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Abstract— In this study, the optimal stochastic design of mul-
tiple parameters is investigated for an array of fixed estimators
both in the absence and presence of an average power constraint.
Two different performance criteria are considered: the total
Bayes risk criterion and the maximum Bayes risk criterion. It is
obtained that in the presence ofK parameters and the average
power constraint, the optimal stochastic parameter designresults
in randomization (time sharing) among at most two and(K+1)
different signals for the total Bayes risk and the maximum Bayes
risk criteria, respectively. The average transmitted signal powers
corresponding to the optimal parameter design approaches are
specified, and the characterization of the optimal approaches is
provided in various scenarios. In addition, sufficient conditions
are derived to specify when the stochastic parameter designor
the deterministic parameter design is optimal. Finally, numerical
examples are presented to investigate the theoretical results,
and to illustrate performance improvements achieved via the
proposed approaches.

Index Terms— Parameter estimation, stochastic parameter de-
sign, Bayes risk, multi-parameter, minimax.

I. I NTRODUCTION

In many parametric estimation problems, the aim is to de-
sign the optimal estimator for an unknown parameter based on
a given probability distribution of observations. The common
estimators employed in such problems can be categorized into
two groups based on the presence of prior information about
the parameter to be estimated. If there exists prior information
about the parameter, Bayesian estimators, such as the mini-
mum mean-absolute error (MMAE) estimator and the mini-
mum mean-squared error (MMSE) estimator, are commonly
used [1]. On the other hand, when there is no prior information
about the parameter, the minimum variance unbiased estimator
(MVUE) or the maximum likelihood estimator (MLE) can
be designed [2]. All these approaches involve the design of
an optimal estimator under certain constraints. In a recent
study, an alternative formulation is investigated by considering
the stochastic design of a parameter when the estimator is
fixed, where the aim is to improve the estimation performance
by optimally designing the transmitted signal (which can be
deterministic or stochastic) for each possible parameter value
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[3]. It is shown that the performance of a given estimator can
be enhanced by the optimal stochastic parameter design, which
involves randomization (time sharing) between at most two
different values for the signal transmitted for each parameter.

Randomization (time sharing) among different signal values
has been utilized in various frameworks to improve per-
formance of detection and estimation systems [4]-[17]. For
example, performance of some detectors can be enhanced
by the addition of a randomized noise component to the
input (observation) without modifying the detector structure
[4]-[10]. Such noise enhancement effects have been studied
according to various criteria such as Neyman-Pearson (NP)
[4], [5], Bayes [7], minimax [8], and restricted Bayes [9]. As
another application of randomization, transmitting randomized
signals for each information symbol can reduce the error prob-
ability of an average power constrained digital communication
system in the presence of non-Gaussian noise [11], [12]. It is
shown in [11] that the optimal strategy is to perform ran-
domization (time sharing) among no more than three different
transmitted signal values for each information symbol under
second and fourth moment constraints. Randomization (time
sharing) can be also utilized in jammer systems for improved
jamming performance [18]-[20]. In [18], it is proved that a
weak jammer employs on-off time sharing to maximize the
average probability of error for a receiver operating in the
presence of symmetric unimodal noise. On the other hand,
for an average power constrained jammer that operates over
an arbitrary additive noise channel, the detection probability of
an instantaneously and fully adaptive receiver that employs the
NP criterion is minimized via randomization between at most
two different power levels [20]. In an estimation framework,
benefits of randomization are observed in the context of noise
enhanced estimation in [17], which proves that performance
of some suboptimal estimators can be improved by adding
randomized ‘noise’ to the observations before the estimation
process.

In some estimation problems, the optimal estimator can be
very complicated, and its implementation can be quite costly.
In such scenarios, it can be reasonable to employ a suboptimal
estimator with a low complexity, and try to employ alternative
approaches for improving the performance of that suboptimal
estimator. In [3], the optimal stochastic design of a single
parameter is proposed in order to optimize the performance of
a given (suboptimal) estimator. (Please see Section II of [3] for
motivation and examples for stochastic parameter design.)It is
shown that the Bayes risk of a given estimator can be reduced
by performing randomization between at most two different
signal levels for each parameter. In this manuscript, the aim
is to propose a framework for the optimal stochastic design
of multiple parameters. In this way, the approach in [3] for
the single parameter case is extended to the multi-parameter
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scenario in which there exist multiple parameters (each can
be a scalar or a vector) and corresponding fixed estimators.
That is, the optimal stochastic design of multiple parameters
is performed in order to optimize the performance of an array
of fixed estimators. It should be emphasized that the difference
of the multi-parameter case investigated in this study fromthe
single parameter case investigated in [3] is not only related
to the number of parameters. The proposed multi-parameter
formulation in this study also takes into account the possible
interference among parameter related signals (cf. Fig. 1).In
addition, two different performance criteria, the total Bayes
risk and the maximum Bayes risk, are considered, and the
probability distributions of the transmitted signals are specified
for the optimal stochastic parameter design approaches. Fur-
thermore, the average transmitted signal powers corresponding
to the optimal parameter design approaches are determined,
and the characterization of the optimal approaches is provided
for various scenarios. Also, sufficient conditions are derived to
specify when the stochastic parameter design or the determin-
istic parameter design (which involves no randomization) is
optimal. Numerical examples are presented to investigate the
theoretical results, and to illustrate performance improvements
obtained via the proposed approaches.

The main contributions of this study can be summarized as
follows:

• The optimal stochastic design of multiple parameters for
improving the performance of a set of given estimators
is studied for the first time.

• Both the total Bayes risk and the maximum Bayes risk
criteria are considered, and it is shown that the optimal
solution involves randomization between/among at most
2 and (K + 1) different signals for the total Bayes risk
and the maximum Bayes risk criteria, respectively, under
an average power constraint, whereK is the number of
parameters.

• For the total Bayes risk criterion, it is shown that when
the optimal solution involves randomization between two
different signals, the average transmitted power is always
equal to the average power limit. Based on this result,
a low complexity approach for obtaining the optimal
solution is proposed.

• For the maximum Bayes risk criterion, a simple condition
is derived in order to specify scenarios in which the
optimal solution involves randomization between at most
two different signals.

• Optimality conditions are derived to specify cases in
which the stochastic parameter design or the deterministic
parameter design is optimal.

A. Motivation

The main motivation behind the stochastic parameter design
is to improve performance of a given (fixed) estimator at
the receiver by performing optimal mapping (which can be
stochastic in general) of parameter values at the transmitter
[3]. This is especially useful when the optimal estimator is
costly and a suboptimal estimator is employed at the receiver.
In such cases, the stochastic parameter design provides a
way of improving the accuracy of parameter estimation. In
addition to the arguments provided in Section II of [3] for the
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Fig. 1. System model forK = 2. DevicesA1 andA2 transmit stochastic
signalssθ1

and sθ2
for each value of parametersθ1 and θ2, respectively.

