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Abstract—Optimal power allocation for secure estimation of
multiple deterministic parameters is investigated under atotal
power constraint. The goal is to minimize the Cranér-Rao lower
bound (CRLB) at an intended receiver while keeping estimatn
errors at an eavesdropper above specified target levels. Tdvat
end, an optimization problem is formulated by considering nea-
surement models involving linear transformation of the paam-
eter vector and additive Gaussian noise. Although the propsed
optimization problem is nonconvex, it is decomposed into gwex
sub-problems by utilizing the structure of the secrecy consaints.
Then, optimal solutions to the sub-problems are characteded
via optimization theoretic approaches. An algorithm utilizing that
characterization is developed to obtain the optimal solutn of the
proposed problem. Numerical results are presented to invéigate
the performance of the proposed algorithm.

Index Terms—Cramér-Rao lower bound (CRLB), estimation,
Fisher information, power adaptation, secrecy, optimizaion.

I. INTRODUCTION

critical information. In this letter, we investigate theeusf
power adaptation to mitigate estimation performance of an
eavesdropper, which employs the maximum likelihood (ML)
estimator. Our goal is to minimize the CRLB at an intended
receiver while keeping the estimation errors of individpat
rameters at an eavesdropper above given target levelsisio th
aim, we first formulate a nonconvex optimal power allocation
problem, and then propose an algorithm to solve it via de-
composition into convex sub-problems, the solutions ofolvhi
are characterized explicitly. While there exist a multeéuof
studies on estimation theoretic security of vector paranset
a power adaptation-based approach for optimal transmissio
of multiple deterministic parameters is not available i® th
literature. The main motivation and novelty of this lett@nc
be summarized as follows:

¢ With the motivation of enhancing security of parameter

Estimation theoretic secrecy has been investigated iowari transmission in a practical scenario with multiple parasmeet

settings as an alternative to information theoretic sggre@nd observations, we consider a vector of deterministic un-
where the aim is the secure transmission of parameterskitpwn parameters (with no prior statistical informatioand
intended users in the presence of eavesdroppers [1]-[8].PipPOSe an optimal power allocation problem to minimize the
[4], beamforming [9], [10], [11], artificial noise generati tion performance of the ML estimator at the eavesdro.pper.
[6], and encoder randomization [5] were adopted to maximiZdlis is unlike the problem formulations in [2], [4], which
estimation accuracy at intended users while achievingesgcr considered random parameters with known priors.
In [2], optimal deterministic encoding of a scalar paramete ® We decompose the proposed problem into convex sub-
was proposed to minimize the expectation of the condition@ioblems and obtain their explicit solutions. Based on ¢hos
Cramér-Rao bound of the parameter at an intended receiver @plicit solutions, we propose an algorithm that solves the
der an estimation theoretic secrecy constraint. In [3]pttub- Proposed problem exactly. We show that by adjusting trasismi
lem of optimal secure transmission of a scalar parameter wd@n powers of individual parameters, it is possible to gatee
investigated to maximize the worst-case Fisher infornmati¢lesired amounts of estimation errors at the eavesdroppkr wh
of the parameter at an intended receiver, which is a meas@Réimizing the estimation performance at the intendedivece
of robustness. In [4], nonlinear individual encoding aniihaf
joint encoding were adopted to achieve the secure trangmiss
of a vector parameter, and practical encoding strategies ar
investigated. In a recent study, a secure beamforming aphroa . system Model and Problem Formulation
is proposed in the presence unknown eavesdroppers [10]. ) L
Optimal resource allocation for vector parameter estiomati Consider a vector of Lépnknov]l/n deterministic parameters
with respect to various performance metrics is the maingocgenoted bye = [0,,...,6;]" € R". Based on the following
in numerous studies on wireless sensor networks, wireld§€ar models, measurements are obtained at an intended
localization systems, and distributed radar systems, iictwh eceiver and an eavesdropper:
optimal transmission techniques are ubiquitously utilize.g., V. - FTPO + N
[12]- [15]). A common example of such techniques is to op- L TNy
timize a precoding or power allocation matrix by considgrin Y.=F'Po+N. 2
various scalarizations of the Fisher information matrid\}-
as measures of estimation performance [4], [16], [L7]. ~ WhereY, € R"" andY. € R"« denote the measurements at
In certain scenarios, transmission of multiple parametdfie intended receiver and the eavesdropper, respectigly,
can be eavesdropped by malicious third parties to acc@$¥iF. are, respectively; x n, andk x n. real matrices with
full row ranks ¢ < n, andk < n.), which are assumed to be
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In (1) and (2),F, and F. represent the channel matrices -1 b i
(e.g., in a multiple-input multiple-output system) betwee {7 (Y 0)} = ZE
the transmitter and the intended receiver, and between the =1
transmitter and the eavesdropper, respectively. By considering the estimation performance metrics in (7)
Similarly to [2], it is assumed that the eavesdropper &nd (10) for the eavesdropper and the intended receiver, re-
unaware of the power allocation procedure. Hence, the afipectively, we propose the following optimal power allozat
is to perform power allocation so as to achieve both accurgteoblem for secure parameter estimation:
parameter estimation at the intended receiver and secrecy k aii

