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Abstract 

It is customary to define the time-frequency plane such that time and frequency are mutually orthogonal coordinates. 
Representations of a signal in these domains are related by the Fourier transform. We consider a continuum of 
“fractional” domains making arbitrary angles with the time and frequency domains. Representations in these domains 
are related by the fractional Fourier transform. We derive transformation, commutation, and uncertainty relations 
among coordinate multiplication, differentiation, translation, and phase shift operators between domains making 
arbitrary angles with each other. These results have a simple geometric interpretation in time-frequency space. 

ijblicherweise wird die Zeit-Frequenz-Ebene so definiert, dal3 Zeit und Frequenz orthogonale Koordinaten darstellen. 
Signaldarstellungen in diesen Bereichen %ngen iiber die Fouriertransformation zusammen. Wir betrachten ein Kon- 
tinuum von “fraktionalen” Bereichen, die mit dem Zeitbereich und mit dem Frequenzbereich einen beliebigen Winkel 
einschlieljen. Signaldarstellungen in diesen Bereichen sind durch die “fraktionale Fouriertransformation” verkniipft. Wir 
zeigen Transformations-, Kommutations- und Unschsrfebeziehungen von Koordinatenmultiplikations-, Differenti- 
ations-, Verschiebungs- und Phasenverschiebungsoperatoren zwischen Bereichen, die beliebige Winkel einschlieljen. 
Diese Ergebnisse erlauben eine einfache geometrische Interpretation im Zeit-Frequenz-Raum. 

I1 est habitue1 de d&finir le plan temps-frkquence de telle sorte que le temps et la frkquence soient des coordonnkes 
orthogonales. Les reprtsentations d’un signal dans ces domaines sont relites par la transform& de Fourier. Nous 
considkrons un continuum de domaines “fractionnaires” faisant des angles arbitraires avec les domaines temporels et 
frtquentiels. Les reprksentations dans ces domaines sont reliCes par la transform& de Fourier fractionnaire. Nous 
dtrivons les rClations de transformation, de commutation et d’incertitude parmi les opbateurs de dkplacement de phase, 
de translation, de diffkrentiation, de multiplication de coordon&es entre des domaines faisant des angles arbitraires entre 
eux. Ces r&ultats ont une interprbtation gkomCtrique simple dans I’espace temps-frkquence. 
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The purpose of this paper is to consolidate the 
concept of fractional Fourier domains suggested in 
a recent paper [16]. The present discussion will be 
framed in an operator formalism, whose power will 
be evident in deriving and representing a number of 
novel results. 

Let $ denote a signal in the abstract, that is, 
without reference to any particular domain. This 
signal can be represented in the time domain by 
$,(t), or alternatively in the frequency domain by 
)I/r(f), where &(f) is the Fourier transform of $Jt). 
In this paper we discuss domains other than these 
two, which we call fractional Fourier domains. The 
representations of the signal in these domains are 
related to each other by the fractional Fourier 
transform. 

The fractional Fourier transform [l, 9, 14, 151 
has many applications in the solution of differential 
equations [9, 141, quantum mechanics [23-25, 27, 
281, diffraction theory and optical propagation, 
optical systems and signal processing [2, 3, 6, 12, 
18-221, swept-frequency filters [ 11, time-variant 
filtering and multiplexing [S, 13,161 neural net- 
works [26] and study of time-frequency distribu- 
tions [4]. It can be optically realized much like the 
usual Fourier transform, and has a fast digital algo- 
rithm [S, 151. We elaborate on these in the follow- 
ing paragraphs. 

Linear differential equations with constant coef- 
ficients are used to represent linear time-invariant 
systems. These equations can be solved by taking 
their Fourier (or Laplace) transform. Differential 
equations representing time-variant systems, how- 
ever, have nonconstant coefficients. At least certain 
classes of such equations can be solved by virtue of 
the additional degree of freedom afforded by the 
fractional Fourier transform [9, 143. 

In quantum mechanics and optics, measurement 
of the phase of a signal is experimentally difficult. 
Knowledge of the Wigner distribution yields com- 
plete knowledge of the signal, but is difficult to 
measure directly. It is known that the amplitude 
squared fractional Fourier transform is the Radon 
transform of the Wigner distribution. This makes it 
possible to tomographically reconstruct the Wigner 
distribution by making a series of intensity 
measurements of the fractional transforms, if one 
knows how to obtain the fractional transforms of 

the signal [23-251. This method should be general- 
&able to other problems where it is difficult to 
measure the phase of a signal, as is often the case 
with optical systems. 

