
Optics Communications 100 (1993) 247-258 OPTICS 
North-Holland COMMUNICATIONS 

Full length article 

Comparison of local and global computation and its implications 
for the role of optical interconnections in future nanoelectronic 
systems 

Haldun M. Ozatias 
Electrical Engineering, Bilkent University, 06533 Bilkent, Ankara, Turkey 

and 

Joseph W. Goodman 
Electrical Engineering, Stanford University, Stanford, CA 94305, UsA 

Received I2 October 1992; revised manuscript received 9 February 1993 

Various methods of simulating diffusion phenomena with parallel hardware are discussed. In particular methods are compared 

requiring local and global communication among the processors in terms of total computation time. Systolic convolution on a 

locally connected array is seen to exhibit an asymptotic advantage over Fourier methods on a globally connected array. Whereas 

this may translate into a numerical advantage for extremely large numbers of ultrafast devices for two-dimensional systems, this 

is unlikely for three-dimensional systems. Thus global Fourier methods will be advantageous for three-dimensional systems for 

foreseeable device speeds and system sizes. The fact that optical interconnections are potentially advantageous for implementing 

the longer connections of such globally connected systems suggests that they can be beneficially employed in future nanoelectronic 

computers. Heat removal considerations play an important role in our conclusions. 

1. Locality, globality, physics and computation 

Once the essential features of a physical phenom- 
enon have been distilled down to a set of equations, 
computer implemented numerical methods may be 
used to predict the outcome of previously unob- 
served instances of that phenomenon [ 11. 

In general, the state of the system we observe may 
be characterized by several quantities which are 
functions of the spatial and temporal coordinates (i.e. 
“fields”). The many ways we can solve the equa- 
tions relating these quantities form a broad spec- 
trum, of which we will concentrate on two extremes. 

(i) Methods which involve only local operations 
in temporal and/or spatial coordinate space. The re- 
laxation method for solving thermal boundary value 
problems is a simple example of a local method. Such 
methods are often isomorphic to the physical process 
they present, in the sense that the calculation mimics 

the actual physical process at a relatively primitive 
level. Of course, physical phenomena themselves un- 
fold in time through local interactions, since no in- 
fluence may propagate faster than the finite speed of 
light (there is no “action at a distance”). 

(ii) Methods involving global operations. Fourier 
spectra1 methods are the most widely used among 
such methods, because complex exponential func- 
tions are eigensolutions for linear equations [ 21. The 
Fourier transform operation is itself global in the 
sense that the value of the Fourier transform of a 
function at any spectra1 point depends on the value 
of the function at every coordinate point. If we wait 
long enough, the state of any part of a physical sys- 
tem may potentially influence the state of any other 
part. Thus although physical processes unfold via lo- 
cal interactions, the field quantities at a given point 
may in genera1 depend on those at any other point. 
Notice that spatial globality always comes hand in 
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hand with temporal globality. 

Our purpose is to find the optimal physical con- 

struct to solve a certain problem. In general, our fig- 

ure of merit may involve measures of time, space and 

energy consumption. We will concentrate on solving 

the problem in the shortest possible TIME. Say we 

are given one local and one global algorithm to solve 

a certain problem. They are mathematically equiv- 
alent in the sense that they will produce the same re- 

sult. The number of time steps (worst case or av- 

erage over all possible initial states) required for the 

completion of the computation can then be deter- 
mined. By their very design, it is almost always the 

case that global methods will require fewer time steps. 

However, this algorithmic comparison has little 
meaning, since the physical duration of a time step 

may be different when we actually build the ma- 
chines that will execute these algorithms. 

Just as the natural phenomena they are used to 

predict, computing systems must also obey the laws 

of physics. The mathematical theory of algorithms is 

meaningful to the extent that the underlying model 

physical computing system can be realized. The need 

for a physical theory of computation was stressed by 

Hillis [ 3,4]. 

Towards this end, it is necessary to characterize 
the information flow required for the solution of a 

problem on a distributed computing system. This is 

in general an intimidating task. There have been at- 

tempts to analyze the amount of information that 

must be exchanged between two parties in order to 

compute a certain function using combinatoric 

methods [ 51. A general extension to many parties 

which also takes into account issues such as the com- 
munication delays among the elements, locality etc. 

seems exceedingly difficult. For this reason we will 

consider the simulation of a simple physical problem 

to illustrate certain principles. We will compare the 
time it takes to solve the diffusion equation using lo- 
cal and global methods. Though desirable, a more 

general treatment is beyond the scope of this paper. 
The answer to whether and when global or local 

methods are preferable will have a significant impact 
on the usefulness of optical digital computing and 

interconnections. This is because optical intercon- 
nections are known to exhibit an advantage only for 
longer connections of global systems. If local systems 
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are shown to be preferable, there would be little in- 
centive to employ optics. 

