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The information-carrying capacity of optical fields is usually stated in terms of an area density as being related to
communication through a surface. We render these well-understood results in a form such that they can be
interpreted as a volume-density limit, applicable to an arbitrary array of points communicating with one another.
An important example of such a situation is an optically interconnected computing system. We show that
regardless of their actual spread or mutual overlap, optical communication links may be viewed as solid wires of
minimum cross section A2/27 for the purpose of calculating bounds on volumes and cross sections. Thus the results
of area-volume complexity theory for solid wires are also applicable to optically communicating systems. The
maximum number of binary pulses that may be in transit in an optical communication network occupying volume V
is found to be p2xV/A3, p denoting the modulation bandwidth normalized by the carrier frequency. Previously
suggested optical-interconnection schemes are discussed in this context.

1. INTRODUCTION

A convenient unit for measuring information is the bit. The
capacity of an information channel can then be specified as
the number of bits per second that can be transmitted across
the channel. Since, in principle, this capacity can be in-
creased by adding further parallel channels, another rele-
vant quantity is the number of bits transmitted per second
per cross-sectional area. The maximum number of inde-
pendent channels per unit area for optical fields was dis-
cussed in an information-theoretical context by Gabor! and
later was elaborated by Winthrop,2 among others. Win-
throp gave the following result for the number of degrees of
freedom F associated with a quasi-monochromatic optical
wave field over a given surface S:
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N

where x(P) is the accessible Fourier area at the point P
relative to the surface S passing through it and is defined as
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with 0 being the angle between the element of solid angle and
a unit vector perpendicular to the surface in question (Fig.
1). (It might have been noticed that we are omitting certain
factors of 2 that Gabor and Winthrop originally included in
writing similar relations. So as not to confuse our discussion
we will consistently exclude these seldom-applicable factors
from our expressions, with the understanding that they can
be readily included whenever appropriate. A discussion of
the various sources that bring in an additional factor of 2 is
given in Appendix A.) X is the wavelength of light used in
the medium of propagation. Q(P) denotes the cone of al-
lowed wave vectors as limited by the image of the aperture
stop of the system as observed from the point P. Notice that
0 < x(P) £ =/A? since Q(P) may, at most, be the complete

0740-3232/90/112100-07$02.00

hemisphere that has projection /A2 at a radius of 1/A. If
A(P) denotes the area associated with a cell of unit degree of
freedom (F = 1) centered at point P on the surface and x(P)
is slowly varying at that point, then from Eq. (1) we may
write

A(P)x(P) = 1. 3)

This relationship is guaranteed to be preserved with free
propagation? and in passing through arbitrary imaging ele-
ments as a consequence of Abbe’s sine condition (known in
its paraxial form as the Smith-Helmholtz-Lagrange invari-
ant3) and is also closely connected to radiometric and ther-
modynamic considerations.* Given the accessible Fourier
area at a given point on a surface along an imaging system—
as determined by the image of the aperture stop as observed
from that point—the area of a cell of unit degree of freedom
is determined. Since x(P) is bounded from above, A(P) is
bounded from below.

Hence the spatial information-carrying capacity of optical
wave fields is usually stated in terms of an area density as
being related to communication between two regions in
space, distinctly separated by a surface, as symbolically de-
picted in Fig. 2. Several authors®7 have adapted results
from area—-volume complexity theory (for instance, see Refs.
8 and 9) based on solid wires to optically communicating
systems by noting the fact that no more than a finite number
of degrees of freedom exists over a finite surface. However,
these studies considered communication among a planar
array of points or through a planar surface, inhibiting the
generality of the results.

In this paper, we consider the problem of establishing
optical communication among an arbitrary array of points.
These points may be optical switches or input and output
transducers of electronic processing elements. We show
that a lower bound for the total volume that must be allocat-
ed for communication is
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Fig. 1. Accessible Fourier area at a point P. A frame of reference
has been introduced with its origin coinciding with the point P and
its z axis along the direction of the unit normal n to the surface S at
that point. The surface S is not shown for clarity. The cone solid
angle of allowed wave vectors is determined by the image of the
aperture stop of the system as observed from the point P. The
projection of the allowable wave vectors on the o,—0, plane deter-
mines the accessible Fourier area, as given by Eq. (2). The areaofa
cell of unit degree of freedom centered at P, denoted by A(P),
satisfies the relation A(P)x(P) = 1, as discussed in the text (after
Winthrop?).

