) . (12)

It is important to emphasize that a generic and fixed decision rule and estimator structure is considered

in (12), and the aim is to improve the performance of the given system via the optimal additive noise

as shown in Fig 1. Since the optimal decision rule and estimator in [37] can be quite complex in some

cases, the use of a practical (low-complexity) decision rule and estimator structure together with noise

enhancement can be considered for motivating the problem in (12).

B. Bayesian Hypothesis-Testing Framework

When the prior probabilities of the hypotheses, P (Hi), are known, the Bayesian detection framework

can be employed. In this framework, the Bayes detection risk, r(φ), is the main objective, which is defined

as the average of the conditional risks as follows:

r(φ) = P (H0)
1∑
j=0

Cj0P0(Ĥj) + P (H1)
1∑
j=0

Cj1P1(Ĥj) (13)

where Cji is the cost of choosing Hj (i.e., the decision is Ĥj) when Hi is the true hypothesis, and∑1
j=0CjiPi(Ĥj) is the conditional risk when hypothesis Hi is true [38].

Determining the values of the costs Cji generally depends on the application. As a reasonable choice,

Cji can be set to zero when j = i and to one when j 6= i, which is called uniform cost assignment (UCA)

[38]. In that case, the Bayes detection risk is calculated as

r(φ) = P (H0)P0(Ĥ1) + P (H1)P1(Ĥ0) . (14)

Based on the expressions in (9) and (10), (14) can be stated as

r(φ) = P (H0)E{T (n)}+ P (H1)(1− E{R(n)})

= P (H1) + E {P (H0)T (n)−P (H1)R(n)} .
(15)

Since the prior probabilities of the hypotheses are known, the overall Bayes estimation risk function

given in (6) can be evaluated in this case. As discussed previously, under H0, parameter Θ is assumed to
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have a deterministic value, which is equal to θ0. If the decision is Ĥ1, the estimate θ̂(y) is produced for

given observation y. If the decision is Ĥ0, the trivial estimation result is θ0. Notice that if the decision

is correct when the true hypothesis is H0, the conditional estimation risk for this case is equal to zero.

With this remark, the Bayes estimation risk in (6) becomes

r(θ̂) = P (H0)P0(Ĥ1)E{C(Θ, θ̂(Y )|H0, Ĥ1}

+ P (H1)
(
P1(Ĥ0)E{C(Θ, θ̂(Y )|H1, Ĥ0}+ P1(Ĥ1)E{C(Θ, θ̂(Y )|H1, Ĥ1}

) (16)

Similar to (7) and (8), (16) can be calculated as

r(θ̂) =

∫
RK

fN(n)

[
P (H0)

∫
RK

C(θ0, θ̂(y))φ(y)fX0 (y − n) dy

+ P (H1)

(∫
Λ

∫
RK

C(θ,θ0)(1−φ(y))fX1 (y − n|θ)π(θ) dy dθ

+

∫
Λ

∫
RK

C(θ, θ̂(y))φ(y)fX1 (y − n|θ)π(θ) dy dθ

)]
dn .

(17)

With the introduction of new auxiliary functions G01(n) and G10(n), in addition to G11(n) in (11), the

Bayes estimation risk in (17) can be expressed as

r(θ̂) = E
{
P (H0)G01(n) + P (H1)

[
G11(n) +G10(n)

]}
(18)

where

G01(n) ,
∫
RK

C(θ0, θ̂(y))φ(y)fX0 (y−n) dy (19)

G10(n) ,
∫
Λ

∫
RK

C(θ,θ0)(1−φ(y))fX1 (y−n|θ)π(θ) dy dθ . (20)

In the Bayesian framework, the aim is the minimization of the Bayes estimation risk under a constraint

on the Bayes detection risk. The Bayes detection risk constraint for the noise modified system is specified

as the Bayes detection risk of the original system, which is P (H1) + P (H0)T (0) − P (H1)R(0). Then,
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the proposed optimization problem is given by

minimize
fN (n)

E
{
P (H0)G01(n) + P (H1)

[
G11(n) +G10(n)

]}
subject to E

{
P (H0)T (n)− P (H1)R(n)

}
≤ P (H0)T (0)− P (H1)R(0) .

(21)

III. OPTIMUM NOISE DISTRIBUTIONS

The optimization problems in (12) and (21) require searches over all possible probability density

functions (PDFs). These complex problems can be simplified by specifying the structure of the optimum

noise probability distribution. Similar approaches are employed in various studies related to noise enhanced

detection such as [15], which utilizes Caratheodory’s theorem for noise enhanced binary hypothesis testing

problems. It is proved that the optimum additive noise is characterized by a probability mass function

(PMF) with at most two point masses under certain conditions in the binary hypothesis testing problem,

where the objective function is the detection probability and the constraint function is the false alarm

probability [15]. Using the primal-dual concept, [23] reaches PMFs with at most two point masses

under certain conditions for binary hypothesis testing problems. In [29] and [25], the proof given in

[15] is extended to hypothesis testing problems with (M − 1) constraint functions and the optimum noise

distribution is found to have M point masses.

