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Jamming Strategies in Wireless Source Localization Systems
Musa Furkan Keskin, Cuneyd Ozturk, Suat Bayram, and Sinan Gezici

Abstract—We consider optimal jamming strategies in wireless
source localization systems, where anchor nodes estimate posi-
tions of target nodes in the presence of jammers that emit zero-
mean Gaussian noise. The Craḿer-Rao lower bound (CRLB)
for target location estimation is derived and the problem of
optimal power allocation for jammer nodes is formulated to
maximize the average CRLB for target nodes under total and
peak power constraints. Exploiting the special problem structure
and successive convex approximation techniques, we develop
an iterative algorithm that transforms the original non-convex
problem into a sequence of convex geometric programs. In
addition, we present a closed-form solution that is asymptotically
optimal. Numerical results demonstrate the improved jamming
performance of the proposed solutions over the uniform power
allocation strategy.

Index Terms–Jamming, wireless localization, power allocation,
geometric programming, successive convex approximation.

I. I NTRODUCTION

In wireless localization systems, location estimation is com-
monly performed via signal exchanges betweenanchor nodes
with known positions andtarget nodes whose positions are to
be estimated [1], [2]. Depending on the signaling procedure,
localization systems can be classified into two groups; namely,
self localization systems andsource localization (or, network-
centric localization) systems [1]. In the self localization ap-
proach, target nodes estimate their own locations using signals
transmitted by anchor nodes while in the source localization
case, the anchor network performs position estimation of target
nodes based on signals emitted by these nodes.

To degrade performance of wireless localization systems
(i.e., to reduce localization accuracy of target nodes),jammer
nodes can transmit jamming signals that disturb the localiza-
tion signals between anchor and target nodes [3]. Investigation
of jamming strategies is crucial for location-aware networks
to determine adversarial capabilities of jammer nodes and also
to develop effective countermeasures against jamming. In the
literature, jamming strategies in wireless localization networks
have been investigated within the context of self localization
systems [3], [4], and in particular GPS systems [5], [6]. In [5],
a performance analysis for GPS jamming and anti-jamming
techniques is presented. Similarly, the work in [6] proposes an
anti-jamming GPS receiver that reduces the impact of carrier
phase errors. In [3], jamming of wireless networks relying on
self localization is investigated and optimal power allocation
solutions for jammer nodes are characterized by adopting
the Cramér-Rao lower bound (CRLB) on the localization
error of target nodes as the performance metric. The work
in [4] designs a more generic framework for jammer power
allocation by using the restricted Bayesian approach. Although
the problem of optimal power allocation for jammer nodes has
been addressed for self localization systems in the literature,
there exist no studies that consider jamming strategies for
wireless source localization systems. Due to a different signal
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exchange mechanism compared to self localization, the source
localization configuration yields a challenging non-convex
optimization problem (as opposed to linear programs in [3],
[4]) which necessitates the design of new jamming approaches.

In this letter, we investigate a generic localization scenario
in which jammer nodes are employed to degrade the perfor-
mance of a wireless source localization system. We derive
the CRLB for target localization in the presence of zero-
mean Gaussian jamming signals and formulate the problem of
optimal power allocation among jammer nodes to maximize
the average CRLB for target nodes under total and peak power
constraints. Then, we propose a geometric programming (GP)
based iterative algorithm by employing successive convex
approximation (SCA) tools. In addition, we provide an asymp-
totically optimal closed-form solution. Numerical results illus-
trate the performance gains of the proposed techniques.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a two-dimensional wireless source localization
system withNA anchor nodes located atyj ∈ R

2 for
j = 1, . . . , NA. Target nodes are randomly located in the
environment in such a way that a target node exists at location
xi ∈ R

2 with probability wi for i = 1, . . . , NT , whereNT

is the number of possible target positions,
∑NT

i=1 wi = 1 and
wi ≥ 0 ∀i. In addition, there existNJ jammer nodes located
at zℓ ∈ R

2 for ℓ = 1, . . . , NJ . In the source localization
scenario, the position of a target node is estimated by the
network of anchor nodes based on received signals emitted by
that target node. It is assumed that some form of multiplexing
is employed so that channels between a target node and
anchor nodes are all orthogonal.While the anchor nodes aim to
perform accurate estimation of target positions, the objective
of jammer nodes is to degrade the localization performance
by transmitting zero-mean Gaussian noise [7].