DevicesB1 andB2 estimateθ1 andθ2 based on the noise and interference
corrupted version ofsθ1

and sθ2
, respectively.

stochastic design of a single parameter, additional motivations
can also be provided for the multi-parameter case. Estimation
of multiple parameters naturally arises in multiuser systems
in which multiple devices send parameter related signals to
multiple intended devices. For example, a wireless sensor
network with multiple users, in which each user (Devices
A1 and A2 in Fig. 1) aims to send a parameter value
(such as temperature or pressure) to a corresponding device
(DevicesB1 and B2 in Fig. 1), can be considered. Since
communications occur in the same environment, interference
can also be observed at each receiving device, as shown
in Fig. 1. In particular, when code division multiple access
(CDMA) is employed, each user transmits its parameters via
a waveform that depends on a specific spreading code for
orthogonalization purposes.1 However, in practical scenarios,
waveforms of different users cannot be perfectly orthogonal
(due to effects such as propagation delay) and some non-zero
cross-correlations exist, which leads to multiuser interference
[21]. Hence, the interference is determined by the cross-
correlation properties of the employed spreading sequences
in the system (cf. (1)). In addition, transmitters can obtain
the knowledge of the probability distributions of the noisevia
feedback. Then, stochastic parameter design can be performed,
and performance of the estimators at the receivers can be
optimized.

B. Organization

The remainder of the manuscript is organized as follows:
In Section II, the problem formulation is introduced and the
optimal randomization strategies are obtained. In SectionIII,
some properties of the optimal stochastic parameter design
approaches are discussed. Sufficient conditions are derived in
Section IV in order to specify when the stochastic parameter
design or the deterministic parameter design is optimal. After
the numerical examples in Section V, concluding remarks are
made in Section VI.

1Note that the model in (1) provides an abstraction for all theoperations in
the system such as quantizer, encoder/decoder, modulator/demodulator, and
additive noise channel [3].
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II. STOCHASTIC DESIGN FORMULTI -PARAMETER

ESTIMATION

In this section, we establish a framework for the stochastic
design of multiple parameters for a given set of fixed esti-
mators. Consider a parameter estimation scenario in which
there existK parameters denoted byθ1, . . . , θK , where each
parameter resides inRM . Information about parameterθi

is transmitted by deviceAi, which can transmit any signal
sθi

∈ R
M related toθi, wherei ∈ {1, . . . ,K}. The trans-

mitted signalsθi
is corrupted by both additive noise and the

interference from other transmitted signals, and deviceBi tries
to estimate the unknown parameterθi based on the noise and
interference corrupted signal. An example system is depicted
in Fig. 1 for K = 2. It should be emphasized that parameter
θi is not necessarily transmitted as it is; instead, deviceAi can
transmit any function ofθi, saysθi

. In addition, functionsθi

can be of any type; it can be a deterministic function ofθi,
or it can be a stochastic function. The aim of this study is to
find the optimalsθi

, i.e., the optimal probability distribution
of sθi

, for eachθi.
It is noted that the difference between the single parameter

case studied in [3] and the multi-parameter case investigated
in this manuscript is not only related to the number of
parameters. The proposed multi-parameter formulation in this
study also takes into account the possible interference among
the parameter related signals, as shown by the dashed cross
lines in Fig. 1. ConsideringK parameters, the received signal
(observation) at deviceBi can be expressed as

yi = sθi
+

K
∑

j=1

j 6=i

ρij sθj
+ ni (1)

for i ∈ {1, ...,K}, where ρij is the multiplier that is set
according to the interference between the parameter related
signals for theith andj th parameters2, andni represents the
channel noise, which has a probability density function (PDF)
denoted bypni

(·). Each deviceBi tries to estimateθi based on
the corresponding observationyi in (1). It is assumed that the
devices employ fixed estimators specified byθ̂i(yi) in order to
estimateθi. Let θ denote the overall parameter vector, which
is defined asθ ,

[

θ
T
1 · · · θT

K

]T
. The prior distribution ofθ

is represented byw(θ), and the parameter space in whichθ
resides is denoted byΛ. It should be emphasized thatsθi

(sθj
)

in (1) can be any function ofθi (θj).
The aim is to obtain the optimal probability distributions

of sθ for each θ ∈ Λ in order to minimize a function
of the Bayes risk for the given estimators, wheresθ ,
[

sT
θ1

· · · sT
θK

]T
. Since the parameters can interfere with each

other, the optimization cannot be performed independently
for each parameter in general; therefore, a joint optimization
should be performed.

A. Unconstrained Optimization

In this section, the optimal stochastic parameter design

2For the example of a CDMA system as in Section I-A, theρij terms in
(1) can be determined by the cross-correlation properties of the employed
spreading sequences in the system.

problem is formulated without any constraints as [3]

{popt
sθ

, θ ∈ Λ} = arg min
{ps

θ
, θ∈Λ}

r(θ̂) (2)

where {psθ , θ ∈ Λ} represents the set of PDFs forsθ for
all possible values of parameterθ, andr(θ̂) is the objective
function for the overall system. For the single parameter case,
the Bayes risk of the estimator was a natural choice for this
objective function [3]. On the other hand, it is possible to
consider various risk functions for the multi-parameter case. In
this section, two different objective functions are considered.
The first one is the sum of the Bayes risks of theK estimators
in the system (called thetotal Bayes risk), and the second one
is the maximum of the Bayes risks of the estimators (called the
maximum Bayes risk). For both of these objective functions,
the Bayes risk of each estimator should be calculated first. For
the two parameter case, the Bayes risk of the first estimator
is expressed as

r(θ̂1) =

∫

Λ1

w(θ1)

∫

psθ(x)

∫

C[θ̂(y1), θ1]

× pn1
(y1 − x1 − ρ12x2) dy1 dx dθ1 (3)

where C[θ̂(y1), θ1] denotes the cost of estimatingθ1 as
θ̂(y1) [2], andx =

[

xT
1 xT

2

]T
. (The Bayes risk of the second

estimator can be expressed in a similar fashion.)
Defining an auxiliary functiongθ1

(x) for the first estimator
as

gθ1
(x) ,

∫

C[θ̂1(y1), θ1] pn1
(y1 − x1 − ρ12x2) dy1 (4)

and a similar function for the second estimator, the total Bayes
risk can be expressed as

r(θ̂) =

∫

Λ

w(θ)

∫

psθ(x) (gθ1
(x) + gθ2

(x)) dx dθ

=

∫

Λ

w(θ) E{g̃θ(sθ)} dθ (5)

with θ̂ =
[

θ̂
T

1 θ̂
T

2

]T

, θ =
[

θ
T
1 θ

T
2

]T
, sθ =

[

sT
θ1

sT
θ2

]T
, and

g̃θ(x) = gθ1
(x) + gθ2

(x) . (6)

For theK parameter case, similar expressions can be obtained
by updating (3) and (4) in order to include the interference due
to the other parameters as well. In that case, (5) still has the
same form with the updated definition ofg̃θ which is given
by g̃θ(x) =

∑K

i=1 gθi
(x).