2. Implications for future nanoelectronic computing 
systems and optical interconnections 

The direct implementation of global methods in 
parallel hardware requires a highly interconnected #’ 
connection graph #2 among the participating pro- 
cessing elements. Due to the space that must be al- 
located for communication, this results in large sys- 
tem size and propagation delays. Based on this and 
similar considerations, Hartman and Ullman [ 7 ] and 
Dally [S] have argued (in the context of a general 
purpose message passing parallel computer) that it 
is more beneficial to simulate such communication 
networks with a low-dimensional mesh, with only lo- 
cal connections. Likewise, based on the intimidating 
growth of wiring complexity of highly intercon- 
nected systems, Frazier has argued that it would be 
beneficial to implement future nanoelectronic sys- 
tems based on quantum coupled locally connected 
cellular automata [ 9 1. 

If it is indeed the case that in the limit of ultrafast 

devices and very large numbers of elements, planar 
(or three-dimensional) mesh architectures offer bet- 
ter performance than highly interconnected ones 
(even with the optimal choice of interconnection 

technology), then we can conclude that in this limit 
the choice of interconnection technology (normal 
conductors, superconductors, optics) will be of little 
importance. This is because optical and supercon- 
ducting interconnections tend to exhibit an advan- 
tage over normal conductors only when used to im- 
plement the longer connections of highly intercon- 
nected global systems [ lo- 12 1. 

In this limit, computing systems begin to resemble 
physical systems. We do not benefit from global con- 
nections because we can no longer assume constant 
delay along all wires. Ultimately, the transfer of in- 
formation is limited by the speed of light and does 
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With this term, we refer to graph layouts with a large number 

of relatively far-reaching (global) interconnections, e.g. as in 

the perfect-shuffle or butterfly graphs. How this notion can be 

quantified is discussed in ref. [ 61. 

The graph whose edges correspond to the interconnections be- 

tween the processors. 
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not depend on how many hops the distance of travel 
is broken down to. A shift register begins to resemble 
a transmission line. A grid connected cellular auto- 
mata can simulate any given computing system. 
However, we are presently very far from the device 
speeds and system sizes needed to reach this limit. 

More importantly, we should note that the above 
arguments do not take into account the effects of heat 
removal. Although there is general consensus that 
non-dissipative computing does not contradict the 
laws of physics, we believe that for quite a time most 
digital computing systems will make use of dissipa- 
tive elements. Even if non-dissipative computing be- 
comes a reality, there is always the problem of get- 
ting rid of the so-called “garbage bits”. Getting rid 
of these implies similar limitations as getting rid of 

the dissipated power, unless clever “recycling” 
schemes are developed. 

Assuming constant power dissipation per element, 
heat removal implies that the linear extent of a sys- 
tem of N elements must grow as KN ‘I2 [ 12,13 1. This 
growth rate is equal to the worst case resulting from 
consideration of wiring density for bounded-degree 

graphs laid out in three dimensions [ 10,121. Thus, 
since system size and propagation delays are set by 
heat removal, rather than finite wiring density; we 
might beneficially employ highly connected ap- 
proaches without further increase in system size. On 
the other hand, for some applications, the amount of 
information emitted into the system (and thus the 
power dissipated) by each element may decrease with 
increasing N since the computational processes be- 
come bottlenecked by increasing propagation delays, 
resulting in a heat removal imposed bound on linear 
extent weaker than oc N ‘I’. 

To us it is not yet clear whether/when highly con- 
nected approaches (such as neural networks) or lo- 
cally connected approaches (such as cellular auto- 
mata) or something in between is to be preferred and 
how this is related to the problem we wish to solve. 
Further research in this area will give us an idea of 
how future nanoelectronic processing systems should 
be contemplated, and of the role novel interconnec- 
tion technologies such as superconductors and optics 
(which are known to be beneficial in highly con- 
nected systems) will play in such systems. We will 
merely try to illustrate certain considerations via 
example. 

