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Heat removal, rather than finite interconnect density, is the major mechanism that limits how densely we
can pack three-dimensional computing systems of increasing numbers of elements. Thus highly
interconnected approaches can be employed without a further increase in system size. The use of optical
interconnections for implementing the longer connections of such systems is advantageous. In fact, if
the optical communication energy is sufficiently low and large-bit repetition rates are employed,
conductors are useful for only the shortest connections and can be dispensed with altogether with little
disadvantage. This justifies consideration of an optical digital computer.

This paper is an initial attempt to understand whether
and when an all-optical digital computer may prove
useful. Several researchers have addressed this is-
sue in the past, often with negative conclusions. We
believe that an increasing understanding regarding
the importance of communication in computing and
the realization that the architectural-logical construc-
tion of a computing system can no longer be divorced
from its physical construction justifies a reevaluation
of previous arguments and a search for hitherto
unexplored perspectives.

One cannot be overcautious in interpreting our
discussion. Such studies can never be definitive and
our arguments unavoidably rest on floating ground.
We nevertheless present the following with the hope
that it will provide a seed for further investigations.

1. Introduction
The possibility of an optical digital computer has
attracted considerable attention. Despite the vast
literature on devices, systems, architectures, and
algorithms for optical digital computing,' there has
been considerable distrust of its usefulness compared
with other approaches. Switching-energy argu-
ments on power-delay diagrams, as in Refs. 2 and 3,
have resulted in the digital optical computer being
viewed mostly as an esoteric curiosity. In the 1980's,
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interest in optical computing shifted toward optical
interconnections. 4 This led to the notion of the
hybrid optoelectronic computer. Nevertheless the
assumptions underlying the negative arguments have
not remained unchallenged5 and optical computing
research has been accelerating. Here we explore
several issues relating to the potential usefulness of
an optical digital computer and try to identify the
conditions under which it would make sense to
consider it as an alternative to existing approaches.

A digital computer can be viewed as a collection of
nonlinear switching elements that are interconnected
according to a certain graph. The nonlinear switch-
ing elements often rely on electronic interaction.
Usually this is true even of so-called optical switches,
since, in most optical switches, photons interact
indirectly through electrons. On the other hand,
communication along the elements is often estab-
lished through photons, even in conventional comput-
ers.6 The question is whether conductors are used
to confine the wave fields. Thus we define an all-
optical computer as one that does not employ conduct-
ing materials for the purpose of guiding signals
among its switching elements. The all-optical com-
puter, as defined, is a special case of hybrid optoelec-
tronic computer that employs both conducting wires
and optical communication for this purpose.

In Sections 2 and 3 we describe the connectivity
and heat removal models used in this paper. After
discussing how we characterize and evaluate our
systems, in Section 4, we mention some crucial
properties of various wiring technologies in Section 5.
Then we discuss the physical mechanisms that limit
the density at which we can pack the elements of our
computing system in Section 6. In Sections 7-10 we
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argue that an all-optical computer need not be much
worse than an optimal hybrid computer under certain
conditions, so that an all-optical computer might be
preferred for its relative simplicity compared with a
hybrid computer. In Section 11 we discuss some
objections to our argument. Sections 12 and 13 briefly
discuss some issues pertaining to the construction
and utilization of an all-optical computer. Section
14 summarizes our main argument.

2. Connectivity Model
Consider a simple model computing system consist-
ing of N elements (graph nodes) laid out on an e
dimensional (e = 2 or e = 3) regular cartesian grid
with Nile elements along an edge (Fig. 1). Let there
be an average of k connections (graph edges) per
element in our system. The interelement spacing is
denoted by d.