Similarly to [3], it can be shown that the solution of the
optimization problem in (2) for the total Bayes risk in (5) can
be obtained as

popt
sθ

(x) = δ(x− sunc
θ

) , sunc
θ

= arg min
x

g̃θ(x) (7)

for all θ ∈ Λ , whereδ denotes the Dirac delta function. Hence,
the deterministic parameter design is optimal and there is no
need for stochastic modeling in this scenario. Also it can be
observed from (7) that the solution is independent of the prior
distributionw(θ) as the optimal solution is obtained for each
θ separately.
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When the maximum Bayes risk criterion is considered, the
objective function in (5) can be updated as

r(θ̂) =

∫

Λ

w(θ) max
i∈{1,...,K}

(
∫

psθ(x) gθi
(x) dx

)

dθ

=

∫

Λ

w(θ) max
i∈{1,...,K}

(E{gθi
(sθ)}) dθ . (8)

Based on similar arguments to those employed above for the
total Bayes risk criterion, it can be observed that the solution
is independent of the prior distributionw(θ) and the optimal
solution can be obtained for eachθ separately. Hence, the
optimization problem for the maximum Bayes risk criterion
can be formulated as follows:

popt
sθ

= arg min
p s

θ

max
i∈{1,...,K}

E{gθi
(sθ)} . (9)

The study in [8] considers an optimization problem that is
in the same form as (9) (please see (13) in [8]). Hence,
Proposition 1 in [8] also applies to the problem in (9), which
implies that the optimal solution corresponds to a discrete
random variable with at mostK point masses for eachθ under
some mild and practical conditions. Based on this result, the
optimal stochastic parameter design problem for the maximum
Bayes risk criterion can be expressed as

min
{λθ,j , sθ,j}K

j=1

max
i∈{1,...,K}

K
∑

j=1

λθ,j gθi
(sθ,j)

subject to
K
∑

j=1

λθ,j = 1 (10)

λθ,j ∈ [0, 1] , ∀j ∈ {1, . . . ,K}

for θ ∈ Λ, wheresθ takes the value ofsθ,j with probability
λθ,j for j = 1, . . . ,K. Compared to (9), the formulation
in (10) provides a significant reduction in computational
complexity as it requires optimization over a finite number
of variables instead of over all possible PDFs. Since generic
cost functions and noise distributions are considered in the
theoretical analysis, functiongθi

in (4) is generic as well;
hence, the optimization problem in (15) can be nonconvex in
general.

B. Constrained Optimization

In this section, an average power constraint is considered
[3]:

E{‖sθ‖2} ≤ Aθ (11)

for θ ∈ Λ, where‖sθ‖ is the Euclidean norm of vectorsθ,
andAθ represents the average power limit forθ. In general,
constraintAθ can be a function ofθ as well. From (5) and
(11), the optimal stochastic parameter design problem for the
total Bayes risk criterion can be expressed as

min
{ps

θ
, θ∈Λ}

∫

Λ

w(θ) E{g̃θ(sθ)} dθ

subject toE{‖sθ‖2} ≤ Aθ , ∀θ ∈ Λ (12)

where g̃θ(·) is as defined in (6). Due to the structure of
the objective function and the constraint, the constrained

optimization problem in (12) can be solved individually for
eachθ as

min
ps

θ

E{g̃θ(sθ)} subject to E{‖sθ‖2} ≤ Aθ (13)

for θ ∈ Λ. Therefore, the solution does not depend on the
prior distributionw(θ).

When the maximum Bayes risk criterion is considered, it
can be obtained from (8) and (11) that the problem becomes

min
ps

θ

max
i∈{1,...,K}

E{gθi
(sθ)} subject to E{‖sθ‖2} ≤ Aθ

(14)

for θ ∈ Λ. Similar optimization problems in the form of
(13) and (14) have been investigated in the literature [3], [4],
[5], [11]. The problem in (13) has the same form as the one
considered in [3]. Therefore, the statistical behavior of the
optimal solution is the same; that is, the optimal solution can
be achieved by a randomization (time sharing) between at most
two different values ofsθ for eachθ, as stated in Proposition 1
in [3]. Then, the optimal solution can be obtained based on a
similar approach to that in [3]. Namely, the optimal stochastic
parameter design problem for the total Bayes risk criterioncan
be expressed as

min
{λθ,j , sθ,j}2

j=1

2
∑

j=1

λθ,j g̃θ(sθ,j)

subject to
2

∑

j=1

λθ,j‖sθ,j‖2 ≤ Aθ ,
2

∑

j=1

λθ,j = 1 , (15)

λθ,j ∈ [0, 1] , j ∈ {1, 2}

for θ ∈ Λ. That is, the optimal parameter design involves the
use of at most two different signal values for each parameter
according to the total Bayes risk criterion. On the other hand,
the optimization problem in (14) has a different form than
that in [3]. Based on arguments similar to those in [22], the
following result can be obtained.

Proposition 1: Suppose that functionsgθi
for i ∈ {1, ...,K}

are continuous, and each component ofsθ resides in a finite
closed interval. Then, the optimal solution of(14) can be
characterized by the following probability density:

popt
sθ

(x) =
K+1
∑

j=1

λθ,j δ(x − sθ,j) (16)

whereλθ,j ≥ 0 and
∑K+1

j=1 λθ,j = 1 .
Proposition 1 states that the optimal solution can be

achieved by a randomization (time sharing) among at most
K+1 different values ofsθ for eachθ. Based on this result, the
optimal stochastic parameter design problem for the maximum
Bayes risk criterion can be expressed as

min
{λθ,j , sθ,j}

K+1

j=1

max
i∈{1,...,K}

K+1
∑

j=1

λθ,j gθi
(sθ,j) (17)

subject to
K+1
∑

j=1

λθ,j‖sθ,j‖2 ≤ Aθ,

K+1
∑

j=1

λθ,j = 1,

λθ,j ∈ [0, 1] , j ∈ {1, . . . ,K + 1}
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for θ ∈ Λ.
From (15) and (17), it is concluded that randomization (time

sharing) of transmitted signal values may offer improvements
in the presence of an average power constraint for both the
total Bayes risk and the maximum Bayes risk criteria. In
addition, the optimization problems in (15) and (17) can be
nonconvex in general since generic cost functions and noise
distributions are considered in the theoretical analysis.

III. C HARACTERIZATION OF OPTIMAL STOCHASTIC

PARAMETER DESIGN IN THE PRESENCE OFAVERAGE

POWER CONSTRAINT

In this section, some properties of the optimal stochastic
parameter design approaches in the presence of average power
constraints are discussed. Namely, the average transmitted
signal powers corresponding to the optimal parameter design
approaches are investigated, and the characterization of the
optimal approaches is provided in various scenarios.

For the total Bayes risk criterion, the following two results
are obtained when thestochasticparameter design is the
solution of (15) (equivalently, (13)); that is, when the optimal
solution involves randomization between two different signal
values.3

Lemma 1: Assume that the solution of(15) involves ran-
domization between two different signals. Then, (i) one of the
signals has a power below the average power limit, and the
other signal has a power above the average power limit; (ii)
the signal with the higher (lower) power has a lower (higher)
risk than the other signal.