In this study, the objective function is the Bayes estimation risk in both of the proposed optimization

problems in (12) and (21), and the constraint functions are defined in terms of the probability of detection

and the probability of false alarm. The structures of the proposed problems are similar to those in [15],

[23], [25], [29]. The same principles can be applied to both of the optimization problems in (12) and (21)

and the optimum noise distribution structure can be specified under certain conditions as follows:

Theorem 3.1: Define set Z as Z = {z = (z0, z1, ..., zK−1) : zi ∈ [ai, bi], i = 1, 2, ...K}, where ai

and bi are finite numbers, and define set U as U = {u = (u0, u1, u2) : u0 = R(n), u1 = T (n), u2 =

G11(n), for n ∈ Z}. Assume that the support set of the additive noise random variable is set Z. If U is

a compact set in RK , the optimal solution of (12) can be represented by a discrete probability distribution

with at most three point masses; that is,

fNopt(n) =
3∑
i=1

κi δ(n− ni) . (22)
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Proof: U is the set of all possible detection probability, false alarm probability and conditional

estimation risk triples for a given additive noise value n, where n ∈ Z. By the assumption in the

theorem; U is a compact set; hence, it is a closed and bounded set. (A subset of RK is a closed and

bounded set if and only if it is a compact set by Heine-Borel theorem.) Define set V as the convex hull

of set U , and define W as the set of all possible values of E{R(n)}, E{T (n)} and E{G11(n)} triples

as follows:

W = {(w0, w1, w2) : w0 = E{R(n)}, w1 = E{T (n)}, w2 = E{G11(n)}; ∀fN(n), n ∈ Z}. (23)

It is already shown in the literature that set W and set V are equal [39]; that is, W = V . By the corollary

of Carathéodory’s theorem, V is also a compact set [40]. Due to the structure of the minimization problem

in (12), the optimal solution must lie on the boundary of W ; equivalently, V [15], [23], [25], [29]. Then,

from Carathéodory’s theorem [40], it can be concluded that any point on the boundary of V can be

expressed as the convex combination of at most three different points in U . The convex combination of

three elements of U is equivalent to an expectation operation over additive noise N , where its distribution

is a probability mass function with three point masses.

The same approach can be adopted to obtain the optimal solution of the problem (21) and it is stated

without a proof. Define U as the set of all possible Bayes detection risk (14) and Bayes estimation risk (18)

pairs for a given additive noise value n ∈ Z, where Z is Z = {z = (z0, z1, ..., zK−1) : zi ∈ [ai, bi], i =

1, 2, ...K}, with ai and bi being finite numbers. Assume that the support set of the additive noise random

variable is set Z. If U is a compact set in RK , the optimal solution of the (21) is given by a probability

mass function with at most two point masses; that is,

fNopt(n) =
2∑
i=1

κi δ(n− ni) . (24)

The results in Theorem 3.1 and (24) state that when additive noise values are confined to some finite

intervals (which always holds for practical systems), the optimal additive noise can be represented by a

discrete random variable with three (two) point masses in the NP (Bayesian) detection framework. Then,

from (22) and (24), the optimization problems in (12) and (21) can be restated as follows:
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For the NP detection framework:

minimize
κ1,κ2,κ3,n1,n2,n3

∑3
i=1 κiG11(ni)∑3
i=1 κiR(ni)

(25)

subject to
3∑
i=1

κiT (ni) ≤ T (0) ,
3∑
i=1

κiR(ni) ≥ R(0)

κ1, κ2, κ3 ≥ 0 and κ1 + κ2 + κ3 = 1 .

For the Bayes detection framework:

minimize
κ1,κ2,n1,n2

2∑
i=1

κi

[
P (H0)G01(ni) + P (H1)

[
G11(ni) +G10(ni)

]]
(26)

subject to
2∑
i=1

κi

[
P (H0)T (ni)− P (H1)R(ni)

]
≤ P (H0)T (0)− P (H1)R(0)

κ1, κ2 ≥ 0 and κ1 + κ2 = 1 .

Compared to the optimization problems in (12) and (21), which require searches over all possible PDFs,

the formulations in (25) and (26) provide significant reductions in the computational complexity. However,

the computational complexity of (25) and (26) can still be quite high in some cases since the problems

are not convex in general. (The non-convexity of (25) and (26) is mainly due to the generality of the

auxiliary functions, and the multiplication and division of functions involving the optimization variables.)

Hence, a practical approach is considered in the next section.

IV. LINEAR PROGRAMMING (LP) APPROACH

The characteristics of the optimization problems in (25) and (26) are related to the given joint detection

and estimation mechanism and the statistics of observation signal X and parameter Θ. The problems may

not be convex in general. Therefore, the application of global optimization techniques can be necessary

to obtain the solutions [41], [42]. As an alternative method, the optimization problems in (12) and (21)

can be approximated as linear programming (LP) problems. LP problems are a special case of convex

problems and they have lower computational load (solvable in polynomial time) than the possible global

optimization techniques [43].