(10)

against the eavesdropper. As the eavesdropper does not knowmi,{1 _ (11a)

the power allocation procedure, it tries to estimgte: P6. pidica o P

Therefore, the measurement vector of the eavesdroppe) in (2 k

can be stated as s.t. Zpi < Ps, (11b)
Y.=F'B+N, (4) i=1

The eavesdropper is modeled to employ the ML estimator, pi=0, i=1....k (11c)

i.e., it declares its estimate of the parameter vector amtne (Vpi — 1?07 +my; >m;, i=1,....k (11d)

|(r;7|rz)e7rno/f2t|r£e F‘gllzg{v};n{g_ll(l)(gl(l?fo%ﬂ};‘grg:)tpgﬂlgl re_S%eT%)n?: where Ps; is the total power constraint ang specifies the

: _ X 1
For the considered system model, the maximizer of thygcrecy constraint for thﬂh. parameter foi € {1,..., k}.
likelihood function, i.e., the ML estimate foB, can be It is assumed that;; > 0 in (11a) sincep; would not have
obtained after som’e ma{nipulation as ’ any effects on the objective functiondf; = 0; hence, theth

N ) ) parameter could be left out of the optimal power allocation
BuL(ye) = (FX,'FN)7'F.2 y. . (5) problem in that case. In addition, it is assumed that m.;

From (2) and (5), the error covariance matrix betweeHnCe the secrecy constraints are trivially satisfied otfser

By (Y.) and# is calculated, after some manipulation, as (Please see Footnote 2 for treating the cas; of m;,).
N N T The optimization problem in (11) is non-convex due to the
Yerr = E{ (,BML(YE) — 0) (ﬁML (Ye) — 0) } secrecy constraints in (11d). By defining = (1; —m.;) /602,
T T 7 T T 1 the inequalities in (11d) can be stated more explicitly as
=PO6"P -POO" —00" P +600" + (F.X_"F_)" (6) follows:

2 .
Defining M 2 (F.X_'F7)~1 ¢ R¥** and denoting its pi > (1+ o), if a5 > 1, (12)
diagonal entries agm;;}*_;, the diagonal entries ok, pi < (1—+/a)? or p; > (1+/a;)?, ifa; <1 (13)
can be obtained as follows: ) fori =1,..., k. Depending on the values af’s, we partition
Berr (1) = (pi — 2¢/pi + 1)0; +my; (7)  the index set into two subsets.
for ¢« = 1,...,k. We consider the expression in (7) as a A& {lie{l,. . k}|a; > 1}, (14)
performance metric for quantifying the secrecy level fog th BEfic{l, . kl|la<1}. (15)

ith parameter against the eavesdropper. It is noted that (7) ) ) )

corresponds to the MSE for tlith component of the parameter-0r €ach index belonging to set, the secrecy constraint in

vector at the ML estimator of the eavesdropper (see (6)). (11d) corresponds to a convex set as in (12). However, for
Regarding the estimation performance at the intended fdices in setB, the secrecy constraints lead to non-convex

ceiver, we consider the FIM of the measurements at tFgions as specified in (13).

intended receiver (i.eY . in (1)) with respect to the paramete

r . . .
vector@, which is given by [16], [18, Lemma 5] B. Optimal Power Allocation via Convex Sub-Problems

AT Based on the statements in (12) and (13), it is deduced
I(Y,;0) = PF,%"F P. (8)  that the solution of (11) must satisfy one of the following

