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It is shown that the space-bandwidth product of conventional "2f" Fourier transforming configurations can be increased 
without bound by increasing the diameter D and focal length f o f  the lens simultaneously to Docf 3/4. This results in space- 
bandwidth product growth ocf ~/2 and accompanying system linear extent growth ocf ~/4. These are derived by considering the 
validity of the Fresnel approximation, the thin lens approximation, and the effects of aberrations. 

The spatial Fourier transform can be realized op- 
tically in several ways. One of the best known and 
prototypical schemes involves a positive lens of  focal 
length f sandwiched between two stretches of  free 
space of length f e a c h  (fig. 1 ). This configuration is 
commonly known as a " 2 f "  system. The Fourier 
transforming property of such a system is derived in 
many textbooks, for instance ref. [ 1, pages 124-126 ]. 
Certain assumptions are employed in the derivation: 

(i) The Fresnel approximation is valid for prop- 
agation over the distance f. 
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Fig. 1. "2f" Fourier transforming configuration. 

(ii) The lens can be treated as a thin transparent 
object, so that its effect on the incident light distri- 
bution can be accounted for by a complex transmit- 
tance factor. 

(iii) The complex transmittance factor of  the lens 
can be approximated as exp [in (x2 Jr  y2)/2f] ,  

Here x, y denote the transverse coordinates and 2 
the wavelength of light. 

( iv) The geometrical spot size is smaller than the 
diffraction spot size. 

The space-bandwidth product SB is simply the 
number of pixels of resolution in the input and out- 
put fields, and is a function of f and the lens diameter 
D. In this paper we investigate to what extent SB can 
be increased without violating the above assump- 
tions. We find that it can be increased without bound 
by increasing D and f according to a certain rela- 
tionship. 

Let the linear extent of the input field be denoted 
by Ax and the linear extent of  the output field be de- 
noted by Ax'. It is well known that the linear extent 
of  the output in terms of spatial frequency is 
A u ~ = A x ' / 2 f  and the one-dimensional space-band- 
width product is SB = A ~ ,~x= A x ' A x / 2 f  This final 
expression can also be interpreted by recalling that 
boundedness in either domain implies, by virtue of 
the Nyquist sampling theorem, a finite number of 
degrees of  freedom in the other domain [ 2 ]. It has 
been shown by both Lohmann [ 3 ] and VanderLugt 
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[ 4, section 3.7.1 ], based on independent arguments, 
that the optimal choice for maximizing SB is Ax= 
Ax '=D/2 ,  resulting in a space-bandwidth product 

SB =O2/42 f=D/42 f  ¢~ , (1) 

where the f-number f #  =f/D. (For a two-dimen- 
sional system, the space-bandwidth product would 
be proportional to the square of this.) 

We first turn our attention to the first of the above 
assumptions. The validity of the Fresnel approxi- 
mation requires that the largest frequency compo- 
nents v . . . .  v ~ ,  of  the input field with non-negli- 
gible energy satisfy [ 1, page 118, 119] 

23(vxm,~2 +v2m,x)2f<<4. (2) 

(This condition can be equivalently written as 

04m~xf/42 << 1, (3) 

where 02ax~_~.~ZV2ax = 2 2 ~ 2 Oz.,,, + Oy.,,, ~ 2 ( V~m~, + 
V2~x) and Oxm~, ~2v  . . . . .  0,,~ ~2Vy~ x are the angles 
of inclination of the plane wave component corre- 
sponding to these frequencies. Note that since 
f / 2  >> 1, the Fresnel approximation is stronger than 
the paraxial approximation, allowing us to inter- 
change angles with their sines and tangents. ) 

The largest frequency component to pass through 
our system is determined by the extent of  the Fourier 
plane, which in turn is limited by D. It is given by 
V~m,x = Vy,,,,., =AVx/2 = D/  42f Substituting this in eq. 
(2), we obtain the condition 

D 4 <<f3244 ' (4) 

o r  

D4~-kf  3,~ , ( 6 )  

o r  

D = k ( f # )  3j- , (7) 

and the largest possible space-bandwidth product for 
given f o r  f *  becomes 

S B =  l k l / 2 N / ~ ,  ( 8 )  

SB= kk ( f* )  2 , (9) 

respectively. By increasing f o r  f * ,  and choosing D 
according to eqs. (6) or (7), we can increase SB as 
much as we want. However, the space-bandwidth 
product increases slower than the linear extent of  the 
system. I f  we define the information density I as the 
space-bandwidth product divided by linear extent, 
which results in I =  1 / 2 f ' 2 ,  a tradeoff between SB 
and I can be derived as 

S B × F = k / 1 6 2 2 .  (10) 

Thus, although we can increase SB as much as we 
want, the system becomes less efficient in terms of 
information handled per unit area. 

