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Abstract—Optimal power allocation for secure estimation of
multiple deterministic parameters is investigated under atotal
power constraint. The goal is to minimize the Craḿer-Rao lower
bound (CRLB) at an intended receiver while keeping estimation
errors at an eavesdropper above specified target levels. To that
end, an optimization problem is formulated by considering mea-
surement models involving linear transformation of the param-
eter vector and additive Gaussian noise. Although the proposed
optimization problem is nonconvex, it is decomposed into convex
sub-problems by utilizing the structure of the secrecy constraints.
Then, optimal solutions to the sub-problems are characterized
via optimization theoretic approaches. An algorithm utilizing that
characterization is developed to obtain the optimal solution of the
proposed problem. Numerical results are presented to investigate
the performance of the proposed algorithm.

Index Terms—Cramér-Rao lower bound (CRLB), estimation,
Fisher information, power adaptation, secrecy, optimization.

I. I NTRODUCTION

Estimation theoretic secrecy has been investigated in various
settings as an alternative to information theoretic secrecy,
where the aim is the secure transmission of parameters to
intended users in the presence of eavesdroppers [1]–[8]. In
the literature, various approaches such as parameter encoding
[4], beamforming [9], [10], [11], artificial noise generation
[6], and encoder randomization [5] were adopted to maximize
estimation accuracy at intended users while achieving secrecy.
In [2], optimal deterministic encoding of a scalar parameter
was proposed to minimize the expectation of the conditional
Cramér-Rao bound of the parameter at an intended receiver un-
der an estimation theoretic secrecy constraint. In [3], theprob-
lem of optimal secure transmission of a scalar parameter was
investigated to maximize the worst-case Fisher information
of the parameter at an intended receiver, which is a measure
of robustness. In [4], nonlinear individual encoding and affine
joint encoding were adopted to achieve the secure transmission
of a vector parameter, and practical encoding strategies are
investigated. In a recent study, a secure beamforming approach
is proposed in the presence unknown eavesdroppers [10].

Optimal resource allocation for vector parameter estimation
with respect to various performance metrics is the main focus
in numerous studies on wireless sensor networks, wireless
localization systems, and distributed radar systems, in which
optimal transmission techniques are ubiquitously utilized (e.g.,
[12]– [15]). A common example of such techniques is to op-
timize a precoding or power allocation matrix by considering
various scalarizations of the Fisher information matrix (FIM)
as measures of estimation performance [4], [16], [17].

In certain scenarios, transmission of multiple parameters
can be eavesdropped by malicious third parties to access
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critical information. In this letter, we investigate the use of
power adaptation to mitigate estimation performance of an
eavesdropper, which employs the maximum likelihood (ML)
estimator. Our goal is to minimize the CRLB at an intended
receiver while keeping the estimation errors of individualpa-
rameters at an eavesdropper above given target levels. To this
aim, we first formulate a nonconvex optimal power allocation
problem, and then propose an algorithm to solve it via de-
composition into convex sub-problems, the solutions of which
are characterized explicitly. While there exist a multitude of
studies on estimation theoretic security of vector parameters,
a power adaptation-based approach for optimal transmission
of multiple deterministic parameters is not available in the
literature. The main motivation and novelty of this letter can
be summarized as follows:
• With the motivation of enhancing security of parameter

transmission in a practical scenario with multiple parameters
and observations, we consider a vector of deterministic un-
known parameters (with no prior statistical information),and
propose an optimal power allocation problem to minimize the
CRLB at the intended receiver while constraining the estima-
tion performance of the ML estimator at the eavesdropper.
This is unlike the problem formulations in [2], [4], which
considered random parameters with known priors.
• We decompose the proposed problem into convex sub-

problems and obtain their explicit solutions. Based on those
explicit solutions, we propose an algorithm that solves the
proposed problem exactly. We show that by adjusting transmis-
sion powers of individual parameters, it is possible to generate
desired amounts of estimation errors at the eavesdropper while
optimizing the estimation performance at the intended receiver.