The fractional Fourier transform describes the 
propagation of optical wavefields through a rather 
general class of optical systems. The order of the 
fractional transform corresponds to the distance 
along the axis of propagation. The wavefields 
which are usually expressed in terms of complicated 
diffraction integrals can be more simply expressed 
in terms of the fractional Fourier transform 
[19-221. This allows efficient computation of dif- 
fraction integrals and wavefields in optical systems. 
Also, it allows the properties of the wavefields to be 
deduced from the properties of the fractional 
Fourier transform. Furthermore, since the frac- 
tional Fourier transform can be implemented with 
the same amount of optical hardware as the ordi- 
nary Fourier transform [2, 3, 6, lo], the signal 
processing techniques discussed in the follow- 
ing paragraph can be implemented with optical 
systems. 

The fractional Fourier transform can be cal- 
culated digitally in O(NlogN) time, just like 
the ordinary Fourier transform [S, 151. Ordinary 
Fourier domain filtering techniques are more 
suitable for time-invariant signals and systems. 
Filtering in fractional Fourier domains allows 
one to reduce the minimum-mean-square error 
in optimal filtering for the time-varying case 
[5,16]. In a similar spirit, multiplexing in frac- 
tional Fourier domains allows signals whose 
time-requency distribution is irregular to be 
packed more efficiently in a given channel 

C161. 
In conclusion, the new perspective and analytical 

tools offered by the fractional Fourier transform 
and the concept of fractional Fourier domains in 
time-frequency space should prove fruitful for fun- 
damental signal theory, and inspire many other 
applications and generalizations of existing 
methods wherever Fourier transforms are con- 
cerned. The purpose of this paper is to serve as 
a vehicle to this end. 

Let P denote the Fourier transform operation so 
that 11/l ( .) = 9 [tjo( -)I is the Fourier transform of 
the function $0( .). The ath order fractional Fourier 
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transform operation is denoted as 8” so that 
$,( .) = 5’[11/0( .)] is the ath-order fractional 
Fourier transform of the function $0( .). 8’ corres- 
ponds to the ordinary Fourier operation 9, and 
8’ is the identity operation. ,Fz corresponds to 
the coordinate reflection operation so that F4 
is also equivalent to the identity operation. We 
also have ,~a1.P’2 = .5P1+az. The fractional 
Fourier transform can be defined for 0 < Ja 1 < 2 
as [16] 

&(x, x’) (1) 

= A, exp[in(x2 cot C#J - Zxx’csc f$ + x” cot 4)], 

A, = ( 1 sin 4 I)- li2 exp [ire sgn(sin 4)/4 - id/2], 

where C# = ax/2. The kernel 3,(x, x’) approaches 
6(x - x’) or 6(x + x’) when a approaches 0 or f 2, 
respectively. The definition is easily extended out- 
side the interval [ -2,2] by remembering that 9’ 
is the identity operation [9]. 

The functions $,J .) for different values of a may 
be considered as different representations of the 
same signal II/. In particular, Il/,,(xo) is the time 
domain representation of the signal, and 11/, (x1) is 
the frequency domain representation ($0( .) = Ic/t( .) 
and +i ( .) = t+bf(. )). We refer to the x, axis as the ath 
fractional Fourier domain, and associate x0 and x 1 
with the conventional time and frequency axes 
t and f; respectively. 

There is nothing special about the a = 0 repres- 
entation, it merely corresponds to the choice of 
origin of the parameter a. We can transform from 
the x, representation to the x,, representation by 
taking a fractional Fourier transform 

Icl&.,) = 
I 

B~,,-.)(x,,,x,)Il/,(x,)dx,. (2) 

When a’ = a + 1, this is just an ordinary Fourier 
transformation. 

We now introduce the family of coordinate-mul- 
tiplication operators X, parameterized by a. The 
operator X, is defined to be such that, when it acts 
on the (abstract) signal II/ from the left, its effect in 

the uth domain is 

{X, $ )0 (x0) = x0 ICI&L). (3) 

Here {X&},( .) denotes the representation of the 
signal X& in the ath domain. What is the effect of 
such an operator in another domain? For instance, 
what is the effect of the operator X,, , in the ath 
domain? From the well known Fourier transform 
property stating that coordinate multiplication in 
the frequency domain corresponds to differenti- 
ation in the time domain, we obtain 

where the second equality defines the differentiation 
operator D,, which is seen to be equal to X,, 1. 