We use the parameter 0 < p < 1, which is known
as the Rent exponent, to quantify the connectivity of
our layouts. Refer to Fig. 2; Rent's rule states that
kN'P graph edges emanate from a group of N' ele-
ments with k edges each. The rule does not apply
when N' is close to N, the total number of elements in
the system. Statistical variations are expected.
Rent's rule was originally established as an empirical
relationship7' 8 and later shown to be a consequence of
the logic design process.9 "10 Such a power law may
also be justified based on a principle of self-similar-
ity.1""1 2 We now understand that Rent's rule is also
related to the separator concept of a VLSI complexity
theory,' 3 "4 which provides a formal basis for the
layout of given graphs, and to the theory of fractals.' 5 "16

This relationship has been used widely as a wiring
model for two decades.17"18 In short, Rent's rule is a
useful paradigm of connectivity that enables us to
quantify to first order the communication require-
ments of computing systems.

Fig. 2. Binary hierarchical partitioning of the elements.
at the ith level has N' = N14i elements.

A group

An equivalent measure of connectivity is the fractal
dimension of information flow n, which is related to
the Rent exponent through the relationp = (n - 1)/n
(see Refs. 16 and 19).

Rent's rule is often broken in present digital sys-
tems, often because of the limitations of existing
technology. It is not possible to accommodate the
number of wires and input-output ports required by
Rent's rule at higher levels of the interconnection
hierarchy. As a result, serialism is employed and
performance is sacrificed. We consider the imple-
mentation of layouts with p uniform throughout the
hierarchy. We speak of systems with large values of
p (or n) as highly interconnected. The larger p is,
the greater is the fraction of longer connections in our
system.

It is possible to show that Rent's rule implies
an average connection length of N1e-1/nd =
NP-(e-i)led when n > e (i.e., whenp > (e - 1)Ie) (see
Refs. 11, 20, and 21). Here denotes the length of a
particular interconnection and the overbar denotes
averaging over all connections.

3. Heat Removal

Whatever the modality (conduction, convection, or
radiation), heat transfer can take place only through
a surface (energy conservation). Thus we assume
that our heat removal capability can be characterized
by a quantity Q, the maximum power that can be
removed per unit cross-sectional area. This is most
easily visualized by considering the flow of a cooling
fluid through our system, as illustrated in Fig. 3.
A fluid with heat capacity C, and mass density pm
flowing at an effective mean velocity f may carry
away at most Q = vfpmCsAT, where AT = Tmax - Tinit.
Tmax is the maximum permissible operating tempera-
ture of the devices and Tinit is the initial temperature
of the coolant.
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Fig. 3. Three-dimensional heat removal.

The crucial point is that the maximum power we
can remove from a system is proportional to its
cross-sectional area and not to its volume. Thus the
edge length Y of a cubic system dissipating a total
power ,9 must satisfy Q -22

A .

4. System Characterization and Evaluation
We characterize our processing systems systems with
3 parameters:

(1) The number of elements N;
(2) The bit repetition rate B along the connections.

For simplicity we assume that the bit rate is the same
for all connections;

(3) The inverse delay S = 1/7 across the linear
extent of the system. T will, in general, be the sum of a
propagation (speed of light) component and a device
component. The number of device delays that are
incurred while an influence traverses the extent of
the system is fixed by graph topology. For given
topology, the best we can do is to minimize propaga-
tion delay, which is equivalent to minimizing the
system linear extent.

How much we can increase all three of these
quantities simultaneously depends on interconnect
technology and is ultimately limited by the laws of
physics. The particular application-algorithm at
hand determines which we prefer to increase at the
cost of the other(s).

Our first priority is to maximize performance.
Quantitatively, we try to maximize S (i.e., minimize
'r) for given N and B. (Our choice of N and B as the
independent variables is arbitrary.) If additional
degrees of freedom are left in our design, we try to
minimize total power consumption.