II. OPTIMAL POWER ALLOCATION WITH SECRECY
CONSTRAINTS

A. System Model and Problem Formulation

Consider a vector of unknown deterministic parameters
denoted byθ = [θ1, . . . , θk]

T ∈ R
k. Based on the following

linear models, measurements are obtained at an intended
receiver and an eavesdropper:

Yr = FT
r Pθ +Nr (1)

Ye = FT
e Pθ +Ne (2)

whereYr ∈ R
nr andYe ∈ R

ne denote the measurements at
the intended receiver and the eavesdropper, respectively,Fr

andFe are, respectively,k×nr andk×ne real matrices with
full row ranks (k ≤ nr andk ≤ ne), which are assumed to be
known,Nr ∈ R

nr andNe ∈ R
ne are the additive Gaussian

noise vectors at the intended receiver and the eavesdropper,
respectively, which are distributed according toN (0,Σr) and
N (0,Σe) with Σr,Σe ≻ 0, andP is ak× k diagonal power
allocation matrix (to be optimized), which is expressed as

P = diag
{√

p1,
√
p2, . . . ,

√
pk
}
. (3)
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In (1) and (2),Fr and Fe represent the channel matrices
(e.g., in a multiple-input multiple-output system) between
the transmitter and the intended receiver, and between the
transmitter and the eavesdropper, respectively.

Similarly to [2], it is assumed that the eavesdropper is
unaware of the power allocation procedure. Hence, the aim
is to perform power allocation so as to achieve both accurate
parameter estimation at the intended receiver and secrecy
against the eavesdropper. As the eavesdropper does not know
the power allocation procedure, it tries to estimateβ , Pθ.
Therefore, the measurement vector of the eavesdropper in (2)
can be stated as

Ye = FT
e β +Ne (4)

The eavesdropper is modeled to employ the ML estimator,
i.e., it declares its estimate of the parameter vector as themax-
imizer of the following likelihood function with respect toβ:
(2π)−ne/2|Σe|−1 exp

{
−0.5(ye − FT

e β)
TΣ−1

e (ye − FT
e β)

}
.

For the considered system model, the maximizer of this
likelihood function, i.e., the ML estimate forβ, can be
obtained after some manipulation as

β̂ML(ye) = (FeΣ
−1

e FT
e )

−1FeΣ
−1

e ye . (5)

From (2) and (5), the error covariance matrix between
β̂
ML

(Ye) andθ is calculated, after some manipulation, as

Σerr = E
[(

β̂
ML

(Ye)− θ
)(

β̂
ML

(Ye)− θ
)T ]

= PθθTP−PθθT − θθTP+ θθT + (FeΣ
−1

e FT
e )

−1 (6)

Defining M , (FeΣ
−1

e FT
e )

−1 ∈ R
k×k, and denoting its

diagonal entries as{mii}ki=1
, the diagonal entries ofΣerr

can be obtained as follows:

Σerr(i) = (pi − 2
√
pi + 1)θ2i +mii (7)

for i = 1, . . . , k. We consider the expression in (7) as a
performance metric for quantifying the secrecy level for the
ith parameter against the eavesdropper. It is noted that (7)
corresponds to the MSE for theith component of the parameter
vector at the ML estimator of the eavesdropper (see (6)).

Regarding the estimation performance at the intended re-
ceiver, we consider the FIM of the measurements at the
intended receiver (i.e.,Yr in (1)) with respect to the parameter
vectorθ, which is given by [16], [18, Lemma 5]

I(Yr ; θ) = PFrΣ
−1

r FT
r P . (8)

The inverse of the FIM, known as the CRLB, provides a lower
bound on the MSE of any unbiased estimatorθ̂(Yr) via the
following matrix inequality [19]:Cov

(
θ̂(Yr)

)
≥ I−1(Yr; θ),

whereCov
(
θ̂(Yr)

)
= E

[
(θ̂(Yr) − θ)(θ̂(Yr)− θ)T

]
due to

unbiasedness. Consequently, the lower bound on the MSE of
the vector parameter can be stated as

E
[
‖θ̂(Yr)− θ‖2

]
≥ tr{I−1(Yr; θ)} . (9)

The use of the CRLB metric for quantifying estimation per-
formance facilitates a generic approach as it does not depend
on the specific estimator structure at the intended receiver. In
addition, the CRLB provides a tight limit for the ML estimator
asymptotically [19].

