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Nonseparable two-dimensional fractional Fourier transform

Aysegul Sahin, M. Alper Kutay, and Haldun M. Ozaktas

Previous generalizations of the fractional Fourier transform to two dimensions assumed separable
kernels. We present a nonseparable definition for the two-dimensional fractional Fourier transform
that includes the separable definition as a special case. Its digital and optical implementations are
presented. The usefulness of the nonseparable transform is justified with an image-restoration exam-
ple. © 1998 Optical Society of America
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1. Introduction

The fractional Fourier transform of the order a1 is
defined in a manner such that the common Fourier
transform is a special case with the order a1 5 1.
The one-dimensional ~1-D! fractional Fourier trans-
form of the order a1 can be defined for 0 , ua1u , 2 as

^a1@ f ~x!#~x! 5 *
2`

`

Ba1
~x, x9! f ~x9!dx9, (1)

Ba1
~x, x9! 5 Af1

exp@ip~x2 cot f1 2 2xx9 csc f1

1 x92 cot f1!#, (2)

where Af1
5 exp@2i~pf̂1y4 2 f̂1y2!#yusin f1u1y2, f1 5

a1py2, and f̂1 5 sgn~f1!. The kernel is defined sep-
arately for a1 5 0 and a1 5 62 as B0~x, x9! 5 d~x 2
x9! and B62~x, x9! 5 d~x 1 x9!. The definition can
easily be extended outside the interval @22, 2# if we
note that ^4j1a1~x! 5 ^a1~x!.1

Some essential properties of the fractional Fourier
transform are ~i! it is linear, ~ii! the first-order trans-
form ~a1 5 1! corresponds to the common Fourier
transform, and ~iii! it is additive in index, ^a1^b1q̂ 5

a11b1q̂. The kernel of the inverse transform is
iven by Ba1

21~x, x9! 5 B2a1
~x, x9! 5 Ba1

*~x, x9!.
Other properties can be found in Refs. 1–8.

The fractional Fourier transform can be realized
optically like the ordinary Fourier transforma-
tion.3,4,9–14 Thus it has many applications in optical
signal processing.3–6,9–11,13–22
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The fractional Fourier transform definition can
easily be extended to two dimensions if one assumes
a separable kernel.4,12–14,23 These definitions have
separable kernels and possess properties similar to
the 1-D transform. The separable two-dimensional
~2-D! fractional Fourier transform of the orders a1 for
the x axis and a2 for the y axis for 0 , ua1u , 2 and 0 ,
ua2u , 2, respectively, is defined as

^a1,a2@ f ~x, y!#~x, y!

5 *
2`

`

*
2`

`

Ba1,a2
~x, y; x9, y9! f ~x9, y9!dx9dy9, (3)

where

Ba1, a2
~x, y; x9, y9! 5 Ba1

~x, x9!Ba2
~y, y9!. (4)

Both x and y are interpreted as dimensionless vari-
ables.

The properties and optical implementations of the
2-D fractional Fourier transform are given in Refs. 12,
14, 24, and 25. The separable 2-D fractional Fourier
transform is nothing but a repetition of the transform
in the x and the y directions independently and is not
the most general definition possible in two dimensions.
In this paper we propose a nonseparable definition for
the 2-D fractional Fourier transform that is more gen-
eral than the separable one. We first explain our mo-
tivation in looking for a new, nonseparable transform.
After giving the new definition, we derive its proper-
ties. Both the digital and optical implementations of
the nonseparable definition are presented. Finally,
we use an image-restoration example to justify the
usefulness of the nonseparable definition by showing
that better performance is obtained compared with the
separable definition.



h

g
a

f

b

2. Motivation

Many properties of the Fourier transform generalize
trivially to two dimensions, but new properties exist
in two dimensions, such as the following: If f ~x, y!

as a 2-D Fourier transform F~x, y!, then f ~ax 1 by,
cx 1 dy! has a 2-D Fourier transform given by

G~x, y! 5
1
D

FSdx 2 cy
D

,
2bx 1 ay

D D , (5)

where D 5 ad 2 bc.26 Because the Fourier trans-
form is a special case of the fractional Fourier trans-
form, we look for a similar property for the 2-D
fractional Fourier transform; however, the 2-D frac-
tional Fourier transform does not have a similar
property. If Fa1,a2

~x, y! is the 2-D fractional Fourier
transform of f ~x, y! with the orders a1 and a2, then
Ga1,a2

~x, y!, which is the 2-D fractional Fourier trans-
form of f ~ax 1 by, cx 1 dy!, cannot be represented in
terms of a scaled version of Fa1,a2

~x, y! with a relation
similar to that of Eq. ~5!. This is one of our motiva-
tions for searching for a new nonseparable definition.

The separable definition has two parameters, a1
and a2. The function is fractionally Fourier trans-
formed along the x and the y axes with the orders a1

Fig. 1. Transform orders and directions for ~a! the separable
transform and ~b! the nonseparable transform.
and a2, respectively, as shown in Fig. 1~a!. More
enerally, we wish to specify both the directions x9
nd y9 and the orders a1 and a2 of the 2-D transform,

as can be seen in Fig. 1~b!. This is another motiva-
tion for us to look for a new definition for the 2-D
fractional Fourier transform.