Another figure of merit of performance that jointly
emphasizes parallelism, connectivity, and bandwidth
is the bisection-bandwidth product, which is defined
as the amount of information we can transfer in unit
time across an imaginary surface, dividing our system
in two. This figure of merit is particularly suited for
certain communication-limited applications.1322 In
terms of our parameters, the bisection H of our
system is given approximately by H kNP so that
the bisection-bandwidth product can be expressed as
HB kNPB.23

5. Wiring Technologies and Their Properties
The most common choice for computer interconnec-
tions involves the use of normal conductors. Nor-
mal conductors offer good confinement and submi-
crometer scaling. However, by nature they are lossy
so that the energy per transmitted bit and cross
section per independent channel must increase with
increasing line length.2 4

29 As a simple model, we
take the energy per bit for a normally conducting line
of length I as En = yl, where y 100 fJ/mm (see Ref.
26). We have assumed that an unterminated line is
charged up to 1 V. The corresponding expression for
terminated lines is more complicated; however, it is
true, in general, that the energy per transmitted bit
must increase with line length because of resistive
loss. The increase in the cross-sectional area may be
overcome by suffering a quadratic growth of delay
with length or by the use of repeaters. We do not
need these results however.

Optical interconnections rely on only dielectric
inhomogenieties for confinement so that they suffer
little loss compared with normal conductors. For
this very reason, however, the minimum cross-
sectional area per independent spatial channel must
be greater than the wavelength X squared. 29 Further-
more, again for the same reason, some coupling and
radiation losses (spilling photons) are unavoidable.
In conclusion, the energy and the cross section for
optical interconnections are large but roughly indepen-
dent of connection length for the length scales in-
volved in a computing environment.

As a direct outcome of the above discussion, we
conclude that normal conductors are better for shorter
connections whereas optics is better for longer ones.

In this paper we do not consider the use of supercon-
ductors. At first, it may seem that superconductors
offer the best of both worlds, as they can provide
conductor confinement without loss. However, they
suffer from critical current limitations and reduced
velocity with scaling. We satisfy ourselves by noting
that they offer an effective performance similar to
that of optical communication for comparable commu-
nication energies. 23

6. Lower Bounds on System Size
We already have noted that minimizing global propa-
gation delays is equivalent to minimizing the system
linear extent. Two major physical considerations
lead to lower bounds on system size:

1. Wireability requirements.
2. Heat removal requirements.

For bounded degree connection graphs, wireability
requirements dictate that the system linear extent

2 grow as Y c N for e = two-dimensional systems
and c Nql2 for e = three-dimensional systems,
where q = max[p, (e - 1)/e] (see Ref. 30).

If we assume a constant power dissipation per
element, heat removal requirements dictate that the
system linear extent grow as N 2 , since the
surface area of both two-dimensional and three-
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dimensional systems grow as the square of their
linear extent.

Since p < 1, we conclude that with increasing N
(unless p = 1), the linear extent of three-dimensional
systems will become limited by heat removal consider-
ations. In some situations, the power dissipation
per element may increase with system size, strength-
ening our conclusion. On the other hand, if the
power dissipation per element were to decrease with
increasing N, this might invalidate our conclusion.
We come back to this point in Section 9.

Given that there are upper limits to device speed,
the best we can do to construct ever-powerful comput-
ing systems is to make them three-dimensional with
an ever-increasing number of elements N. Thus,
based on the argument of the preceding paragraph,
we conclude that heat removal will be the major
factor that determines how densely we can pack the
elements of our system. This means that employing
layouts with a larger fractal dimension (or Rent
exponent) will not result in a greater system size and
delay (still assuming constant power dissipation per
element). This suggests that highly interconnected
approaches, which offer greater functional flexibility,
will be preferred in future large-scale systems.

Of course, there are applications that intrinsically
require only limited or local communication and that
would not benefit from the opportunity for direct
global communication, even if it were available at no
cost. However, there are other situations in which
intermediate results of computation depend on infor-
mation located at distant parts of the system. Such
applications would benefit from direct global connec-
tions rather than from relying on the indirect trans-
fer of information or influences over local connections
by means of several elements.

