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Optimal image restoration with the fractional
Fourier transform
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The classical Wiener filter, which can be implemented in O(N log N) time, is suited best for space-invariant
degradation models and space-invariant signal and noise characteristics. For space-varying degradations and
nonstationary processes, however, the optimal linear estimate requires O(N2) time for implementation. Op-
timal filtering in fractional Fourier domains permits reduction of the error compared with ordinary Fourier
domain Wiener filtering for certain types of degradation and noise while requiring only O(N log N) implemen-
tation time. The amount of reduction in error depends on the signal and noise statistics as well as on the
degradation model. The largest improvements are typically obtained for chirplike degradations and noise, but
other types of degradation and noise may also benefit substantially from the method (e.g., nonconstant velocity
motion blur and degradation by inhomegeneous atmospheric turbulence). In any event, these reductions are
achieved at no additional cost. © 1998 Optical Society of America [S0740-3232(98)00604-8]
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1. INTRODUCTION
Restoration of degraded or distorted and noisy images is a
basic problem in image and optical processing, with many
applications. The objective is to reduce or eliminate the
degradations or distortions that are introduced typically
by the transmission channel and the sensing environ-
ment. A variety of approaches to degradation removal
have been proposed (for instance, see Ref. 1). The effec-
tiveness of these methods depends on the observation
model and the design criteria used as well as on the prior
knowledge available about the desired signal, degrada-
tion process, and noise. One of the most popular obser-
vation models is of the form

o 5 H~f ! 1 n, (1)

where o is the observed signal, f is the signal we wish to
recover, n is an additive and possibly nonstationary noise
signal, and H is the system representing undesired linear
time-varying distortion. A frequently used design crite-
rion is the mean-square error (MSE), and we usually con-
sider a linear estimation of the form

f̂ 5 G ~o!. (2)

Then the problem is to find the operator G opt that mini-
mizes the MSE.

The well-known classical Wiener filtering presents a
solution to the above problem under the assumption that
the signals involved are stationary and H is a time-
invariant system. This filter turns out to be a time-
invariant one that corresponds to a multiplicative filter in
the Fourier domain and thus can be implemented in
O(N log N) time, where N is the space–bandwidth prod-
uct of the images, i.e., the number of pixels in the image.
The general solution when the above assumptions do not
hold is also known.2 However, since the resulting linear
operator is not time-invariant and thus cannot be ex-
pressed as a convolution, obtaining this most general lin-
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ear estimate requires computational time of O(N2) as op-
posed to O(N log N) for the time-invariant case. We can
still seek the optimal ordinary Fourier domain Wiener fil-
ter, but this filter is not as satisfactory as the general lin-
ear estimator.

The possibility of realizing various time-varying opera-
tions by filtering in fractional Fourier domains was sug-
gested in Ref. 3. An exact analytical solution for the op-
timal filtering problem (analogous to the Wiener filtering
problem) in fractional domains for one-dimensional (1D)
signals was given in Ref. 4. Filtering in a fractional Fou-
rier domain can be implemented as efficiently as filtering
in the conventional Fourier domain, since the fractional
Fourier transformation has a fast digital algorithm4,5 and
can also be optically realized much like the usual Fourier
transform.6–10 Thus any improvement obtained with the
fractional Fourier transformation comes at no additional
cost.

In this paper the concept of filtering in fractional Fou-
rier domains is applied to the problem of estimating im-
ages [or other two-dimensional (2D) signals] with space-
varying statistics in the presence of space-varying
degradation and noise. Expressions for the 2D optimal
filter function in fractional domains will be given for
transform domains characterized by the two-order pa-
rameters of the 2D fractional Fourier transform. Then
we will seek the optimal values of these parameters, thus
achieving the smallest possible error with the proposed
method. Since the class of fractional Fourier domain fil-
ters is a subclass of the class of all linear operators, for
the arbitrary time-varying degradation model the MSE
obtained by the proposed method will still not be as small
as the one obtained by the general linear estimator.
However, the class of proposed filters is a much broader
class than ordinary Fourier domain filters, and it is pos-
sible to obtain smaller MSE’s in comparison with ordi-
nary Fourier domain filters. It will be shown in the ex-
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amples that the method is very effective, especially when
the noise and degradations are of chirped nature. It will
also be shown that substantial reduction in error can be
achieved for other interesting types of degradation and
noise that are encountered in practice. We expect the
proposed method to be applicable to other degradation-
and-noise models not discussed in this paper.

