
Paradigms of connectivity for computer circuits
and networks

Haldun M. Ozaktas
Bilkent University
Department of Electrical Engineering
06533 Bilkent, Ankara, Turkey

1 Introduction
Essential to the general analysis of interconnection and pack-
aging technologies are models of the connectivity of circuit
graphs and computer networks . The importance of so-called
wiring models have long been recognized and extensively
used. i-6 On the other hand, connectedness has always been
a central concept in mathematical graph theory.79 Exten-
sions of some of these ideas play a central role in graph
layout.

This paper brings together some concepts used to quan-
tify the communication requirements of computer circuits.
More generally, these concepts can serve as paradigms of
information transfer among the parts of a cybernetic system.

This paper is not meant as a review or tutorial, but rather
aims to provide a unifying viewpoint for hitherto scattered
concepts and a guide to some of the literature. The reader
is referred to the references for further details. Applications
of these concerts to the study of optical interconnection
architectures11' 2 and optoelectronic computing systems can
be found in Refs. 13 through 17.
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Abstract. We discuss several concepts of connectivity for circuit graphs,
including Rent's rule, line length distributions, and separators, all of which
we argue are fractal concepts. We provide generalizations for systems
for which the Rent exponent is not constant throughout the interconnec-
tion hierarchy.

Subject terms: connectivity; Rent's rule; fractals; optical interconnections; wiring
models.

Optical Engineering 3 1(7), 1563-1567 (July 1992).

2 Paradigms of Connectivity

2.1 Interconnectivity and Dimensionailty
Graph layout involves determining how the nodes and edges
of a particular graph will be situated in physical space (Fig. 1).
Optimal graph layout18 is, in general, an NP-complete prob-

19 However, once a hierarchical decomposition of a
graph is provided, this graph can be laid out following
relatively simple algorithms. A hierarchical decomposition
of a graph consisting of N0 nodes and the associated de-
composition function k(N) are obtained as follows.

First, we remove k(No) edges to disconnect the graph
into two subgraphs , each of approximately N0/2 nodes.
Roughly speaking, we try to do this by removing as few
edges as possible. We repeat this procedure for the subgraphs
thus created. The subgraphs, in general, require differing
numbers of edges to be removed from them to be discon-
nected into subsubgraphs of —N0/22 nodes each. We denote
the largest of these numbers as k(No/2). Continuing in this
manner until the subgraphs consist of a single node each,
we obtain the function k(N) , the (worst case) number of
edges removed during decomposition of subgraphs of N
nodes. Once such a decomposition is found, it is possible
to lay out the graph in the intuitively obvious manner by
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working upward.20'10'19 Whereas one can always find some
decomposition, finding the decomposition that leads to a
layout with some optimal property (such as minimal area)
is not a trivial problem. We assume that we agree on a
particular decomposition obtained by some heuristic method.

Now, let us define the interconnectivity p(N) and di-
mensionality n(N) associated with the hierarchical level of
a decomposition involving subgraphs of N nodes by*

n(N)—1 _ k(N)
p(N) —

n(N) lO2()
It is possible to find arbitrarily many examples of graphs

for which the values of k(N) and p(N) for different values
of N are totally erratic and have no correlation whatsoever.
However, both computer circuits and natural systems are
observed to exhibit varying degrees of continuity of the
functions k(N) and p(N).

Let the geometric derivative f of a functionf at the point
x be defined analogous to the usual arithmetic derivative

- . f(vx)f(x) = 1og —j-
If k(N) is slowly varying, we can pretend that it is a con-
tinuous function and write

p(N) - n(N)- 1 =k(N)

which can be inverted as

*In general the defined quantities satisfy 0 �p(N) 1 and 1

1 564 / OPTICAL ENGINEERING / July 1 992 / Vol. 31 No. 7

k(N) =k(1) exp (JN ) (4)

where N is a dummy variable.
Of course, since k(N) is actually a function of a discrete

variable, we cannot actually let v—> 1 . The smallest mean-
ingful value of v in our context is 2. Hence, the geometric
derivative should be interpreted in the same sense as we
interpret the common derivative in the form of a finite dif-
ference for discrete functions. Thus, for our definition to
make sense, k(N) must be a slowly varying function (which
is simply a more physical way of expressing the mathe-
matical condition of continuity). As already noted, this is
indeed observed over large variations of N in both computer
circuits and natural systems. In fact, in many cases, it is
found that p(N) and n(N) are approximately constant over
a large ranye of N. Such systems are said to exhibit self
similarity,2 ,22 or scale invariance.