Fig. 2. Communication through a finite surface.
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where L4 is the total interconnection length of the system,
i.e., the sum of the lengths of all the component intercon-
nects. This result accounts for all possible noninterfering
overlap between independently excited optical wave fields.
This essentially means that for the purpose of calculating
the volume or critical cross sections of the system, we may
assume that each independent optical information channel
has a minimum cross section of A2/2x as if it were a solid wire.

This in turn means that the results of area-volume com-
plexity theory based on solid wires as a medium of communi-
cation are also applicable to systems employing electromag-
netic propagation as a medium of communication. Since
electromagnetic phenomena underlie all currently observed
and utilized modalities of information transfer, these results
may be considered to have universal significance.

In Section 2 we state our assumptions and derive the
above result. In Section 3 we further discuss its meaning
and derive another basic result relating the signal delay to
the number of optical connections established. In Section 4
we give simple examples to illustrate how our results may be
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used to discuss to what extent previously proposed optical-
interconnection schemes approach fundamental limitations.

2. LOWER BOUND FOR THE
COMMUNICATION VOLUME FOR AN
OPTICALLY INTERCONNECTED ARRAY OF
POINTS

Our discussions are based on a scalar theory of light. We
will assume that all sources emit spatially coherent quasi-
monochromatic radiation of a given center frequency f. We
will also assume that the information modulation bandwidth
is greater than the linewidth of our light sources, so that the
frequency deviation from the nominal optical carrier can be
attributed mainly to the former effect.

We will consider the following model as illustrated in Fig.
3. Itis assumed that the space allocated for communication
is, in general, a multiply connected finite volume, the un-
shaded region in the figure. We are concerned with the
problem of forming optical connections between specified
transducers located at the surfaces of the shaded islands.
We assume that binary intensity modulation is used to im-
press information on the optical carriers emitted by the
output transducers. The rate at which these signals are
generated (i.e., the temporal information modulation band-
width) will usually be limited by the speed of the transducers
or switching devices. Although it will be convenient to
think of pairs of points being connected, the extension to fan
in and fan out will be straightforward (Appendix B). The
signals emitted by the output transducers are to be guided to
the input transducers with the use of an arbitrary imaging
system located inside the communication volume. The
communication length of each connection formed may be
defined naturally by multiplying the signal delay along that
interconnection with the velocity of propagation in the me-
dium. Obviously, the communication length is greater than
or equal to the Euclidean distance between the two points
being connected.

We begin with the following relation for the spectral den-
sity of modes for a given volume V, as given in many physics
texts!o:

- SWZ, (5)
[

¢ being the speed of light in the medium of propagation. As
written, the above equation includes a factor of 2 in order to,

Fig.3. Volume allocated for optical communication. The unshad-
ed region, of volume V, is allocated for establishing optical commu-
nication between transducers located on the islands and/or the
enclosing surface.
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account for polarization. Also, in the derivation of this
equation it was assumed that standing waves exist through-
out the volume in all three dimensions, whereas in our dis-
cussion we do not permit double sidedness along the direc-
tions of propagation (see Appendix A). So we divide by 4 to
maintain consistency with our discussion:

2V

2() o 6)

The above equation states that a volume V can support
(27 V/eA2) Af degrees of freedom, where Af « f is the tempo-
ral bandwidth of modulation. We may also write this in an
alternative form assuming that the temporal bandwidth is a
fraction p of the optical carrier frequency; i.e., Af = pf with p
& 1. p27V/A3 is then the maximum number of binary
pulses that can be in transit at a given time in an optical
communication network occupying volume V. This is
sometimes also termed the population capacity of a commu-
nication network.!!

In order to derive our main result let us assume that the
temporal information modulation bandwidth associated
with the output transducers is Af. This quantity will cancel
out in our final result. Let each connection be numbered
with the indexi =1, 2,..., n, where it is assumed that there
are n pairwise connections. If L; denotes the communica-
tion length of the ith connection, the number of bits in
transit on this connection is

A _af S ™

where 7; is simply the signal delay along the ith connection.
The total number of bits in transit at any given time on all
connections is then

n

o ®
i=1

i=1

This cannot exceed the number of degrees of freedom
D()Af, thus we may write

oV Af < A
oF Af 2 Tf Z L;= Tf Liota 9)
=1
or
)\2
V= 'é; Ltota]’ (10)

Thus we have shown that, under the stated assumptions, the
total volume that must be allocated for optical communica-
tion must at least be A2Lq1/27.

