Optimal Signal Design for Multi-Parameter
Estimation Problems

Hamza SoganciMember, IEEE Sinan GeziciSenior Member, IEEEand Orhan ArikanMember, IEEE

Abstract— In this study, the optimal stochastic design of mul-
tiple parameters is investigated for an array of fixed estimé#ors
both in the absence and presence of an average power constrai
Two different performance criteria are considered: the total
Bayes risk criterion and the maximum Bayes risk criterion. It is
obtained that in the presence ofK parameters and the average
power constraint, the optimal stochastic parameter desigmesults
in randomization (time sharing) among at most two and(X + 1)
different signals for the total Bayes risk and the maximum Baes
risk criteria, respectively. The average transmitted sigmal powers
corresponding to the optimal parameter design approachesra
specified, and the characterization of the optimal approachs is
provided in various scenarios. In addition, sufficient condions
are derived to specify when the stochastic parameter desigar
the deterministic parameter design is optimal. Finally, numerical
examples are presented to investigate the theoretical reks,
and to illustrate performance improvements achieved via tle
proposed approaches.

Index Terms— Parameter estimation, stochastic parameter de-
sign, Bayes risk, multi-parameter, minimax.

|. INTRODUCTION

[3]. It is shown that the performance of a given estimator can
be enhanced by the optimal stochastic parameter desigahwhi
involves randomization (time sharing) between at most two
different values for the signal transmitted for each parteme
Randomization (time sharing) among different signal value
has been utilized in various frameworks to improve per-
formance of detection and estimation systems [4]-[17]. For
example, performance of some detectors can be enhanced
by the addition of a randomized noise component to the
input (observation) without modifying the detector sturet
[4]-[10]. Such noise enhancement effects have been studied
according to various criteria such as Neyman-Pearson (NP)
[4], [5], Bayes [7], minimax [8], and restricted Bayes [9]sA
another application of randomization, transmitting ramdced
signals for each information symbol can reduce the errdopro
ability of an average power constrained digital commumicat
system in the presence of non-Gaussian noise [11], [125. It i
shown in [11] that the optimal strategy is to perform ran-
domization (time sharing) among no more than three differen
transmitted signal values for each information symbol unde

In many parametric estimation problems, the aim is to dgacond and fourth moment constraints. Randomization (time
sign the optimal estimator for an unknown parameter based §fring) can be also utilized in jammer systems for improved
a given probability distribution of observations. The coomm jamming performance [18]-[20]. In [18], it is proved that a
estimators employed in such problems can be categorized ijfeak jammer employs on-off time sharing to maximize the
two groups based on the presence of prior information abQiferage probability of error for a receiver operating in the

the parameter to be estimated. If there exists prior inféiona

presence of symmetric unimodal noise. On the other hand,

about the parameter, Bayesian estimators, such as the Migf-an average power constrained jammer that operates over
mum mean-absolute error (MMAE) estimator and the minjn arbitrary additive noise channel, the detection prdiabi

mum mean-squared error (MMSE) estimator, are commOMy, instantaneously and fully adaptive receiver that engolog
used [1]. On the other hand, when there is no prior infornmatiqyp criterion is minimized via randomization between at most
about the parameter, the minimum variance unbiased estimajyo different power levels [20]. In an estimation framework
(MVUE) or the maximum likelihood estimator (MLE) canpenefits of randomization are observed in the context ofenois
be designed [2]. All these approaches involve the design @hanced estimation in [17], which proves that performance
an optimal estimator under certain constraints. In a recegt some suboptimal estimators can be improved by adding

study, an alternative formulation is investigated by cdasing

randomized ‘noise’ to the observations before the estonati

the stochastic design of a parameter when the estimatonyjgcess.
fixed, where the aim is to improve the estimation performance|n some estimation problems, the optimal estimator can be
by optimally designing the transmitted signal (which can bgary complicated, and its implementation can be quite gostl

deterministic or stochastic) for each possible paramedtrev
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In such scenarios, it can be reasonable to employ a subdptima
estimator with a low complexity, and try to employ altermati
approaches for improving the performance of that suboptima
estimator. In [3], the optimal stochastic design of a single
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a given (suboptimal) estimator. (Please see Section Il]dbf3
motivation and examples for stochastic parameter dedligis.)
shown that the Bayes risk of a given estimator can be reduced
by performing randomization between at most two different
signal levels for each parameter. In this manuscript, the ai

is to propose a framework for the optimal stochastic design
of multiple parameters. In this way, the approach in [3] for
the single parameter case is extended to the multi-paramete



scenario in which there exist multiple parameters (each can
be a scalar or a vector) and corresponding fixed estimators. n,
That is, the optimal stochastic design of multiple paramsete oy So, | V, B
is performed in order to optimize the performance of an array ! ! . » !
of fixed estimators. It should be emphasized that the difieze
of the multi-parameter case investigated in this study ftoen S
single parameter case investigated in [3] is not only relate
to the number of parameters. The proposed multi-parameter 7 P P
formulation in this study also takes into account the pdesib 6, — 4, —] B, i~ 60,
interference among parameter related signals (cf. Figinl). ' n,
addition, two different performance criteria, the totalypa b !
risk and the maximum Bayes risk, are considered, and the

probability distributions of the transmitted signals gpeaified Fig- 1. System model fof = 2. DevicesA; and A, transmit stochastic
ignalssg, andsg, for each value of parametes and 62, respectively.

for the optimal stochastic parameter design approaches. Fityicess, and B, estimated; and@, based on the noise and interference
thermore, the average transmitted signal powers correpgn corrupted version ogg, andsg,, respectively.

to the optimal parameter design approaches are determined,

and the characterization of the optimal approaches is geavi . . ) N o

for various scenarios. Also, sufficient conditions aredtito Stochastic design of a single parameter, additional mixia
specify when the stochastic parameter design or the deternfidn also be provided for the multi-parameter case. Estimati
istic parameter design (which involves no randomizatien) Pf multiple parameters naturally arises in multiuser syste
optimal. Numerical examples are presented to investigae 0 Which multiple devices send parameter related signals to
theoretical results, and to illustrate performance imprognts Multiple intended devices. For example, a wireless sensor

obtained via the proposed approaches. network with multiple users, in which each user (Devices
The main contributions of this study can be summarized @ and A, in Fig. 1) aims to send a parameter value
follows: (such as temperature or pressure) to a corresponding device