Proof: Both results are proved via contradiction. For part
(i), first assume that the powers of both signals are smaller
than or equal to the average power limit. Then, the solution
cannot be a randomization between these two signals since
employing the signal with the lower risk (i.e., lower̃gθ)
exclusively achieves a lower total Bayes risk (see (15)))
than performing randomization between these signals. Second,
assume that either the powers of both signals are larger than
the average power limit, or the power of one signal is equal
to and that of the other is larger than the average power
limit. In this scenario, the average power constraint in (15) is
violated; hence, this cannot be a valid scenario. Therefore, it is
concluded that if randomization between two different signals
is the solution of (13), then one of the signals must have a
power below the average power limit, and the other signal must
have a power above the average power limit. For part (ii), if
the signal with the lower power has a risk which is smaller
than or equal to the risk of the other signal, then there is no
need for randomization. In that case, employing this signal
exclusively yields a lower risk; hence, randomization between
these signals cannot be optimal. Therefore, if randomization
between two signals is the solution of (13), then the signal
with the higher (lower) power must have a lower (higher) risk
than the other signal. �

Based on Lemma 1, the following result is obtained.
Proposition 2: If the solution of (15) (equivalently,(13))

involves randomization between two different signals; that is,

3In this study, the statement “the optimal solution involvesrandomization
between two different signal values” is used to mean that there is no
deterministic solution that achieves the same performanceas the optimal
stochastic solution.

if stochastic parameter design is optimal, then the average
signal power is equal to the average power limit; i.e., the
solution operates at the average power limit.

Proof: In order to prove the claim in the proposition,
suppose that{λθ,j, sθ,j}2j=1 is an optimal solution and utilizes
a power strictly lower than the average power limit; i.e.,
λθ,1‖sθ,1‖2 + (1 − λθ,1)‖sθ,2‖2 < Aθ. Without loss of
generality, assume that‖sθ,1‖2 > Aθ and ‖sθ,2‖2 < Aθ

as a result of part (i) of Lemma 1. According to part (ii)
of Lemma 1, g̃θ(sθ,1) < g̃θ(sθ,2) is satisfied. Next, con-
sider another solution{λ ′

θ,j , sθ,j}2j=1 with λ
′

θ,1 = (Aθ −
‖sθ,2‖2)/(‖sθ,1‖2 − ‖sθ,2‖2). Note that the average power
for this solution is equal to the average power limit; that is,
λ

′

θ,1‖sθ,1‖2 + (1 − λ
′

θ,1)‖sθ,2‖2 = Aθ. In addition, it can be
shown thatλ

′

θ,1 > λθ,1 as‖sθ,1‖2 > Aθ, ‖sθ,2‖2 < Aθ, and
the average power of solution{λ ′

θ,j , sθ,j}2j=1 is larger than
that of solution{λθ,j , sθ,j}2j=1. Since g̃θ(sθ,1) < g̃θ(sθ,2)

due to part (ii) of Lemma 1 andλ
′

θ,1 > λθ,1, it can be shown
that solution{λ ′

θ,j , sθ,j}2j=1 achieves a lower total Bayes risk
than solution{λθ,j , sθ,j}2j=1; that is,

λ
′

θ,1g̃θ(sθ,1) + (1− λ
′

θ,1)g̃θ(sθ,2) < λθ,1g̃θ(sθ,1) (18)

+ (1− λθ,1)g̃θ(sθ,2) .

Based on (18), it is concluded that solution{λθ,j , sθ,j}2j=1

cannot be optimal, which results in a contradiction. Hence,it
is concluded that a solution with an average power lower than
the average power limit cannot be optimal for the scenario in
the proposition. That is, the solution of (15) operates at the
average power limit when the stochastic parameter design is
optimal. �

From Proposition 2, the solution of (15) can be obtained as
stated in the following proposition.

Proposition 3: The solution of(15) corresponds to either
deterministic parameter design or stochastic parameter de-
sign, which can be obtained as follows:

• Deterministic Parameter Design: Transmit sdet
θ

exclu-
sively forθ ∈ Λ, where

sdetθ = arg min
‖sθ‖2≤Aθ

g̃θ(sθ) . (19)

• Stochastic Parameter Design: Perform time sharing
(randomization) betweensopt

θ,1 and s
opt
θ,2 with time shar-

ing factors (Aθ − ‖sopt
θ,2‖2)/(‖s

opt
θ,1‖2 − ‖sopt

θ,2‖2) and
(‖sopt

θ,1‖2 −Aθ)/(‖soptθ,1‖2 −‖sopt
θ,2‖2), respectively, where

(sopt
θ,1 , s

opt
θ,2) = arg min

‖sθ,1‖2>Aθ

‖sθ,2‖2<Aθ

Aθ − ‖sθ,2‖2
‖sθ,1‖2 − ‖sθ,2‖2

g̃θ(sθ,1)

+
‖sθ,1‖2 −Aθ

‖sθ,1‖2 − ‖sθ,2‖2
g̃θ(sθ,2) (20)

for θ ∈ Λ.

The solution of(15) is the one ((19) or (20)) that results in
the lower total Bayes risk.

Proof: There exist two possible scenarios for the solution
of (15). If no randomization is employed, the optimal solution
can be obtained as in (19), which is called the deterministic
parameter design. On the other hand, randomization between
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two signals can be performed. As stated in Proposition 2, the
average signal power must be equal to the average power limit
in this scenario; that is,λθ,1‖sθ,1‖2 + (1 − λθ,1)‖sθ,2‖2 =
Aθ. Therefore, the time sharing (randomization) factors can
be calculated asλθ,1 = (Aθ − ‖sθ,2‖2)/(‖sθ,1‖2 − ‖sθ,2‖2)
andλθ,2 = 1−λθ,1. In addition, from part (i) of Lemma 1, one
signal has a power higher than the average power limit and the
other signal has a power lower than the average power limit.
Hence, the optimization problem in (15) can be simplified as
the one in (20). Finally, it is observed that the solution that
achieves the lower risk in (19) and (20) becomes the solution
of (15). �

Proposition 3 provides a simple approach for solving (15).
Namely, the problems in (19) and (20) are solved, and the one
that achieves the lower total Bayes risk becomes the solution
of (15).

For the maximum Bayes risk criterion, the solution of (17)
(equivalently, (14)) can be characterized as a special form
under certain conditions. To that aim, the following lemma
is presented first.

Lemma 2: Consider a set of functions,fi, for i ∈
{1, 2, ...,K}. If minimum value of a certain function, sayfm,
is strictly higher than the values of the other functions at
the same point, then this point is the solution of the minimax
problem; that is,

min
x

max
i

fi(x) = min
x

fm(x) . (21)

Proof: Let x′ denote the minimizer offm(x) andfm(x′) >
fi(x

′), ∀ i ∈ {1, 2, . . . ,K} \ {m}, as stated in the lemma.
Suppose thatx′ is not the solution of the minimax problem,
and consider another pointx∗ which yields a lower value
for the minimax problem; that is,max

i
fi(x

∗) < fm(x′). By

definition, max
i

fi(x
∗) ≥ fm(x∗). Combining the last two

inequalities, it is obtained thatfm(x∗) < fm(x′), which
contradicts the fact that the value offm is strictly higher than
the values of the other functions atx′. Hence, it is concluded
that no other point,x∗, can yield a lower value for the minimax
problem thanx′. �

Based on Lemma 2, the following result is obtained about
the solution of the optimal parameter design problem accord-
ing to the maximum Bayes risk criterion.