2.2 Rent's Rule

Assuming that p(N) =p = constant, we find from Eq. (4)
that k(N) = k(1)N". This is nothing but the famous Rent's
rule,t2324 which gives the number of graph edges k(N)
emanating from partitions of computer circuits containing
N nodes (such as the number of pinouts of an integrated
circuit package containing N gates). We interpret k(1) as
the average number of edges per node. Donath has shown
that Rent's rule is a consequence of the hierarchical nature
of the logic design process.25'26

2.3 Separators
A graph of No nodes is said to have an S(N) separator [or
to be S(N) separable] if the graph can be disconnected into
two (roughly equal) subgraphs by removal of S(No) edges
and if the subgraphs thus created are also S(N) ar10
Although we will not go into the details, note that a graph

(1) with interconnectivity function p(N) has a separator of the
form S(N) oc Nm[p(N)] where the maximum is taken over
the whole domain of N. Separators play a central role in
combinatoric approaches to graph layout.20'1° (An alter-
native way of describing the communication requirements
of graphs is based on what are called bifurcators. 19)

Thus, we see that both Rent's rule and separators of the
form S(N) N" are special cases of the formalism we have
introduced. Apart from minor technicalities involved in their
definition, all are equivalent when p(N) =constant. In gen-
eral, p(N) and n(N) are functions of N.

(2) 2.4 Fractal Geometry
The dimensionality n(N) defined in Eq. (3) is a fractal di-
mension.22'2729 The fractal dimension of a natural system,
just as that of computer circuits , can also vary as we ascend
or descend the hierarchical structure of that system. In any

(3) event, Rent's rule, fractal geometry, and separators are tied
together by the notions of self-similarity, scale invariance,
and continuity in the relationships between the volume-like

tstctly speaking, for this expression to correspond to Rent's rule, it must
be modified by a coefficient of the order of unity. However, we avoid
this minor technicality for the purpose of this paper.
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Fig. 1 Graph layout. A particular graph has been laid out in two-
dimensional Euclidean space. For convenience, the nodes have been
situated on a regular Cartesian grid.
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/1o N

256 2562

Fig.2 The decomposition function k(N). The decomposition function
for a system of N= 2562 nodes (perhaps gates) consisting of 256
processors of 256 nodes each is presented. The number of "pinouts"
of the processors bears no relationship to their internal structure.
The functional form given in Eq. (4) can be used directly forthe range
1 <N<256, and with a shift of origin for the range 256 <N<2562.

(numberof nodes) and surface-like (number of edges) quan-
tities.

To clarify this point, we offer the following simplified
explanation of why the quantity defined as n =1/(1 —p) is
being referred to as a ' 'dimension.' ' The perimeter of a
square region is proportional to the ½ power of its area.
The surface area of a cube is proportional to the 2/3 power
of its volume. In general, the hyperarea enclosing a hy-
perregion of e dimensions is proportional to the (e —1)/e
power of its hypervolume. Let us now make an analogy
between ''hyperarea'

' ' ' 'number of graph edges ema-
nating from a region,' ' and '

'hypervolume'
' ' ' 'number

of nodes in the region.' ' According to Rent's rule, the num-
ber of edges emanating from the region is proportional to
the p'th power of the number of nodes in the region. Thus,
it makes sense to speak of the quantity n defined by the
relation p = ( n — 1)/n as a dimension. Note that, in general,
n need not be an integer.

2.5 Inverse Power Law Distributions
Let us assume that a graph with n(N) =n=constant is laid
out in e-dimensional Euclidean space (in microelectronic
circuits, e is often =2; in any event, es3) according to the
divide-and-conquer layout algorithm20'10 (i.e. ,as intuitively
suggested by its decomposition). Such a layout internally
satisfies Rent's rule. Donath3° and Feuer31 have shown that
such a layout has a probability distribution g(r) of line
lengths of the form

g(r) oc r_'_1 r VeN
where r denotes line lengths in units of node-to-node spacing
of the layout. (We assume the nodes are laid out on a regular
Cartesian grid, as in Fig. 1.) The relationship between such
inverse power law distributions and fractal concepts were
discussed by Mandelbrot,3234 closing the circle. Using the
above distribution, or by combinatoric methods, we can
show that when n > e, the average connection length of such
a layout of N elements is given by2'

:=K(n,e)N1
where K(n,e) is a coefficient of the order of unity. The
accuracy of this expression requires that N — 1. This
result has a simple interpretation. The average connection
length is simly the ratio of the linear extent of the system
in e-space (N /?) to that in n-space (N"). The node-to-node

spacing (Fig. 1) necessary to layout a graph of dimen-
sionality n is given by 1/(e

— Ni" e)/ne(e — where
x is the line-to-line spacing of whatever interconnection
technology is being used. (Essentially equivalent results
can be shown to hold also for free-space optical intercon-
nections.38) Thus, when n > e, the area (or volume) per
node grows with N. This has been referred to as space
dilation.39 Examples of graphs exhibiting large values of n
are hypercubes, butterfly and shuffle exchange graphs, and
neural networks. It is also easily verified that the given
definition of dimension is consistent with that for multidi-
mensional meshes •40