In order to achieve the LP approximation of the problem in (12), the support of the additive noise is
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restricted to a finite set S = {n1,n2, · · · ,nM}. In real life applications, it is not possible to generate an

additive noise component which can take infinitely many different values in an interval; hence, it is a

reasonable assumption that additive noise component can only have finite precision. With this approach,

the possible values of R(n), T (n) and G11(n) can be expressed as M dimensional column vectors and

the expectation operation reduces to a convex combination of the elements of these column vectors with

weights λ1, λ2, · · ·λM . The optimal values of the LP approximated problems are worse than or equal to

the optimal values of the original optimization problems in (12) and (21) (equivalently, in (25) and (26)),

and the gap between these results is dependent upon the number of noise samples, which is denoted by

M in this formulation. For notational convenience, the following column vectors are defined:

tᵀ =[T (n1) T (n2) · · · T (nM)]

rᵀ =[R(n1) R(n2) · · · R(nM)]

gᵀ =[G11(n1) G11(n2) · · ·G11(nM)]

Then, the optimization problem in (12), which considers the minimization of the conditional Bayes

estimation risk, can be approximated as the following linear fractional programming (LFP) problem:

minimize
λ

gᵀλ

rᵀλ

subject to rᵀλ ≥ R(0)

tᵀλ ≤ T (0)

1ᵀλ = 1

λ � 0 .

(27)

An example of transformation from an LFP problem to an LP problem is presented in [43]. The same

approach can be adopted to obtain an LP problem as explained in the following. The optimization variable

l in the LP problem, to be employed in (29), is expressed as

l =
λ

rᵀλ
· (28)

Notice that r and λ have non-negative components, and rᵀλ represents the detection probability of the

noise modified mechanism. Therefore, it can be assumed that rᵀλ is positive valued and less than or equal
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to 1. With this assumption, it is straightforward to prove the equivalence of the LP and LFP problems

by showing that if λ is feasible in (27), then l is also feasible in (29) with the same objective value, and

vice versa. Hence, the following problem is obtained:

minimize
l

gᵀl

subject to tᵀl ≤ T (0)(1T l)

1ᵀl ≤ 1/R(0)

rᵀl = 1

l � 0 .

(29)

The LP approximation of the optimization problem (21) is also obtained by limiting the possible additive

noise values to a finite set S′ = {n1,n2, · · · ,nM ′}. With that restriction, the LP problem is given by

minimize
λ

qᵀλ

subject to pᵀλ ≤ P (H0)T (0)− P (H1)R(0)

1ᵀλ = 1

λ � 0 .

(30)

where

pᵀ = [p1 p2 · · · pM ′ ] , pi = P (H0)T (ni)− P (H1)R(ni)

qᵀ = [q1 q2 · · · qM ′ ] , qi = P (H0)G01(ni) + P (H1)
[
G11(ni) +G10(ni)

]
.

Compared to (25) and (26), the problems in (29) and (30) can have significantly lower computational

complexity in general since they are in the form of linear programs. In addition, as the number of possible

noise values increases (i.e., as M or M ′ increases), the solution obtained from the LP approach gets closer

to the optimal solution. Therefore, the LP approach can be more preferable in practical applications.

V. IMPROVABILITY AND NON-IMPROVABILITY CONDITIONS

Before attempting to solve the optimization problems in (25) and (26), or the LP problems in (29)

and (30), it is worthwhile to investigate the improvability of the given system via additive noise. The
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joint detection and estimation system in the NP framework is called improvable if there exists a PDF

fN(n) for the additive noise N such that J(φ, θ̂) < G11(0)/R(0), P1(Ĥ1) ≥ R(0) and P0(Ĥ1) ≤ T (0),

and non-improvable if there does not exist such a PDF (cf. (9)-(12)). Similarly, the joint system in

the Bayes detection framework is called improvable if there exists a PDF fN(n) such that r(θ̂) <

P (H0)G01(0) + P (H1)[G11(0) + G10(0)] and r(φ) ≤ P (H0)T (0) − P (H1)R(0), and non-improvable

otherwise (cf. (15), (18), and (21)). Improvable and non-improvable joint detection and estimation systems

under the LP approximation can also be defined in a similar fashion for both detection frameworks.

In the following, necessary and sufficient conditions are presented for the non-improvability (improb-

ability) of given detection and estimation systems under the NP and Bayesian detection frameworks for

the LP formulations.

Theorem 5.1: Consider the LFP problem in (27), where the aim is to optimize the system performance

in the NP detection framework via additive noise, which is restricted to a finite set S = {n1,n2, · · · ,nM}.