The inverse of the FIM, known as the CRLB, provides a |0Wéaegualities:pi > g; of p; < 7, Wheree; = (14 /a;)* and

bound on the MSE of any unbiased estimaiigl’, ) via the 7 = (1 —/a;)*. By combining these inequalities with those
following matrix inequality [19]:Cov(8(Y,)) > I"'(Y,;#), In (11c), we can state that eaph must satisfy

whereCov (8(Y,)) = E[(6(Y,) — 6)(8(Y,) — 6)"] due to pi>e or 0<p; <. (16)

unbiasedness. Consequently, the lower bound on the MSEf@f ; = 1,... k. We define a binary vector that specifies

the vector parameter can be stated as which inequality in (16) is satisfied for each index; that is,
E[[6(Y,) - 6]?] > tr{I"}(Y,;0)}. @ b= [b(),....b(k)] € {0,1}*, whereb(i) = 1 andb(i) = 0

_ o o imply the satisfaction of the first and second inequalities i

The use of the CRLB metric for quantifying estimation pert16), respectively. According to the entries of vectorwe
formance facilitates a generic approach as it does not depefefine a subset of the index set and its complement as follows:
on the specific estimator structure at the intended recdiver L. )
addition, the CRLB provides a tight limit for the ML estimato S={ief{l,... k}|b(i) =1}, 17)
asymptotically [19]. S E&{ie{l,....k}|b(i)=0}. (18)

For convenience of notation, a system dependent matrix canB q h ding definiti ; | he fol
be defined asA 2 (FT2;1F7T)71 and the inverse of the ased on the preceding definitions, we formulate the fol-

FIM in (8) can be stated ak *(Y,;0) = P! AP~!. Then, lowing convexproblem:

defining the diagonal entries @ as {a;;};_,, the CRLB in 1In (12), it is assumed that the eavesdropper knBwsaindX., the receiver
(9) can be calculated as follows: knowsF,, 32, and P, and the transmitter knowE., F., 3, and =..



k

Qi Complementary Slackness:

min (19a)

{piYi, 5 Pi k
k v (Zp;* - PE> =0 (24)

st. Y pi <Py (19b) i=1
i=1 pilei—p;) =0, 1€S (25)
pi>¢i, 1€S (19¢) ki(pf—7i)=0, ieS (26)
0<pi<v, i€S (19d) Npt =0, ied (27)

It is noted that (19) can be regarded as a sub-problem of (11)as 4,; > 0, p* cannot be zero for minimizing the objective

for a givens sincep;’s are set to specific regions in (19c) andunction in (19a), meaning that > 0fori=1,... k. Then,

(19d) unlike the constraints in (11d), which are equivakent the complementary slackness condition (27) implies Mat

(12) or (13). The indices in sefl in (14) correspond to the ¢ for i ¢ S’. Accordingly, the stationarity condition in (23)
inequality in (12), which is in the form of (19c). Hence, setan be rewritten as

A is always contained in s& in (19c). However, the indices

in setB in (15) can correspond to either of the intervals in —aii/(p;)’ + v —p; =0, i€S (28)

(13), which can be in the form of (19c) or (19d). Therefore, —ai /(PP + v+ =0, ieS (29)

by considering all possible intervals for the indices in Bet N ) ) )

i.e., by solving (19) for alR!?l possible setss andS’ and by The conditions in (25) and (28) imply that eithgf = «;

choosing the best solution, the solution of (11) can be abthi Or p; = \/a;/v* > &; for i € S. Similarly, the joint
Before presenting an algorithm for optimal power allocatioconsideration of (26) and (29) implies that eithgr = ;

based on the sub-problems in (19), the explicit solutiorl®) ( or p; = \/ai;/v* < v; fori € S'.

is presented in the following proposition. Regarding the complementary slackness condition in (24),

the scenario Wichf:lp;k < Px corresponds taw* = 0;

Proposition 1. The solution to the problem il9), denoted hence, (28) and (29) become

by {p;}%_,, is specified as follows:

Case 1:If S #1), /) — =0, i€S (30)
_ [max{\/Ze;}, ifies 20 —ai/(p})? +K{ =0, ieS (31)
P = {min{ Gy}, ified (20) If S # 0, (30) cannot be satisfied due to the dual feasibility

condition, meaning thazlep;‘ < Px is not possible unless
S is empty. Hencerzlp;‘ = Psx, must hold for any non-
0 0 emptyS, i.e., in Case 1 in the proposition. Consequently, the
Zmax{,/—f,si} + Z min{,/—i,%—} =Ps. (21) optimal power allocation strategy in Case 1 becomes as in
i€S v €S’ v (20), Whel’ev’; is a non-negative real number satisfying the
. L . equality of} " , pi = Py, as explicitly stated in (21).
Case 2:1f S =0, {p; }i, is given ]E’y one of the following:  inqjly, t%é case of5 — { (i.e., Case 2) is considered. In
a)p; =y fori=1,....k with 37, v < Ps. this case, the relevant conditions are given by (24), (2&), a
b) pr = min{ aii/v*’%}, fori=1,...,k wherev* > (29) with S’ = {1,...,k}. As before, (26) and (29) implies
o e that eitherp? = ~; or pf = ai/v* < v fori € & =
0 satisfies)_;_; mln{ aii/U*a%’} = Ps. {1,...,k}. Then, based on (24), the following two scenarios
: : , can be considered:
Z;%?(fa.slgg Ia_ggrangmn function of the problem in (19) can bé a) Zfﬂpf < Ps andv* = 0: In this scenarios; > 0 holds
k due to (31), leading t@; = ~; via (26) fori =1,..., k.
L({pi}izi, v, {pities {ri Mities') =Y Qi _ > Aips b) SF_, pr = Pz andv* > 0: In this scenario, eithep? =
i1 P ics vi or pf = y/a;;/v* < ~; can hold, as discussed previously.
k Also, the value of* can be found by solving™_, pr = P
+v (Zpl - P2> + Zui(fi —pi) + Z Ki(pi — i) with p = min{~;, v/a:;/v*}. O
= €S es (22) Based on Proposition 1, the solution of (19) can be obtained
in a low complexity manner. Namely, a one-dimensional
wherev p;, ki, and \; are the dual variables. Note that, bysearch for parameter in Proposition 1 should be performed
definition, u; = 0if 7 € S" andw; = \; = 0if i € S. to specify the solution of (19). Once the solution of (19) is
Since the problem is convex, the Karush-Kuhn-Tuckembtained, it can be solved fat?! times for all possible setS
(KKT) conditions are necessary and sufficient for optinyalitandS’, as explained previously. In order to obtain the solution
Among the KKT conditions, the primal feasibility condition of the optimal power allocation problem in (11) based on the
are part of the problem formulation (namely, (19b)-(19d}onvex sub-problems in (19), we propose Algorithm 1.
and the dual feasibility implies non-negative dual vamasbl Regarding the computational complexity of Algorithm 1,
In addition, the stationarity and complementary slacknegise calculation ofu* constitutes the most complex operation.

wherev* > 0 is a scalar that satisfies

conditions can be expressed via (22) as follows: Overall, v* must be calculate@!?! times. Compared to the
Stationarity: Fori=1,...,k, original non-convex problem in (11), which requires opti-
oL Qi mization over & —dimensional space, the proposed algorithm

RENFTT Fut = AR = AT =0 (23) involves 2/8! one-dimensional searches, whef§ < k. If

K3

Opi lpi=p;



Algorithm 1: Proposed algorithm to find the optimal power e ot XX
i H -2 | < nal S, _ :
allocation strategyp°P® corresponding to (11) 10 T Qptimal Seouw =03} R
—— Optimal Insecure X

Result p°Pt, CRLByin
CRLB iy = 0o andp°Pt = [0,...,0];
Setb[i] = 1 for i € A;

% Consider Case 1 and Case 2-b); 103k X

for j=1,...,28l do
Let = be the|B|-bit (binary) representation of — 1; ey
Setb[B(l)] =x() fori =1,...,|B]; § y

CRLB at Intended Receiver

Find v* that solvesy¥_, b[i] max {, [ai, 1+ 1@)2} +
(1= bl min { /22, (1 = y@)? } = Po;
fori=1,...,kdo

p; = max{(1+ Vai)?, (:;i*i} if bli] = 1; 2 4 6 8 10 12 14 16 15 2

N k
pr =min{(1 — /&7)2,/ 2} if bfi] = 0; ' . . . :
: b ' LY Fig. 1. CRLB at intended receiver versus dimension of patemeector.
CRLB = >0, aii/p];

if CRLB < CRLByy;, then

CRLBpin = CRLB;

opt — *-
p P [T N D RTINS AL INDIIT SIB I PN S0 TP T B IR
end

104

end

end
% Consider Case 2-a);

if [A|=08& 3% (1 - /a;)? < Py then

; k a;; .