7. Optimal Hybrid Partitioning

Minimization of system size and propagation delay is
possible with a hybrid layout, which involves both
normally conducting and optical interconnections. 3 '
Let us consider an e = three-dimensional system with
N = 106, k = 5, andp = 0.8 (n = 5) operated at B = 10
Gbit/s. Let the optical communication energy be
E0 = 1 pJ and the electrical energy be y = 100 fJ/mm
per unit length, so that the energy per bit for a
normally conducting line of length 1 is En = yl (see
Ref. 26). For this choice of parameters, optical
interconnections require less energy per transmitted
bit for lines longer than I = 1 cm. Finally, let us be
capable of removing Q = 10 W/cm2 of power per unit
cross section of our system.

We now show that, under the above assumptions,
employing an optimal hybrid combination of normal
conductors and optics results in a system with a
linear extent Y = 0.5 m. The use of any other than
the optimal mix of optics and normal conductors will
result in a larger linear extent.

In the following simplified derivations we consider
only the effects of heat removal. Wiring density,
bandwidth, and rise time considerations are actually

all coupled to energy considerations. However, since
heat removal is the dominating consideration, de-
tailed calculations give similar results.

We consider that a total of N elements is parti-
tioned into N/N, groups of N, elements each.
Connections internal to a group are established with
conducting wires and external connections are estab-
lished with optics.

First we find the minimum size 2, of an electrically
connected cube of N, elements. The average connec-
tion length per element is given by k kNP- 2I3d for
an e = three-dimensional layout. Thus the power
dissipation per element is y(kNP 213d)B. Also d =
Y1IN,"13 . Heat removal requires that the total power
dissipation associated with the N, elements not ex-
ceed Q212, where Q is the amount of power we can
remove per unit cross section. Thus

Qy12 2 Nlk~lP-2/3 N Yl3w2/Q21 >Ž N,kNP~ N1, 3 yB, (1)

giving', 2 kNP-yB/Q and a total power dissipation
of 93 = (kNPyB) 2/Q per electrically connected cube
of N, elements.

There are kNP edges and hence the same number
of optical connections per each cube of N, elements
(Rent's rule). Thus the global heat removal condi-
tion requires that the system linear extent 2'satisfy

N
Q2'2 >Ž (kNP~E0B + 91)- (2)

The dependence of Yon N, is shown in Fig. 4.
By substituting for,91 and minimizing over N, we

find

kB) 1 2p
YN 2 1/2Q

3.0

2.0

1,0

0.0 
0.0

(3)

2.0 4.0 6.0

log N,

Fig. 4. Dependence of Yon N, [relation (2)].
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wherey = x(P-')'P + x(2P-')IP andx = (1 - p)/( 2p - 1).
Notice that whereas a lower value ofp would result in
smaller 2, it would not change the dependence of Y
on N, which is still cX N1 2. Notice also that >
(N/N1 )132,, i.e., we have relaxed the requirement of a
uniform array of elements (Fig. 1). Permitting the
clustering of the electrically connected elements in-
creases the ratio of electrical interconnections, en-
abling an overall power savings. With our chosen
parameters we find the optimal value N, 190,
which results in a system linear extent 2 ' 0.5 m.

We would now like to determine how worse off we
are if we make all connections optically. In this case,
the total power dissipation is kNEOB, which leads to a
system linear extent of Y = (kNE0 B/Q)1/2 = 0.7 m
and a power dissipation that is twice as much as the
optimal hybrid system. It is also possible to show
that making all connections electrical would result in
a system linear extent in excess of 3 m.

For the chosen value of p, it is readily shown that
the ratio of the linear extent of the optimal hybrid
system to that of the all-optical system is (kBy 2/
QE,)01 25 (1.32). Thus the disparity between the two
systems is quite insensitive to the parameters in-
volved.

If the disparity between 0.5 m and 0.7 m is not
considered to be significant, we might as well make all
connections optically. This might simplify the de-
sign and construction of our system. It should not
be surprising that the all-optically connected system
is almost as good as the optimal hybrid system in
terms of size, delay, and power. After all, in our
example the beneficial use of conductors for the
shortest connections is an edge effect and can be
neglected.