Then, the joint detection and estimation system is non-improvable if and only if there exist γ1, γ2, ν ∈ R,

with γ1, γ2 ≥ 0, and ν ≤ −[G11(0) + γ2]/R(0), that satisfy the following set of inequalities:

G11(ni) + γ1(T (ni)− T (0)) + γ2 + νR(ni) ≥ 0 , ∀i ∈ {1, 2, · · · ,M} . (31)

Proof: In equation (29), the equivalent LP problem of the LFP problem in (27) is given. The dual

problem of the LP problem is found as the following:

maximize
ν,γ1,γ2,u

− ν − γ2/R(0)

subject to G11(ni) + γ1(T (ni)− T (0)) + γ2 + νR(ni) = ui, ∀i ∈ {1, 2, · · · ,M}

γ1, γ2, u1, u2, · · · , uM ≥ 0

(32)

where uᵀ = [u1 u2 · · · uM ]. Let P and D be the feasible sets of the primal (27) and dual (32) problems,

respectively. The objective functions of the primal and dual problems are denoted respectively as fPobj(p)

and fDobj(d), where p ∈ P and d ∈ D. Also, p∗ and d∗ represent the optimal solutions of the primal and

dual problems, respectively. By the strong duality property of the LP problems, p∗ = d∗ [43].

Sufficient condition for non-improvability: Assume that ∃ γ1, γ2, ν ∈ R, u ∈ RK such that γ1, γ2 ≥

0, u � 0, ν ≤ −[G11(0) + γ2]/R(0), and γ1, γ2, ν,u satisfy the following set of equations: G11(ni) +
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γ1(T (ni)− T (0)) + γ2 + νR(ni) = ui ≥ 0, ∀i ∈ {1, 2, · · · ,M}. These variables describe an element of

the dual feasible set do = (γ1, γ2, ν,u) ∈ D. fDobj(d
o) = −ν−γ2/R(0) ≥ G11(0)/R(0) by the assumption.

This implies that G11(0)/R(0) ≤ fDobj(d
o) ≤ d∗ = p∗; hence, the conditional Bayes risk of the system in

the NP framework cannot be reduced from its original value.

Necessary condition for non-improvability: To prove the necessary condition, it is equivalent to show

that the system performance can be improved if ∀ γ1, γ2, ν ∈ R, u ∈ RK such that γ1, γ2 ≥ 0, u � 0,

ν ≥ −[G11(0) + γ2]/R(0), the following set of equations are satisfied: G11(ni) + γ1(T (ni) − T (0)) +

γ2 + νR(ni) = ui ≥ 0, ∀i ∈ {1, 2, · · · ,M}. Observe that γ2 or ν can always be picked arbitrarily large

to satisfy the equality constraints given in (32), since 1 ≥ R(ni) ≥ 0, 1 ≥ T (ni) ≥ 0 and G11(ni) ≥ 0.

Therefore, the feasible set of the dual problem cannot be empty, i.e., D 6= ∅. Notice that the assumption

implies ∀d ∈ D, fDobj(d) < G11(0)/R(0). For this reason and with the strong duality property it can be

asserted that d∗ = p∗ < G11(0)/R(0) since d∗ = fDobj(d
opt), dopt ∈ D.

Theorem 5.2: Consider the LP problem in (30), where the aim is to optimize the system perfor-

mance in the Bayes detection framework via additive noise, which is restricted to a finite set S′ =

{n1,n2, · · · ,nM ′}. Then, the joint detection and estimation system is non-improvable if and only if there

exist γ, ν ∈ R with γ ≥ 0 that satisfy the following set of inequalities:

P (H0)
[
γT (0) +G01(0)

]
+ P (H1)

[
G11(0) +G10(0)− γR(0)

]
+ ν ≤ 0 (33)

P (H0)
[
γT (ni) +G01(ni)

]
+ P (H1)

[
G11(ni) +G10(ni)− γR(ni)

]
+ ν ≥ 0 (34)

∀i ∈ {1, 2, · · · ,M ′}. Note that if 0 ∈ S′ = {n1,n2, · · · ,nM ′}, then the inequality in (33) must be

satisfied with equality. With this, the necessary and sufficient conditions in (33) and (34) are expressed as

P (H1)
[
G11(ni) +G10(ni)− γR(ni)−G11(0)−G10(0) + γR(0)

]
+ P (H0)

[
G01(ni) + γT (ni)−G01(0)− γT (0)

]
≥ 0 . (35)

The proof of Theorem 5.2 is not presented since it can be obtained based on an approach similar

to that employed in the proof of Theorem 5.1. It should be emphasized that the conditions in these

theorems specify whether the system can be improved via additive noise or not. In other words, they are
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both improvability and non-improvability conditions: If the conditions in the theorems are satisfied, the

system is non-improvable (performance cannot be enhanced via additive noise); otherwise, the system is

improvable (performance can be enhanced via additive noise).