2. TWO-DIMENSIONAL FRACTIONAL
FOURIER TRANSFORMATION
In this section we give the definition of the 2D fractional
Fourier transformation. The fractional Fourier trans-
form is the generalization of the ordinary Fourier
transform.6,11–14 The fractional Fourier transform has
been found to have several applications in fields including
the solution of differential equations, quantum mechan-
ics, diffraction theory and optical propagation, optical sys-
tems and signal processing, swept-frequency filters,
space-variant filtering and multiplexing, and the study of
time- and space-frequency distributions.3,6,9,12–24 Its
analog optical implementation was discussed in Refs. 6, 9,
and 15, and its digital implementation was discussed in
Ref. 5.

One of the most important properties of the fractional
Fourier transform is its relation to time- and space-
frequency representations.9,14,25,26 This property states
that the fractional Fourier transformation corresponds to
a rotation in the time- and space-frequency plane for cer-
tain members of Cohen’s class. It leads us to the concept
of fractional Fourier domains27 and also suggests a way of
performing certain time-varying operations by employing
the fractional Fourier transform.3,4

The ath-order fractional Fourier transform of a 1D
function f(x) may be defined for 0 , uau , 2 as

@F a~f !#~x ! 5 fa~x !

5 E Ba~x, x8!f~x8!dx8,

Ba~x, x8! 5 Af exp@ip~x2 cot f

2 2xx8 csc f 1 x82 cot f!#,

Af 5 ~ usin fu!21/2 exp@ip sgn~sin f!/4 2 if/2#,
(3)

where f [ ap/2. The kernel Ba(x, x8) approaches d (x
2 x8) or d (x 1 x8) when a approaches 0 or 62, respec-
tively. The definition is easily extended outside the in-
terval @22, 2# since F 4 is the identity operation.

A direct generalization of the above definition to 2D sig-
nals is given by

fax, ay
~x, y ! 5 $F ax, ayf %~x, y !

5 EE Bax, ay
~x, y; x8, y8!f~x8, y8!dx8dy8,

Bax, ay
~x, y; x8, y8!

5 Bax
~x, x8!Bay

~y, y8!.

The 2D transform kernel is the product of two 1D kernels
as in the case of the ordinary Fourier transform, but we
allow different orders ax and ay for the two coordinates.
Efficient analog optical implementations of such anamor-
phic 2D transforms has been demonstrated.10,28,29 Digi-
tal computation is also possible with direct modifications
to the algorithm developed for 1D signals5 since 2D trans-
formation is defined as separable so that the associated
kernel is just the product of two 1D kernels.

3. FILTERING IN FRACTIONAL FOURIER
DOMAINS
In this section the mathematical definition of the problem
is given, and our approach to its solution is formulated.
The solution for the case of a linear space-invariant deg-
radation model with stationary processes is the well-
known optimal Wiener filter, which can be implemented
efficiently with the fast Fourier transform. For space-
varying degradation models and nonstationary signals
and noise, the optimal recovery operator is also known
but in general requires O(N2) time for implementation,
where N is the space–bandwidth product of the signal,
i.e., the number of pixels in the image.