3. Solution of a problem with high information 
content 

It is well known that many problems such as sort- 
ing, convolution, discrete Fourier transforms etc. 
have an information content proportional to N, where 

N is the problem size #3 [ 141. The information con- 

tent is the amount of information that must pass 
through an imaginary boundary dividing the system 
into two roughly equal parts before the problem can 
be solved. The information content is also termed as 
the communication complexity [ 5 ] in a slightly dif- 

ferent context. 
For concreteness let us concentrate on a regular e- 

dimensional Cartesian array of N very small proces- 
sors #4 N ‘le along a side. Each processor contains an 

L bit irecision number. Let it be necessary for NL 
bits of information to pass through the imaginary 
boundary mentioned above. Let there be 3 inde- 
pendent physical channels passing through this 
boundary. The total NL bits form trains of (NL) /X 
serial bits in passing through this boundary. If the 
bandwidth of each physical channel is 1 /T, this will 
take (NL)T/.ti time. If the transverse extent of a 
single physical channel is denoted by a, the linear ex- 
tent of the system is then Z’L(e-l)A (since we need 
enough room for %’ channels to pass through the 
boundary dividing the system into two). Letting c 
denote the propagation velocity, a lower bound for 
the total computation TIME may be written as a sum 
of the propagation and serial contributions 

TIME=.%“‘‘-“(A/c)+NLT/X. (1) 

We have assumed that the information must ulti- 
mately traverse a distance comparable to the linear 
extent of the system before the problem is solved. 
The value of X minimizing the above is found to be 

%= NLWe- 1) 
a > 

(C-‘)‘eKN(e_,l,e 

For the mentioned examples, the problem size is simply the 

number of items to be sorted, or the space-bandwidth prod- 
uct of the signal to be convolved or Fourier transformed. For 

a rigorous definition, see ref. [ 141. 

We are simplifying by taking the number of processors to be 

equal to the problem size. In general, this need to be the case. 

Readers who wish to be concrete may imagine that the Npro- 

cessors contain N numbers which are to be sorted. 
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With this value of X we find 

TIME= (NLT)“‘(~./~)“~““;cN”‘. (3) 

The above expression for TIME is a lower bound. 

There may be many additional bounds that must also 
be satisfied. In particular, the signals may need to go 
through several nodes, suffering additional delays. 

One way of solving such problems is to use a highly 

interconnected graph, such as the butterfly graph 
[ 141. Such a graph would only add a few node de- 
lays to the value of TIME in eq. ( 1). However, .+6x N 
for such a graph, which is inconsistent with the op- 
timal value of .4 we found above. 

A simple mesh architecture can be used to realize 
the optimal value of .Y. A constant number of chan- 
nels will be used to transfer information among 
neighboring processors. Information will have to 
traverse ic N ‘I’ nodes in the worst case, leading to an 
identical growth rate of the device contribution to 
total computation time as given by eq. (3). Thus the 
propagation, device and serial contributions to the 
delay are all balanced in this architecture. Although 
this argument still does not demonstrate that the 
problem can be actually solved in xN”’ time in 
general, it serves as an indicator of the well balanced 
nature of this architecture. 

The above simplistic derivation does not take into 
account heat removal considerations. Also, the fact 
that the relatively large node (processing) delays may 
result in overall larger values of TIME even when the 
growth rate of TIME is optimal has not been taken 
into account. Under these conditions, the above der- 
ivation suggests that local methods may be superior 
to global methods. We will take a closer look at each 
method in the context of solving a particular phys- 

ical problem. 

4. Quantum diffusion as a prototype physical 
problem 

Consider a regular Cartesian P( =2 or 3)-dimen- 
sional array of N>> 1 cells with N ‘lr cells along each 
side. We will speak of N as the problem size. Without 
loss of generality, we assume N ‘I’ to be an integer. 
Initially, there is a certain number f0 [ i] of bosonic 
particles in each cell, where i is a vector of e integral 
indices which range from 0 to N ‘/‘- 1. For simplic- 
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ity we assume that the array of cells and the initial 
distribution of particles is replicated periodically 
through all space (toroidal boundary conditions). 
Thus indice values outside the interval [ 0, N ‘le- 1 ] 
may be interpreted modulo base N I/‘. 

At a certain average rate of say once every 1 ps, 

each particle has an (equal) probability of jumping 
into any one of its 2’ nearest diagonal neighbors. We 
will assume that the number of particles per cell 
M/N is very large so that we may ignore the prob- 
abilistic aspect of the problem #5. Thus, we formulate 
the problem of determining the number of particles 
in each cell at time t as follows 

f,[il= $jziL~ lil , (4) 

where Ai denotes the set of 2’ cells with all indices 
differing from cell i by unity and II= t/( 1 ps). The 
total number of particles is of course conserved. Thus, 
given f0 [ i] , we can calculate fn [ i] recursively. This 
process may be expressed as 

fn[il=hl[il*f,-‘[iI a (5) 

fn[il =b[il *_&Ii1 , (f-5) 

where * denotes the e-dimensional discrete convo- 
lution operator. h,[i] is the n-fold self convolution 
of h, [il. The value of h, [i] is l/2’ at the 2’ nearest 
diagonal neighbors of the origin and zero elsewhere. 
For instance, for e= 1, h, [i] = (..., 0, 0.5, 0, 0.5, 0, 
. . . ). 