If it is the case that we are technologically confined to two
dimensions, as in an integrated-optic guided-wave network,
our results can be modified to show that the corresponding
lower bound for the communication area is ALgtq/.

3. DISCUSSION

We repeat the main conclusion of Section 2: The minimum
communication volume required for an optical-interconnec-
tion network with total communication length Ly is
A2-Lital/27. We state this result in a global manner; it does
not correspond to saying that each light path is confined to a

H. M. Ozaktas and J. W. Goodman

cross section of A2/2w. Nevertheless, for the purpose of
calculating lower bounds on volumes and cross sections, our
result can be stated in another equivalent form if one imag-
ines that each light path occupies constant-width tubes with
no further overlap permitted, i.e., by treating them as solid
wires: The minimum effective nonoverlapping cross section
required for each independent channel in an optical commu-
nication network is \2/2.

It is not necessary that f# ~ 1 imaging be used in guiding
the light emanated from the output transducers to the input
transducers in order to achieve globally an effective cross
section of ~A2. Use of higher f#’s means that, with a care-
fully designed system, the spread of allowed wave vectors
can be smaller so that, through the use of different nonover-
lapping regions of wave-vector space, a larger number of
light paths can noninterferingly overlap and share the same
volume despite the greater cross-sectional area associated
with each independent channel of information (i.e., each
degree of freedom). This is a direct consequence of Eq. (3).
Hence, even with transducers larger than the order of a
wavelength it would be, in principle, possible to approach
the lower bounds, provided that care is exercised so that the
sources emit into only a single degree of freedom. Although
the source will emit into a large volume of space, since the
cone of wave vectors may be kept narrow, this volume is
available for further usage by other beams.

One way of approximately approaching the bounds would
be to use single-mode waveguides with high numerical aper-
tures, such that the guide cross sections are =2, Clearly, it
is, in principle, possible to wire up an arbitrary pattern of
interconnections by using such waveguides. This serves as
an existence proof that the lower bounds can be approached
for an arbitrary pattern of interconnections, not being re-
stricted to space-invariant connections only. It further
means that for f# ~ 1 imaging the advantage of being able to
overlap the light paths and share the communication volume
is only a small numerical factor. For larger f#’s, however, it
is necessary to be able to overlap the light paths so as to
efficiently utilize the available Fourier space.

The factor of 27 appearing in our equations is simply the
solid angle associated with a hemisphere. Our bounds are
tight in the sense that they may be closely approached if
nearly complete utilization of this 27 of solid angle available
for the wave vectors is accomplished at every point. In
practice, squeezing out the last factor of 27 or so may not be
practical. Ingeneral, if the communication volume required
is roughly predicted by the above-stated results we will call
such a system communication-volume limited, For this to
hold for a certain communication architecture with the
number of connections n as a parameter, we require that the
volume be given by the above-stated results, within a con-
stant that is of the order of unity and independent of n.
This will be clarified in the following and through examples
in Section 4.

The reader may have noticed that until now we refrained
from discussing how the communication lengths are speci-
fied. This will be determined mainly by the communication
requirements of the computing system. For a so-called
mesh architecture all interconnections will be to nearest
neighbors, so that Ly, hence the communication volume
required, can be small. Certain architectures will require
longer interconnections. Without attempting a detailed
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discussion of such issues, here we simply illustrate the major
mechanism that determines Lqq for a communication-vol-
ume-limited optical-interconnection network. For con-
creteness, let us assume a more or less cubic array of n pairs
of points that are to be connected (i.e., a total of 2n points).
We would like to pack this large array of points as closely as
possible so as to reduce the communication delay between
distant points of the array. From relation (10) we may write

2
;‘— nL,,. < (total volume), (11)
™

where L,y denotes the average interconnection length. For
the purposes of this discussion Lgye will be assumed to be
proportional to the linear extent of the system, which will in
turn be assumed to be proportional to (total volume)/3.
Thus we will write Laye = {(total volume)'/3, where { is a
constant. This is not of course generally true; the average
interconnection length need not be proportional to the lin-
ear extent of the system. However, a more elaborate model
is beyond the scope of the present paper. It can be shown to
be true in particular for highly interconnected architectures
such as binary hypercubes of high dimension. We can now
solve for the total volume and the average interconnection
length as

2 3/2
(total volume) = (_2>\_7r fn) s 12)

3/2n1/2)
ave = ——\/2—# .
The average signal delay may then be found as
- Lo > (f—s/i> ﬁ, (14)
c Vr) f
which we write as

1/2
= (%) f, (15)

T

L (13)

where f is the frequency of the optical sources. The last
relation represents a tradeoff between the signal delay and
the number of optical connections established. Our result
may be considered to be a generalization of that given by
Shamir for communication between two planes® to an arbi-
trarily overlapping pattern of. interconnections between
points laid out on a three-dimensional grid. Shamir has
already noted that this result constitutes a fundamental
limit for parallel processing involving global communica-
tion. Similar results have been previously established for
communication using solid wires.!!