It still remains to be shown that the above con- 
clusions are valid when the remaining three as- 
sumptions are also considered. Let us take up the 
second. A transparent object can be considered thin 
if (d/2)O~, , /2n << 1, where d is its maximum thick- 
ness, n its refractive index, and 0m~x the largest angle 
of  inclination of the plane wave components in- 
volved [1, page 56,57]. This angle 0m~x is given by 
Vmax2 where Vmax = x/2D/42fis  the largest frequency. 
Upon substitution, we find 

D<< (f '~) 3244 . (5) 

Thus, by choosing D to satisfy this equation, we can 
ensure that even the largest frequency component 
passing through our system does not violate the Fres- 
nel approximation. (Equivalently, the same deri- 
vation can be carried out in terms of angles. By 
choosing D, we limit the angles of inclination of the 
plane wave components that can pass through the 
system, ensuring that among those that pass, even 
the ones with largest angles still satisfy the Fresnel 
approximation. ) 

Letting k>  0 be a number such that k<< 4 4 is sat- 
isfied, the largest values of D satisfying the above 
equations are 

d<< ( i f ' )  216n2 ( 11 ) 

as the necessary requirement for thinness. The ra- 
dius of curvature R of a piano-convex lens with sharp 
edges is given by R =  ( n - 1  ) f  and its maximum 
thickness at the center is R - x / R  2 -  D2/4. For large 
f * ,  this can be approximated as 

k 
d -  - -  ( f * ) 2 2 ,  (12) 

8 ( n - l )  

where we have substituted D from eq. (6). By choos- 
ing k sufficiently small, we see that this thickness can 
be made to satisfy the requirement spelled out in eq. 
(11 ). Thus, by choosing D according to eq. (6) in 
order to satisfy the Fresnel approximation, we also 
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automatically satisfy our second assumption as well. 
The third assumption is justified if (x2 + y 2) << R 2 

[ 1, page 58]. Since x, y<~D/2, this will be justified 
if D << R, or since R = f ( n -  1 ), if  D <<f. According 
to the scaling scheme given in eqs. (6) and (7),  D 
cannot grow as fast as f, so that this condition will 
be eventually satisfied as we increase D and f i n  or- 
der to increase the space-bandwidth product. 

We finally turn our attention to the fourth and last 
assumption. Let us denote the geometrical spot size 
associated with a plane wave making an angle 0m~x 
with the optical axis as #(f~', O~)D, where ~ is a 
dimensionless quantity depending on f~' and 0max. 
The spot size can be written like this because for a 
given J:number, it scales proportionally with D [ 5 ]. 
The largest angle of inclination of any plane wave 
component in our system is 0max= Umax.~=x//2D2/ 
42f=x/2/4f ~', so that we are interested in the quan- 
tity #(f~', v,'2/4f # )D. Figure 2 gives a ray tracing 
result for the geometrical spot size, defined as the root 
mean square lateral deviation, and also the quantity 
6(f~', x/~/4f '~ ). (Results for refractive and diffrac- 
tive lenses give similar results, and can also be ver- 
ified by lengthy analytical approximations [6].)  
From these plots, we observe that #( f~ ,  x/~/4f*) 
oc 1/(f~' )2, so that the geometrical spot size equals 
CD/(f~ )2, where C is a constant of the order of un- 
ity. We require that this be less than the diffraction 
spot 2 f ' 2 ,  resulting in the requirement D< (2/  
C) (f¢~)32, which is ensured i fD is chosen according 
to eq. (7) with a sufficiently small value of k. 

In conclusion, we see that by choosing D as a func- 
tion o f f o r f  ~' according to eq. (6) or (7), we ensure 
that the Fresnel approximation, the thin lens ap- 
proximation, and the diffraction-limited system as- 
sumption will all be precisely justified. Thus, by in- 
creasing D ocf  3/4 <3(: ( f # )  3, the one-dimensional space- 
bandwidth product can be increased indefinitely 
ocf ~/2. The accompanying increase in transverse sys- 
tem linear extent is ocf 3/4, so we get diminishing re- 
turns in terms of space-bandwidth product for our 
investment in system size. 

Since two " 2 f "  systems in cascade result in an im- 
aging system, the above scaling considerations carry 
over to such an imaging system as well. 

Of course, it goes without saying that practical 
limitations on the construction of spherical lenses of 
ever increasing size have not been considered in our 
analytical discussion. 
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Fig. 2. (a) #(f~, 0.~,) as a function of f*  with 0 n  as a param- 
eter, (b) 0(f  ~, 1 / 2 3 / 2 f  ~' ) as a function o f f  ~. 
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