The diffusion equation is separable in Cartesian 
coordinates. This means that multidimensional im- 
pulse responses can be written as a product of the 
unidimensional impulse responses. For instance, 

h,[i,j]=h,[i]h,b], where h,[i] and h,b] should 
be interpreted as two-dimensional functions while 
taking their product. (It is also interesting to note 
that these functions have the property that h, [ i, j] = 

(k[ilm *kbl~[~l).) 
Our purpose is to calculate the state of the system 

at a particular final time nr. As a special case, we will 

RS The problem is deliberately designed in this manner so as to 

yield a simple formulation. It would be more straightforward 

to state the difference eq. (4) directly as the problem under 
consideration and dismiss the “quantum diffusion” interpre- 

tation. We however felt that the concrete interpretation would 

aid visualization of the process. 
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be interested in the steady state solution. Of course, 
in our simple example, if the total number of par- 
ticles M is known to us beforehand, the steady state 
solution is also known to be a uniform distribution 
of M/N particles over all cells. However, we must 
not forget that this information is not initially avail- 
able on the processors, which are only aware of the 
number of particles they contain. 

Notice that whereas convolvingf,_ , [i] with hi [i] 
requires only local communication, convolvingfo p] 
with h, [ i] for large n requires global communication. 

In the following sections, we will consider several 
methods of constructing a machine that will calcu- 
late the state of the system at time nr. 

Before continuing however, we should clarify a 
common misconception. The parallel implementa- 
tion of finite element calculations on an array of pro- 
cessors is often noted as an example of an applica- 
tion which requires only local communication among 
the processors [ 15 1. However, since the state of the 
system at any point can eventually influence that at 
any other point, there are cases when it is beneficial 
for a processor to “look ahead” beyond its nearest 
neighbors. A boundary value problem requires a 
considerable amount of global transfer of informa- 
tion, since the resultant field distribution at any point 
depends on the values of the boundary at every point. 
Although it may depend more weakly on the values 
of more distant points, this does not weaken our ar- 
gument. Consider that the field value at the bound- 
ary most distant from a given point is very large 
compared to anywhere else. Clearly this value will 
lead to a much different result than when it is a small 
value. Thus this information must somehow be con- 
veyed to the other end. 

Of course, there are examples of applications which 
are truly local. An extreme example of a problem 
which is infinitely local (which requires no com- 
munication) is that of independently adding a large 
number of pairs of numbers. 

5. Solution by isomorphic simulation on a locally 

connected array of processors 

We may compute the state of the system at any time 
step by using an array of simple processing elements, 
one for each cell, arrayed in identical fashion as the 

array of cells. Each processing element is connected 
to its nearest diagonal neighbors via x> 1 commu- 
nication channels each of cross sectional area (or 
width) A’- ‘. Let the minimum pulse repetition in- 
terval and propagation velocity along these channels 
be denoted by T and c, respectively. Let each pro- 
cessor be a small cube (or square) with a linear di- 
mension which is at least dd. (It may have to be larger 
so that it can accomodate the wires coming out of 
it. ) Each processor is capable of storing an L bit pre- 
cision number representing the number of particles 
in the cell to which it corresponds and can update 
this value by averaging the values stored in its 2’ 
neighbors. Let this update take time r,. The mini- 

mum interelement spacing is given by d= max (dd, 
x”(+~)A, d,), where d, is the interelement spacing 
required by heat removal considerations, and the 
second term accounts for the fact that there must be 
enough space between the elements for the passage 
of x wires _ M In general, each iteration will take 

.Y= max( rdd, d/c, LT/x) time. Here the third term 
accounts for the fact that it will take LT/x time for 
L bits to the transferred over x channels. For sim- 
plicity, let us assume that rd is defined inclusive of 
dd/c and that /z and LT are small enough that the 
above expression reduces to .Y= max (rd, da/c) with 
appropriate choice of x. (This is readily verified for 
the parameters we choose for the numerical example 
in sect. 8 and LT= 1 ns.) 