For convenience of notation, a system dependent matrix can
be defined asA ,

(
FrΣ

−1

r FT
r

)−1
and the inverse of the

FIM in (8) can be stated asI−1(Yr ; θ) = P−1AP−1. Then,
defining the diagonal entries ofA as{aii}ki=1

, the CRLB in
(9) can be calculated as follows:

tr{I−1(Yr; θ)} =

k∑

i=1

aii
pi

. (10)

By considering the estimation performance metrics in (7)
and (10) for the eavesdropper and the intended receiver, re-
spectively, we propose the following optimal power allocation
problem for secure parameter estimation:

min
{pi}k

i=1

k∑

i=1

aii
pi

(11a)

s.t.

k∑

i=1

pi ≤ PΣ (11b)

pi ≥ 0, i = 1, . . . , k (11c)

(
√
pi − 1)2θ2i +mii ≥ ηi, i = 1, . . . , k (11d)

wherePΣ is the total power constraint andηi specifies the
secrecy constraint for theith parameter fori ∈ {1, . . . , k}.1

It is assumed thataii > 0 in (11a) sincepi would not have
any effects on the objective function ifaii = 0; hence, theith
parameter could be left out of the optimal power allocation
problem in that case. In addition, it is assumed thatηi > mii

since the secrecy constraints are trivially satisfied otherwise
(please see Footnote 2 for treating the case ofηi ≤ mii).

The optimization problem in (11) is non-convex due to the
secrecy constraints in (11d). By definingαi , (ηi −mii)/θ

2

i ,
the inequalities in (11d) can be stated more explicitly as
follows:

pi ≥ (1 +
√
αi)

2, if αi > 1, (12)

pi ≤ (1−√
αi)

2 or pi ≥ (1 +
√
αi)

2, if αi ≤ 1 (13)

for i = 1, . . . , k. Depending on the values ofαi’s, we partition
the index set into two subsets.

A , {i ∈ {1, . . . , k} |αi > 1} , (14)

B , {i ∈ {1, . . . , k} |αi ≤ 1} . (15)

For each index belonging to setA, the secrecy constraint in
(11d) corresponds to a convex set as in (12). However, for
indices in setB, the secrecy constraints lead to non-convex
regions as specified in (13).

B. Optimal Power Allocation via Convex Sub-Problems

Based on the statements in (12) and (13), it is deduced
that the solution of (11) must satisfy one of the following
inequalities:pi ≥ εi or pi ≤ γi, whereεi , (1 +

√
αi)

2 and
γi , (1−√

αi)
2. By combining these inequalities with those

in (11c), we can state that eachpi must satisfy

pi ≥ εi or 0 ≤ pi ≤ γi . (16)

for i = 1, . . . , k. We define a binary vector that specifies
which inequality in (16) is satisfied for each index; that is,
b , [b(1), . . . , b(k)] ∈ {0, 1}k, whereb(i) = 1 and b(i) = 0
imply the satisfaction of the first and second inequalities in
(16), respectively. According to the entries of vectorb, we
define a subset of the index set and its complement as follows:

S , {i ∈ {1, . . . , k} | b(i) = 1} , (17)

S ′ , {i ∈ {1, . . . , k} | b(i) = 0} . (18)

Based on the preceding definitions, we formulate the fol-
lowing convexproblem:

1In (11), it is assumed that the eavesdropper knowsFe andΣe, the receiver
knowsFr , Σr andP, and the transmitter knowsFr , Fe, Σr andΣe.
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min
{pi}k

i=1

k∑

i=1

aii
pi

(19a)

s.t.
k∑

i=1

pi ≤ PΣ (19b)

pi ≥ εi, i ∈ S (19c)

0 ≤ pi ≤ γi, i ∈ S ′ (19d)