2.6 Role of Discontinuities

Whereas it is observed that the function k(N) exhibits con-
siderable continuity over large variation of N, it is also
observed that it occasionally exhibits sharp discontinuities.
In other words, it no longer becomes possible to predict the
value of the function k(N) for certain N by knowing its
values at nearby N. For instance, in the context of Rent's
rule, it becomes impossible to predict the number of pinouts
of a VLSI chip by observing its internal structure, or vice
versa.27 However, this does not imply that Rent's rule [in
its generalized form, as given by Eq. (4)] is useless. Con-
sider a multiprocessor computer. Rent's rule can be used to
predict the wiring requirements internal to each of the pro-
cessors . It can also be used for similar purposes for the
interconnection network among the processors. In fact, the
Rent exponent may even be similar in both cases. However,
the function k(N) may exhibit a steep discontinuity (often
downward), as illustrated in Fig. 2. As is usually the case,
a finite number of discontinuities in an otherwise smooth
function need not inhibit us from piecewise application of
our analytical expressions. Such discontinuities are often
associated with the self-completeness of a functional unit.24'27
Similar examples can also be found in the natural system.
For instance, mammalian brains seem to satisfy n > 3 (i.e.,
p > 2/3), since the volume per neuron has been found to be
greater in species with larger numbers of neurons.41 The
human brain has 10' neurons , each making about 1000
connections.42 Thus, we would expect at least 1000 (10' 1)2/3
,— 1010 "pinouts." However, we have only about 106 fibers
in the optic nerve and 108 fibers in the corpus callosum.

Why are such discontinuities observed? In the context of
microelectronic packaging, a quote from C. A. Neugebauer
offers some explanation: "Since the I/O capacity (of the
chip carrier) is exceeded, a significant number of chips can
be interconnected only if the pin/gate ratio can be drastically
reduced, normally well below that predicted by Rent's rule.
Rent's rule can be broken at any level of integration. The
microprocessor chip is an example of the breaking of Rent's
rule in its original form for gate arrays on the chip level.
Being able to delay the breaking of Rent's rule until a much
higher level is always an advantage because it preserves
many parallel data paths even at very high levels of inte-

(6) gration, and thus offers higher sstems performance and
greater architectural flexibility.' '

Thus, the breaking of Rent's rule seems to be perceived
as a technological necessity, and undesirable from a systems
viewpoint. However, the difficulty of maintaining a large
fractal dimension throughout the hierarchy extends beyond
present implementations, and applies even to idealized free-
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space optical layouts.38 Thus, perhaps there is an advantage
to constructing processing systems in the form of a hierarchy
of functionally complete entities.

3 Open Questions
Fractal concepts have been quite successful in describing
natural phenomena. However, there has not been so much
success in explaining why fractal forms come up so often.
Why do computer circuits lend to such a description? Per-
haps because of the hierarchical nature of the design process.
One viewpoint is that there is an inherent dimensionality of
information flow related to the application so that a computer
circuit/network is not just an arbitrary graph but has an
underlying structure.

One suspects that fractal forms may exhibit certain op-
timal properties. For instance, bitonic (divide-and-conquer)
algorithms can be viewed as elementary fractal forms . Is it
possible to postulate general principles (such as the principle
of least action in mechanics) regarding optimal information
flow or computation that would lead to an inverse power
law distribution of line lengths (i.e. , a constant fractal di-
mension) or some other distribution? Keyes41'44 has shown
how the number of distinct ways one can wire up an array
of elements increases with average wire length. Mandelbrot
has postulated maximum entropy principles to predict the
observed inverse power law distribution of word frequencies
(linguistics)33 and monetary income (economics) . Christie
has pursued the idea that the wires in a computing system
should obey Fermi-Dirac statistics , basedon the observation
that the wires are indistinguishable (any two wires of same
length can be exchanged) and that they obey an exclusion
principle (only one wire need connect two points).45

Or, rather than having to do with optimality, are the
observed properties of computer circuits or networks merely
a result of the way we build them, perhaps similar to the
way the fractal structure of some biological objects are a
consequence of their growth process?

What is the role of discontinuities in an otherwise smooth
decomposition function? Is it beneficial to construct systems
in the form of a hierarchy of functionally complete entities?

4 Conclusion
Rent's rule has often been heavily criticized, especially in
relation to its inapplicability to VLSI and higher levels of
the interconnection hierarchy. We believe this to be mostly
a result of the inexistence of a generalization allowing the
Rent exponent and dimensionality to vary as we ascend the
hierarchy and a failure to recognize discontinuities . It seems
that in most cases of practical interest, the decomposition
function k(N) is piecewise smooth with a finite number of
discontinuities.

With the generalizations and clarification provided, we
believe that fractal concepts such as Rent's rule, separators,
and dimensionality will be useful not only for the description
of the often quasirandom and irregular nature of computer
circuits and complex systems, but also as general paradigms
of information transfer for natural and cybernetic systems.
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