Let us now calculate d,. Let Ed denote the energy 
dissipation associated with each update on each pro- 
cessor, inclusive of the energy involved in transmit- 
ting information to its neighbors. (This quantity is 
constant and does not grow with N.) Q will denote 
the amount of power we can remove per unit cross 

section of our system. (This essentially means that 
we can remove QW* of power from a square or cube 
of edge length W. This heat removal model is de- 
rived in detail in ref. [ 131.) The average system 
power dissipation is NEdIF and the edge length of 
our system is N ‘Ied so that the minimum value of 
d required by heat removal considerations (which 
we are denoting by d,) must satisfy 

n6 Throughout this paper, we will not make the distinction be- 

tween the sum and maximum of a small number of positive 

numbers. Likewise, we will ignore numerical factors of the or- 
der of unity. 
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Q(N’/‘dQ)2=NEdI.Y-. (7) 

Solving for d, and substituting in .T=max( rd, d,/ 

c) we obtain 

.F=max(rd, 7QN’/3-2/3e) , 

where 7Q= (E&C’) “3. 

(8) 

Now, the time its takes to compute the state of the 
system at time n, may be expressed as TIME = n,F. 

With increasing n, the state of the system will relax 
towards its steady state. Of course, in general, the 
system will never exactly reach steady state, (except 
in special cases where the solution falls in precisely 
to the steady state and stays there due to the discrete 
nature of our model). 

We would not expect the system to reach steady 
state before N N ‘I’ time steps, since this many steps 
are necessary for influences to propagate across the 
extent of the system. Exactly how long we must wait 
also depends on the error E we are willing to tolerate. 
Let E be defined as the worst case fractional devia- 
tion from steady state over all cells. 

One way of determining the number of time steps 
necessary for given E would be to carry out simula- 
tions for a variety of initial conditions. Instead, we 
will estimate the number of time steps n, it takes for 
an impulse of strength M to diffuse into a steady state 
of M/N particles per cell with fractional error t. 

The analysis is presented in the appendix, where 
it is found that for the one-dimensional case n, _ N 2. 

We could have guessed this result beforehand. The 
root mean square deviation of a random walk in any 
dimensional space is proportional to n ‘12. Thus we 
might consider that we have reached steady state 
when n iI2 is comparable to the linear extent N of our 
system. This result easily generalizes to e dimensions 
for which the linear extent of the system is N “e. Thus 
in e dimensions 

n,=N2”. (9) 

The total time it takes to find the state of the sys- 
tem at time n, and at steady state using isomorphic 
grid simulation are given in table 1. 

Conventional VLSI complexity theory would pre- 
dict the same growth rate of computation time, apart 
from the fact that heat removal is often not consid- 
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ered. These calculations would take x n,N time steps 
on a single processor machine. 

6. Solution by systolic grid convolution on a locally 
connected array of processors 

We now discuss a method of directly performing 
the convolution of eq. (6) on a nearest neighbor 
connected array, like the one used in the isomorphic 
simulation. For instance, consider the two-dimen- 

sional case. The convolution is written out explicitly 
as 

fn[~,~l= T ~nli-~l pw, Okl[~-~l > (11) 

since h, [ i, j] is separable. Thus, this amounts to first 
computing g,[i, I]=Ckfo[k, I]h,[i-k] for every I 
systolically in the i (also k) direction and then com- 
puting &g, [ i, I] h, b- I] for every i in the j (also I) 
direction. What is termed “systolic” convolution can 
be performed by rotating the values of fo [ k, I] (or 
g,,[ i, f] ) and accumulating the properly weighted 
sums [ 17- 191. This takes 2N “‘3 time where .T is 
the same as that during isomorphic simulation. (It 
takes N’/2 steps to convolve sequences of length 
N 1/2 in each of the two dimensions [ 171. ) In e di- 
mensions, this takes eN ‘/‘x N ‘/e time steps regard- 

less of nf. 

Once again, conventional VLSI analysis would 
yield the same predictions for the computation time, 
apart from heat removal considerations. A single 
processor machine would take N I+“’ time steps. 

7. Solution by Fourier transform techniques on a 
globally connected array of processors 

Equation (6) may be evaluated conveniently us- 
ing Fourier domain techniques, since convolution in 
coordinate space corresponds to multiplication in 
Fourier space. We assume the Fourier transform of 
the impulse response is pretabulated and piped in 
proper synchronicity. After multiplication with the 
Fourier transform of the initial distribution, we in- 
verse transform to get the desired result. Thus the 
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Table 1 

Comparison of total computation time with the various methods for calculating the state of the system at time step FI< I, isomorphic 

simulation; S, systolic convolution and F, Fourier transforming. Line A gives the growth rate of delay in e dimensions when heat removal 

is ignored. Line B is for e= 2 dimensions and line C for e= 3 dimensions. The steady state for the isomorphic simulation is obtained by 

setting nr=N*“. The other methods calculate any time step nb as well as the steady state, equally quickly. b=l/c, 7Q= (&/Qc*)“~. The 

notation (x, y) is short for max(x, y). 