Until now we have not specified the function of the
elements. Given that they have only a small number
of pinouts, let us for the moment presume that they
are simply switching devices or gates.

What does our all-optically connected system look
like at this point? It is an array of N electrical
switches or gates with sources/modulators at their
outputs and detectors at their inputs.

8. Argument for Optical Digital Computing
The all-optically connected system described at the
end of Section 7 already qualified as an all-optical
digital computer according to our definition since it
does not utilize any conductive wiring for communica-
tion among its elements. However, we can do even
better by replacing the discrete detector-electrical
switch-source/modulator combinations by their inte-
grated versions. We speak of an integrated version
of such a combination as an optical switch. A self-
electro-optic effect device32 33 is an example of such a
device.

Such an integrated replacement can only reduce
the overall energy consumption. Notice that there is
no distinction between the optical communication
energy and the optical switching energy, as the optical
communication energy was that required for the

optical modulator and detector, which we have now
merged together to be the optical switch.

The derivation given in Section 7 reveals that the
disparity between the size of the optimal hybrid
system and the all-optical system decreases with
increasing B and p. It is also necessary for N to be
large for the validity of our analysis. Thus, in
general, when N, B, and p are large, an all-optical
system is almost as good as the optimal hybrid
system.

We already argued that future three-dimensional
computing systems of an ever-increasing number of
elements will tend to employ large values ofp. If, in
addition, we assume that large values of B are
employed, we see that the conditions stated at the end
of the previous paragraph coincide with the trend in
constructing increasingly more powerful computing
systems.

Large values of B and p are consistent also with
other desirable properties of optics: ultrafast switch-
ing and interactionless cross through, respectively.

9. Importance of Bit Repetition Rate B
With increasing system size and delays, some algo-
rithms may have a tendency to be bottlenecked by
communication latencies, so that working with a high
bit repetition rate B may not be of any utility. Thus
there may be a tendency to operate at slower rates
with increasing N. This would invalidate our argu-
ment in many ways:

1. First, as is evident from our analysis, when B is
not high the discrepancy between the all-optical
implementation and the optimal hybrid implementa-
tion increases.

2. If B decreases with N, the power dissipation per
element decreases, which weakens our argument that
three-dimensional systems become heat removal lim-
ited with increasing N.

3. When the value of B is less than the large
intrinsic bandwidth of the optical communication
channels, it is possible to employ various strategies to
exploit this bandwidth in order to reduce system size.
In such cases, the use of normal conductors for the
shorter connections may be useful.34

Thus, for applications for which large values of B
are not useful with increasing system size and propa-
gation delays, an all-optical computer would probably
not be useful for foreseeable values of N.

10. Comparison of Systems with Different Connectivity
In Section 6 we argued that since e = three-
dimensional systems are heat removal limited, the
value ofp has no effect on the resulting system linear
extent. However, since our assumption regarding
constant power dissipation per element does not hold
for hybrid designs, this is no longer precisely true, as
is evident from relation (3). So as to provide a basis
for comparison, let us also calculate the linear extent
of a system with parameters that are identical to that
considered above, except p. Let all connections in
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this system be to the nearest or second-nearest
neighbors only, so that the average connection length
per element is kd. (This layout has n = e = 3 and
p = 1 - 1 /n = 2/3.) Since all connections are short,
we consider making all of them electrical. The heat
removal condition may be written as

Q2'2 > Ny(kd)B. (4)

Remembering that d = Y/N" 3 , we can show that the
linear extent of this system is Y 0.5 m. (It can also
be shown that nonuniformizing the elements as in
the hybrid case does not offer any advantage.)

Let us also consider the optimal hybrid implemen-
tation of this system. The derivation is similar to
the case in whichp = 0.8, withp = 2/3 instead. We
find that the linear extent can be reduced to 2 = 0.27
mwithN, = 2800.