&PevicesBl and By in Fig. 1), can be considered. Since
r(‘sommunications occur in the same environment, interferenc
can also be observed at each receiving device, as shown
Fig. 1. In particular, when code division multiple access

criteria are considered, and it is shown that the optim ?DMA) is employed, each user trans_mits its parameters via
solution involves randomization between/among at mogtwaveforr_n that depends on a spe_cmc sp_readmg co_de for
2 and (K + 1) different signals for the total Bayes riskorthogonahzatlo_n purposésHowever, in practical scenarios,
and the maximum Bayes risk criteria, respectively, und veforms of different users cannot be perfectly orthogjona

an average power constraint, whekeis the number of due to effect; such as propagation delay) a_nd Some non-zero
parameters cross-correlations exist, which leads to multiuser iresfice

o For the total Bayes risk criterion, it is shown that whellgll' H_ence, the |_nterference is determined t_)y the cross-
the optimal solution involves randomization between twgCTelation properties of the employed spreading sequence

different signals, the average transmitted power is alwa the system (cf. (1)). In a_o!dltlo_n, ransmitters can _(_mta|
equal to the average power limit. Based on this result'® knowledge of the propablhty dlstnbutpns of the nowa

a low complexity approach for obtaining the optima eedback. Then, stochastic parameter design can be pedorm
solution is proposed and performance of the estimators at the receivers can be

o For the maximum Bayes risk criterion, a simple conditioﬂpt'm'zed‘
is derived in order to specify scenarios in which the
optimal solution involves randomization between at most
two different signals.

o Optimality conditions are derived to specify cases i
which the stochastic parameter design or the deterministi
parameter design is optimal.

« The optimal stochastic design of multiple parameters f
improving the performance of a set of given estimato
is studied for the first time. )

« Both the total Bayes risk and the maximum Bayes ris,

ﬁ. Organization

“The remainder of the manuscript is organized as follows:

In Section Il, the problem formulation is introduced and the

o optimal randomization strategies are obtained. In Sedtipn

A. Motivation some properties of the optimal stochastic parameter design
The main motivation behind the stochastic parameter desigpproaches are discussed. Sufficient conditions are deirive

is to improve performance of a given (fixed) estimator &ection IV in order to specify when the stochastic parameter

the receiver by performing optimal mapping (which can béesign or the deterministic parameter design is optimaterAf

stochastic in general) of parameter values at the traremitthe numerical examples in Section V, concluding remarks are

[3]. This is especially useful when the optimal estimator ig1ade in Section VI.

costly and a suboptimal estimator is employed at the receive

In such cases, the stochastic parameter design provides .a
P gn p INote that the model in (1) provides an abstraction for alldgperations in

Way. Pf improving the aCCUfaC)/ of .param?ter estimation. e system such as quantizer, encoder/decoder, moddktostiulator, and
addition to the arguments provided in Section Il of [3] foe th additive noise channel [3].



Il. STOCHASTIC DESIGN FORMULTI-PARAMETER problem is formulated without any constraints as [3]
ESTIMATION R
{p2P* @ € A} = arg min r() 2

sg

In this section, we establish a framework for the stochastic {Psg-OEA}
design of multiple parameters for a given set of fixed esti-
mators. Consider a parameter estimation scenario in whi¢here {ps,, & € A} represents the set of PDFs fey for
there existl' parameters denoted W, ..., 60, where each all possible values of paramet@y andr (@) is the objective

parameter resides ifR". Information about parameted;, function for the overall system. For the single parameteeca
is transmitted by devicel;, which can transmit any signalthe Bayes risk of the estimator was a natural choice for this

so, € RM related tof;, wherei € {1,..., K}. The trans- objective function [3]. On the other hand, it is possible to
mitted signalse, is corrupted by both additive noise and th&onsider various risk functions for the multi-parametesecdn
interference from other transmitted signals, and defgeries  this section, two different objective functions are coesédi.

to estimate the unknown parameégrbased on the noise andThe first one is the sum of the Bayes risks of fkieestimators
interference corrupted signal. An example system is degictin the system (called thital Bayes risk and the second one
in Fig. 1 for K = 2. It should be emphasized that parametd$ the maximum of the Bayes risks of the estimators (called th
0, is not necessarily transmitted as it is; instead, devicean mMaximum Bayes rigk For both of these objective functions,
transmit any function o8;, sayse,. In addition, functionse, the Bayes risk of each estimator should be calculated fiost. F
can be of any type; it can be a deterministic functiondgf the two parameter case, the Bayes risk of the first estimator
or it can be a stochastic function. The aim of this study is 16 expressed as

find the optimalsg,, i.e., the optimal probability distribution

of se,, for eaché;. r(61) :/ w(al)/PsQ(X)/C[é’(h)ﬁﬂ
It is noted that the difference between the single parameter A
case studied in [3] and the multi-parameter case investigat X pn, (Y1 — X1 — p12X2) dy1 dx d6; ()

in this manuscript is not only related to the number of . L
parameters. The proposed multi-parameter formulatiohig t AWhere ClO(y1),61] de”Otgs the cost of _estlmatlr‘{gl as
study also takes into account the possible interferencengmd@(y1) [2], andx = (xi %3] - (The Bayes risk of the second
the parameter related signals, as shown by the dashed cRsf§nator can be expressed in a similar fashion.)

lines in Fig. 1. Considerindd parameters, the received signal Defining an auxiliary functiomy, (x) for the first estimator

(observation) at devic®; can be expressed as as
K A a
g6, (x) = /0[01(}’1),91]19 (y1 —x1 — p12x2)dy:  (4)
Yi =50, + Y pijse, +1; (1) ' .
J;; and a similar function for the second estimator, the totgleBa

risk can be expressed as

for i € {1,..,K}, wherep;; is the multiplier that is set

according to the interference between the parameter delate T(é) = / w(8) /PSB (x) (9o, (X) + go,(x)) dx dO
signals for thei** and;j ** parameters andn; represents the A

channel noise, which has a probability density function D _ / w(0) E{ge(se)} dO (5)
denoted by, (-). Each deviceB; tries to estimaté; based on A

the corresponding observatign in (1). It is assumed that the R T

devices employ fixed estimators specifiedéyy; ) in order to  with 8 = [01 02} ,0=[07 02T]T, so = [sp, srg‘uT, and
estimatef;. Let @ denote the overall parameter vector, which

is defined a® £ [0 -- -BIT<]T. The prior distribution of@ Go(x) = g, (X) + ga, (x) . (6)
is represented bw(0), and the parameter space in whiéh

resides is denoted by. It should be emphasized that, (se,) For theK parameter case, similar gxpressions_ can be obtained
in (1) can be any function of; (8;). by updating (3) and (4) in order to include the interferenge d

The aim is to obtain the optimal probability distributiond® the other parameters as well. In that case, (5) still has th
of sp for each® € A in order to minimize a function S&@me form with the updated definition §§ which is given

~ K
of the Bayes risk for the given estimators, whesg = by 9_9(_X) =i ge_i(x)' _
[Sgl ] ”ng}T_ Since the parameters can interfere with each Similarly to [3], it can be shown that the solution of the

other, the optimization cannot be performed independen {]‘)timiza}tion problem in (2) for the total Bayes risk in (5)ca
for each parameter in general; therefore, a joint optinomat © obtained as

should be performed. PP (x) = G(x — sg™°) , s§C = arg min do(x)  (7)
A. Unconstrained Optimization forall& € A, whered denotes the Dirac delta function. Hence,
hi . h imal hasti q .the deterministic parameter design is optimal and thereis n
In this section, the optimal stochastic parameter desigila for stochastic modeling in this scenario. Also it can be
For the example of a CDMA system as in Section I-A, fhe terms in observed from (7) that the solution is independent of therpri
(1) can be determined by the cross-correlation propertieh® employed distributionw (@) as the optimal solution is obtained for each
spreading sequences in the system. 0 Separately.