We now wish to express the operator X, in terms 
of the operators X,. and X,. + , = D,, for any given 
value of a’. The fractional Fourier transform prvp- 
erty 19, lo] 

~~-“‘-“Cxl,ICla(Xa)l 

= X0.($+ CICla(&l)l)cos(@ -4) 

- & -&(F,-~ CIc/.(x,)l) sin(6’ - 6), (5) 
a’ 

can be derived directly from Eq. (2). Using this, we 
obtain 

X, = X,, cos(@ - 4) - X,. + 1 sin(f$’ - 4). (6) 

Substituting a + a + 1 in Eq. (6) (or by using 
a property analogous to Eq. (5) for 

F”“‘-“Cdll/&)ldx,l) we obtain an equation for 
X ail? which when combined with Eq. (6) gives 

Xl? 

[ I[ 

cos(4’ - f$) -sin($’ -I$) X,. = 

X a+ 1 sin(4’ - 4) cos(4’ - f$) I[ I X,,., 

(7) 

(We can replace X,, 1 = D, and X0,+ 1 = D,,, if we 
wish). This equation suggests an analogy with basis 
vectors in R’. Referring to Fig. 1, we see that the 
angle C#I = ax/2 may be interpreted as the angle the 
ath domain makes with the 0th (position or space) 
domain and (4’ - 4) = (a’ - a)~/2 may be inter- 
preted as the angle between the ath and a’th 
domains. In particular, domains whose indices 
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Fig. I. 

differ by unity are orthogonal. (This is consistent 
with the customary definition of phase space 
such that t and fare mutually orthogonal coordi- 
nates.) 

The X, operator, which simply multiplies Il/,,(x,) 
by x, in the ath domain, results in a linear combina- 
tion of multiplication by x,, and differentation 
with respect to x,, in the a’th domain. The X,+ 1 
operator, which simply multiplies by x,+ 1 in the 
(a + 1)th domain, and which differentiates with re- 
spect to x, in the ath domain, results in a similar 
linear combination. The coefficients of these linear 
combinations are cosines and sines corresponding 
to the ‘projection’ of these operators on the a’th 
domain. 

It is also possible to express X, in terms of any 
two operators X,. and X,.., provided the latter 
two are not collinear, and express any function of 
an arbitrary number of operators F(X,,,X,,,,, . . . ) 
in the form F’(X,,,,X,..). Furthermore, it is possible 
to define the space spanned by any two noncol- 
linear operators X, and X,. , and operations such as 
inner products and norms. Although we do not 
present these extensions here, we will further dis- 
cuss the above geometrical interpretation at the 
end of this paper in conjunction with Wigner distri- 
butions. 

The commutator between two arbitrary operators 
X, and X,., denoted by square brackets, is 

[X,,X,,] = X,X,. -X,.X, = & sin(# - 4). (8) 

The first equality is the definition of the com- 
mutator, and the second is derived using Eqs. (4) 
and (7) and the well known commutator 
[X0, Xi] = [X,, X,] = i/2x. Now, using a standard 
result which applies when the commutator of two 
operators is a scalar quantity [8], this commuta- 
tion relation between two nonorthogonal domains 
implies the uncertainty relationship 

1 
varC$,Ml x varC$d(xd)l 2 m sln’(+’ - 4) (9) 

between representations in these two domains. 
Here var denotes the variance of the functions. The 
existence of such an uncertainty relationship was 
previously conjectured in [16]. Of course, the 
above simplifies to the well-known relationship be- 
tween a function and its Fourier transform when 
(p’ - C$ is an odd multiple of x/2. 

We now define the linear phase operator 
P,(c) = exp(ilX,). Its effect in the ath domain 
is given simply by {exp(i<Xa)$}(l (x,) = exp(i<x,) x 
$,(x0), as can be verified by series expansion of the 
exponential. On the other hand, the effect of the 
exp(itXO+ i) operator in the same domain is given 

by 

{ei@=+‘$}a (x,) = ti, (x0 + 0 = {K7(5)$L&). (10) 

This is just the Fourier transform property stating 
that multiplication by a phase factor in one domain 
corresponds to translation in the orthogonal do- 
main. The second equality defines the translation 
operator T,(t), which is seen to be equal to 
exp(itXa+ i) = exp(irD,). Using Eq. (7), the oper- 
ator exp(itXa) can be expressed in the a’th domain 
as 
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where Glauber’s formula [S] exp(A + B) = exp(A) x 
exp(B)exp( - [A, B]/2) for any two operators 
A and B that commute with their commutator has 
been used. Rewriting the same equation in terms of 
the phase and translation operators we obtain 

PJ5) = e- i<* sin@’ 4) cos(@ 4)/2 

x pd(5 cos(ct)’ - #If T,,(- l W4’ - 4)) 

= eitL sin(f ~ 4) cos(@ - 44/Z 

x TDr( -l sin(f$’ -4))PaS({ cos(&’ -4)). 