Notice that the LP approach is based on sampling the objective and constraint functions. Therefore, the

presented sufficient and necessary conditions in Theorems 5.1 and 5.2 demonstrate the convex geometry

of the optimization problems in (12) and (21). For similar problem formulations, different necessary or

sufficient improvability or nonimprovability conditions are stated in the literature [15], [23]–[25], [28]. In

[28], firstly, a necessary and sufficient condition is presented for a similar single inequality constrained

problem with a continuous support set. It should be noted that (21) is a single inequality constrained

problem and its necessary and sufficient non-improvability condition for the LP approach in (35) share

the same structure with the inequality (10) in [28] under a certain condition. Theorem 5.1 extends this

result to the problems with multiple inequality constraints and finite noise random variable support set

from a completely different perspective. The merit of this approach, which is presented in the proof of

Theorem 5.1, is that it is generic and can easily be adapted to different problems. In this study, the main

focus is on the justification of the LP approach for noise enhancement problems in joint detection and

estimation systems. A natural extension of Theorem 5.1 which is the formulation for a continuous support

set is omitted.

VI. ANALYSIS OF A GIVEN JOINT DETECTION ESTIMATION SYSTEM

In this section, a binary hypothesis testing example is analyzed to demonstrate the noise enhancement

effects on the described joint detection and estimation system.

The hypothesis testing problem is specified as follows:

H0 : X = ε

H1 : X = ε+ Θ (36)

where X is the observation with X = [X1 X2 · · · XK ]ᵀ, Θ is the parameter with Θ = Θ 1 (1 =

[1 1 · · · 1]ᵀ), and ε = [ε1 ε2 · · · εK ]ᵀ is the system noise. In the example, Θ is taken to be Gaussian

distributed random variable and its value is to be estimated. Also, εk’s are identically and independent dis-
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tributed according to a known Gaussian mixture distribution. It is assumed that both of these distributions

are known.

More specifically, the parameter Θ is taken as Gaussian distributed with Θ ∼ N (a, b2); that is,

π(θ) =
1√

2πb2
exp

{
− (θ − a)2

2b2

}
. (37)

In addition, the components of the system noise ε are identical, independent and Gaussian mixture

distributed as follows:

fεk(ε) =
Nm∑
i=1

νi√
2πσ2

exp

{
− (ε− µi)2

2σ2

}
(38)

Notice that each element of the Gaussian mixture has different mean µi and weight νi with the same

standard deviation σ. The mixture background noise is encountered in a variety of contexts [44] (and

references therein) such as co-channel interference [45], ultra-wideband synthetic aperture radar (UWB

SAR) imaging [46], and underwater noise modeling [47]. The standard deviation values are taken to be

equal for all the mixture components just to simplify the analytical evaluation of this problem for K > 1.

The standard deviation values can also be taken to be different for each mixture component.

Noise N is added to observation X as shown in Fig. 1 for the purpose of noise enhancement, and

the noise modified observation Y is obtained as in (1). The decision rule is a threshold detector, and it

outputs the probability of deciding in favor of H1 as follows:

φ(y) =


1 if 1

K

∑K
i=1 yi > τPF

0 if 1
K

∑K
i=1 yi ≤ τPF

(39)

where the subscript PF is used for the threshold τ to emphasize that threshold τPF is determined according

to the predetermined probability of false alarm. The decision rule in (39) is a simple and reasonable one

which compares the sample mean of the observations against the threshold. In addition, the estimation
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cost function in (5) is a uniform cost function specified by

C(θ, θ̂(y)) =


1 , if |θ̂(y)− θ| > 4

0 , otherwise
(40)

where 4 > 0 is the threshold of the uniform cost function [38]. More specifically, according to this cost

function, estimation errors up to 4 are tolerable and they incur no cost, whereas estimation errors higher

than 4 are associated with a unit cost. For the estimator in Fig. 1, a sample mean estimator is considered,

which is expressed as

θ̂(y) =
1

K

K∑
i=1

yi . (41)

Notice that the considered detector and estimator structures are not optimal due to the presence of

Gaussian mixture noise ε. However, they are practical ones with low-computational complexity. The

optimal detector and estimator in [37] would have significantly higher computational complexity for the

considered scenario with Gaussian mixture noise. Therefore, the aim is to employ the low-complexity

structures in (39) and (41) and to improve their performance via additive noise.

A. Scalar Case, K = 1

In this case, functions T (n), R(n), G11(n), G01(n), and G10(n) defined respectively in (9), (10), (11),

(19), and (20) are derived as follows:2

T (n) =
Nm∑
i=1

νi Q

(
τPF − µi − n

σi

)
(42)

R(n) =
Nm∑
i=1

νi Q

(
τPF − µi − a− n√

σ2
i + b2

)
(43)

2The details of the derivations are not presented.
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G11(n) =
Nm∑
i=1

νi

(
Q
(τPF − µi − n− a√

b2 + σ2
i

)
−

τPF +4∫
τPF−4

π(θ) Q
(τPF − µi − n− θ

σi

)
dθ

+ Q
(4− µi − n

σi

)
Q
(τPF −4− a

b

)
+ Q

(−4− µi − n
σi

)
Q
(τPF +4− a

b

) )
(44)

G01(n) =



∑Nm

i=1 νi Q
(
τPF−µi−n

σi

)
, if τPF > 4∑Nm

i=1 νi Q
(4−µi−n

σi

)
, if 4 ≥ τPF > −4∑Nm

i=1 νi

(
Q
(
τPF−µi−n

σi

)
+ Q

(4−µi−n
σi

)
−Q

(−4−µi−n
σi

))
, if −4 ≥ τPF

(45)

G10(n) =
Nm∑
i=1

νi

(
Φ
(τPF − µi − n− a√

b2 + σ2
i

)
−

4∫
−4

π(θ) Φ
(τPF − µi − n− θ

σi

)
dθ

)
(46)

where Q(·) and Φ(·) are respectively the tail probability function and the cumulative distribution function

of the standard Gaussian random variable.