4. EXAMPLES

In the remainder of this paper we will no longer concern
ourselves with numerical factors such as 2=. Although ar-
chitectures that are communication-volume limited in the
sense previously defined can exist in principle, squeezing out
the last factor of 2 or so would require considerable ingenuity
and would usually not be practical.

To illustrate a case that is not communication-volume
limited, let us assume that the transducers among which
connections are to be established are constrained to be on
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the surface of a sphere. Assume that there are a total of 2n
transducers with n connections to be made between them.
We wish to determine the minimum radius R and volume V
of the sphere as a function of the number of connections n.
Also, suppose that the transducer areas are given as m2\?
with m2 > (1/7).2 The surface area, the radius, and, hence,
the volume of the sphere are constrained to minimum values
of

47R? = 2nm2\?, (16)
1/2
R= l) mA, an
27
1/2
v=t,p=1 3) n32m3NE ~ 233, (18)
3 3\«

The lower bound of the communication volume is, using V =
A2nL.v/2,

2 1/2
Vlb = A_ nr2R = l _1__ g—n3/2m)\3 ~ g-n3/2m>\3’ (19)
27 T \27

where we used Loy = {2R since 2R is the linear extent of the
system. The ratio between the two previous equations for
volume is approximately

2
v . m (20)

Vi ¢

It is seen that for large m (i.e., transducer areas >> A\?) or
small { (i.e., Laye < system linear extent) we are doing con-
siderably worse than as predicted by our lower bounds. We
will term such cases transducer-surface limited. However,
since one can arbitrarily increase the surface area enclosing a
given volume (for instance by wrinkling the surface rather
than insisting on a sphere), given the freedom of rearranging
the points to be connected in a more flexible manner, it
should be possible to improve on this situation.

The distinction between being communication-volume
limited or transducer-surface limited arises from the fact
that independently excited optical wave fields can noninter-
feringly share the same volume. Hence, regardless of how
large the transducer sizes and areas associated with each
independent channel of information are [Eq. (3)], it is al-
ways, in principle, possible to achieve globally an effective
cross section ~A2. As the transducer areas approach this
size, being communication-volume limited or transducer-
surface limited becomes one and the same thing.

We will further discuss these ideas by using two more
examples. Figure 4 depicts holographic imaging configura-
tions that have been suggested for intrachip and chip-to-
chip optical communication for very-large-scale integration
circuits.1213 The scheme shown in Fig. 4(a) is a space-in-
variant design that utilizes the full aperture for each multi-
plexed volume hologram. Figure 4(b) shows a space-variant
multifacet implementation for which one facet is allocated
for each connection. The scheme of Fig. 4(c) is a modifica-
tion of Fig. 4(b) in which collimating lenses are used above
each transducer. This permits smaller transducer sizes (im-
portant in terms of energy considerations) and also has been
shown to be more robust for alignment inaccuracies and
drifts in parameter values. In Figs. 4(a) and 4(b) we will
denote the transducer areas as a. In Fig. 4(c) a will denote
the area of the collimating holographic lenslets. It is shown
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Fig. 4. Holographic-optical-interconnection schemes. a denotes
the areas of the transducers [the area of the facet lenses in (c)]. X is
the linear extent of the devices to be connected. h is the height of
the holographic element from the device plane. (a) Space-invariant
imaging configuration for which volume multiplexed holograms are
used. (b) Multifacet space-variant design. (c) Modification of this
scheme with transmission rather than reflection holograms.

<<
<

in Appendix C that, for the multifacet designs, owing to
diffraction considerations one can approximate

n~% (21)
where we have assumed that there are n connections to be
formed between n pairs of transducers. If we are to be able
to form connections between distant parts of the planar
layout, the height of the holographic optical element from
the layout plane should be approximately equal to the maxi-
mum length that is to be connected. Although this latter
condition is true also for the scheme depicted in Fig. 4(a), no
such condition as relation (21) holds and the transducer
areas can, in principle, be reduced down to the order of the
wavelength squared.