Let Ai denote the set of anchor nodes that are connected to
the target node at theith position (i.e., locationxi), which
can be partitioned asAi , AL

i ∪ ANL
i where AL

i and
ANL

i represent the sets of anchors nodes with line-of-sight
(LOS) and non-line-of-sight (NLOS) connections to that target
node, respectively. In addition, the set of jammer nodes is
represented byJ = {1, . . . , NJ}. Then, the received signal at
anchor nodej coming from the target node at positioni can
be expressed as [3], [8]

rij(t) =

Lij∑

k=1

αk
ijsij(t−τ

k
ij)+

∑

ℓ∈J

γℓj

√
P J
ℓ vℓij(t)+nij(t) (1)

for t ∈ [0, Tobs], i ∈ {1, . . . , NT }, and j ∈ Ai, whereTobs
specifies the observation time,sij(t) is the transmit signal of
the target node at positioni intended for anchor nodej, αk

ij

and τkij denote, respectively, the amplitude and delay of the
kth multipath component between the target node at position
i and anchor nodej, Lij is the number of paths between the
target node at positioni and anchor nodej, γℓj represents the
channel coefficient between anchor nodej and jammer node
ℓ, andP J

ℓ is the transmit power of jammer nodeℓ. In addition,√
P J
ℓ vℓij(t) andnij(t) denote, respectively, the jammer noise
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and the measurement noise, both of which are assumed to
be independent zero-mean white Gaussian random processes,
where the average power ofvℓij(t) is equal to one and that
of nij(t) is N0/2 [3]. It is modeled thatnij(t) is independent
for all i, j, andvℓij(t) is independent for alli, j, ℓ due to the
assumption of orthogonal channels. Furthermore,τkij in (1)
represents the delay term, which is given byτkij , (‖yj −

xi‖ + bkij)/c, wherebkij ≥ 0 and c denote, respectively, the
range bias of thekth path and the speed of propagation.

Via similar steps to those in [3], [8], the equivalent Fisher
information matrixJ i(p

J ) corresponding to the target node
at positioni is obtained as

J i(p
J) =

∑

j∈AL
i

λij
N0/2 + aT

j p
J
φijφ

T
ij (2)

λij , 4π2Eijβ
2
ij |α

1
ij |

2(1− ξij)/c
2 , (3)

aj ,
[
|γ1j |

2 · · · |γNJj |
2
]T
, (4)

pJ ,
[
P J
1 · · ·P J

NJ

]T
, φij , [cosϕij sinϕij ]

T (5)

where Eij and βij are, respectively, the energy and the
effective bandwidth ofsij(t), ξij is the path-overlap coefficient
satisfying0 ≤ ξij ≤ 1 [8]1, ϕij represents the angle between
the target node at positioni and anchor nodej, andaj denotes
the vector of channel gains between the jammer nodes and
anchor nodej. The CRLB constitutes a lower bound on the
mean-squared error (MSE) of any unbiased estimatorx̂i of
target locationxi [9]; that is,

E
{
‖x̂i − xi‖

2
}
≥ tr

{
J i(p

J)−1
}
, Ci(p

J ) (6)

whereJ i(p
J) is given by (2) andCi(p

J ) represents the CRLB
for the localization of the target node at positioni. From (2)–
(5), the CRLB in (6) can be rewritten, after some manipulation,
as follows:

Ci(p
J) = fi(p

J )/gi(p
J) (7)

fi(p
J) ,

∑

j1∈AL
i

λij1
∏

j2∈AL
i

j2 6=j1

(
N0

2
+ aT

j2
pJ

)
, gi(p

J) ,

∑

j1∈AL
i

∑

j2∈AL
i

j2>j1

λij1λij2 sin
2(ϕij1 − ϕij2)

∏

j3∈AL
i

j3 6=j1
j3 6=j2

(
N0

2
+ aT

j3
pJ

)

(8)

The purpose of jamming in the proposed source localization
scenario is to minimize the localization performance of the
wireless system via optimal power allocation among jammer
nodes under individual and total power constraints. To that
aim, we adopt the CRLB as a measure of localization accu-
racy since the maximum likelihood (ML) estimator for target
location is asymptotically tight to the CRLB in the high SNR
regime [9]. Hence, the problem of optimal power allocation
for jammer nodes is formulated to maximize the average
CRLB for possible target positions under certain constraints

1It is assumed thatλij ’s are strictly positive, i.e.,ξij < 1.

as follows:

maximize
pJ

NT∑

i=1

wiCi(p
J) (9a)

subject to 1
TpJ ≤ PT (9b)

0 ≤ P J
ℓ ≤ P peak

ℓ , ℓ = 1, 2, . . . , NJ (9c)

whereCi(p
J ) is given by (7),PT is the total power budget for

the jammer network, which results from energy consumption
restrictions, andP peak

ℓ is the peak power limit for jammer
nodeℓ, which is imposed by hardware limitations. In (9), we
attempt to degrade the average of the best achievable estima-
tion accuracies (i.e., CRLBs) over possible target positions by
optimizing jammer powers.

III. O PTIMAL JAMMER POWER ALLOCATION

In this section, we propose a GP based iterative algorithm
to solve the problem (9) by leveraging SCA techniques. In
addition, we provide an asymptotically optimal closed-form
solution to (9).

A. Jammer Power Allocation via Geometric Programming

Since gi(pJ ) in (8) is positive for any power vectorpJ

(due to the non-negativity of the termsλij , N0, andaj), the
problem in (9) can be rewritten in the epigraph form as [10]

maximize
pJ ,ν

wTν (10a)

subject to νi gi(p
J ) ≤ fi(p

J), i = 1, . . . , NT (10b)

(9b), (9c)

with w = [w1 . . . wNT
]T , where we introduce the slack

variablesν = [ν1 . . . νNT
]T . There are two sources of non-

convexity in the problem in (10).2 First, the functionsfi(pJ )
and gi(pJ ) are bothposynomials3; hence, each constraint in
(10b) becomes the ratio of posynomials. Second, the objective
function in (10a) is a posynomial, which should have been a
monomial in a maximization problem [10, Sec. 4.5.2].

To obtain a convex approximation of (10), we define a
collection of monomials as

ψ
({Ã,J̃})
ijn (pJ) , λij

(
N0

2

)n Nij−n∏

k=1

aÃ(k)(J̃ (k))P J

J̃ (k)
(11)

whereNij ,
∣∣AL

i \ {j}
∣∣, S(k) denotes thekth element of

a setS and aj(ℓ) represents theℓth element ofaj . Then,
using the arithmetic-geometric mean (AGM) inequality [11,
Lemma 1], we can lower bound the posynomialfi(p

J) by a
monomialf̃i(pJ) so thatfi(pJ ) ≥ f̃i(p

J), as shown in (12)
on top of page 4, wherePk(S) , {B ∈ P(S) : |B| = k} with
P(S) denoting the power set ofS andMk(S) , {B : |B| =
k and B(m) ∈ S,m = 1, . . . , k}. If the non-negative weights
in (12) are chosen as

µ
({Ã,J̃})
ijn = ψ

({Ã,J̃})
ijn (pJ

⋆ )/fi(p
J
⋆ ) (13)

2Here, convexity refers to the condition that (10) can be represented in the
form of a valid geometric program [10, Sec. 4.5.2].