Proposition 4: Consider the probability distribution of
sθ that minimizes the risk of themth estimator under the
average power constraint, wherem ∈ {1, . . . ,K}. For that
probability distribution, if the risk of themth estimator is
strictly higher than the risks of the other estimators, thenthis
distribution is the optimal solution of the minimax problemin
(14) (equivalently,(17)) and it involves randomization between
at most two signals.

Proof: Consider the minimax problem in (17). Let the
minimum risk of themth estimator be strictly higher than
the risks of the other estimators for the distribution ofsθ that
minimizes the risk of themth estimator under the average
power constraint; that is,

min
{λθ,j , sθ,j}

∑

j

λθ,j gθm
(sθ,j) ,

∑

j

λ
′

θ,j gθm
(s

′

θ,j) (22)

>
∑

j

λ
′

θ,j gθi
(s

′

θ,j)

for i ∈ {1, . . . ,K} \ {m}, where {λ ′

θ,j , s
′

θ,j} denotes the
probability distribution ofsθ that minimizes the risk of the
mth estimator. In this scenario, Lemma 2 implies that the
optimal solution for themth estimator is the solution of the
minimax problem as well. Since the optimal solution for a
single estimator corresponds to randomization between at most
two signals (consider (14) and (16) as ifK = 1), the solution
of the minimax problem in (17) is obtained via randomization
between at most two signals under the conditions in the
proposition. �

When the number of parameters is large, it can be difficult
to solve the optimization problem in (17) since the dimension
of the problem is high in that case. Proposition 4 offers a
relatively simple test based on the solution of several low
dimensional optimization problems before trying to solve
this high dimensional optimization problem. If the conditions
stated in the proposition are satisfied then there is no need for
solving the high dimensional optimization problem.

IV. OPTIMALITY CONDITIONS

In this section, various conditions are derived in order to
specify when the stochastic parameter design or the deter-
ministic parameter design is optimal. In order to investigate
such optimality conditions, the objective function to be con-
sidered should be identified first. In this study, two different
objective functions, the total Bayes risk and the maximum
Bayes risk, are considered, and the optimality conditions differ
for these functions. For the total Bayes risk, the problem
can be simplified to minimizing the expectation of a single
function, g̃θ, as given in (13). As it was stated in Section II-
B, this problem has the same form as the one studied in
[3]. Therefore, the optimality conditions proposed in [3] are
valid for the total Bayes risk criterion in this study as well.
However, for the maximum Bayes risk criterion, the problem
has a different form as given in (14); hence, the optimality
conditions are different in this scenario. In this section,the
optimality conditions are investigated for the maximum Bayes
risk criterion.

The optimal parameter design problem presented in (14)
does not necessarily yield a stochastic solution in all cases. In
certain scenarios, the deterministic design is the optimalsolu-
tion and in such cases the problem in (14) can be reformulated
as

min
sθ

max
i∈{1,...,K}

gθi
(sθ) subject to ‖sθ‖2 ≤ Aθ (23)

where sθ is modeled as a deterministic quantity for each
θ. Let sdet

θ
represent the minimizer of the optimization

problem in (23). Then, the minimum Bayes risk achieved
by the optimal deterministic parameter designis expressed
as rdet(θ̂) =

∫

Λ
w(θ) max

i∈{1,...,K}
gθi

(sdet
θ

) dθ (c.f. (8)). On

the other hand, the minimum Bayes risk achieved by
the optimal parameter design is denoted byrsto(θ̂) =
∫

Λ
w(θ)

∫

max
i∈{1,...,K}

gθi
(x) popt

sθ
(x) dx dθ, where popt

sθ
is the

optimal solution of (14) for a givenθ. If the stochastic
parameter design is the optimal solution of the problem in
(14), thenrsto(θ̂) is strictly smaller thanrdet(θ̂). Otherwise,
it is concluded that the deterministic parameter design is the
optimal solution and the stochastic design does not provide
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any improvements; that is,rsto(θ̂) = rdet(θ̂). In the following
proposition, sufficient conditions presented for the second
case.

Proposition 5: For the maximum Bayes risk criterion, the
stochastic parameter design cannot provide any improvements
over the deterministic parameter design if at least one of the
following conditions is satisfied for eachθ :

• The solution of the unconstrained problem (see(9) or
(10)) is deterministic (denoted bysunc

θ
) and satisfies the

power constraint; i.e.,‖sunc
θ

‖2 ≤ Aθ .
• gθi

is a convex function fori ∈ {1, ...,K}.

Proof: The first part of the proof can be obtained similarly
to that of Proposition 2 in [3]. If the first condition in the
proposition is satisfied, i.e., if the unconstrained problem has
a deterministic solution and‖sunc

θ
‖2 ≤ Aθ , then the solution

of (23) is the same as that of the unconstrained problem in
Section II-A; that is,sdet

θ
= sunc

θ
. Therefore, the solution of

the optimal stochastic parameter design problem in (14) is
expressed aspopt

sθ
(x) = δ(x− sunc

θ
). Hence, the deterministic

parameter design is optimal in this case, and the stochastic
parameter design cannot provide any improvements.

For the second condition in the proposition, it is note that,
for any sθ, E{‖sθ‖2} ≥ ‖E{sθ}‖2 holds due to Jensen’s in-
equality as norm is a convex function. Therefore,E{‖sθ‖2} ≤
Aθ in (14) implies that‖E{sθ}‖2 ≤ Aθ must hold for any
feasible PDF ofsθ. Let E{sθ} be denoted by̌sθ; that is,
šθ , E{sθ}. Since the minimizer of (23),sdet

θ
, achieves the

minimum value of max
i∈{1,...,K}

gθi
(sθ) among allsθ that satisfy

‖sθ‖2 ≤ Aθ, the inequality‖E{sθ}‖2 = ‖šθ‖2 ≤ Aθ implies
that

max
i∈{1,...,K}

gθi
(E{sθ}) = max

i∈{1,...,K}
gθi

(šθ) (24)

≥ max
i∈{1,...,K}

gθi
(sdetθ )

holds. If gθi
’s are convex functions, then

max
i∈{1,...,K}

E{gθi
(sθ)} ≥ max

i∈{1,...,K}
gθi

(E{sθ}) (25)

≥ max
i∈{1,...,K}

gθi
(sdetθ )

is obtained from Jensen’s inequality and from (24). Therefore,
whengθi

’s are convex, max
i∈{1,...,K}

E{gθi
(sθ)} is never smaller

than the minimum value of (23), max
i∈{1,...,K}

gθi
(sdet

θ
), for any

PDF of sθ that satisfies the average power constraint. For this
reason, the minimum value of (14) cannot be smaller than

max
i∈{1,...,K}

gθi
(sopt

θ
), which means that it is always equal to

max
i∈{1,...,K}

gθi
(sopt

θ
) as (14) covers (23) as a special case.

Overall, if at least one of the conditions in the
proposition is satisfied for all θ, the deterministic
and stochastic parameter design approaches achieve
the same minimum values for all parameters; that is,

max
i∈{1,...,K}

gθi
(sdet

θ
) =

∫

max
i∈{1,...,K}

gθi
(x) popt

sθ
(x)dx, ∀θ.