When the maximum Bayes risk criterion is considered, thaptimization problem in (12) can be solved individually for

objective function in (5) can be updated as each@ as
r(0) = / w(8) _max </ Peo (%) g0, (%) dx) d8 win B{go(se)} subject 1o B{lsol|} < Ao (13)
A ie{l,...K} ‘ so

- for & € A. Therefore, the solution does not depend on the
- /Aw(e) ie{?éfK}(E{ggi (s6)})do . (8) prior distributionw(8).

Based on similar arguments to those employed above for tpeWhen the maximum Bayes risk criterion is considered, it
total Bayes risk criterion, it can be observed that the smbut an be obtained from (8) and (11) that the problem becomes
is independent of the prior distributian(@) and the optimal min  max_ E{ge,(se)} subjectto E{|se[*} < Ao
solution can be obtained for ea¢h separately. Hence, the  Pse i€{l...K}

optimization problem for the maximum Bayes risk criterion (14)
can be formulated as follows: for &# € A. Similar optimization problems in the form of
opt _ . Elae. . 9 (13) and (14) have been investigated in the literature @], [
Pso =218 r;l::lie{rlr}?.)fK} {g0.(s0)} © [5], [11]. The problem in (13) has the same form as the one

The study in [8] considers an optimization problem that igon_&dered In [3.]' Therefore, the_statlstu:all behawor_hxﬁt
ptimal solution is the same; that is, the optimal solutian c

in the same form as (9) (please see (13) in [8]). Hencg X . _ .
Proposition 1 in [8] also applies to the problem in (9), whic e achieved by a randomization (time sharing) between at mos

implies that the optimal solution corresponds to a discretf© different values Qﬁ" for ea(_:he, as stated |n.Prop03|t|on 1
random variable with at mogt” point masses for eaghunder n [:_3]' Then, the opnmal_solutlon can be obta|r_1ed based on a
some mild and practical conditions. Based on this resué, ggimilar appr0a<_:h to that in [3]. Namely, the opt!mal s_tod_:tms
optimal stochastic parameter design problem for the mamxim arameter design problem for the total Bayes risk critecam

Bayes risk criterion can be expressed as e expressed as

K 2

i i Ao.j Go(se.;)
min max No.i 90, (Se nun 6,5 9656,
D501, i€{lim K} ; j 96:(s6,5) {Xojrs6,5}7, =
K 2 2
. 9 -
subject to E Xoj =1 (10) subject to E Ao jllse.;lI” < Ae E Ao =1, (15)
- Jj=1 Jj=1
J=1

N €10,1], Vi€ {1,.... K} Ao, € (0,1, j e {1,2}

for @ € A, wheres, takes the value ofg; with probability for 8 € A. That is, th(_e optimall parameter design involves the
X, for j = 1 K. Compared to (’g) the formulationse of at most two different signal values for each parameter
g =1,...,K. ,

in (10) provides a significant reduction in computationfﬂccording to the total Bayes risk criterion. On the otherdhan

complexity as it requires optimization over a finite numbé‘-t:e optimization problem in (14) has a different form than
of variables instead of over all possible PDFs. Since gene at n [3]. Based on argum_ents similar to those in [22], the
cost functions and noise distributions are considered é tfP!loWing result can be obtained. _

theoretical analysis, functiop, in (4) is generic as well; Proposition 1: Suppose that functions, fori € {1, ..., K}

hence, the optimization problem in (15) can be nonconvex € continuous, and each componenispfresides in a finite
closed interval. Then, the optimal solution ¢14) can be

general. . . " .
characterized by the following probability density:
B. Constrained Optimization Kl
: : - : PR (x) = > No;6(x —s;) (16)
In this section, an average power constraint is considered =

(3
) where g ; > 0 and Y5 Ng i = 1.

E{llselI"} < Ao (11) Proposjition 1 st%%ésl that the optimal solution can be
for @ € A, where|sg| is the Euclidean norm of vectasy, achieved by a randomization (time sharing) among at most
and Ay represents the average power limit #rIn general, K +1 different values oy for eachd. Based on this result, the
constraintAg can be a function ob as well. From (5) and optimal stochastic parameter design problem for the maximu
(11), the optimal stochastic parameter design problemtfer tBayes risk criterion can be expressed as

total Bayes risk criterion can be expressed as K41
min max Xo.i 9o, (S 17
min /W(O)E{ge(sa)}do {No.j,s0,;} 1 i€{l,. K} ; 0.3 90:(50.5) (17)
{peg, 0EA} JA 1J<+1 K+1
subject toE{[|se|*} < 4q , V0 € A (12) subject to > Ngjllse i[> < Ao, > N, =1,
where go(-) is as defined in (6). Due to the structure of j=1 j=1

the objective function and the constraint, the constrained Xoj€0,1], je{1,...,K+1}



for 6 € A. if stochastic parameter design is optimal, then the average
From (15) and (17), it is concluded that randomization (timsignal power is equal to the average power limit; i.e., the

sharing) of transmitted signal values may offer improvetsersolution operates at the average power limit.

in the presence of an average power constraint for both theProof: In order to prove the claim in the proposition,

total Bayes risk and the maximum Bayes risk criteria. lsuppose thaf)e ;,se,;}7_, is an optimal solution and utilizes

addition, the optimization problems in (15) and (17) can ke power strictly lower than the average power limit; i.e.,

nonconvex in general since generic cost functions and noisg: s 1] + (1 — Xe.1)|se2||> < Ae. Without loss of

distributions are considered in the theoretical analysis. generality, assume thalsg1[> > A and [sg2|> < A
as a result of part (i) of Lemma 1. According to part (ii)
IIl. CHARACTERIZATION OF OPTIMAL STOCHASTIC of Lemma 1,de(se.1) < Go(seo) is satisfied. Next, con-
PARAMETER DES(l)C\;/\’/\JEII'?\I(IgNESFrREASIE$CE OFAVERAGE sider another solutior{)\%’s(,-,J»}?:1 with Ag, = (4o —
[se.21*)/(llse.1]I> — llse.2[*). Note that the average power