3A monomial f : R
N
+ → R is defined asf(u) = ϑu

a1

1 u
a2

2 . . . u
aN
N

where ϑ ≥ 0 and ai ∈ R for i ∈ {1, . . . , N}, while a posynomial
f : R

N
+ → R is defined as the sum of monomials, i.e.,f(u) =∑M

m=1 ϑm u
am,1

1 u
am,2

2 . . . u
am,N

N
[10].
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for a power vectorpJ
⋆ , f̃i(pJ ) becomes the best local mono-

mial approximation tofi(pJ ) aroundpJ
⋆ according to the first

order Taylor expansion and we havefi(pJ
⋆ ) = f̃i(p

J
⋆ ) [11].

Then, an approximated version of (10) is obtained as
maximize

pJ ,ν
wTν (14a)

subject to νi gi(p
J ) ≤ f̃i(p

J ), i = 1, . . . , NT (14b)

(9b), (9c) .
The problem in (14) is still non-convex due to the objective

function in (14a). To convexify (14), we first express it in the
epigraph form as follows:

maximize
pJ ,ν,η

η (15a)

subject to η ≤ wTν (15b)

νi gi(p
J) ≤ f̃i(p

J), i = 1, . . . , NT (15c)

(9b), (9c) .
Then, using the AGM inequality for the posynomialχ(ν) ,
wTν at the right-hand side (RHS) of (15b), we obtain its
monomial approximatioñχ(ν) as

χ(ν) = wTν ≥ χ̃(ν) ,

NT∏

i=1

(
wiνi
κi

)κi

(16)

where the weightsκi must be selected as
κi = (ν⋆i wi)/χ(ν

⋆) (17)

for a givenν⋆ to ensure thatχ(ν⋆) = χ̃(ν⋆). Hence, replacing
(15b) by its convex restricted version via (16), we obtain the
following convex approximation of the original non-convex
problem in (10):

maximize
pJ ,ν,η

η (18a)

subject to η ≤ χ̃(ν) (18b)

νi gi(p
J) ≤ f̃i(p

J), i = 1, . . . , NT (18c)

(9b), (9c) .
Now, the problem in (18) consists of a monomial objective

and inequality constraints with posynomials and monomials
on the left-hand side (LHS) and RHS, respectively. Therefore,
(18) is a convex geometric program and can efficiently be
solved by standard methods of convex optimization [10]. Over-
all, we can solve the original power allocation problem in (10)
by solving a sequence of convex programs in the form of (18).
Starting with an initial feasible vector

[
pJ
0 ν0

]
, the problem

in (18) can be solved using the monomial approximations
f̃i(p

J ) and χ̃(ν) around the current point at each iteration.
This SCA procedure is summarized in Algorithm 1. In the
following proposition, Algorithm 1 is shown to converge to
a locally optimal Karush-Kuhn-Tucker (KKT) point of the
original problem in (10).

Proposition 1. Solving a series of convex geometric pro-
grams using the approximated problem (18), Algorithm 1
converges to a locally optimal solution satisfying the KKT
conditions of the original problem (10) (or, equivalently (9)).

Proof: The proof can be constructed by following a
similar approach to that in [11, Prop. 3].

B. Asymptotically Optimal Closed-Form Solution

In this part, we derive a closed-form power allocation
solution to (9) that is asymptotically optimal asPT → 0 and/or
‖aj‖∞ → 0 for j = 1, . . . , NA, where‖ · ‖∞ is the l∞ norm,
as stated in Proposition 2, which can provide an important
simplification to the jammer power allocation problem in (9)

Algorithm 1 GP-SCA Algorithm for Jammer Power Allocation

Initialization. Choose an initial feasible power vectorpJ
0 and auxiliary

vectorν0. Setk = 1.
Iterative Step. At the kth iteration:
for i = 1, . . . , NT do
• Construct the monomial approximatioñfi(pJ ) to the posynomial
fi(p

J) in (12) by computing the weights in (13) withpJ
⋆ = p

J
k−1

.
end for

- Construct the monomial approximatioñχ(ν) to the posynomialχ(ν) in
(16) by settingν⋆ = νk−1 in (17).