The bisection-bandwidth product of this system is
six times less than that of our original example.
Since all connections are to nearest neighbors, the
transfer of influences across the extent of this system
takes N13 device delays, which, with 100 ps switches,
amounts to 10 ns. This is 1 order of magnitude
greater than the speed of light delay across the linear
extent (0.27 m)/(3 x 108 m/s) 1 ns. Our original
example with p = 0.8 may, for instance, be a five-
dimensional mesh. Nl 5 device delays are suffered in
traversing the linear extent of such a system, adding
up to 1.6 ns, which is comparable to the speed of light
delay (0.7 m)/(3 x 108 m/s) 2.3 ns. The total
delay is 3.9 ns. Our all-optical five-dimensional sys-
tem is superior to the optimal hybrid three-dimen-
sional system in terms of both bisection-bandwidth
product and global delay, despite its greater linear
extent. This strongly suggests that problems or
applications exist for which the total time of computa-
tion would be less on the all-optical five-dimensional
mesh. Of course, an optimal hybrid five-dimen-
sional mesh is even better, but not by a significant
amount (total global delay = 3.3 nsec).

Tables 1 and 2 summarize these results, which will
be discussed further in Section 13.

11. Some Credible Objections

In this section we address some of many possible
objections to our arguments. First, we must not
forget that our discussion is based on certain basic
physical considerations only. We cannot claim that
other issues will not completely swamp them. Other

Table 1. System Linear Extent for n = Three-Dlmenslonal and n =

Flve-Dimenslonal Meshes laid out In e = Three Dimenslonsa

Optimal
All-Optical Hybrid Y All-Electrical

n Y(m) (m) Y(m)

3 0.7 0.27 0.5
5 0.7 0.5 3.2

aN = 106, k = 5, B = 10 Gbit/s, E. = 1 pJ, -y = 100 fJ/mm, and
Q = 10 W/cm 2 .

Table 2. Bisection-Bandwidth Product and Global Delay for n =

Three-Dimensional and n = Five-Dimensional Meshes Laid Out in e =
Three Dimenslonsa

Optimal Optimal
All-Optical Hybrid HB All-Optical Hybrid r

n HB (Tbit/s) (Tbit/s) T (ns) (ns)

3 500 500 12 11
5 3200 3200 3.9 3.3

aN = 106, k = 5, B = 10 Gbit/s, E. = 1 pJ, y = 100 fJlmm, Q = 10
W/cm2, and device delay = 100 ps.

optical considerations such as noise, cross talk, or
aberrations may be shown to deem such large sys-
tems impossible. And, of course, a myriad of engi-
neering issues must be faced in the construction of a
real computer.

Our discussions assume dissipative computing.
There is general consensus that dissipationless com-
puting does not contradict the laws of physics.35-38

This would radically alter the discussions of this
paper.

The global delay across the linear extent of the
system need not be a good indicator of performance.
For instance, for some tasks that are divisible into a
large number of relatively independent subtasks, the
speed of local communication may be more significant
than that of global communication. The worst-case
delay may not bottleneck the operation.

A major objection to our argument rests on the
following question: what if the elements are not just
gates but more complicated circuitry, still of the same
size and number of pinouts? In this case, even if
making all connections optical is shown to be no
worse than the optimal hybrid combination, we can-
not replace these detector-element-source/modula-
tor combinations with simple optical switches. In
fact, this may be considered as proof that a hybrid
system can always have more computational re-
sources than an all-optical system. The size of an
optical switch cannot be less than 1 pLm, whereas in
a micrometer's space, several electrical switches can
be squeezed if deep submicrometer technology is
employed. However, Rent's rule will be broken; the
switches will have limited communication with the
outer world. Information flow at the original fractal
dimension is not possible through the boundary of
the elements and some form of serialism must be
employed.

Thus this objection boils down to the question of
what usefulness an element of internal sophistication
but limited pinouts may have. Of course, an ele-
ment with a sophisticated internal structure would
always be desirable over a simple switch with the
same number of pinouts, if it is available at no cost,
since it could easily simulate the simple switch.
However, the question is whether such elements will
have sufficient utility to make their usage worthwhile.
A simple example of an element with limited pinouts
but with an arbitrarily large internal structure is a
shift register, which can serve as a memory. How-
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ever, this memory will have a large access time. We
might argue that a shift register is always preferable
to a single gate, since a slow memory is better than
none. On the other hand, this memory might have
such limited usefulness in certain situations because
of its slowness that we might not bother having it.