In this section, some properties of the optimal stochastfigr this solution is equal to the average power limit; that is
parameter design approaches in the presence of average p%g|\5971||2 +(1— /\é,1)||50.,2|\2 = Agp. In addition, it can be
constraints are discussed. Namely, the average trandmit{gqown that, , > g1 as|[se.1]|? > Ae, [lse2]? < Ae, and
signal powers corresponding to the optimal parameter desig average iaower 7of soluti70{1A’ 50412 ' is larger than
approaches are investigated, and the characterizatioheof tthat of solution { X ; 12 g'ijn’ce JJj=1 Y < g )
optimal approaches is provided in various scenarios. 1ON1A0,7, 50,51 j=1- golse, Go(se.2

For the total Bayes risk criterion, the following two resultdu€ to part (i) of Lemma 1 andg , > Ae,1, it can be shown
are obtained when thstochasticparameter design is thethat solution{), ;,se ;}5_, achieves a lower total Bayes risk
solution of (15) (equivalently, (13)); that is, when theioml than solution{)g ;,se ;};_,; that is,
solution involves randomization between two differentnsig , /
values? No,196(s0,1) + (1 — Ag.1)d6(S6,2) < No,176(s0,1) (18)

Lemma 1: Assume that the solution ¢fL5) involves ran- +(1—Xo,1)do(s0,2) -
domization between two different signals. Then, (i) onédef t

o . . 12
signals has a power below the average power limit, and ﬂl?éased on (18_)' Itis c_oncluded that SOlu“Qn‘?’J.’S"’J}j:J
annot be optimal, which results in a contradiction. Hetiice,

other signal has a power above the average power limit; (i : :
the signal with the higher (lower) power has a lower (highe concluded that a s_oI_utlon with an average power lower .th"?‘”
e average power limit cannot be optimal for the scenario in

isk than the other signal. " . i
sk tan te other sigha ,tPe proposition. That is, the solution of (15) operates at th

Proof: Both results are proved via contradiction. For pa . . S
(i), first assume that the powers of both signals are smalf&ferage power limit when the stochastic parameter design is

than or equal to the average power limit. Then, the soluti@rpt'mal'P ition 2. th ut £ (15 be ob _D q
cannot be a randomization between these two signals sinc& ®M Proposition 2, the solution of (15) can be obtained as

employing the signal with the lower risk (i.e., lowgp) Stated in the following proposition.
ploying J ( %) &)Proposition 3: The solution of(15) corresponds to either

exclusively achieves a lower total Bayes risk (see (15) oo ; )
than performing randomization between these signals.rcoleterministic parameter design or stochastic parameter de

assume that either the powers of both signals are larger ti@n: Which can be obtained as follows:
the average power limit, or the power of one signal is equals Deterministic Parameter Design: Transmitsg® exclu-
to and that of the other is larger than the average power sively foré € A, where

limit. In this scenario, the average power constraint in) (5 sd°* = arg min o (se) (19)
violated; hence, this cannot be a valid scenario. Theregiiise o Isel|2< Ae '

concluded that if randomization between two different aign
is the solution of (13), then one of the signals must have a e T

power below the average power limit, and the other signatmus ~ ("andomization) betweiagf’f and tsgp; with tltme shar-

have a power above the average power limit. For part (ii), if g factors (As — 1562 117)/ (Isgy [I* — lIsg’2]1*) and

the signal with the lower power has a risk which is smaller  (||sg"y 11> — Ao)/(lIsg™ > — [Isg’2 1), respectively, where
than or equal to the risk of the other signal, then there is no Ao — (80|

o Stochastic Parameter Design: Perform time sharing

need for randomization. In that case, employing this signal (soP' soP¥) = arg min o(s6.1)

. . . : , 9,1° 20,2 g 2 _ 5 96186,1
exclusively yields a lower risk; hence, randomization besw Ise.1l2>A0 IS6,1[1% — [[s6,2]]
these signals cannot be optimal. Therefore, if randonumati lIse,22<Ae
between two signals is the solution of (13), then the signal lse1ll> — Ae 20
with the higher (lower) power must have a lower (higher) risk se.1]% — [|se.2|2 go(se2) (20)

than the other signal. ‘
Based on Lemma 1, the following result is obtained. or 0_6 A. _ _
Proposition 2: If the solution of (15) (equivalently,(13) ~The solution of(15) is the one (19) or (20)) that results in
involves randomization between two different signalst tha the lower total Bayes risk.
Proof: There exist two possible scenarios for the solution
3In this study, the statement “the optimal solution involvaadomization of (15) If no randomization is employed the optimal sadati
between two different signal values” is used to mean thateths no b. btained . hich i '" d the d S
deterministic solution that achieves the same performaxehe optimal can be obtained as In (19)’ which is called the deterministic

stochastic solution. parameter design. On the other hand, randomization between



two signals can be performed. As stated in Proposition 2, tlexr ¢ € {1,..., K} \ {m}, where {)\éyj ,séyj} denotes the
average signal power must be equal to the average power lipribbability distribution ofsg that minimizes the risk of the

in this scenario; that ishe 1][se.1||? + (1 — Xe.1)[|se 2> = m'" estimator. In this scenario, Lemma 2 implies that the
Ag. Therefore, the time sharing (randomization) factors camptimal solution for then'® estimator is the solution of the
be calculated a1 = (Ag — [|se.2]|?)/(|lse.1]|*> — |lse.2||?) minimax problem as well. Since the optimal solution for a
and)g 2 = 1—\g 1. In addition, from part (i) of Lemma 1, one single estimator corresponds to randomization betweeroat m
signal has a power higher than the average power limit and tin® signals (consider (14) and (16) askf= 1), the solution
other signal has a power lower than the average power limif. the minimax problem in (17) is obtained via randomization
Hence, the optimization problem in (15) can be simplified dsetween at most two signals under the conditions in the

the one in (20). Finally, it is observed that the solutiontthgroposition. O
achieves the lower risk in (19) and (20) becomes the solutionWhen the number of parameters is large, it can be difficult
of (15). 0 to solve the optimization problem in (17) since the dimensio

Proposition 3 provides a simple approach for solving (159f the problem is high in that case. Proposition 4 offers a
Namely, the problems in (19) and (20) are solved, and the oredatively simple test based on the solution of several low
that achieves the lower total Bayes risk becomes the salutidimensional optimization problems before trying to solve
of (15). this high dimensional optimization problem. If the conalits

For the maximum Bayes risk criterion, the solution of (173tated in the proposition are satisfied then there is no nared f
(equivalently, (14)) can be characterized as a special fogulving the high dimensional optimization problem.
under certain conditions. To that aim, the following lemma
is presented first. IV. OPTIMALITY CONDITIONS