I 1, s F 

A h7d N =‘<T~ N ‘Ie7 d (To, N”‘‘-“so) 

B nr( 7d> 7Q ) N( 7d> 7Q ) N”‘(7d> 7Q) (t, Nra, N”37~) 

C %(7d> N”97Q) (N =“7d, N719TQ) (N 1’37d, N4’97Q) (7d, N ‘/%a, N “‘sQ) 

total time of computation is about equal #’ to the time 
it takes to evaluate the transform of the input func- 
tion f. [ i, j] , which is not in general separable. (If it 
was separable, the problem would reduce to a uni- 
dimensional problem. ) 

The relationship between N point one-dimen- 
sional Fourier transforms and N ‘I2 x N iI2 point two- 
dimensional Fourier transforms is well known in the 
context of raster scan-folded spectrum techniques 
[ 201, where the two-dimensional Fourier transform- 
ing capability of an optical lens is exploited for high 
time-bandwidth product spectral analysis of one-di- 
mensional analog signals. The FFT decomposition 
shown in fig. 1 may be interpreted either as a 16 point 
one-dimensional transform or a 4 ~4 two-dimen- 
sional transform. The reader is referred to refs. [ 20- 

X7 Again ignoring a factor of 2. 

I I 
Fig. I. Decomposition of an N= 16 point FFT. 

221 for analytic discussions. The essential idea is that 
regardless of its dimensionality, the value of the 

transform at each spectral point depends on the value 
of the original function at every coordinate point, so 
that both problems require the same pattern of in- 
formation flow. A construct for solving either prob- 
lem can be used for the other with often only trivial 
modification (such as the inclusion of additional 
phase shifts along a few paths, as discussed in ref. 
[ 2 1 ] ). This discussion generalizes to N ‘I3 X N ‘I3 

x N iI3 point three-dimensional transforms. Thus we 
may speak of the complexity of evaluating an N point 
Fourier transform without reference to its dimen- 

sionality. 
An N point Fourier transform can be computed 

effectively in both two and three dimensions by us- 
ing a one- or two-dimensional lens respectively [ 231. 
In three dimensions, one may situate the elements 
on a N ‘f2~N’/2 array and use the third dimension 
for communication. Such a setup implies a linear ex- 
tent and propagation delay of -N ‘/=A and N N ‘/‘J./ 

c, respectively, assuming an f *- 1 optical processor. 
Here A is interpreted as the wavelength of light. In 
two dimensions, the same setup must be squashed 

onto the plane. The N independent spatial channels 
now imply a linear extent -N& since they have only 
one dimension to pass through. Those familiar with 
the butterfly graph [ 141 on which the FFT is per- 
formed will immediately recognize that these results 
are analogs of the results stating that the butterfly lays 
out in cc N ‘I2 linear extent in three dimensions and 
KN linear extent in two dimensions, with identical 
growth rate of longest wire length and propagation 
delay. These results are a consequence of the inher- 
ent non-partitionability of the Fourier transform op- 
eration [ 241. (The VLSI implementation of the but- 
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terfly graph results in log,N node delays in addition 
to the propagation delays. Th s is avoided in the op- 
tical implementation. ) 

In conclusion, the evaluation of an N point Four- 
ier transform on a globally connected array in the 
manner described requires propagation delay - 
Ni/(+‘)r,, where T~=A/(.. 

Heat removal requires that the system linear ex- 
tent be at least (NE,/TIME Q)“‘, assuming the to- 
tal energy dissipation NE, is spread over the total 
time of computation TIME. (It is easy to show that 
any other choice is suboptimal.) Thus the total com- 
putation TIME is given as 

TIME=max(sd, N’/(‘-“so, 1\11/3~Q) , (12) 

where 7Q is as defined before. Heat removal will have 
less and less importance as N increases. The results 
are again summarized in the table. 

Conventional VLSI complexity theory predicts a 
cclog N growth rate of delay for parallel implemen- 
tation of the FFT, since propagation delays are ig- 
nored. The single processor implementation takes 
about N log,N- N time steps. 