if > i a=ve? < CRLB i, then
pOPt(i) = (1 — )C/OTL')Q fori=1,...,k;

CRLBmin = D1 (17&%

DX % =X X =X %o X=X K X X X=X X=X X

,_.
C)
=

Minimum MSE at Eavesdropper
= =
1S} 1S)
[ %

end Optimal S 0.1

— % — Optimal Secure, 1) = 0.

end —— Optimal Secure, n = 0.5

X+ Optimal Secure, 7 = 1
—E— Optimal Insecure

,_.
S
S

2 4 6 8 10 12 14 16 18 20

|B| is very large, Algorithm 1 has a high computation
complexity. In that case, a suboptimal solution with lower
complexity can be obtained by limiting the number of times__
the sub-problems are solved; that is, by performinghéoop fo _6_' The components of the_ parameter vealare modeled

in Algorithm 1 for a limited number of times by choosing®S i-:d- random variables with uniform distribution beeme
distinct and random values far. Alternatively, the binary  @nd2, where a single realization is generated in MATLAB
genetic algorithm [20] with a limited number of iterationsne With seedL. (Similar trends are observed for other seeds.)

be used to determine the elementsbdf We investigate the impact of the dimension of the parameter
vector,k, on the performance of the optimal power allocation
Remark 1. In broadcast scenarios with multiple intendedalgorithms, where the numbers of measurements in (1) and
receivers and multiple eavesdroppers, the problem fortiuria (2) are set tow, = n, = 2k, P = 10, andn € {0.1,0.5,1}.

in (11) can be extended by including secrecy constraints (&fgs. 1 and 2 illustrate, respectively, the CRLB at the idtsh

in (11d) for all eavesdroppers and replacing the objectiveeceiver and the minimum MSE for the parameter vector at
function in(11a)with a weighted combination of the CRLBshe eavesdropper, i.emin;c(i,... 1} Zerr (i) (S€€ (7)), VErsus
related to intended receivers. Then, all the approaches canfor both the proposed optimal power allocation algorithm

ig. 2. Minimum MSE at eavesdropper versus dimension ofrpater vector.

directly be applied. (labeled ‘Optimal Secure’) and the optimal power allocatio
algorithm that minimizes the CRLB at the intended receiver
1. NUMERICAL RESULTS AND CONCLUSIONS in the absence of the secrecy constraint [16] (labeled rogti

na '
In this section, we provide a numerical example for inl_nsﬂe;g;%). i::clr?ea?st;ert\éid Ir)og]seF:jgél 10:32:111253?3 ;Sneﬁgeﬁ)e/r

vestigating the performance of the proposed optimal pow ??LBS stilr71ce the se,crec; re%uireme%t becomes more gtrict

allocation algorithm. For comparison purposes, the optim sacrificing from the CRLB at the intended receiver, the

power allocation strategy in the absence of the secrecy ¢ roposed algorithm is able to satisfy the secrecy constrain
straint [16] is considered, as well. In the simulations, therOP 9 Y y

individual secrecy constraints in (11d) are kept equal chea> noted from F|g. 2. Smc;e the eavgsdropper}s ng aware of
other, i.e.;; —n for all i € {1,..., k}. The system matrices the power allocation algorithm and aims to estimétée: P6,

for the intended receiver and the eavesdropper, Fe.and the optimal insecure power allocation algorithm, whichdggs

F. in (1) and (2), are generated via iid. random entriege secrecy constraint, leads to lowest minimum MSEs around
€ 1 .U,

- ) - ; o =k = 10, where the secrecy limits are violated as seen in
each uniformly distributed if—0.1, 0.1] as a single realization Fiz > However. the bro osedyal orithm satisfies the secrec
in MATLAB with seed 1. The additive noise vectors at thelin?i.ts in all case’s prop 9 ¥

intended receiver and the eavesdroppér,andN., comprise
i.i.d. Gaussian random variables with me@rand variance

2If n; < my; for an indexi € {1,...,k}, then we can include that index SForm; = m, i = 1...,k, the secrecy constraint in (11d) becomes
in set.A (in setS) by settinge; = 0 in (19c¢). In this way, Algorithm 1 can min;cg1,... x} Xerr(i) > n; hence, the minimum MSE is considered in

be employed whem; < m;; for somes, as well. the simulations.
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