Hence,rdet(θ̂) =
∫

Λ
w(θ) max

i∈{1,...,K}
gθi

(sdet
θ

) dθ and

rsto(θ̂) =
∫

Λ
w(θ)

∫

max
i∈{1,...,K}

gθi
(x) popt

sθ
(x)dx dθ are

equal. �

For an example of Proposition 5, consider a scenario in
which two scalar parametersθ1 andθ2 are to be estimated in
the presence of zero-mean additive noisen. The average power
constraint is in the form ofE{|sθ|2} ≤ Aθ for all θ, and the
estimator is specified bŷθ(y) = y. Also, the cost function is
modeled asC[θ̂(y), θ] = (θ̂1(y1)− θ1)

2 + (θ̂2(y2)− θ2)
2. In

this case,gθ1
in (4) can be calculated as

gθ1(x1) =

∫ ∞

−∞

(y1 − θ1)
2pn1

(y1 − x1 − ρ12x2) dy1

=

∫ ∞

−∞

(y + x1 + ρ12x2 − θ1)
2pn1

(y) dy

= (x1 + ρ12x2 − θ1)
2 +Var{n1} (26)

whereVar{n1} is the variance of the noise component for the
first parameter. From (26), it is observed thatgθ1 is a convex
function for any value ofθ. Similarly it is possible to show
that gθ2 is also a convex function for anyθ. Therefore, the
second condition in Proposition 5 is satisfied for allθ, which
implies that the performance of the deterministic parameter
design cannot be improved via the stochastic approach in this
scenario.

In the following proposition, a modified version of Proposi-
tion 3 in [3] is obtained in order to present sufficient conditions
that specify scenarios in which the stochastic parameter design
provides improvements over the deterministic one.

Proposition 6: For the maximum Bayes risk criterion, the
stochastic parameter design achieves a lower Bayes risk than
the deterministic parameter design if there existsθ ∈ Λ for
which all gθi

(x)’s are second-order continuously differen-
tiable aroundsdet

θ
, and a real vectorz and a positive number

k can be found such that
(

zT sdet
θ

)(

zT∇gθi
(x)|

x=s
det
θ

)

< 0 and (27)

‖z‖2 <
(

zT sdet
θ

)(

zTHθi
z− γi/k

)

/
(

zT∇gθi
(x)|

x=s
det
θ

)

(28)

for i ∈ {1, ...,K}, where sdet
θ

is the solution of (23),
∇gθi

(x)|
x=s

det
θ

denotes the gradient ofgθi
(x) at x = sdet

θ
,

Hθi
is the Hessian ofgθi

(x) at x = sdet
θ

, and γi ,

max
i

gθi
(sdet

θ
)− gθi

(sdet
θ

) .

The conditions in Proposition 6 provide a relatively simple
technique, which is based on the first and second order
derivatives ofgθi

, for determining if the stochastic parameter
design can provide improvements over the deterministic one. If
the conditions are satisfied, the stochastic parameter design is
guaranteed to outperform the deterministic parameter design,
in which case the optimization problem in (15) can be solved
to obtain the optimal solution. It should also be noted that
there may exist scenarios in which the stochastic parameter
design provides improvements over the deterministic one even
though the the conditions in Proposition 6 are not satisfied,
which is due to the fact that the conditions are sufficient but
not necessary. In the next section, examples are presented for
various scenarios.

V. NUMERICAL RESULTS

In this section, numerical examples are presented in order
to investigate the performance of the optimal parameter design



8

approach in various scenarios. Consider a wireless sensor
network scenario in which two CDMA users aim to send
information about two scalar parameters,θ1 and θ2, to two
intended devices as in Fig. 1. Then, parameter vectorθ =
[θ1 θ2]

T is to be estimated based on observation vectory =
[y1 y2]

T, which is modeled via (1) as

y = sθ + ρ(1− I)sθ + n (29)

wheresθ = [sθ1 sθ2]
T consists of the transmitted (stochastic)

signals for the two intended devices in the wireless sensor
network for parameter valuesθ1 andθ2 (sθ1 andsθ2 can be any
function of θ1 andθ2, respectively),n = [n1 n2]

T represents
additive noise at the intended devices,ρ = ρ12 = ρ21 de-
notes the crosscorrelation parameter that is determined bythe
spreading sequences employed by the users (see Section I-A),
I is the identity matrix of size2×2, and1 is the matrix of ones
with the same size. The componentsn1 andn2 of the additive
noisen are independent and identically distributed Gaussian
random variables, specified by PDFspn1

(n) = pn2
(n) =

exp{−(n− µ)2/(2σ2)}/(
√
2π σ), which is a common model

employed in wireless communication systems. The estimator
is specified byθ̂(y) = y, which estimates each parameter
independently based on the corresponding observation. The
cost function for each parameter is chosen as the uniform
cost function, which is calculated asC[θ̂i(yi), θi] = 1 if
|θ̂i(yi)−θi| > ∆ andC[θ̂i(yi), θi] = 0 otherwise fori = 1, 2.
Based on this model,gθ1 in (4) can be obtained as

gθ1(x) = Q

(

x1 + ρ x2 − θ1 + µ+∆

σ

)

+Q

(−x1 − ρ x2 + θ1 − µ+∆

σ

)

(30)

whereQ(x) = (1/
√
2π)

∫∞

x
exp{−t2/2}dt denotes theQ-

function. For eachθ, E{‖sθ‖2} ≤ ‖θ‖2 is employed as the
constraint stated in (11). Similarly to (30),gθ2 for the second
parameter can be obtained.

In the numerical examples, the parameter spaces for both
parameters are specified asΛ1 = Λ2 = [−10, 10]. Also, sθ1
and sθ2 can take values in the interval[−10, 10] subject to
the average power constraint,E{‖sθ‖2} ≤ ‖θ‖2. Also, the
Gaussian distribution of the noise is taken to be zero mean
with σ = 0.5 andρ is chosen to be0.25. Since the noise is a
zero-mean random variable,θ̂(y) = y can be considered as a
practical estimator.4 In addition,∆ = 1 is used for the uniform
cost function described in the previous paragraph. To solvethe
optimization problems, the Multi-Start algorithm [23] is used
in MATLAB, which employs a local solver from multiple start
points to reach the global optimal solution of a non-convex
problem.

In Fig. 2, the total Bayes risks for the stochastic parameter
design, the unconstrained parameter design and the conven-
tional parameter design (which transmits the parameters as
they are; that is, employssθi = θi) are illustrated. Also
in Fig. 3, the total Bayes risks for the stochastic parameter
design and the deterministic parameter design are compared.
It is observed that the stochastic parameter design achieves

4Although this is not the optimal estimator, it can be used in practice due
to its simplicity compared to the optimal estimator.

−5

0

5

−5

0

5
0

0.5

1

1.5

T
ot

al
 R

is
k

θ
1

θ
2

Opt. Stochastic

Unconstrained

Conventional

Fig. 2. Total Bayes risk versusθ1 andθ2.

−5

0

5

−5

0

5
0

0.5

1

1.5

T
ot

al
 R

is
k

Opt. Deterministic

Opt. Stochastic

θ
2

θ
1

Fig. 3. Total Bayes risk versusθ1 andθ2.

improvements over the deterministic and conventional designs.
Also, for some values ofθ1 and θ2, the performance of the
stochastic design is the same as the unconstrained one.