Lemma 2: Consider a set of functionsf;, for i €
{1,2,..., K}. If minimum value of a certain function, sé,,
is strictly higher than the values of the other functions
the same point, then this point is the solution of the mini
problem; that is,

In this section, various conditions are derived in order to
specify when the stochastic parameter design or the deter-
Fhinistic parameter design is optimal. In order to invedtga
M&ch optimality conditions, the objective function to benco

sidered should be identified first. In this study, two differe

min max f;(x) = min fp,(z). (21) objective functions, the total Bayes risk and the maximum
o " Bayes risk, are considered, and the optimality conditiafierd

Proof: Letz” denote the minimizer of,,,(z) and f(z') > for these functions. For the total Bayes risk, the problem
fi"), Vi € {1,2,...,K} \ {m}, as stated in the lemma.can pe simplified to minimizing the expectation of a single
Suppose that’ is not the solution of the minimax problem.fynction, g¢, as given in (13). As it was stated in Section II-
and consider another point” which yields a lower value g this problem has the same form as the one studied in
for the minimax problem; that ispax fi(z*) < fin(2'). BY  [3]. Therefore, the optimality conditions proposed in [3ga
definition, max f;(z*) > fn(z*). Combining the last two valid for the total Bayes risk criterion in this study as well
inequalities,lit is obtained thaf,,(z*) < fu(z'), which However, for the maximum Bayes risk criterion, the prpblem
contradicts the fact that the value gf, is strictly higher than has @ different form as given in (14); hence, the optimality
the values of the other functions &t Hence, it is concluded conditions are different in this scenario. In this sectitre
that no other point;*, can yield a lower value for the minimax©Ptimality conditions are investigated for the maximum Bay
problem thanz’. O risk crlterlqn. . .

Based on Lemma 2, the following result is obtained about 1€ optimal parameter design problem presented in (14)

the solution of the optimal parameter design problem accoi@P€S not necessarily yield a stochastic solution in all salse
ing to the maximum Bayes risk criterion. certain scenarios, the deterministic design is the optsohl-

Proposition 4: Consider the probability distribution of tion and in such cases the problem in (14) can be reformulated

sg that minimizes the risk of thex!” estimator under the &S
average power constraint, where € {1,..., K'}. For that min  max g, (se) subjectto [|se]?2 < dg  (23)
probability distribution, if the risk of then!” estimator is so i€{l,....K}

strictly higher than the risks of the other estimators, theiS  \yhere s, is modeled as a deterministic quantity for each
distribution is the optimal solution of the minimax problém g | et sdet represent the minimizer of the optimization

(14) (equivalently(17)) and it involves randomization betwee"problem in (23). Then, the minimum Bayes risk achieved

at most two signals. - _ by the optimal deterministic parameter desiga expressed
.P_roof: C_on5|der the minimax problem-ln (1?). Let theyg rdet(é) — [,w(d) max go,(sdt) dO (cf. (8)). On
minimum risk of them!" estimator be strictly higher than i€{l,.. . K} ) i
the risks of the other estimators for the distributionspfthat the other hand, the minimum Bayes risk achieved by
minimizes the risk of them'" estimator under the averagdhe optimal parameter design is denoted hy,(6) =
power constraint; that is, Sy w(®) fie max, . go; (x) pey" (x) dx dB, where p3b* is the
. _ N A ’ / optimal solution of (14) for a giverd. If the stochastic
{,\erj-l,lge,j}z/\a’J 9o (S0.5) = Z)\B*j 9o, (80.5)  (22) parameter design is the optimal solution of the problem in
! ’ , , (14), thenrsm(é) is strictly smaller tharrdct(é). Otherwise,
> Z No,; 96.(Se,;) it is concluded that the deterministic parameter desigmeés t
J optimal solution and the stochastic design does not provide



any improvements; that iy, (0) = rqet(0). In the following For an example of Proposition 5, consider a scenario in
proposition, sufficient conditions presented for the secomvhich two scalar parametefs andf, are to be estimated in
case. the presence of zero-mean additive nais&he average power
Proposition 5: For the maximum Bayes risk criterion, theconstraint is in the form ofi{|sg|?} < Ag for all 8, and the
stochastic parameter design cannot provide any improvésneastimator is specified b§(y) = y. Also, the cost function is
over the deterministic parameter design if at least one ef thnodeled a<’[8(y), 8] = (61 (y1) — 61)* + (fa(y2) — 62)2. In

following conditions is satisfied for eadh: this casege, in (4) can be calculated as
o The solution of the unconstrained problem (8¢ or o0
(10)) is deterministic (denoted byj™°) and satisfies the 9o, (x1) = / (v1 = 01)%pn, (y1 — X1 — p1ax2) dy:
power constraint; i.e.|s§"¢||* < Ag . o>
* ge, IS & convex function fot € {1, ..., K'}. _ - — / (y + x1 + praxz — 61)2pn, (y) dy
Proof: The first part of the proof can be obtained similarly —0
to that of Proposition 2 in [3]. If the first condition in the = (x1 + prax2 — 01)% + Var{n; } (26)

proposition is satisfied, i.e., if the unconstrained probleas whereVar{n; } is the variance of the noise component for the

a deterministic solution anffsi*°||* < Ag, then the solution _. o .
of (23) is the same as that of the unconstrained problemfmSt parameter. From (26), it is observed thaf is a convex

Section II-A; that is,si® — s, Therefore, the solution of function for any value of. Similarly it is possible to show

. A . . that g¢, is also a convex function for an§. Therefore, the
the optimal stochastic parameter design problem in (14) s'gconé condition in Proposition 5 is satisfied for&llwhich
expressed agdP'(x) = d(x — sg"°). Hence, the deterministic =~~~ b L

L . 4 . |mglles that the performance of the deterministic paramete
parameter design is optimal in this case, and the stocha%n :

parameter design cannot provide any improvements esign cannot be improved via the stochastic approachs$n thi
For the second condition in the proposition, it is note tha 'cenano. . . o . .

for any se, B{|[se||2} > |E{se}||? holds due to Jensen’s in-.. In the follpwmg propgsmon, a modified version of P_r0|_305|-

equality a’s norm is a convex function Therefdte/se||2} < tion 3in [3] is obtained in order to present sufficient corudis

Ag in (14) implies that|E{se}||2 < Aa must holdefor a?ly that specify scenarios in which the stochastic parametggde

feasible PDF ofsg. Let E{sq} be denoted byse: that is provides improvements over the deterministic one.