We first consider the space-invariant design shown in Fig.
4(a). With the remarks of the previous paragraph in mind,
note that 2n transducers forming n links will occupy an area
of X2 =~ 2n)N2. Since h ~ X, a typical communication length
is approximately 2h =~ n'/2\, Using relation (10) we arrive
at a lower bound for the volume as
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)\2 A2
Vip=5-n2h = - n%2\ ~ n32\3, (22)

The actual communication volume is found simply, again
with h ~ X, as

V= X2h ~ X3~ n¥2)\3, (23)

which, within a numerical factor, is the same as relation (22).
However, notice that, if the transducers are made consider-
ably larger than a wavelength, this design becomes transduc-
er-surface limited. The high f# beams will only occupy a
fraction of the available modal space.

Now we turn to the space-variant designs. Again X2 =
2na, with a being given by relation (21). So againwithh~ X
we obtain the volume X2h ~ X3 ~ n3)\3, The typical com-
munication distance is now 2k = n\. Dividing the total
volume by this distance and by n, we find that the average
effective cross section required for communication is

nAZ (24)

This implies that not only is the typical interconnection
distance larger by a factor of nl/2 over the communication-
volume-limited case, but also the effective cross section is
not a constant but rather a linear function of n. In this
respect, especially for large values of n, this design is far from
approaching fundamental limits. Since the effective cross
section is a growing function of n, it is even worse than
transducer-surface-limited designs. We noted that high-
numerical-aperture single-mode waveguides of cross section
~\? serve as an existence proof that arbitrary space-variant
connections may be achieved with communication-volume-
limited systems. A problem of great practical interest is to
devise space-variant free-space architectures that are also
communication-volume limited. Such an architecture may
involve a three-dimensional layout of the points to be con-
nected.

5. CONCLUSIONS

We saw that for an arbitrary array of points communicating
with one another, it is possible to view optical communica-
tion density limits in a global fashion by treating optical
links as if they were solid wires of cross section A2/2x. This
result accounts for all possible noninterfering overlap be-
tween independently excited optical wave fields. The main
point is that any number of independent wave fields are
permitted to overlap in coordinate space, or in Fourier space,
but not in both. In deriving this result no specific assump-
tions regarding the configuration of the points, the shape of
the surface enclosing the communication volume, or the
imaging system were made. Thus results of area—volume
complexity theory based on solid wires are also applicable to
optically communicating systems.

As an alternative formulation of our result, we showed
that the maximum number of binary pulses that can be in
transit in an optical communication network is bounded by
p2wV/X3, where p is the modulation bandwidth of the output
transducers normalized by the carrier frequency.

The utility of our global viewpoint is that it enables one to
model the basic mechanisms that limit how closely one can
pack an array of optically interconnected primitive comput-
ing elements to form a larger computing system. The ad-
vantage that is to be gained by using free-space alternatives
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(i.e., overlap of independently excited wave fields possible)
over guided-wave alternatives (with no overlap permitted
except possibly at crossings) were seen to be (in a fundamen-
tal sense) not more than a factor of the order of unity,
assuming f# ~ 1 imaging. This is because a significant
fraction of the available Fourier space is already utilized and
not much further overlap is permitted. As the f#’s in ques-
tion increase, however, it becomes more and more important
to be able to noninterferingly overlap independent wave
fields so as to make better utilization of the Fourier space
and hence the available modal volume.

Most suggested optical global interconnection architec-
tures consist of a planar array of devices. We saw that the
communication volume required by such systems are trans-
ducer-surface limited unless the transducers are reduced to
sizes of the order of one wavelength. The problem of mini-
mizing the communication volume will increase in impor-
tance as smaller transducer areas and reduced gate delays
result in the speed of light being the dominant factor in
determining the overall speed of large computing systems.
Such being the case, it would be extremely beneficial to
devise communication architectures that enable efficient
utilization of both coordinate and Fourier spaces, even with
transducer areas greater than of the order of one wavelength.