In Fig. 4, the maximum Bayes risks for the stochastic
parameter design, the unconstrained parameter design and the
conventional parameter design are plotted. Also, in Fig. 5,
the maximum Bayes risks for stochastic parameter design
and the deterministic parameter design are illustrated. Similar
to the previous scenario, it is observed that the stochastic
parameter design provides improvements over the conventional
and deterministic parameter design approaches for certain
range of parameter values.

In Table I, the total Bayes risk criterion is considered, and
the optimal solutions for the stochastic, the deterministic and
the unconstrained parameter design approaches are presented
for various values ofθ. It is observed from the table that
the optimal stochastic parameter design can involve random-
ization between two different signals for certain values of
θ, which corresponds to the cases in which the stochastic
approach outperforms the deterministic parameter design,as
can be verified from Fig. 3. Similarly, Table II presents the
optimal solutions for the stochastic, the deterministic and the
unconstrained parameter design approaches for the maximum
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Bayes risk criterion. The main difference in this scenario is
that randomization (time sharing) among up to three different
signals can be performed for the optimal stochastic parameter
design in accordance with Proposition 1.

Next, the maximum Bayes risk criterion is considered,
and the conditions in Proposition 6 are studied. Namely, the
existence of a real vectorz and a positive numberk that
satisfy the conditions in Proposition 6 for a certain value of
θ is investigated. Consider the parameter valueθ = [−5, 5].
If all the four conditions (two conditions for each estimator)
are satisfied for this value ofθ, then it is guaranteed that the
stochastic parameter design yields a lower maximum Bayes
risk than the deterministic design. To test the first condition
for each estimator, we need the value ofsdet

θ
and the gradients

of gθ1
(x) andgθ2

(x) at x = sdet
θ

. As it can be observed from
Table II, sdet

θ
= [−5, 5] for θ = [−5, 5], and the gradients of

gθ1
(x) andgθ2

(x) at x = sdet
θ

can be calculated based on the
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Fig. 6. Regions (white) in which the optimality conditions stated in
Proposition 6 are satisfied for different values ofz for θ = [−5, 5].

following equations:

∇gθ1(x) =
−e−

a2
1
2 + e−

a2
2
2

√
2π

[1, ρ]T

∇gθ2(x) =
−e−

b2
1
2 + e−

b2
2
2

√
2π

[1, ρ]T (31)

where a1 = (x1 − ρx2 − θ1 + µ + ∆)/σ, a2 = (−x1 +
ρx2 + θ1 −µ+∆)/σ, b1 = (x2 − ρx1 − θ2 +µ+∆)/σ, and
b2 = (−x2+ρx1+θ2+µ+∆)/σ. Based on these equations,
the first condition in Proposition 6 can be evaluated for each
estimator. The first two plots in Fig. 6 illustrate the values
of z for which the first condition in Proposition 6 is satisfied
for the first and the second estimator, respectively, fork = 1
and θ = [−5, 5]. Namely, in the white (black) regions, the
conditions are satisfied (not satisfied). As observed from the
figure, there are certain regions in which the first condition
is satisfied for each estimator. Next, the second condition in
Proposition 6 is tested. To that aim, the Hessians ofgθ1

(x)
andgθ2

(x) at x = sdet
θ

are calculated. The Hessians of these
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TABLE I

UNCONSTRAINED SOLUTIONp
opt
sθ

(x) = δ(x − s
unc
θ

), OPTIMAL DETERMINISTIC SOLUTIONp
opt
sθ

(x) = δ(x − s
opt

θ
), AND OPTIMAL STOCHASTIC

SOLUTIONp
opt
sθ

(x) = λθ,1 δ(x − sθ,1) + λθ,2 δ(x− sθ,2) FOR THE TOTAL BAYES RISK CRITERION.

θ1 θ2 s
unc
θ

s
opt

θ
λθ,1 sθ,1 λθ,2 sθ,2

-5 -5 (-4,-4) (-4,-4) 1 (-4,-4) - -
-5 -2.5 (-4.667,-1.333) (-4.667,-1.333) 1 (-4.667,-1.333) - -
-5 0 (-5.333,1.333) (-4.889,1.049) 1 (-4.889,1.049) - -
-5 2.5 (-6,4) (-4.694,3.035) 0.669 (-5.565,3.622) 0.331 (0.561,2.243)
-5 5 (-6.667,6.667) (-5.950,3.820) 0.508 (1.138,4.553) 0.492 (-6.280,6.280)

-2.5 -5 (-1.333,-4.667) (-1.333,-4.667) 1 (-1.333,-4.667) - -
-2.5 -2.5 (-2,-2) (-2,-2) 1 (-2,-2) - -
-2.5 0 (-2.667,0.667) (-2.444,0.527) 1 (-2.444,0.527) - -
-2.5 2.5 (-3.333,3,333) (-2.5,2.5) 0.918 (-2.572,2.572) 0.082 (-2.023,-0.206)
-2.5 5 (-4,6) (-3.035,4.694) 0.669 (-3.622,5.565) 0.331 (-2.243,-0.561)
0 -5 (1.333,-5.333) (1.049,-4.889) 1 (1.049,-4.889) - -
0 -2.5 (0.667,-2.667) (0.527,-2.444) 1 (0.527,-2.444) - -
0 2.5 (-0.667,2.667) (-0.527,2.444) 1 (-0.527,2.444) - -
0 5 (-1.333,5.333) (-1.049,4.889) 1 (-1.049,4.889) - -

TABLE II

UNCONSTRAINED SOLUTIONp
opt
sθ

(x) = δ(x − s
unc
θ

), OPTIMAL DETERMINISTIC SOLUTIONp
opt
sθ

(x) = δ(x − s
opt

θ
), AND OPTIMAL STOCHASTIC

SOLUTIONp
opt
sθ

(x) = λθ,1 δ(x − sθ,1) + λθ,2 δ(x − sθ,2) + λθ,3 δ(x− sθ,3) FOR THE MAXIMUM BAYES RISK CRITERION.

θ1 θ2 s
unc
θ

s
opt

θ
λθ,1 sθ,1 λθ,2 sθ,2 λθ,3 sθ,3

-5 -5 (-4,-4) (-4,-4) 1 (-4,-4) - - - -
-5 -2.5 (-4.667,-1.333) (-4.667,-1.333) 1 (-4.667,-1.333) - - - -
-5 0 (-5.333,1.333) (-4.915,0.915) 1 (-4.915,0.915) - - - -
-5 2.5 (-6,4) (-4.824,2.824) 0.637 (-5.498,3.416) 0.194 (0.503,2.167) 0.169 (-4.481,-1.094)
-5 5 (-6.667,6.667) (-5,5) 0.487 (-6.264,6.313) 0.261 (-4.607,-0.995) 0.252 (0.794,4.682)