(12) 

We see that the P,(t) = exp(itXa) operator, which 
simply results in a phase shift in the ath domain, 
results in a translation followed by a phase shift (or 
a phase shift followed by a translation) in the a’th 
domain. (The fact that translation and phase shift- 
ing do not commute accounts for the additional 
phase factor coming from Glauber’s formula.) By 
employing the substitution a -+ a + 1, we can ob- 
tain a second pair of equations similar to Eq. (11): 

ei&+ I = eit2 sin(4’ - 4) cos(f 4)/Z 

=e -it* sin(@ - 4) cos(@ - @j/2 

x ,igX, + I COSW ~ 4) ei@.~sin(d ~ 41 (13) 

or 

T,(4) = e 
i<’ sin($ 4) COS(C$ - $)/Z 

x pa45 sin(@ - 4)) Tad5 W4’ - $1) 

=e -i<’ sin(@ $11 cos(@ r$)/2 

x T,,(<cos(P$))P,(<sin(@ -$)). 

(14) 

We see that To({) = exp(ii’X,+ J operator, which 
simply results in a translation in the ath domain, 
results in a translation followed by a phase shift (or 
a phase shift followed by a translation) in the a’th 
domain. As with Eq. (1 l), here also the amount 
of translation and phase shift is given by cosine 
and sine multipliers corresponding to the projec- 
tion of the translation or phase shift on the new 
set of axes. It is also worth noting that starting 
from Eqs. (11) and (13) we can obtain formulas 
similar to Eq. (5) for P’-“[exp(i[x,)+,Jx,)] and 

P’-a[IC/O(~a - <)I. (These formulas can also be 
derived directly from Eq. (1) [l, 9, lo].) 

In passing we underline that all of the four differ- 
ent operators X,, D,, Pa(l) and T=(t) are expressible 
in terms of the basic operator X,. 

Everything derived until now strongly supports 
the analogy depicted in Fig. 1. Finally, we discuss 
how this is directly related to an important prop- 
erty of fractional Fourier transforms. The Wigner 
distribution Wti(t,f) of $ is given by [16] 

w*(U) = 
s 

cu t+bt(r + r’/2)$:(r - r’/2) 
-CC 

x exp( - 2nift’)dr’. (15) 

The Wigner distribution can be equally well de- 
fined in terms of the representation $a(~a) of the 
signal $ in any domain a. 

It is possible to relate $.(x0) to the Wigner distri- 
bution by [7,12,16] 

~$Q&f)l = I$&~V~ (16) 

where the Radon transform operation 2, takes the 
integral projection of the Wigner distribution on an 
axis making angle 4 with the x0 = r axis. Two 
widely known special cases are 

s ~(Wd.= lW)12, (17) 

s ~kf)dr = I$rtf)12. (181 

Eq. (16) means that the projection of the Wigner 
distribution of $ on an axis making angle 4 = ax/2 
with the x0 = r axis gives the absolute square of the 
representation of II/ in the uth domain. This sup- 
ports the idea of referring to the axis making an 
angle 4 with the x0 axis as the x, axis (or the uth 
domain), as depicted in Fig. 1 [16]. 

We now summarize. We speak of two representa- 
tions which are related through a Fourier trans- 
form as being orthogonal to each other. The oper- 
ator X, is orthogonal to the operator Xa+i, or 
equivalently, the operation of multiplying by x, is 
orthogonal to the operation d/dx,. Likewise, multi- 
plication by a phase factor is orthogonal to a cor- 
responding translation, and so forth. In general, 
two representations that are related through a 
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fractional Fourier transform of order a make an 
angle 4 = an/2 with each other. Coordinate multi- 
plication or differentiation in one of these domains 
results in a combination of these two operations in 
the other domain, as given by Eq. (7). Likewise, 
multiplication by a phase factor or a translation in 
one of these domains results in a combination of 
these two operations in the other domain, as given 
by Eqs. (11) and (13). The weighting factors appear- 
ing in these equations are cosines and sines with 
a direct interpretation as projections. The commu- 
tator and uncertainty relation between nonortho- 
gonal domains are also interpreted in terms of this 
geometric picture. 
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