- Solve the geometric program in (18) to obtain the optimal power vector
p
J
opt and the optimal auxiliary vectorνopt.

- SetpJ
k
= p

J
opt, νk = νopt andk = k + 1.

Stopping Criterion. |ηk − ηk−1| < δ for someδ > 0, whereηk denotes
the optimal value ofη in (18) at thekth iteration.

for small PT and/or low channel gains between anchor and
jammer nodes.4

Proposition 2. Let ζ ,
∑NT

i=1 wi λ̄i/λ̃
2
i , where

λ̄i ,
∑

j1∈AL
i

∑
j2∈AL

i
j2>j1

∑
j3∈AL

i

[
λij1 λij2 λij3 sin2(ϕij1 −

ϕij2 )
(
aj1 + aj2 − aj3

)]
and λ̃i ,∑

j1∈AL
i

∑
j2∈AL

i
j2>j1

λij1λij2 sin
2(ϕij1 − ϕij2 ) for

i ∈ {1, . . . , NT }, θ
J

,
[
aT
1 p

J . . .aT
NA

pJ
]T

,
C̃i(θ

J ) , Ci(p
J ), and J̃ i(θ

J ) , J i(p
J). Assume that

‖aj‖∞ → 0 for j = 1, . . . , NA and/orPT → 0. Then, the
asymptotically optimal solutionpJ

⋆ of (9) is given by

pJ
⋆ (bζ(ℓ)) = min

{
PT −

ℓ−1∑

n=1

pJ
⋆ (bζ(n)), P

peak
bζ(ℓ)

}
(19)

for ℓ ∈ J , wherebζ(ℓ) denotes the index of theℓth largest
element ofζ andpJ

⋆ (ℓ) is the ℓth element ofpJ
⋆ .

Proof: As ‖aj‖∞ → 0 for j = 1, . . . , NA and/orPT →
0, the objective function in (9) is approximated via the first
order Taylor expansion aroundθJ = 0 as

NT∑

i=1

wiC̃i(θ
J) ≈

NT∑

i=1

wi

(
C̃i(0) +∇C̃i(0)

TθJ

)
(20)

=

NT∑

i=1

wi

(
C̃i(0) +∇C̃i(0)

T [a1 . . .aNA
]TpJ

)
(21)

where C̃i(θ
J) , Ci(p

J ) is used. After some ma-
nipulation, it can be calculated from (7) and (8) that
∇C̃i(0)

T [a1 . . .aNA
]T = λ̄

T

i /λ̃
2
i . Hence, maximizing (21)

for solving (9) is equivalent to

maximize
pJ

ζTpJ subject to (9b), (9c). (22)

as ‖aj‖∞ → 0 for j = 1, . . . , NA and/or PT → 0. As
noted from (2),J̃ i(θ

J) is monotonically decreasing inθJ ,
i.e., J̃ i(θ

J
1 ) � J̃ i(θ

J
2 ) if θJ

1 � θJ
2 . Thus, C̃i(θ

J ) in (6)
is a monotonically increasing function ofθJ , which makes
∇C̃i(0) andζ non-negative vectors. Therefore, similar to [3,
Prop. 2], the optimal solution to (22) is derived as (19).