8. Comparison 

The results are summarized in table 1. Let us ig- 
nore heat removal for the moment (re=O). First 
consider the limit where device delays dominate (TV 
is large or N is small). The dil:ect Fourier method is 
clearly superior in this case unless nr is very small. 
(One arrives at a similar conclusion based on a sin- 
gle processor model.) Which of isomorphic simu- 
lation and systolic convolution would be preferred 
depends on the values of nf and N. When n, is small 
and N is large, the first method is to be preferred. 
When nf is large however, systolic convolution is 
preferred. In particular, consider the steady state 
which takes N 2/e~d time with isomorphic simulation 
in contrast to N ‘/=sd time with systolic convolution. 

Now let us assume ultrafast devices and compare 
the growth rate of computation time as a function of 
N and n, Systolic convolution always exhibits a 
growth rate N ‘/F(P- ’ ) better t:nan Fourier transform 
methods. This result was anticipated in an earlier 
section where we discussed the solution of problems 
with high information content. In practice, %> TV. 
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Thus, systolic convolution will be preferred over 
Fourier methods when N> (T~/T~)~(~-'). For in- 
stance, with s,= 1 ps and ~~=,%/c= 1 fs the condition 
is approximately N> lo6 in two dimensions and 
N> 10” in three dimensions. Conversely, Fourier 
methods are preferred until N= lo6 in two dimen- 
sions and N= 10 ” in three dimensions. We are not 

the first to speak of such a large number of very sim- 
ple processors, Hillis has speculated about what might 
happen when we have a mole ( - 1023) of processors 

[41. 
Now let us consider the effect of heat removal. This 

has little or no effect on our conclusions in two di- 
mensions. In three dimensions, the leading terms will 
be N419sa for systolic convolution versus N’/‘T~ for 
Fourier transforming. Letting Ed= 10 fJ and #’ Q= 1 
kW/cm’so that 7 Q= 0.1 ps, we find that systolic grid 

convolution is preferred over the Fourier method 
only when N> 1036, an unreasonably large value by 
any standard. 

To sum up, isomorphic simulation may be better 
when nf is small, or when we want to track the whole 
evolution of the system up to Izf, rather than just its 
final state. (The problem of piping out this data from 
the system remains unsolved however.) Otherwise, 
especially when we want to calculate the steady state, 
this method is not very good. This is because of the 
inefficient way in which information transfer occurs. 
The averaging at every step results in loss of infor- 
mation for which communication resources have al- 
ready been utilized, resulting (just like exchanging a 
developed piece in a game of chess) in inefficient re- 
source utilization. Systolic convolution may be pre- 
ferred over Fourier methods in two dimensions for 
large values of N. In three dimensions, the asymp- 
totic superiority of systolic grid convolution over 
Fourier methods is so slight as not to be of any sig- 
nificance so that the latter is to be preferred. 

Figure 2 illustrates the total computation time as 
a function of N for the three methods, anticipating 
nanoelectronic processors. The curves have been ter- 
minated when the system linear extent exceeds 10 m. 

X8 We choose Q more conservatively than derived in ref. [ 131, 
where it is shown that Q= 10 kW/cm* is possible. In any event, 

since the relevant parameter s,zcQ-‘I’, this has little effect 

on the results. 
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b. e=3 

? 

10” 10’4 

Fig. 2. Computation time for the three methods with nf= N 2/c for isomorphic simulation. T,= 1 ps, q,= I fs, ro=O. 1 ps, dd= 1 km. The 
curves are terminated when the linear extent exceeds 10 m. 

9. Discussion and extensions 

Although it may seem that the diffusion process 
we have considered is a very special example, we 
stress that diffusion phenomena underly many nat- 
Ural occurrences. The diffusion and wave equations 
are often the starting point of a course in partial dif- 
ferential equations. In their steady state both reduce 

to Laplace’s equation. The wave equation is often 
associated with coherent, orderly transfer of infor- 
mation, energy of particles; whereas the diffusion 
equation is associated with random transfer. The 
diffusion process is redundant in the sense that the 
same information is retransmitted several times only 
to be destroyed by the averaging process. We can do 
better than the isomorphic simulation of diffusion 

0 14 

255 



Volume 100, number I ,2,3,4 OPTICS COMMUNICATIONS 1 July 1993 

by carrying out the calculations in an orderly and ef- 
ficient manner, rather than imitating the physical 
process itself. Similar arguments may be possible 
against other numerical methods which involve ran- 
domness and/or averaging, such as Monte Carlo or 

relaxation methods #9. 
Convolution is one of the basic operations in sig- 

nal and image processing. Thus, we would expect ex- 
tensions of our discussion to have implications in 
these areas. Of course, some applications require 
convolution with only a finite window function, and 
would probably the implemented using local meth- 
ods. For other applications however, global methods 
may be preferable. 