S0 2 E{se}. Since the minimizer of (23)53“, achieves the Proposition 6: For the maximum Bayes risk criterion, the

minimum value of max (so) among alls, that satisfy stochastic parameter design achieves a lower Bayes risk tha
ic 1y J0:150 g alse the deterministic parameter design if there exi@tE A for

Ise||? < Ag, the inequality||E{sg}||? = ||8¢||* < Ag implies which all ge,(x)’s are second-order continuously differen-
that tiable aroundsdet, and a real vector and a positive number
k can be found such that

_max _ gg,(E{se}) = max go,(Se) (24)

i€l K} ie{l,.. K} N (27s8) (27 Vg, (%) [xgger) <0 and (27)
>  max (sg°
T ie{l,..K} 9o.(55") |z)|? < (z"sg") (z"He,z — i /k) /(2" Vge, (X)|xzsget)

holds. If ge,’s are convex functions, then (28)

max  B{ge,(se)} > max ge. (E{se}) (25) for i € {1,..,K}, wheresd is the solution of (23),

ie{l,...,K} ie{l,...,K} Ve, (X)lx:sgec denotes the gradient afy, (x) at x = sg°t,
>  max  go, (s H,p, is the Hessian ofge,(x) at x = si°t, and »; 2
ie€{l,...,K} det det

maxge, (SG ) — Yo, (SG ) .

is obtained from Jensen’s inequality and from (24). The¥efo 'The conditions in Proposition 6 provide a relatively simple

whengs,’s are CO”Vexée{f{laXK}E{gei (se)} is never smaller technique, which is based on the first and second order

than the minimum value of (23), max _ ge, (s, for any derl_vatlves Ofggi_, fo_r determining if the stochastlc_p_argmeter

i€{l,...K} design can provide improvements over the deterministic iine

PDF ofse that satisfies the average power constraint. For thige conditions are satisfied, the stochastic parametegriési

reason, the minimum value of (14) cannot be smaller thgjyaranteed to outperform the deterministic parametegdesi
max go,(sg’), which means that it is always equal tqn which case the optimization problem in (15) can be solved

e K btain the optimal solution. It should also b d th
max gg_(sgpc) as (14) covers (23) as a special case. to obtain the optimal solution. It should also be noted that
ie{l,.., K} " there may exist scenarios in which the stochastic parameter

Overall, if at least one of the conditions in thejesign provides improvements over the deterministic orea ev
proposition is satisfied for all@, the deterministic though the the conditions in Proposition 6 are not satisfied,
and stochastic parameter design approaches achigifich is due to the fact that the conditions are sufficient but
the same minimum values for all parameters; that ifiot necessary. In the next section, examples are presestted f

de _ o . .
e geiA(Se o= e fhax, . g0, (x) pPt(x)dx, V6. various scenarios.
Hence,rqet(0) = [, w(@) max ge,(si) dO and
) (0) = [yl )ie{l.,....,K} (50 V. NUMERICAL RESULTS
_ : opt
(@) = [yw(®) [ e (Lo 90 (x) peg" (x)dxdO are | yhis section, numerical examples are presented in order

equal. 0 to investigate the performance of the optimal parametagdes



approach in various scenarios. Consider a wireless sen
network scenario in which two CDMA users aim to sen

information about two scalar parametefs, and 6, to two 15 B

. . . . “0‘0‘0‘0‘0‘0‘0 Conventional
intended devices as in Fig. 1. Then, parameter ve@ter 4 “.:‘:.0.% .

[61 62]7 is to be estimated based on observation vegtes . ““::‘:‘WW

[v1 y2]*, which is modeled via (1) as “}{}8:::‘\‘:‘““‘&0%%‘0‘0'03},'1””

%
%2000,
IR 0
NN \ 855777 4
NIIRRSS o

Total Risk

y=sp+p(1—-I)sp+n (29)

wheresg = [sp, sp,]7 consists of the transmitted (stochastic
signals for the two intended devices in the wireless sens 0
network for parameter valués andé, (sp, andsg, can be any
function of §; andf,, respectively)n = [n; ny]” represents
additive noise at the intended devicgs= pi2 = p21 de-
notes the crosscorrelation parameter that is determingteby
spreading sequences employed by the users (see Sectign |
I is the identity matrix of siz€ x 2, and1 is the matrix of ones
with the same size. The componenisandn, of the additive Fig. 2. Total Bayes risk versu; and 6.
noisen are independent and identically distributed Gaussii
random variables, specified by PDBg, (n) = pp,(n) =
exp{—(n— p)%/(202)}/(v/27 o), which is a common model
employed in wireless communication systems. The estima 15
is specified byf(y) = y, which estimates each paramete
independently based on the corresponding observation. 1 Opt. Deterministic
cost function for each parameter is chosen as the unifo
cost function, which is calculated a8[0;(y;),0;] = 1 if
10;(yi) — 0:] > A andC[f;(y;), 0;] = 0 otherwise fori = 1,2.
Based on this model, in (4) can be obtained as

-
S
LTSS
LSS

S
“‘

Total Risk

4
7
,’///II/I/ S

/eSS
II,Iy 77 :::o

+ —bh+p+A
i) (mE0m=tara)
+Q<—X1—PX2-;91—M+A> (30)

where Q(x) = (1/v2) [ exp{—t?/2}dt denotes theQ-
function. For eactd, E{||s¢||?} < ||6]|* is employed as the _
constraint stated in (11). Similarly to (3Q)s, for the second Fig- 3. Total Bayes risk versus andf.

parameter can be obtained. s . .
In the numerical examples, the parameter spaces for b rovements over the deterministic and conventionalpfesi

parameters are specified s = A, = [—10, 10]. Also, s Also, for some values of; and 6,, the performance of the

) . ’ 1 . - . .
and sy, can take values in the interva-10,10] subject to stocha;uc design is th_e same as the.unconstralned one.
the average power constrairit{[se]|?} < [|0]|°. Also, the In Fig. 4, the maximum Bay_es risks for the st_ochastlc
Gaussian distribution of the noise is taken to be zero meBfArameter design, the unconstrained parameter desigrnand t

with o — 0.5 and p is chosen to b@.25. Since the noise is a conventional parameter design are plotted. Also, in Fig. 5,

zero-mean random variablé(y) — y can be considered as athe maximum Bayes risks for stochastic parameter design

practical estimatof.In addition,A = 1 is used for the uniform and the deterministic parameter design are illustratedil&i
cost function described in the previous paragraph. To shiee to the previous scenario, It Is observed that the StOCh"?ISt'C
optimization problems, the Multi-Start algorithm [23] isad parameterdgs_|g_n prowdesmprovgments over the conveaitio .
in MATLAB, which employs a local solver from multiple startand deterministic parameter design approaches for certain
points to reach the global optimal solution of a non-conv nge of parameter values. . o .