4For example, when the jammer network has a sufficiently low power
budget (e.g., to make jamming detection more difficult, or due to energy
efficiency concerns) or when jammer nodes are distant from anchor nodes, one
can employ the closed-form solution in Proposition 2 instead of Algorithm 1.
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fi(p
J ) =

∑

j∈AL
i

Nij∑

n=0

∑

Ã∈PNij−n(A
L
i \{j})

J̃ ∈MNij−n(J )

ψ
({Ã,J̃})
ijn (pJ) ≥ f̃i(p

J ) ,
∏

j∈AL
i

Nij∏

n=0

∏

Ã∈PNij−n(A
L
i \{j})

J̃ ∈MNij−n(J )


ψ

({Ã,J̃})
ijn (pJ)

µ
({Ã,J̃})
ijn




µ
({Ã,J̃})
ijn

(12)

IV. N UMERICAL RESULTS

Consider a wireless source localization system, where the
anchor nodes are located at[0 0], [10 0], [0 10] and [10 10]
m, target nodes reside at positions{[x y] | 1 ≤ x, y ≤
9 andx, y ∈ Z} with equal probabilities (i.e.,1/81), and
the jammer nodes are located at[1 4.5], [9 5.5] and [10 9.5]
m. For this localization system, we evaluate the average
CRLB performance in (9) achieved by Algorithm 1 (GP-
SCA), the closed-form solution in Proposition 2 (see (19)),
the uniform power allocation strategy, and the exhaustive
search method (which solves (9) via exhaustive search). The
uniform power allocation strategy assigns equal power levels
to the jammer nodes; that is,P J

ℓ = PT/NJ , ∀ℓ ∈ J for
PT/NJ ≤ P peak

ℓ [3]. In the simulations,N0 is taken as
2 and the normalized version of the total power limitPT

is used asP̄T = 2PT/N0. Also, the peak power limits in
(9c) are set toP peak

ℓ = 20, ∀ℓ ∈ J . In addition, the free
space path loss formulation with unit antenna gains and a
carrier frequency of23.87MHz is considered, and|α1

ij |
2 in

(3) and|γℓj |2 in (4) are modeled as|α1
ij |

2 = ‖xi−yj‖
−2 and

|γℓj |
2 = ‖zℓ−yj‖

−2, respectively [4]. Moreover, considering
a zero path-overlap coefficient (i.e.,ξij = 0), λij in (3)
is expressed asλij = 4π2Eijβ

2
ij/(c

2‖xi − yj‖
2
). Then,

Eijβ
2
ij =

∫
f2|Sij(f)|

2df = 4.56 × 1017 is used so that
λij is given byλij = 200‖xi − yj‖

−2. (For example,sij(t)
with a rectangular spectrum of500 kHz bandwidth around
23.87MHz achieves this value forEij/N0 = 26 dB.)

Fig. 1 illustrates the average CRLB in (9) corresponding
to the different strategies against the normalized total power
limit P̄T. It is observed that the proposed algorithm in Algo-
rithm 1 for solving the non-convex problem in (9) achieves
the globally optimal solution found by the computationally
expensive exhaustive search method for all power levels. This
confirms the validity of Proposition 1 and further reveals
that the proposed GP approach can indeed find global solu-
tions without compromising the computational complexity5. In
addition, the proposed power allocation method outperforms
the uniform strategy and the performance gap becomes more
significant asP̄T increases. Moreover, the closed-form solution
derived in Proposition 2 achieves higher average CRLB than
the uniform power allocation approach and performs similarly
to Algorithm 1 for small values ofP̄T, in compliance with
the asymptotic optimality property in Proposition 2. However,
as P̄T increases, the closed-form solution deviates from the
optimal one and even has lower performance than the uniform
strategy after a certain level of̄PT, as expected.

In Fig. 2, we show the average CRLBs obtained at each
iteration of Algorithm 1 for various values of̄PT. It is seen that
Algorithm 1 converges to the global solution (identified by the
exhaustive search technique) in approximately15 iterations.

5With extensive simulations for various network configurations, it is seen
that Algorithm 1 almost always attains the globally optimalsolution of (9).
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Fig. 1: Average CRLB for target nodes versus the normalized total powerP̄T

for the considered power allocation strategies.
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