Another example is a microprocessor that has far
less pinouts than Rent's rule implies.3 9 Whereas
such so-called functionally complete units are consis-
tent with existing system approaches, it is not clear
that this is the most advantageous way of construct-
ing supercomputers.4 0 It may be that a massive and
homogeneous collection of switches connected with a
uniform Rent exponent is more beneficial. Alterna-
tively, it may be that optical nodes with some internal
sophistication and function integrated into them do
have some usefulness. Whether such an integrated
structure is still considered to be an optical switch, or
rather, an electronic circuit with optical ports, is a
matter of definition. Indeed, Lentine et al.4 ' have
noted the fuzziness in the definition of an all-optical
computer: "Because of the limited functionality
achievable in 'all optical' logic gates, a growing inter-
est is seen in 'optical' processing elements made using
optoelectronic devices with greater functionality."
Whether or not this trend is merely a legacy of
existing design approaches, it seems that the first
optical computers and switching systems will employ
optical nodes with relatively sophisticated functional-
ity.

We cannot arrive at any general conclusions.
Whether limited pinout elements are useful will be
determined mainly by the particular application.
Nevertheless general observation does seem to indi-
cate that the percolation of information is crucial in
the working of both natural and artificial systems.40

12. What Might the Optical Computer Look Like?
The example of Section 7 illustrates the order of
numerical values for which it is meaningful to con-
sider an all-optical computer. For greater perfor-
mance we might increase N as much as possible.
For instance, a system with 108 elements would be 7
m in size.

The vision of the digital optical computer emerging
from our considerations is as follows. It is large
(N 107-108 and& > 1 m), highly interconnected,
operated at large repetition rates (multi Gbit/s) and,
because of its size, exhibits large speed-of-light-
limited delays between its distant elements ( 10 ns).
Its bisection-bandwidth product might be of the
order of 1016 bit/s. It is suitable for situations in
which a large repetition rate is useful, despite large
propagation delays. In other words, it will be appro-
priate for applications in which one prefers large
values of B at the expense of N and S.

It is also interesting to note that the number of bits
of information that such a system can remember at
any given instant can be greater than the number of
switches N since several bits are simultaneously in
transit along the longer connections, which serve as
memory.

How can such a system be actually constructed?
It is possible to show for our original example that
there is enough spacing between the elements to wire
up the system by using discrete fibers of 1 mm
diameter. This approach is intimidating from a
constructional viewpoint. Since the system is heat
removal limited and we are interested in the worst-
case (and not average) delay, it makes little difference
if, instead of situating the elements on a three-
dimensional grid, we lay them out on a plane, and use
the third dimension for the purpose of communication.
We simply lay the 106 elements 0.7 mm apart in the
form of a 103 x 103 array.

It is preferable to use free-space optics rather than
discrete fibers. However, conventional imaging sys-
tems permit free-space interconnections at high den-
sity for a regular pattern of connections only. Since
the system is heat removal limited anyway, multi-
facet holographic approaches 24 42 may be used to
provide an arbitrary pattern of connections for smaller
N. However, the resulting system size with these
approaches is crudely2 kNX (see Ref. 29) so that,
for N > 105, they would not be desirable.

We do not know if a system with a regular pattern
of connections of the same computational power as
that of an irregularly connected one is always possible.
Huang seems to argue in favor of it43 whereas the
maximum entropy approach of Keyes would seem to
indicate otherwise.18 40

If the three-dimensional multifacet architecture of
Ref. 44 can be built, it would solve once and for all the
problem of being restricted to a regular pattern of
connections.