B. Vector Case, K > 1

To evaluate the performance of this system (with and without noise enhancement), the statistics of

1
K

∑K
i=1 xi need to be revealed. Additive noise and noise modified observation are represented as N =

[N1 N2 · · · NK ]ᵀ and Y = [Y1 Y2 · · · YK ]ᵀ. Denote 1
K

∑K
i=1Ni with Ñ and 1

K

∑K
i=1 εi with ε̃K . Under

H1 and with additive noise, this vector joint detection and estimation problem can be reexpressed as a

scalar problem as follows:

Under H1 :
1

K

K∑
i=1

Yi =
1

K

K∑
i=1

(Θ +Ni + εi) = Θ + Ñ + ε̃K . (47)

It can be shown that ε̃ has the following Gaussian mixture distribution [48]:

fε̃K (ε) =
Ñm∑
j=1

ν̃i√
2πσ̃2

exp

{
−(ε− µ̃i)2

2σ̃2

}
, (48)

where

Ñm =

(
K +Nm − 1

Nm − 1

)
, σ̃2 =

σ2

K
, ν̃j =

(
K!

l1! l2! · · · lNm !

)(
Nm∏
i=1

νlii

)
, µ̃j =

1

K

Nm∑
i=1

µili

for each distinct {l1, l2, · · · , lNm} set satisfying l1 + l2 + · · · + lNm = K, li ∈ {1, 2, · · · , K}, i ∈



31

{1, 2, · · · , Nm}. With this result, the vector case reduces to the scalar case. The derived expressions

in the K = 1 case for function T (n), R(n), G11(n), G10(n), and G01(n) (see (42)-(46)) do also apply

to the K > 1 case, where the only necessary modification is the usage of new mean µ̃j , weight ν̃j , and

standard deviation σ̃ values. With this approach, the optimal statistics for the design of random variable

Ñ is revealed. The mapping from Ñ to N is left to the designer. A very straightforward choice can be

N = [ÑK 0 · · · 0]ᵀ.

In this joint detection and estimation problem, the components of the system noise ε are independent

and identically distributed Gaussian mixture random variables. A similar analysis can also be carried out

for a system noise with components being generalized Gaussian distributed. However, in general, it is

not possible to express the density of the sum of the independent and identically distributed generalized

Gaussian random variables with an exact analytical expression. The distribution of the sum is not gen-

eralized Gaussian (only exception is the Gaussian distribution) [49]. However, functions T , R, G11, G10,

and G01 can be evaluated numerically and the LP approximation can be applied.

C. Asymptotic Behaviour of the System, Large K Values

As K goes to infinity (K →∞), by Lindeberg Lévy Central Limit Theorem,
√
K
((

1
K

∑K
i=1 εi

)
−µε

)
converges in distribution to a Gaussian random variable N (0, σ2

ε ) given that {ε1, ε2, · · · , εK} is a sequence

of independent and identically distributed random variables with E{εi} = µε, Var{εi} = σ2
ε < ∞. This

general result applies to the analysis of the given joint detection and estimation problem in this section.

For large K values, the probability density function of ε̃K = 1
K

∑K
i=1 εi can be approximated by the

distribution of a Gaussian random variable N (µε, σ
2
ε/K).

VII. NUMERICAL RESULTS FOR THE JOINT DETECTION AND ESTIMATION SYSTEM

For the numerical examples, the joint detection and estimation system in Section VI is considered, and

the parameter values are set as follows: For each element εk of the Gaussian mixture noise specified by

the PDF in (38), the weights and the means of the Gaussian components are set to ν = [0.40 0.15 0.45]

and µ = [5.25 −0.5 −4.5], respectively. Also, the standard deviation of the mixture components, denoted

by σ in (38), is considered as a variable to evaluate the performance of noise enhancement for various
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signal-to-noise ratio (SNR) values. The decision rule is as specified in (39), where τPF is set in such a

way that the probability of false alarm of the given system is equal to 0.15 for all standard deviation

values. Regarding the prior PDF of the unknown parameter in (37), the mean parameter a is set to 4.5

and the standard deviation b is equal to 1.25. It can be shown that the estimator in (41) is unbiased for the

considered scenario in the absence of additive noise. In addition, for the uniform estimation cost function

in (40), parameter 4 is taken as 0.75. Furthermore, the support of the additive noise is considered as

[−10, 10].