It is noted that (19) can be regarded as a sub-problem of (11)
for a givenS sincepi’s are set to specific regions in (19c) and
(19d) unlike the constraints in (11d), which are equivalentto
(12) or (13). The indices in setA in (14) correspond to the
inequality in (12), which is in the form of (19c). Hence, set
A is always contained in setS in (19c). However, the indices
in set B in (15) can correspond to either of the intervals in
(13), which can be in the form of (19c) or (19d). Therefore,
by considering all possible intervals for the indices in setB,
i.e., by solving (19) for all2|B| possible setsS andS ′ and by
choosing the best solution, the solution of (11) can be obtained.

Before presenting an algorithm for optimal power allocation
based on the sub-problems in (19), the explicit solution of (19)
is presented in the following proposition.

Proposition 1. The solution to the problem in(19), denoted
by {p∗i }ki=1

, is specified as follows:
Case 1:If S 6= ∅,

p∗i =

{
max

{√
aii

υ∗
, εi
}
, if i ∈ S

min
{√

aii

υ∗
, γi
}
, if i ∈ S ′ (20)

whereυ∗ ≥ 0 is a scalar that satisfies

∑

i∈S

max

{√
aii
υ∗

, εi

}
+
∑

i∈S′

min

{√
aii
υ∗

, γi

}
= PΣ . (21)

Case 2:If S = ∅, {p∗i }ki=1
is given by one of the following:

a) p∗i = γi for i = 1, . . . , k with
∑k

i=1
γi < PΣ.

b) p∗i = min
{√

aii/υ∗, γi

}
, for i = 1, . . . , k, whereυ∗ ≥

0 satisfies
∑k

i=1
min

{√
aii/υ∗, γi

}
= PΣ.

Proof. The Lagrangian function of the problem in (19) can be
expressed as

L
(
{pi}ki=1, υ, {µi}i∈S , {κi, λi}i∈S′

)
=

k∑

i=1

aii
pi

−
∑

i∈S′

λipi

+ υ

(
k∑

i=1

pi − PΣ

)
+
∑

i∈S

µi(εi − pi) +
∑

i∈S′

κi(pi − γi)

(22)

whereυ µi, κi, andλi are the dual variables. Note that, by
definition,µi = 0 if i ∈ S ′ andκi = λi = 0 if i ∈ S.

Since the problem is convex, the Karush-Kuhn-Tucker
(KKT) conditions are necessary and sufficient for optimality.
Among the KKT conditions, the primal feasibility conditions
are part of the problem formulation (namely, (19b)–(19d))
and the dual feasibility implies non-negative dual variables.
In addition, the stationarity and complementary slackness
conditions can be expressed via (22) as follows:

Stationarity: For i = 1, . . . , k,
∂L
∂pi

∣∣∣
pi=p∗

i

= − aii
(p∗i )

2
+ υ∗ − µ∗

i + κ∗
i − λ∗

i = 0 (23)

Complementary Slackness:

υ∗

(
k∑

i=1

p∗i − PΣ

)
= 0 (24)

µ∗
i (εi − p∗i ) = 0, i ∈ S (25)

κ∗
i (p

∗
i − γi) = 0, i ∈ S ′ (26)

λ∗
i p

∗
i = 0, i ∈ S ′ (27)

As aii > 0, p∗i cannot be zero for minimizing the objective
function in (19a), meaning thatp∗i > 0 for i = 1, . . . , k. Then,
the complementary slackness condition (27) implies thatλ∗

i =
0 for i ∈ S ′. Accordingly, the stationarity condition in (23)
can be rewritten as

− aii/(p
∗
i )

2 + υ∗ − µ∗
i = 0, i ∈ S (28)

− aii/(p
∗
i )

2 + υ∗ + κ∗
i = 0, i ∈ S ′ (29)

The conditions in (25) and (28) imply that eitherp∗i = εi
or p∗i =

√
aii/υ∗ ≥ εi for i ∈ S. Similarly, the joint

consideration of (26) and (29) implies that eitherp∗i = γi
or p∗i =

√
aii/υ∗ ≤ γi for i ∈ S ′.