First, we briefly review the general linear filtering
problem. Our signal observation model can be written as

o~x, y ! 5 EE h~x, y; x8, y8!f~x8, y8!dx8dy8 1 n~x, y !,

(4)

where h(x, y; x8, y8) is the kernel of the degradation
model and n(x, y) is the additive noise term. (All inte-
grals are from minus infinity to plus infinity unless oth-
erwise stated.) We assume that as prior knowledge we
know the correlation functions Rff (x, y; x8, y8)
5 E@ f(x, y)f * (x8, y8)#, Rnn(x, y; x8, y8) 5 E@n(x, y)

3 n* (x8, y8)# of the input signal (desired signal) f and
the noise. We further assume that the noise is indepen-
dent of the input f and is zero mean, i.e., E@n(x, y)#
5 0 for all x and y, and that we know the degradation

model. Under these assumptions we can also find the
cross-correlation function Rfo(x, y; x8, y8) 5 E@ f(x, y)
3 o* (x8, y8)# of the processes f and o and the correlation
function Roo(x, y; x8, y8) 5 E@o(x, y)o* (x8, y8)# by us-
ing Eq. (4).

Consider the most general linear estimate of the form

f̂~x, y ! 5 EE g~x, y; x8, y8!f~x8, y8!dx8dy8. (5)

Our design criteria is the MSE, which is defined as

se
2 5 E~ if 2 f̂ i2!, (6)

where E( • ) denotes the expectation operator and i•i de-
notes the norm

if i2 5 EE u f~x, y !u2dxdy. (7)

This definition [Eq. (6)] of the MSE with the norm defined
in Eq. (7) is appropriate for nonstationary signals whose
functional representations are square integrable (of finite
energy). [For stationary processes, the MSE may be
defined as the expected value of the magnitude squared
of the difference term.2] The problem is then to find
the optimal recovery operator kernel, denoted by
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Fig. 1. (a) Original (desired) plane image; (b) corrupted image (SNR ' 1), (c) estimated image obtained by filtering in optimum frac-
tional Fourier domain (ax 5 0.4, ay 5 20.6), (d) image restored by filtering in ordinary Fourier domain.
gopt(x, y; x8, y8), which minimizes the MSE. The solu-
tion to this problem, with the linear estimate defined in
Eq. (5), is known, and gopt(x, y; x8, y8) is the kernel that
satisfies the following equation2:

Rfo~x, y; x8, y8!

5 EE gopt~x, y; x9, y9!Roo~x9, y9; x8, y8!dx9dy9

(8)

Equation (8) can be solved numerically to yield the kernel
of the optimal linear recovery operator. However, appli-
cation of this estimation operator [see Eq. (5)] on a given
distorted and noisy signal would require O(N2) time,
where N is the space–bandwidth product of the signals
(the number of pixels for images). In this paper we re-
strict our estimate so that it corresponds to a multiplica-
tion by a filter function in the fractional Fourier domain.
This estimate can be written as
f̂~x, y ! 5 F 2ax, 2ay$m~x, y !F ax ,ay@o~x, y !#%, (9)

where F ax ,ay is the 2D fractional Fourier transformation
operator with different-order parameters for each
dimension10 and m(x, y) is the multiplicative filter. Ac-
cording to Eq. (9), we first take the 2D fractional Fourier
transform of the observed signal o(x, y) with orders ax
and ay and then multiply the transformed signal with the
filter m(x, y) and take the inverse 2D fractional Fourier
transform of the resulting signal. Thus the filter m(x, y)
has been applied in the fractional Fourier domain of or-
ders ax and ay . We note that for ax 5 ay 5 1 this esti-
mate corresponds to filtering in the conventional Fourier
domain. With this form of estimation operator the mini-
mization problem considered in this paper is to find the
optimal filter function, denoted by mopt(x, y), that mini-
mizes the MSE defined in Eq. (6) with the estimate
f̂(x, y) given by Eq. (9). The class of fractional Fourier
domain filters is a subclass of the class of all linear opera-
tors, so the linear filter we find is not the most optimal
among all linear operators. However, it is a much
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broader class than (time-invariant) Fourier domain fil-
ters, and in many problems involving time-varying degra-
dation models and nonstationary processes, it is possible
to obtain smaller MSE’s in comparison with filtering in
the conventional Fourier domain. This reduction in MSE
comes at no additional cost, because the resulting filter
can be implemented digitally in O(N log N) time just like
the ordinary Fourier transform,5 or can be implemented
optically with the same kind of hardware as that of the
ordinary Fourier transform.6–9

We finally note that although beyond the scope of the
present paper, various extensions and refinements of the
classical filtering problem (for instance, see Refs. 34–36
and the references therein) can also be applied to the frac-
tional Fourier domain filtering problem that we have con-
sidered.