First, the NP detection framework is considered and the optimal additive noise distributions are obtained

from (25) for the exact (global) solution, and from (29) for the LP based solution. The conditional

estimation risks are plotted versus σ in Fig. 2 for K = 1 and in Fig. 3 for K = 4, in the absence of

(original) and in the presence of additive noise. It is observed that the performance improvement via

additive noise is reduced as the standard deviation σ increases. In other words, the noise enhancement is

more significant in the high SNR region. The improvement is mainly caused by the multimodal nature

of the observation statistics and increasing the standard deviation σ reduces this effect. In both of the

figures, the performances of the LP approximations are also illustrated in comparison with the global

(exact) solution. In obtaining the LP based solutions, the additive noise samples are taken uniformly from

the support of the additive noise with the specified step size values in the figures. It is observed that the

LP based solution achieves improved performance as the step size decreases; i.e., as more additive noise

values are considered. It is also noted that the LP based approach achieves very close performance to the

global solution for reasonable step sizes. Another observation is that the conditional estimation risk is not

always monotone with respect to the standard deviation for the original system and the LP approach with

step size 0.5, which is mainly due to the suboptimality of the employed decision rule and the estimator

(see, e.g., [15] and [29] for similar observations). As it is clear from Fig. 2 and Fig. 3, the performance

of the given joint detection system is superior for K = 4 in comparison to the scalar case, K = 1. In

this numerical example, the vector case corresponds to taking more samples and an increase in the SNR.

Some numerical values of the conditional estimation risk, the detection probability, and the false alarm

probability of this noise enhanced system are presented in Table I, together with the original values in

the absence of additive noise. Also, the values of the detector threshold, τPF , are shown in the table. It
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is observed that the noise enhanced systems have the same detection and false alarm probabilities as the

original system (i.e., they satisfy the constraints in (25) and (29) with equality), and they achieve a lower

conditional estimation risk than the original system.

In Figs. 4–6 the solutions of the optimization problem in (25) are presented together with the solutions

of the LP problem in (29) for various step sizes, where the standard deviations for the components of

the Gaussian mixture system noise are equal to 0.3, 0.3, and 0.4, and K is set to 1, 4, and 4 for Fig. 4,

Fig. 5, and Fig. 6, respectively. In the figures, the locations and weights of the point masses are presented.

According to Theorem 3.1, the optimal solution of the optimization problem in (12) is a probability mass

function with at most three point masses as shown in the figures. It should also be emphasized that

Theorem 3.1 is valid only for the exact (global) solution; hence, the LP approach can in general have a

solution with more than three point masses although it is not the case in this specific example.

Next, for the same system noise PDF fεk(ε), the problem in the Bayes detection framework is studied

for P (H0) = 0.5 and τPF = a/2 (see (37)). The optimization problems in (26) and (30) are considered

for obtaining the exact (global) and LP based solutions. In Fig. 7 (K = 1) and Fig. 8 (K = 4), the

Bayes estimation risks are plotted versus the standard deviation in the absence (original) and presence of

additive noise, where both the global and LP based solutions are shown for noise enhancement. For the

LP based solution, various step sizes are considered. The behaviors of the curves are very similar to those

in the NP detection framework. In particular, the noise enhancement effects are again more significant in

the high SNR region, and the LP based approach gets very close to the global solution for reasonable

step sizes. Some numerical values of the Bayes estimation risk and the Bayes detection risk of both the

original and the noise enhanced systems are presented in Table II.

In practice, the step size for the LP based approach can be adapted as follows: Starting from a reasonably

large step size, the step size is decreased (say by a certain fraction) and the difference between the estimated

values is monitored. This operation of step size reduction can continue until the difference between

consecutive estimated values gets smaller than a certain threshold. (If there is a difference between the

decisions, i.e., selection of different hypotheses, then this is considered as a significant difference and the

step size reduction continues.)

As discussed in Section III, the optimal additive noise in the Bayes detection framework is specified
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by a probability mass function with one or two point masses. In Figs. 9–11 the optimal solutions of the

problem in (26) and the solutions of the LP problem in (30) are illustrated for K = 1 and σ = 0.5,

K = 4 and σ = 0.5, and K = 4 and σ = 0.75, respectively. It is observed from Fig. 9 and Fig. 10

that the optimal solution is a single point mass in the first two scenarios whereas it involves two point

masses in the third scenario (Fig. 11). Notice that the LP solution with step size 1 corresponds to a single

point mass at location 0 in the third scenario, which means that the LP solution becomes the same as the

original system that involves no additive noise. This observation can also be verified based on the results

in Table II.

VIII. CONCLUSION

In this study, noise benefits have been investigated for joint detection and estimation systems under

the NP and Bayesian detection frameworks and according to the Bayesian estimation criterion. It has

been shown that the optimal additive noise can be represented by a discrete random variable with three

and two point masses under the NP and Bayesian detection frameworks, respectively. Also, the proposed

optimization problems have been approximately modeled by LP problems and conditions under which the

performance of the system can or cannot be improved via additive noise have been derived. Numerical

examples have been presented to provide performance comparison between the noise enhanced system

and the original system and to support the theoretical analysis.
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X +

N

Y φ(·) Ĥ0/Ĥ1

θ̂(·) θ̂(Y )

Fig. 1: Joint detection and estimation scheme with noise enhancement: The only modification on the
original system is the introduction of the additive noise N .