-2.5 -5 (-1.333,-4.667) (-1.333,-4.667) 1 (-1.333,-4.667) - - - -
-2.5 -2.5 (-2,-2) (-2,-2) 1 (-2,-2) - - - -
-2.5 0 (-2.667,0.667) (-2.458,0.458) 0.998 (-2.458,0.458) 0.002 (-2,464,0.465) - -
-2.5 2.5 (-3.333,3,333) (-2.5,2.5) 0.879 (-2.617,2.599) 0.066 (0.415,2.093) 0.055 (-2.011,-0.553)
-2.5 5 (-4,6) (-2.824,4.824) 0.623 (-3.458,5.502) 0.194 (-2,211,-0.498) 0.183 (1.158,4.493)
0 -5 (1.333,-5.333) (0.915,-4.915) 1 (0.915,-4.915) - - - -
0 -2.5 (0.667,-2.667) (0.458,-2.458) 1 (0.458,-2.458) - - - -
0 2.5 (-0.667,2.667) (-0.458,2.458) 1 (-0.458,2.458) - - - -
0 5 (-1.333,5.333) (-0.915,4.915) 1 (-0.915,4.915) - - - -

functions can be found as follows:

Hθ1
(x) =

a1e
−

a2
1
2 + a2 e

−
a2
2
2

√
2π

[

1 ρ
ρ ρ2

]

Hθ2
(x) =

b1e
−

b2
1
2 + b2 e

−
b2
2
2

√
2π

[

ρ2 ρ
ρ 1

]

(32)

wherea1, a2, b1, andb2 are as defined previously. Based on
(31) and (32), the second condition in Proposition 6 can be
evaluated for each estimator. The results of these evaluations
are shown in the second and third plots in Fig. 6 for different
values ofz. Similar to the first condition, the second condition
is satisfied in certain range ofz values (white regions). The last
plot in Fig. 6 shows the intersection of the regions in which
the conditions are satisfied. As observed from the figure, the
intersection is not an empty set, hence we can conclude that
there exist a real vectorz and a positive numberk for which
all the conditions in Proposition 6 are satisfied. Therefore, in
this scenario, it is guaranteed that the stochastic parameter
design achieves a lower Bayes risk than the deterministic
design for θ = [−5, 5] as a result of Proposition 6. The
applicability of Proposition 6 is also investigated for thewhole
parameter space,θ ∈ [−10, 10] × [−10, 10], and the sets of
parameter values for which the stochastic design provides (i)
no improvements over the deterministic design, (ii) improve-

ments over the deterministic design but Proposition 6 does not
apply, and (iii) improvements over the deterministic design and
Proposition 6 applies are specified. The calculations show that,
in the considered example, Proposition 6 provides sufficient
conditions for improvability that are valid over a significant
portion (about 58%) of the improvability region (in particular,
for large values of the parameters in the improvability region)
but the conditions are not necessary in general.

In order to gain intuition and further understanding, Fig. 7
and Fig. 8 visualize how the stochastic design approach
provides performance improvements over the deterministicone
for the total Bayes risk and the maximum Bayes risk criteria,
respectively. In Fig. 7, the total Bayes riskg̃θ(x) is illustrated
for θ = [−5, 5]. The region inside the circle corresponds to the
values ofx that satisfy the power constraint individually. Here
it can be seen that the minimum value ofg̃θ(x) is observed at a
value ofx which does not satisfy the power constraint. In that
case, the unconstrained solution simply picks that value ofx

assunc
θ

. On the other hand, the optimal deterministic solution,
picks the value ofx residing on or inside the circle, which
minimizes the value of̃gθ(x), denoted assdet

θ
. Obviously,

there is a performance gap between the unconstrained solution
and the optimal deterministic solution, as can be observed from
Fig. 2 and Fig. 3. The proposed stochastic design approach
aims to achieve improvements over the deterministic solution.
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Fig. 7. The total Bayes risk̃gθ(x) for θ = [−5, 5].

To that aim, the stochastic design perform randomization
(time sharing) between two signals, i.e., one that satisfiesthe
power constraint with low performance, the other that does
not satisfy the constraint but has high performance, as can be
seen from Fig. 7. By randomizing between these two signals,
it is possible to satisfy the power constraint on the averageand
to achieve a better performance than the optimal deterministic
design. In Fig. 8, the Bayes risks for the estimators,gθ1

(x)
and gθ2

(x), are illustrated forθ = [−5, 5]. As stated in
(14), the stochastic design aims to minimize the maximum
of the expectations ofgθ1

(x) andgθ2
(x). It is observed from

Fig. 8 that the minimum values ofgθ1
(x) andgθ2

(x) coincide
outside the power constraint. Therefore, it is not possibleto
pick a single point which minimizes the maximum Bayes risk
and satisfy the constraint at the same time. Similar to the
total Bayes risk case, the stochastic design should perform
randomization between some signals inside and outside the
constraint to achieve improvements over the deterministic
design. However, as seen in Fig. 8, the minimum values of
gθ1

(x) and gθ2
(x) do not coincide inside the constraint and

as a result any signal minimizing one ofgθ1
(x) and gθ2

(x)
maximizes the other one. Hence it is not possible to pick just
one signal that satisfies the constraint and randomize it with
another signal that does not satisfy the constraint. To overcome
this problem, two signals satisfying the constraint shouldbe
chosen and these two signals should be randomized with a
signal that does not satisfy the power constraint. As a result,
the expectations of bothgθ1

(x) and gθ2
(x) are minimized

to a certain point, which makes it possible to minimize the
maximum of these expectations.

Finally, in Fig. 9 and Fig. 10, the total Bayes risks (black)
and the maximum Bayes risks (red) of the different approaches
are plotted versus the standard deviationσ of the noise
components and the cross-correlation parameterρ in (29),
respectively, forθ = [−5, 5], where ρ = 0.25 in Fig. 9
and σ = 0.5 in and Fig. 10. It is observed that the optimal
stochastic design provides improvements over the optimal
deterministic design, and the two algorithms have similar
performance for smallρ and/or for large values ofσ (i.e.,
in the noise-limited regime).
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Fig. 9. The total Bayes risk (black) and the maximum Bayes risk (red)
versus the noise standard deviationσ for θ = [−5, 5] andρ = 0.25.
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Fig. 10. The total Bayes risk (black) and the maximum Bayes risk (red)
versus the cross-correlation parameter in (29) forθ = [−5, 5] andσ = 0.5.

VI. CONCLUSIONS

In this manuscript, the optimal stochastic design of multiple
parameters has been studied for a given set of fixed estimators.
Two different performance criteria have been considered;
namely, the total Bayes risk criterion and the maximum Bayes
risk criterion. It has been shown that, in the presence ofK
parameters, the optimal stochastic parameter design results
in time sharing (randomization) among at most two and
(K + 1) different signals values for the total Bayes risk and
the maximum Bayes risk criteria, respectively. In addition,
the average transmitted signal powers corresponding to the
optimal parameter design approaches have been specified,
and the characterization of the optimal approaches has been
provided in various scenarios. Furthermore, various conditions
have been derived in order to specify when the stochastic
parameter design or the deterministic parameter design is
optimal. Finally, the numerical examples have been presented
to investigate the theoretical results, and to illustrate the
amount of improvements achieved via the proposed approach.
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Fig. 8. The Bayes risk for the first estimator,gθ1
(x), and the Bayes risk for the second estimator,gθ2

(x), for θ = [−5, 5].
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