problem. In Taple I, the .total Bayes risk criterion is consndgrgd, and

In Fig. 2, the total Bayes risks for the stochastic parame optimal so_lu'uons for the stochasuc, the determiaiatid

design, the unconstrained parameter design and the cony ﬁ_unconstralned parameter design approaches are gresent

tional parameter design (which transmits the parameters]c various values O.fa' It is observeq from t_he table that

they are: that is, employsy, — 6,) are illustrated. Also t e_optlmal stochastic parameter design can |n\{olve random
in Fig. 3, the total Bayes risks for the stochastic parametJ Pt'ohr! Eetween tW% d|ffer$]nt 5|gnals_ forhgerr]talhn valuehs Of
design and the deterministic parameter design are compa g Vhic h cortrespf)on S ttr? tdetcasgg {n whic tte Ztoq astic
It is observed that the stochastic parameter design achief@Proach outperiorms [he deterministic parameter design,
can be verified from Fig. 3. Similarly, Table Il presents the
4Although this is not the optimal estimator, it can be used riactice due optimal solutions for the stochastic, the deterministid &éme

to its simplicity compared to the optimal estimator. unconstrained parameter design approaches for the maximum
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Fig. 6. Regions (white) in which the optimality conditionsated in
Proposition 6 are satisfied for different valueszofor 8 = [—5, 5].

Fig. 5. Maximum Bayes risk versut ands. following equations:

2
a2

S
—e 2 4+e 2

Bayes risk criterion. The main difference in this scenaso i Vo, (x) = ——=——[1,p]"

that randomization (time sharing) among up to three differe b;/% .

signals can be performed for the optimal stochastic pammet —e T fe 7 -

design in accordance with Proposition 1. Vg, (x) = — (1, o] (31)

Next, the maximum Bayes risk criterion is consideredyherea; = (x1 — px2 — 01 + u + A)/o, as = (—x1 +
and the conditions in Proposition 6 are studied. Namely, th&s + 01 — u+ A) /o, by = (xo — px1 — 02 + p+ A) /o, and
existence of a real vectar and a positive numbek that by = (—x2+ px1 +02+ u+ A)/o. Based on these equations,
satisfy the conditions in Proposition 6 for a certain valde dhe first condition in Proposition 6 can be evaluated for each
0 is investigated. Consider the parameter vaflue- [—5,5]. estimator. The first two plots in Fig. 6 illustrate the values
If all the four conditions (two conditions for each estimato of z for which the first condition in Proposition 6 is satisfied
are satisfied for this value @, then it is guaranteed that thefor the first and the second estimator, respectivelyifer 1
stochastic parameter design yields a lower maximum Bayasd & = [—5,5]. Namely, in the white (black) regions, the
risk than the deterministic design. To test the first conditi conditions are satisfied (not satisfied). As observed froen th
for each estimator, we need the valuesgf and the gradients figure, there are certain regions in which the first condition
of ge, (x) andge, (x) atx = sgt. As it can be observed fromis satisfied for each estimator. Next, the second condition i
Table 11, sgt = [-5, 5] for @ = [-5, 5], and the gradients of Proposition 6 is tested. To that aim, the HessiangQfx)
ge, (x) andge, (x) atx = sg¢* can be calculated based on th@nd ge, (x) at x = si¢* are calculated. The Hessians of these



UNCONSTRAINED SOLUTIONp
SOLUTIONpgh

S0

opt

(x) = d(x —sg"°
opt

TABLE |

), OPTIMAL DETERMINISTIC SOLUTIONpSY (x) = 8(x — sg™*

(x) =Xg,10(x —59,1) + Ag,2 (X — s9,2) FOR THE TOTAL BAYES RISK CRITERION

10

), AND OPTIMAL STOCHASTIC

opt

01 02 sp"C Sg Ao,1 Se,1 Ao,2 6,2
5 5 4,4) 4,3 T %
5 25| (-4.667,-1.333)| (-4.667,-1.333)| 1  (-4.667,-1.333)
5 0 | (5.333,1333)| (-4.889,1.049)| 1  (-4.889,1.049) - ;
5 25 (-6,4) (-4.694,3.035) | 0.669 (-5.5653.622) 0.331  (0.561,2.243)
5 5 | (-6.667,6.667)| (-5.950,3.820)| 0.508  (1.138,4.553) 0.492  (-6.280,6.280)
25 5 | (-1.333.-4.667)| (-1.333-4.667)] 1  (-1.333.-4.667) - ;i
25 25 (-2,-2) (2,-2) 1 (2,-2)
25 0 | (-2667,0.667)| (-2.444,0527)| 1  (-2.444,0.527) - -
25 25| (-33333333)| (2525 |0918 (-2572,2572) 0082 (-2.023,-0.208)
25 5 (-4,6) (-3.035.4.694) | 0.669 (-3.622.,5.565) 0.331 (-2.243.-0.56[L)
0 -5 | (1.333.5.333)| (1.049,-4.889)| 1  (1.049,4.889) - -
0 25| (0.667.-2.667)| (0.527.-2.444)| 1  (0.527.-2.444)
0 25| (-0.667,2.667)| (-0.527,2.444)| 1  (-0.527,2.444)
0 5 | (-1.3335333)| (-1.049.4.889)| 1  (-1.049.4.889)
TABLE 1l

UNCONSTRAINED SOLUTIONpZY* (x) = 6(x — s5"°), OPTIMAL DETERMINISTIC SOLUT|ONp;’§’t(x) =4(x — sgpt), AND OPTIMAL STOCHASTIC