39

0 0.5 1 1.5 2 2.5 3
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Standard Deviation

C
on

di
tio

na
l E

st
im

at
io

n 
R

is
k

 

 

Original
Global Solution
LP, Step Size=2
LP, Step Size=1
LP, Step Size=0.2

Fig. 2: Noise enhancement effects in the NP framework for K = 1.
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Fig. 3: Noise enhancement effects in the NP framework for K = 4.
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σ=0.3, K=1 τPF E{T (0)} E{R(0)} E{G11(0)}
E{R(0)} E{T (n)} E{R(n)} E{G11(n)}

E{R(n)}
LP (2.0) 5.3456 0.1500 0.4220 0.9533 0.1500 0.4220 0.9376
LP (1.0) 5.3456 0.1500 0.4220 0.9533 0.1500 0.4220 0.7796
LP (0.2) 5.3456 0.1500 0.4220 0.9533 0.1500 0.4220 0.7694
Opt. Sol. 5.3456 0.1500 0.4220 0.9533 0.1500 0.4220 0.7684

σ=0.3, K=4 τPF E{T (0)} E{R(0)} E{G11(0)}
E{R(0)} E{T (n)} E{R(n)} E{G11(n)}

E{R(n)}
LP (0.5) 2.7140 0.1500 0.7474 0.6890 0.1500 0.7474 0.6651
LP (0.2) 2.7140 0.1500 0.7474 0.6890 0.1500 0.7474 0.6522
LP (0.1) 2.7140 0.1500 0.7474 0.6890 0.1500 0.7474 0.6496
Opt. Sol. 2.7140 0.1500 0.7474 0.6890 0.1500 0.7474 0.6494

σ=0.4, K=4 τPF E{T (0)} E{R(0)} E{G11(0)}
E{R(0)} E{T (n)} E{R(n)} E{G11(n)}

E{R(n)}
LP (0.5) 2.6867 0.1500 0.7505 0.6889 0.1500 0.7505 0.6707
LP (0.2) 2.6867 0.1500 0.7505 0.6889 0.1500 0.7505 0.6584
LP (0.1) 2.6867 0.1500 0.7505 0.6889 0.1500 0.7505 0.6584
Opt. Sol. 2.6867 0.1500 0.7505 0.6889 0.1500 0.7505 0.6579

TABLE I: The conditional estimation risk, the detection probability, and the false alarm probability for
the original system (i.e., no additive noise), for the optimal solution of the problem in (25) and for the
solution of the LP problem in (29).
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Fig. 4: Optimal solutions of the problem in (25) and the solutions of the LP problem defined in (29) for
K = 1 and σ = 0.3.
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Fig. 5: Optimal solutions of the problem in (25) and the solutions of the LP problem defined in (29) for
K = 4 and σ = 0.3.
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Fig. 6: Optimal solutions of the problem in (25) and the solutions of the LP problem defined in (29) for
K = 4 and σ = 0.4.
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σ=0.5, K=1 r(φ), n = 0 r(θ̂), n = 0 r(φ) r(θ̂)
LP (1.0) 0.1959 0.4757 0.3266 0.4061
LP (0.5) 0.4216 0.6514 0.3057 0.3411
LP (0.2) 0.4216 0.6514 0.3057 0.3411
Opt. Sol. 0.4216 0.6514 0.3088 0.3333

σ=0.5, K=4 r(φ), n = 0 r(θ̂), n = 0 r(φ) r(θ̂)
LP (1.0) 0.1959 0.4757 0.1956 0.4076
LP (0.5) 0.1959 0.4757 0.1956 0.4076
LP (0.2) 0.1959 0.4757 0.1899 0.4015
Opt. Sol. 0.1959 0.4757 0.1906 0.4005

σ=0.75, K=4 r(φ), n = 0 r(θ̂), n = 0 r(φ) r(θ̂)
LP (1.0) 0.1933 0.4734 0.1933 0.4734
LP (0.5) 0.1933 0.4734 0.1933 0.4514
LP (0.2) 0.1933 0.4734 0.1933 0.4372
Opt. Sol. 0.1933 0.4734 0.1933 0.4357

TABLE II: The Bayes estimation risk and the Bayes detection risk for the original system (i.e., n = 0),
for the optimal solution of the problem in (26), and for the solution of the LP problem in (30).
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Fig. 9: Optimal solutions of the problem in (26) and the solutions of the LP problem in (30) for K = 1
and σ = 0.5.
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Fig. 10: Optimal solutions of the problem in (26) and the solutions of the LP problem in (30) for K = 4
and σ = 0.5.
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Fig. 11: Optimal solutions of the problem in (26) and the solutions of the LP problem in (30) for K = 4
and σ = 0.75.