Similar analysis as we have presented can be car- 
ried out in different contexts. For instance, it is well 
known that the same logic function can be imple- 
mented with a fewer number of locally connected 
elements but with large overall logic depths, or with 
a larger number of globally connected elements with 
less logic depth [25]. The optimal implementation 
will lie somewhere in between. 

Such studies may also be used to evaluate the use- 
fulness of neural networks. We would not be sur- 
prised if similar the usefulness of highly connected 
systems are reached. 

We only concentrated on extreme locality and ex- 

treme globality. Intermediate approaches are possi- 
ble and may offer the optimum performance. For in- 
stance, given a family of algorithms for solving the 

diffusion equation on multidimensional meshes of 
every dimension, we may pick the optimum dimen- 
sion. Also, we considered only nearest neighbor 
communication in the grid method. In serial com- 
putation often a bounded grid of higher order neigh- 
bors is used, leading to faster convergence. In par- 
allel hardware, this might lead to a small amount of 
dilation, leading to a tradeoff. In recent years, a 
number of (serial) numerical methods involving 
higher order interpolation polynomials and combi- 
nations of spectral and finite elements methods have 
emerged [ 26 1, evidence of the fact that the optimum 
lies somewhere in between the two extremes of global 
and local methods. There seems much that is unex- 

a9 Redundant systems also have a significant advantage: relia- 

bility. However, one probably does not need as much redun- 

dancy as in the diffusion process for this purpose. 
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plored as far as the use of parallel hardware is 
concerned. 

10. Conclusion 

We discussed various methods of simulating a par- 
ticular physical process, that of particulate diffusion, 
using realistic (in the sense of ref. [ 71) hardware 
models. We considered isomorphic simulation of the 
physical process, systolic convolution and Fourier 
transform methods. 

Systolic convolution is asymptotically superior to 
Fourier methods. However, for three-dimensional 
systems, the growth rate of delay is only slightly less 
(because of the effects of heat removal), so that for 
reasonable system sizes Fourier methods result in 
smaller total time of computation. Optical intercon- 
nections, which are ideally suited for such highly in- 
terconnected approaches, will thus find use in future 
nanoelectronic systems. This is despite the fact that 
the “width” of an optical channel ( -A) is very large 
compared to contemplated nanoelectronic dimen- 
sions #lo. 
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Appendix 

For simplicity we consider the one-dimensional 
case (i.e. e= 1). A one-shot impulse of unit strength 
diffuses in the following Pascal’s triangle-like manner: 

0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 

0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000 

0.000 0.000 0.250 0.000 0.500 0.000 0.250 0.000 0.000 

0.000 0.125 0.000 0.375 0.000 0.375 0.000 0.125 0.000 

(13) 

and so on. Thus for an impulse of strength A4 located 
at the origin (i=O) at n= 0, the number of particles 
in location i after n steps is 

M 
f,[i]= -corn 

i+n 
2” ( > n,- 

2 
, -n<i<n, (14) 

for even (n + i) and 0 for odd (n + i). Since N is large, 
n, will also be large. Thus, using the DeMoivre-La- 
place theorem [ 16 ] the above expression may be ap- 
proximated as 

&exp(- -&), (15) 

where we have included an additional factor of f so 
as to ensure proper normalization over all values of 

i, rather than just odd or even values depending on 
whether n is even or odd. Now, remembering that we 
are employing cylindrical (cyclic) boundary condi- 
tions, the number of particles at the midpoint be- 
tween the origins at i= 0 and i= N (which will be the 
latest to reach the steady state of M/N particles) is 

j=z_Gexp - (,y)*). 
J-c 

(16) 

Using some algebra involving Fourier transform 
techniques [ 2 1, this summation may be expressed in 
the equivalent form 

M 
F 1+2 f (-ly’exp 

{ 
- 

j=l 

[ (qq}. (17) 

The second term in square brackets is simply the 

fractional error we do not want to be greater than t. 
Since we are confronted with an alternating series, 
we can ensure the error to be less than E by ensuring 
that 

n, N2 In (2/c) 4 > 2n2 

zN*[0.035+0.117 log,,( l/e)] . (18) 

Because of the weak dependence on E, we are justi- 
fied in writing n, - N *. In other words, for almost all 
practical values of E, taking n -N * is as good as n = co. 
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