4. OPTIMAL FRACTIONAL FOURIER
DOMAIN FILTER
The solutions of the 2D and 1D problems are similar.
Our estimate is given by
which is nothing but the well-known orthogonality
condition.30,31 The above equation states that the best
linear MSE f̂ax, ay

(x, y) is an orthogonal projection of the
signal fax, ay

(x, y) onto the space of observations.
The optimum filter function mopt( • , • ) can be solved

from Eq. (11) by use of the definition of f̂ax, ay
(x, y),

mopt~x, y ! 5

Rfax, ay
,oax, ay

~x, y; x, y !

Roax, ay
,oax, ay

~x, y; x, y !
,

where

Rfax, ay
,oax, ay

~x, y; x8, y8!, Roax, ay
,oax, ay

~x, y; x8, y8!

are the correlation functions in the transform domain
(ax , ay). These correlation functions can easily be cal-
culated from the correlation functions in the spatial do-
main so that the filter function is given by
f̂~x, y ! 5 F 2ax, 2ay$m~x, y !F ax, ay@o~x, y !#%,

5 EE B2ax, 2ay
~x, y; x9, y9!m~x9, y9!

3 EE Bax, ay
~x9, y9; x8, y8!o~x8, y8!

3 dx8dy8dx9dy9, (10)

and the error is

se
2 5 E~ if 2 f̂ i2!

5 E(i f~x, y ! 2 F 2ax,2ay$m~x, y !F ax, ay@o~x, y !#%i2).

Since the 2D fractional Fourier transformation is unitary,
this MSE is equal to the error in the transform domain:

se
2 5 E~ ifax, ay

2 f̂ax, ay
i2!

5 E@ ifax, ay
~x, y ! 2 m~x, y !oax, ay

~x, y !i2#.

For particular values of ax and ay , the optimal filter func-
tion that minimizes the above error can be shown to sat-
isfy the following equation:

E$@ fax, ay
~x, y ! 2 f̂ax, ay

~x, y !#oax, ay
* ~x, y !% 5 0, (11)
mopt~x, y ! 5
EEEE Bax, ay

~x, y; x8, y8!B2ax, 2ay
~x, y; x9, y9!Rf,o~x8, y8; x9, y9!dx8dy8dx9dy9

EEEE Bax, ay
~x, y; x8, y8!B2ax, 2ay

~x, y; x9, y9!Ro,o~x8, y8; x9, y9!dx8dy8dx9dy9

. (12)
Fig. 2. (a) MSE versus ay for ax 5 0.4, (b) MSE versus ax for
ay 5 20.6.
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Fig. 3. (a) Original (desired) plane image, (b) corrupted image (SNR ' 0.1), (c) estimated image obtained by filtering in optimum frac-
tional Fourier domain (ax 5 0.4, ay 5 20.6), (d) image restored by filtering in ordinary Fourier domain.
Equation (12) provides us the optimal multiplicative fil-
ter function in the fractional domain defined by the pa-
rameters ax, ay . To find the optimal values of ax and
ay—that is, the domain in which the smallest error is
obtained—we plug the optimum filter function into the
MSE expression,

se,o
2 5 E H EE @ fax, ay

~x, y ! 2 f̂ax ,ay
~x, y !#

3 @fax, ay
~x, y ! 2 f̂ax, ay

~x, y !#* dxdyJ
5 E $Rfax, ay

,fax ,ay
~x, y; x, y ! 2 2 Re@mopt* ~x, y !