Another important conclusion may be drawn from rela-
tion (10). Observe that the minimum communication vol-
ume is linear only in the total communication length. This
may be interpreted as a consequence of the fact that unit
cross-sectional spatial-response functions for electromag-
netic propagation are of the form sinc(x, y) or jinc(r),!516
functions whose self-convolutions are identical to them-
selves. Thus, apart from the effects of aberrations, the
diffraction-limited spot size does not increase on concate-
nating several identical imaging systems in order to relay
optical information over any distance. In other words, the
effective cross section required per independent channel is
(at least in a fundamental sense) independent of length. In
contrast the volume required for communication with con-
ducting interconnections is superlinear in distance. This is
because longer interconnections must be made larger in
cross section in order to maintain acceptable attenuation
levels. Thus, with increasing system sizes, the communica-
tion volume required for establishing optical interconnec-
tions will grow slower than that required for establishing
conductor-guided interconnections. This advantage of op-
tical interconnections in terms of interconnect density is
independent of and in addition to those discussed by Feld-
man et al.”

Throughout our exposition we only briefly discussed how
the communication lengths are specified in terms of the total
volume of the computing system. More accurate specifica-
tion of communication lengths will require introduction of a
computational model and is beyond the scope of this paper.

APPENDIX A. ADDITIONAL FACTORS OF 2
CONTRIBUTING TO THE NUMBER OF
DEGREES OF FREEDOM

There are several factors of 2 that can be included in Eq. (1)
and in our major results, such as relation (10). Since we
have centered our discussions on scalar theory, a factor of 2
may be augmented to account for the two independent po-
larization states.
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The other factors of 2 are best understood in relation to
the Nyquist sampling theorem!”18 and can be interpreted as
a consequence of the double sidedness of the frequency-
domain representations. Two of these factors correspond-
ing to the two transverse dimensions are already inherent in
our results. Two more factors are associated with the longi-
tudinal dimension and the time coordinate, i.e., both odd
and even versions of both forward- and backward-traveling
waves can independently exist. Hence, if one utilizes the
channels bidirectionally, a factor of 2 is added. The other
one can be added only if we employ a detection scheme that
is sensitive to the temporal phase of the optical carrier.
With the understanding that they may be easily reintro-
duced whenever appropriate, we did not include either.

Bidirectional (i.e., full-duplex) utilization of the channels
does not necessitate that bidirectional links be formed be-
tween every transmitting and receiving transducer pair. It
is only necessary that one efficiently utilizes given cross-
sectional areas by making use of these additional available
degrees of freedom, as depicted in Fig. 5.

APPENDIX B. EXTENSION TO FAN IN AND
FAN OUT

The extension of our main result to fan in and fan out is
straightforward. Consider, for instance, the fan-out situa-
tion symbolically depicted in Fig. 6. Given the locations of
the source and detectors, one arranges power division to
occur at such points so that the total distance required, L; +
Ly + L3, is minimal. Then the contribution of this fan-out
link to the total volume required is just A%(L; + Ly + Lg)/27.

v ﬁ m

Fig. 5. Bidirectional utilization of available channels. Bidirec-
tional utilization of the channels does not require each transducer
pair to form bidirectional links. Here it is symbolically shown how
this last factor of 2 may be squeezed out. Whenever one of the

counterpropagating signals in a certain path diverts out into anoth-
er direction, another enters the now-empty propagation mode.

O
L2

L1

L3

Fig. 6. Fan-out situation. A multiple-signal net is shown. The
signal is transmitted from the left-hand node and is destined to
reach the right-hand nodes. The point at which power is split is
chosen so as to minimize the total connection length.
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APPENDIX C. MINIMUM FACET AREA FOR
THE MULTIFACET-HOLOGRAPHIC-
INTERCONNECTION SCHEME

We refer to Fig. 4(b). Assume that we want to form inter-
connections between pairs of transducers that, in the worst
case, may be separated from one another by a distance that is
comparable with the total extent of the devices, which are
laid out on a planar surface. We also assume that the total
area of the holographic optical element is approximately
equal to the total area occupied by these devices. Since n
connections are being formed between n pairs of transduc-
ers, we write

2na ~ nD? (25)
where D is the width of a facet. We also have
h? .,
a =~ o A2, (26)

since /D corresponds to the f#. There also exists a limit to
how large X/h can be. Detailed theoretical and experimen-
tal analyses of these issues were previously given in Refs. 19
and 20. Werequire only an approximate expression, howev-
er; we will take

X < 2h. (27)

Since X? ~ 2na, combining the above, we obtain that the
minimum value of a satisfies

a
—~n

2 (28)

within a numerical factor of the order of unity. A similar
relation can be shown to hold for Fig. 4(c). An engineering
analysis of this and similar configurations may be found in
Ref. 21,
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