Regarding the complementary slackness condition in (24),
the scenario with

∑k
i=1

p∗i < PΣ corresponds toυ∗ = 0;
hence, (28) and (29) become

− aii/(p
∗
i )

2 − µ∗
i = 0, i ∈ S (30)

− aii/(p
∗
i )

2 + κ∗
i = 0, i ∈ S ′ (31)

If S 6= ∅, (30) cannot be satisfied due to the dual feasibility
condition, meaning that

∑k
i=1

p∗i < PΣ is not possible unless
S is empty. Hence,

∑k
i=1

p∗i = PΣ must hold for any non-
emptyS, i.e., in Case 1 in the proposition. Consequently, the
optimal power allocation strategy in Case 1 becomes as in
(20), wherev∗ is a non-negative real number satisfying the
equality of

∑k
i=1

p∗i = PΣ, as explicitly stated in (21).
Finally, the case ofS = ∅ (i.e., Case 2) is considered. In

this case, the relevant conditions are given by (24), (26), and
(29) with S ′ = {1, . . . , k}. As before, (26) and (29) implies
that eitherp∗i = γi or p∗i =

√
aii/υ∗ ≤ γi for i ∈ S ′ =

{1, . . . , k}. Then, based on (24), the following two scenarios
can be considered:

a)
∑k

i=1
p∗i < PΣ andυ∗ = 0: In this scenario,κi > 0 holds

due to (31), leading top∗i = γi via (26) for i = 1, . . . , k.
b)
∑k

i=1
p∗i = PΣ andυ∗ ≥ 0: In this scenario, eitherp∗i =

γi or p∗i =
√
aii/υ∗ ≤ γi can hold, as discussed previously.

Also, the value ofυ∗ can be found by solving
∑k

i=1
p∗i = PΣ

with p∗i = min{γi,
√
aii/υ∗}.

Based on Proposition 1, the solution of (19) can be obtained
in a low complexity manner. Namely, a one-dimensional
search for parameterυ∗ in Proposition 1 should be performed
to specify the solution of (19). Once the solution of (19) is
obtained, it can be solved for2|B| times for all possible setsS
andS ′, as explained previously. In order to obtain the solution
of the optimal power allocation problem in (11) based on the
convex sub-problems in (19), we propose Algorithm 1.

Regarding the computational complexity of Algorithm 1,
the calculation ofυ∗ constitutes the most complex operation.
Overall, υ∗ must be calculated2|B| times. Compared to the
original non-convex problem in (11), which requires opti-
mization over ak−dimensional space, the proposed algorithm
involves 2|B| one-dimensional searches, where|B| ≤ k. If
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Algorithm 1: Proposed algorithm to find the optimal power
allocation strategypopt corresponding to (11)

Result: popt, CRLBmin
CRLBmin = ∞ andpopt = [0, . . . , 0];
Setb[i] = 1 for i ∈ A;
% Consider Case 1 and Case 2-b);
for j = 1, . . . , 2|B| do

Let x be the|B|-bit (binary) representation ofj − 1;
Setb[B(l)] = x(l) for l = 1, . . . , |B|;
Find υ∗ that solves

∑k
i=1 b[i]max

{√

aii

υ∗
, (1 +

√
αi)

2
}

+

(1− b[i])min
{√

aii

υ∗
, (1−√

αi)
2
}

= PΣ;
for i = 1, . . . , k do

p∗i = max{(1 +
√
αi)2,

√

aii

υ∗
} if b[i] = 1;

p∗i = min{(1 −√
αi)

2,
√

aii

υ∗
} if b[i] = 0;

CRLB =
∑k

i=1 aii/p
∗
i ;

if CRLB < CRLBmin then
CRLBmin = CRLB;
p
opt = p

∗;
end

end
end
% Consider Case 2-a);
if |A| = 0 &

∑k
i=1(1−√

αi)2 < PΣ then
if
∑k

i=1
aii

(1−√
αi)

2
< CRLBmin then

p
opt(i) = (1−√

αi)
2 for i = 1, . . . , k;