3 Rfax, ay
,oax ,ay

~x, y; x, y !#

1 umopt~x, y !u2Roax, ay
,oax, ay

~x, y; x, y !%dxdy,

(13)

and then choose the values of ax P @21 1# and ay
P @21 1# that minimize se,o

2. (Note that MSE is peri-
odic with respect to ax and ay with period 2.) These val-
ues may be found analytically in certain special cases.
But these cases are exceptional. In general, we can find
the optimal values of ax and ay numerically by simply cal-
culating the MSE for sufficiently closely spaced discrete
values of ax and ay (for example, with a step size of 0.1)
and choosing the values that minimize the MSE. We can
also find the optimal values by employing a standard mul-
tivariate optimization routine.32

Overall, the procedure can be outlined as follows:
Given the autocorrelation functions of the input (f ) and
noise (n) processes, along with the degradation (H ), we
can find the correlation function between the input and
output (o) processes and the autocorrelation function of
the output process. Then, using these, we can find the
optimal filter function in the fractional domain character-
ized by ax and ay by using Eq. (12). The optimal choices
of ax and ay are then those that minimize Eq. (13). Once
these are determined for the given signal and noise sta-
tistics and for distortion model, implementation of the
fractional Fourier domain filter requires O(N log N) time
for an image with N pixels. It is important to emphasize
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that both the digital computation of the fractional Fourier
transform and its optical implementation are nearly as ef-
ficient as the ordinary Fourier transform, so that the im-
provements in performance come at essentially no cost.

5. EXAMPLES
In this section we apply our method to degraded images to
illustrate the applications and performance of fractional
Fourier domain filtering. In the first two examples we
apply the method to images corrupted by chirplike noises
and show that the method is very effective and permits
significant reduction in error in comparison with ordinary
Fourier domain filtering for this kind of degradation.
The last two examples show the performance of the
method for other types of degradation, particularly for
two different space-varying blur models with additive
white Gaussian noise. The reduction is less spectacular
for these examples.

Figure 1(a) shows the original image used. In Fig. 1(b)
this image has been corrupted by the presence of two
chirp waveforms with amplitudes selected so that the
noise energy is comparable with that of the image, mak-
ing the signal-to-noise ratio approximately one. The op-
timally estimated image is shown in Fig. 1(c), for which
the optimal-order parameters are found to be ax 5 0.4
and ay 5 20.6. The minimum MSE is ;0.003 [in this
section, MSE’s are normalized by the energy of the origi-
nal image E(i f i2).] For comparison, we display in Fig.
1(d) the result of optimal restoration by ordinary Fourier
domain filtering (corresponding to the order parameters
ax 5 ay 5 1), which is less satisfactory, with MSE equal
to 0.035.

We plot the profiles of the MSE along the individual or-
der parameters (ax and ay) around the optimal point in
Figs. 2(a) and 2(b). (We recall that MSE is periodic with
respect to the parameters ax and ay with period 2.) These
plots show the behavior of the MSE around the optimal
point where minimum MSE is achieved.

The above example is repeated with a signal-to-noise
ratio '0.1. The corresponding images are presented in
Fig. 3. The benefit obtained by use of fractional Fourier
domain filtering (MSE 0.006) instead of ordinary Fourier
domain filtering (MSE 0.10) is much greater for this value
of signal-to-noise ratio.

In the following two examples we apply the method to
Fig. 4. (a) Original (desired) plane image, (b) degraded image, (c) estimated image obtained by filtering in optimum fractional Fourier
domain (ax 5 0.7, ay 5 0.8), (d) image restored by filtering in ordinary Fourier domain.
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Fig. 5. (a) Original (desired) plane image, (b) degraded image, (c) estimated image obtained by filtering in optimum fractional Fourier
domain (ax 5 0.4, ay 5 0.7), (d) image restored by filtering in ordinary Fourier domain.
images degraded with different space-varying blur mod-
els together with an additive white Gaussian noise.
These examples illustrate the performance of the method
for degradation and noise that are not of a chirped nature.