13. What is it Good For?
What do we do with an N > 103 X 103 array of
globally connected switches? It does not seem that
straightforward mapping of conventional digital logic
as it exists in today's electronic computers would
make the most of such a system. We do not know
what kind of functional implementation (existing or
to be discovered) would be best, although one possibil-
ity is suggested below.

As mentioned above, a five-dimensional mesh with
radix N 5 (see Ref. 45) is an example of a graph with
p = 0.8 and k = 5. This graph may represent the
connection pattern of a five-dimensional nearest-
neighbor (in five dimensions) connected cellular au-
tomaton. In Section 10, we also considered a three-
dimensional mesh, which may represent the
connection pattern of a three-dimensional nearest-
neighbor connected cellular automaton. The result-
ing linear extent, the bisection-bandwidth product,
and the global delay for these systems were presented
in Tables 1 and 2. On the basis of a comparison of
their bisection-bandwidth products and global de-
lays, we conjecture that concrete problems (such as
sorting, etc.) exist for which the time it takes to solve
these problems on our five-dimensional examples is
less than on our three-dimensional examples, despite
the fact that our five-dimensional examples have
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greater linear extent and connection lengths. If one
can find an example of a problem that can be solved in
a shorter time on our optimal hybrid five-dimensional
mesh of 2' = 0.5 m than on the optimal hybrid
three-dimensional mesh of 2 = 0.27 m, this would
serve as proof that indeed, for some applications,
highly interconnected approaches are preferable for
large e = three-dimensional systems. It would be
even more interesting to provide an example problem
that can be solved in a shorter time on the all-optical
five-dimensional mesh with Y= 0.7 m than on the
optimal hybrid three-dimensional mesh with Y =
0.27 m.

Multidimensional cellular automatons offer an al-
ternative to computing based on functionally com-
plete entities (assuming that one finds a better way of
performing useful computation other than simulat-
ing conventional logic functions in the automatons).
The latter approaches allow us to view functionally
complete entities at a lower level as black boxes,
which greatly facilitates design and construction.
Without the benefit of such structuring, the concep-
tion and design of large-scale arbitrarily connected
systems would be intimidatingly complex. One way
to avoid this is to resort to systems that exhibit some
form of regularity. This brings us back to the ques-
tion of whether requiring such regularity takes back
any of the potential advantages.

Another alternative to functionally complete ap-
proaches is that of neural computing, which is beyond
the scope of this discussion.

14. Conclusion
To build increasingly powerful processing systems,
we must increase the number of elements N. If the
bit repetition rate B along the connections of our
system is large, heat removal considerations tend to
dominate wireability considerations for three-dimen-
sional systems, which suggests (but does not prove)
that highly interconnected approaches may be pre-
ferred for increasing parallelism and functional flexi-
bility. For such systems the fraction of connections
with lengths greater than the break-even energy
between normally conducting and optical interconnec-
tions will be large, so that we might as well make all
connections optically. It is meaningful to consider
such a system because the use of conductive wiring to
establish the shorter interconnections will not result
in a considerable improvement in system size and
global delays. (Nor will it necessarily make them
worse, and it is a subjective issue whether it is
considered more simple to keep it all optical or to keep
the number of optical connections minimum by using
conducting wires as much as possible.)

Thus, if large values of B are useful despite large
propagation delays, it might be meaningful to con-
sider the construction of an all-optical digital com-
puter.

Needless to say, our arguments cannot be exhaus-
tive or definitive. Our discussions must be looked at
as being more of a thought experiment than a conclu-

sive argument. One important implicit assumption
that we made is that the Rent exponent is uniform
over all hierarchical levels of the system. A more
conclusive discussion of this issue will require a
deeper understanding of how the solution of a prob-
lem relates to the percolation of information at
various levels of the system.

Ultimately, more solid answers to the questions
raised in this paper will emerge when the theory of
algorithms is merged with a physically realistic the-
ory of computer construction to create a physical
theory of computation. Then it will be possible to
compare and optimize jointly over many possible
constructional and algorithmic approaches.
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