CRLBmin =
∑k

i=1
aii

(1−√
αi)

2
;

end
end

|B| is very large, Algorithm 1 has a high computational
complexity. In that case, a suboptimal solution with lower
complexity can be obtained by limiting the number of times
the sub-problems are solved; that is, by performing thefor loop
in Algorithm 1 for a limited number of times by choosing
distinct and random values forx. Alternatively, the binary
genetic algorithm [20] with a limited number of iterations can
be used to determine the elements ofb.2

Remark 1. In broadcast scenarios with multiple intended
receivers and multiple eavesdroppers, the problem formulation
in (11) can be extended by including secrecy constraints (as
in (11d)) for all eavesdroppers and replacing the objective
function in (11a)with a weighted combination of the CRLBs
related to intended receivers. Then, all the approaches can
directly be applied.

III. N UMERICAL RESULTS AND CONCLUSIONS

In this section, we provide a numerical example for in-
vestigating the performance of the proposed optimal power
allocation algorithm. For comparison purposes, the optimal
power allocation strategy in the absence of the secrecy con-
straint [16] is considered, as well. In the simulations, the
individual secrecy constraints in (11d) are kept equal to each
other, i.e.,ηi = η for all i ∈ {1, . . . , k}. The system matrices
for the intended receiver and the eavesdropper, i.e.,Fr and
Fe in (1) and (2), are generated via i.i.d. random entries,
each uniformly distributed in[−0.1, 0.1] as a single realization
in MATLAB with seed 1. The additive noise vectors at the
intended receiver and the eavesdropper,Nr andNe, comprise
i.i.d. Gaussian random variables with mean0 and variance

2If ηi ≤ mii for an indexi ∈ {1, . . . , k}, then we can include that index
in setA (in setS) by settingεi = 0 in (19c). In this way, Algorithm 1 can
be employed whenηi ≤ mii for somei, as well.

2 4 6 8 10 12 14 16 18 20

10-4

10-3

10-2

Fig. 1. CRLB at intended receiver versus dimension of parameter vector.

2 4 6 8 10 12 14 16 18 20

10-4

10-3

10-2

10-1

100

Fig. 2. Minimum MSE at eavesdropper versus dimension of parameter vector.

10−6. The components of the parameter vectorθ are modeled
as i.i.d. random variables with uniform distribution between
1 and2, where a single realization is generated in MATLAB
with seed1. (Similar trends are observed for other seeds.)

We investigate the impact of the dimension of the parameter
vector,k, on the performance of the optimal power allocation
algorithms, where the numbers of measurements in (1) and
(2) are set tone = nr = 2k, PΣ = 10, andη ∈ {0.1, 0.5, 1}.
Figs. 1 and 2 illustrate, respectively, the CRLB at the intended
receiver and the minimum MSE for the parameter vector at
the eavesdropper, i.e.,mini∈{1,...,k} Σerr(i) (see (7)), versus
k for both the proposed optimal power allocation algorithm
(labeled ‘Optimal Secure’) and the optimal power allocation
algorithm that minimizes the CRLB at the intended receiver
in the absence of the secrecy constraint [16] (labeled ‘Optimal
Insecure’).3 It is observed from Fig. 1 that as the secrecy
constraintη increases, the proposed algorithm results in higher
CRLBs since the secrecy requirement becomes more strict.
By sacrificing from the CRLB at the intended receiver, the
proposed algorithm is able to satisfy the secrecy constraint
as noted from Fig. 2. Since the eavesdropper is not aware of
the power allocation algorithm and aims to estimateβ , Pθ,
the optimal insecure power allocation algorithm, which ignores
the secrecy constraint, leads to lowest minimum MSEs around
PΣ = k = 10, where the secrecy limits are violated as seen in
Fig. 2. However, the proposed algorithm satisfies the secrecy
limits in all cases.

3For ηi = η, i = 1 . . . , k, the secrecy constraint in (11d) becomes
mini∈{1,...,k} Σerr(i) ≥ η; hence, the minimum MSE is considered in
the simulations.
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