In this example we consider nonconstant-velocity mo-
tion blur. This blur corresponds to the degradation that
is the result of accelerated linear motion (in which veloc-
ity is increasing linearly) between the object and the cam-
era during exposure. [We should note that in the case of
constant-velocity motion the degradation is time-
invariant so that the optimal filtering domain turns out to
be the ordinary Fourier domain (ax 5 ay 5 1)]. For this
type of degradation the kernel [see Eq. (4)] is given by

h~x, y; x8, y8! 5
1

ax 1 a0
rectS x 2 x8

ax 1 a0
2

1
2 D d~ y 2 y8!,

where a and a0 are the parameters of the distortion
model and correspond to acceleration and initial velocity,
respectively. The additive noise is white Gaussian noise
whose energy is equal to one fourth of the signal energy
(input SNR of 4). Figure 4(a) shows the original (desired)
image, and Fig. 4(b) shows the distorted image (a
5 0.01 and a0 5 0.3). The optimally estimated image is
shown in Fig. 4(c), for which the optimal order param-
eters are found to be ax 5 0.7 and ay 5 0.8. The mini-
mum MSE is '0.0097. For comparison we have dis-
played in Fig. 4(d) the result of optimal restoration using
ordinary Fourier domain filtering (corresponding to the
order parameters ax 5 ay 5 1), which is less satisfactory,
with a MSE equal to 0.0382.

In the last example we consider degradation that cor-
responds to space-varying atmospheric turbulence. This
degradation is the result of inhomogeneous statistical
properties of the turbulent media33 and occurs when an
image covers several isoplanatic patches (regions where
statistical properties of the turbulent media can be taken
to be constant). The kernel of the degradation is given by

h~x, y; x8, y8! 5 exp$2pa2~x, y !

3 @~x 2 x8!2 1 ~ y 2 y8!2#%,



832 J. Opt. Soc. Am. A/Vol. 15, No. 4 /April 1998 M. A. Kutay and H. M. Ozaktas
where a(x, y) is a function of x and y, which makes the
degradation space varying. In our example, a(x, y)
5 a0 1 b(x, y), where b(x, y) represents the fluctua-
tion around a0 (50.1) and is a slowly varying function
that is obtained by low-pass filtering the white Gaussian
noise. (When an image consists of a single isoplanatic
patch, the function a(x, y) reduces to a constant a0 , and
in this case the degradation becomes time invariant and
can be optimally eliminated in ordinary Fourier domain.)
The additive noise is again white Gaussian noise whose
energy is equal to half of the energy of the signal, and it
takes into account the electrical noise encountered in the
camera. The desired and the distorted images are shown
in Figs. 5(a) and 5(b), respectively. Figures 5(c) and 5(d)
show the optimally estimated image in the optimal do-
main (ax 5 0.4 and ay 5 0.7) and in the conventional
Fourier domain. The minimum MSE is ;0.021 for Fig.
5(c), whereas it is 0.052 for Fig. 5(d).

The above examples show that filtering with the frac-
tional Fourier transform permits a significant reduction
in MSE for chirplike degradations and at least a substan-
tial reduction for certain other interesting types of degra-
dation. We believe that there should exist other ex-
amples that benefit from the proposed method to varying
degrees.

6. CONCLUSIONS
In this paper we have shown that optimal filtering in frac-
tional Fourier domains is effective in restoring images
corrupted by certain types of distortion and noise and of-
fers significant improvement in comparison with restored
images in ordinary Fourier domains. In particular, we
have seen that the method is very effective in eliminating
chirplike noises, and the MSE can be improved by signifi-
cant factors in comparison with ordinary Fourier domain
filtering. The method is also shown to be useful for other
types of degradation and noise with moderate reduction
in MSE. These improvements come at no additional cost.

We expect fractional Fourier domain image-restoration
techniques to find broad application in optical systems.
This is because the types of distortion and noise for which
the greatest benefits are obtained with respect to ordi-
nary Fourier domain filtering arise naturally in optical
systems in the form of scattering from point and line de-
fects and twin images in holography, etc. Also, the 2D
filtering process described in this paper is effectively and
easily implemented with optical systems.

The examples given in this paper by no means exhaust
the signal and noise characteristics for which the method
is beneficial. Further characterization of the strengths
and limitations of the proposed method requires further
research.

M. Alper Kutay can be reached by telephone: 90-312-
266-4307, by fax: 90-312-266-4126, and by e-mail:
kutay@ee.bilkent.edu.tr.
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