56
SOLUT|0Np§’§“(x) =X0,10(x —59,1) +Xg,20(x —5g,2) + Ag,30(x —sg 3) FOR THE MAXIMUM BAYES RISK CRITERION

opt

01 02 sgh¢ Sg Ao,1 Se,1 Ae,2 S0,2 Ao,3 S0,3
5 5 (-4.-4) (-4.-%) 1 (4.-4) - -
-5 -25| (-4.667,-1.333)| (-4.667,-1.333)| 1 (-4.667,-1.333) -
-5 0 | (-5.333,1.333)| (-4.915,0.915)| 1 (-4.915,0.915) - - - -
5 25 (-6,4) (-4.824,2.824) | 0.637  (-5.498,3.416) 0.194  (0.503,2.167) 0.169 (-4.48094)
-5 5 | (-6.667,6.667) (-5,5) 0.487 (-6.264,6.313) 0.261 (-4.607,-0.995) 0.252  (0498&2)
25 -5 | (-1.333,-4.667)| (-1.333,-4.667)| 1 (-1.333,-4.667) - - - -
25 -25 (-2,-2) (-2,-2) 1 (-2,-2) - -
25 0 | (-2.667,0.667)| (-2.458,0.458) | 0.998  (-2.458,0.458)  0.002  (-2,464,0.465) - -
25 25| (-3.333,3,333)| (-2.52.5) 0.879 (-2.617,2.599) 0.066  (0.415,2.093) 0.055 (-2.01353)
25 5 (-4,6) (-2.824,4.824) | 0.623  (-3.458,5.502) 0.194 (-2,211,-0.498) 0.183  (14883)
0 -5 | (1.333,-5.333)| (0.915,-4.915)| 1 (0.915,-4.915) - - - -
0 -25| (0.667,-2.667)| (0.458,-2.458)| 1 (0.458,-2.458) -
0 25| (-0.667,2.667)| (-0.458,2.458)| 1 (-0.458,2.458) -
0 5 | (-1.333,5.333)| (-0.915,4.915)| 1 (-0.915,4.915) -
functions can be found as follows: ments over the deterministic design but Proposition 6 doés n
.2 2 apply, qnd (iii) improvements over the determinis_tic dasagd
H ~me 2 +aze” % [1 p Proposition 6 applies are specified. The calculations shaty t
0,(x) = Vor p p? in the considered example, Proposition 6 provides sufficien
»2 12 conditions for improvability that are valid over a signifita
Ho, (x) — bie™ 2 +bye”2 [p* p (32) portion (about 58%) of the improvability region (in partiat
: V2 p 1 for large values of the parameters in the improvability oegi

i ) but the conditions are not necessary in general.
whereay, az, by, andb, are as defined previously. Based on

(31) and (32), the second condition in Proposition 6 can beln order to gain intuition and further understanding, Fig. 7
evaluated for each estimator. The results of these evahsatiand Fig. 8 visualize how the stochastic design approach
are shown in the second and third plots in Fig. 6 for differeptrovides performance improvements over the determirosigc
values ofz. Similar to the first condition, the second conditiorfor the total Bayes risk and the maximum Bayes risk criteria,
is satisfied in certain range efvalues (white regions). The lastrespectively. In Fig. 7, the total Bayes rigk(x) is illustrated

plot in Fig. 6 shows the intersection of the regions in whicfor 8 = [—5, 5]. The region inside the circle corresponds to the
the conditions are satisfied. As observed from the figure, thalues ofx that satisfy the power constraint individually. Here
intersection is not an empty set, hence we can conclude titatan be seen that the minimum valuegg{x) is observed at a
there exist a real vecter and a positive numbeét for which  value ofx which does not satisfy the power constraint. In that
all the conditions in Proposition 6 are satisfied. Therefore case, the unconstrained solution simply picks that valug of
this scenario, it is guaranteed that the stochastic pasmetssy™°. On the other hand, the optimal deterministic solution,
design achieves a lower Bayes risk than the determinisfitks the value ofk residing on or inside the circle, which
design for@ = [-5,5] as a result of Proposition 6. Theminimizes the value ofje(x), denoted asget. Obviously,
applicability of Proposition 6 is also investigated for tikole there is a performance gap between the unconstrainedoluti
parameter spacé) € [—10,10] x [-10,10], and the sets of and the optimal deterministic solution, as can be obsemeed f
parameter values for which the stochastic design providesFig. 2 and Fig. 3. The proposed stochastic design approach
no improvements over the deterministic design, (i) imgrov aims to achieve improvements over the deterministic smiuti



11

T
— — — Opt. Deterministic
Opt. Stochastic

————— Unconstrained

18

1.6

11.4

i

bom— ==

11.2

o
o
T

Total Risk (Maxium Risk)

X[1]

Fig. 9. The total Bayes risk (black) and the maximum Bayek (igd)
Fig. 7. The total Bayes riskig(x) for 8 = [—5,5]. versus the noise standard deviatierfor & = [—5, 5] and p = 0.25.

To that aim, the stochastic design perform randomizatic

(time sharing) between two signals, i.e., one that satisfies tar— = opt. Deterministc]
power constraint with low performance, the other that dot opt Stochastc ||
not satisfy the constraint but has high performance, as ean = Unconstrained

seen from Fig. 7. By randomizing between these two signa
it is possible to satisfy the power constraint on the aveeagk
to achieve a better performance than the optimal detertiginis
design. In Fig. 8, the Bayes risks for the estimatas,(x)
and gg,(x), are illustrated for@ = [—5,5]. As stated in
(14), the stochastic design aims to minimize the maximu
of the expectations aje, (x) andgg,(x). It is observed from
Fig. 8 that the minimum values @b, (x) andgeg, (x) coincide

Total Risk (Maxium Risk)
o o
o ©

o
N
T

outside the power constraint. Therefore, it is not possible 0.2r
pick a single point which minimizes the maximum Bayes ris
and satisfy the constraint at the same time. Similar to tl 0

total Bayes risk case, the stochastic design should perfo
randomization between some signals inside and outside uic , , _
constraint to_achieve improvements over the determinis(i %, e (2% Beves ok (el and e maxinum Bayek (e
design. However, as seen in Fig. 8, the minimum values of

ge, (x) and gg, (x) do not coincide inside the constraint and

as a result any signal minimizing one g§, (x) and gg, (x) VI. CONCLUSIONS

maximizes the other one. Hence it is not possible to pick just

one signal that satisfies the constraint and randomize It wit |n this manuscript, the optimal stochastic design of mletip
another signal that does not satisfy the constraint. Toowree parameters has been studied for a given set of fixed estisnator
this problem, two signals satisfying the constraint shd#d Two different performance criteria have been considered:;
chosen and these two signals should be randomized witthamely, the total Bayes risk criterion and the maximum Bayes
signal that does not satisfy the power constraint. As a tesysk criterion. It has been shown that, in the presencesof
the expectations of bothe, (x) and ge,(x) are minimized parameters, the optimal stochastic parameter designtsesul
to a certain point, which makes it possible to minimize thm time Sharing (randomiza‘[ion) among at most two and
maximum of these expectations. (K + 1) different signals values for the total Bayes risk and
Finally, in Fig. 9 and Fig. 10, the total Bayes risks (blacklhe maximum Bayes risk criteria, respectively. In addition
and the maximum Bayes risks (red) of the different approgschibe average transmitted signal powers corresponding to the
are plotted versus the standard deviationof the noise optimal parameter design approaches have been specified,
components and the cross-correlation paramgten (29), and the characterization of the optimal approaches has been
respectively, for@ = [-5,5], wherep = 0.25 in Fig. 9 provided in various scenarios. Furthermore, various d@r
ando = 0.5 in and Fig. 10. It is observed that the optimahave been derived in order to specify when the stochastic
stochastic design provides improvements over the optindrameter design or the deterministic parameter design is
deterministic design, and the two algorithms have similaptimal. Finally, the numerical examples have been present
performance for smalp and/or for large values of (i.e., to investigate the theoretical results, and to illustrate t
in the noise-limited regime). amount of improvements achieved via the proposed approach.
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