3. Nonseparable Fractional Fourier Transform

Here we present our new, nonseparable definition for
the 2-D fractional Fourier transform. We define the
nonseparable fractional Fourier transform in such a
manner that it corresponds to the fractional Fourier
transformation along the arbitrary x9 and y9 direc-
tions with the orders a1 and a2, respectively. It is
equivalent to the rotation of the x and the y axes
ollowed by the separable definition. First, the x

axis is rotated by an angle u1, and the y axis is rotated
y an angle u2. Thus the x axis is mapped to x9,

which makes the angle u1 with the x axis, and the y
axis is mapped to y9, which makes the angle u2 with
the y axis. This is equivalent to mapping f ~x, y! to
f @~cos u1x 1 sin u1y!ycos~u1 2 u2!, ~2sin u2x 1
cos u2y!ycos~u1 2 u2!#. Then the 2-D separable frac-
tional Fourier transform operator with the orders a1
and a2 is applied to f @~cos u1x 1 sin u1y!ycos~u1 2 u2!,
~2sin u2x 1 cos u2y!ycos~u1 2 u2!#. The resulting
transformation is the new, nonseparable 2-D frac-
tional Fourier transform.

The new definition has four parameters: a1, a2,
u1, and u2. The parameter u1 is the angle between
the x axis and the x9 axis, a1 is the order specified
along the x9 direction, u2 is the angle between the y
axis and the y9 axis, and a2 is the order along the y9
direction. The nonseparable fractional Fourier
transform can be written mathematically as

^u1,u2

a1,a2@ f ~r!#~r! 5 *
2`

`

*
2`

`

Ba1,a2,u1,u2
~r, r(! f ~r(!dr(, (6)

where

Ba1,a2,u1,u2
~r, r(!

5 Af1,f2
exp@ip~rTAr 1 2rTBr( 1 r(TCr(!#, (7)

Af1,f2
5 Af1

Af2
, r 5 @x y#T, r( 5 @x0 y0#T,
Here it is important to note that x9 and y9 determine
the directions along which we specify the orders,
whereas x0 and y0 are merely dummy variables. We
denote this nonseparable fractional Fourier operator
A 5 Fcot f1 0
0 cot f2

G , (8)

B 5 32
cos u2 csc f1

cos~u1 2 u2!

sin u1 csc f1

cos~u1 2 u2!

2
sin u2 csc f2

cos ~u1 2 u2!
2

cos u1 csc f2

cos~u1 2 u2!
4 , (9)

C 5 3
cos2 u2

cos2~u1 2 u2!
cot f1 1

sin2 u2

cos2~u1 2 u2!
cot f2 2

sin u1 cos u2

cos2~u1 2 u2!
cot f1 1

sin u2 cos u1

cos2~u1 2 u2!
cot f2

2
sin u1 cos u2

cos2~u1 2 u2!
cot f1 1

sin u2 cos u1

cos2~u1 2 u2!
cot f2

cos2 u1

cos2~u1 2 u2!
cot f2 1

sin2 u1

cos2~u1 2 u2!
cot f1

4 . (10)
10 August 1998 y Vol. 37, No. 23 y APPLIED OPTICS 5445



a1,a2

i
t
F
r
l
s
s
t

t

5

by ^u1,u2
, whereas the separable transform is denoted

by ^a1,a2. The term ^u1

a1
,
,
u2

a2 reduces to ^a1,a2 if one
chooses u1 5 u2 5 0.

This definition with four parameters is specified by
ts nonseparable kernel. We constructed the defini-
ion in such a way that it corresponds to the fractional
ourier transformation along arbitrary x9 and y9 di-
ections. The following theorem states that, when a
inear distortion is applied to the function, its non-
eparable fractional Fourier transform can be repre-
ented in terms of the linearly distorted form of the
ransform of the original function.

Theorem 1. The nonseparable fractional Fourier
ransform of f ~ax 1 by, cx 1 dy! with the orders a1

and a2 can be represented in terms of the nonsepa-
rable fractional Fourier transform of f ~x, y! as
Proof: The proof of this property follows directly
from the definition of the nonseparable fractional
446 APPLIED OPTICS y Vol. 37, No. 23 y 10 August 1998
Fourier transform despite the fact that considerable
algebraic manipulations are involved.

We mentioned in Section 2 that the nonseparable
definition is a generalization of the separable defini-
tion. The reader may wonder whether even more
general definitions that employ more than four pa-
rameters are also possible. For instance, we might
propose a six-parameter transform defined as the
separable fractional Fourier transform of f ~ax 1 by,
cx 1 dy! with the orders a1 and a2. We now show
that such a definition is redundant because the sep-
arable fractional Fourier transform of f ~ax 1 by, cx 1
dy! for any parameters a1, a2, a, b, c, and d can be
represented as a scaled version of the four-parameter
nonseparable transform.
Theorem 2: The fractional Fourier transform of
f ~ax 1 by, cx 1 dy! with the orders a1 and a2, accord-
^u1,u2

a1,a2@ f ~ax 1 by, cx 1 dy!#~x, y! 5 k^u 91,u 92
a 91,a 92 @ f ~x, y!#~a9x 1 b9y, c9x 1 d9y!, (11)

k 5 exp~Cf1
x2 1 Cf2

y2 1 Cf 91,f 92
xy!,

f91 5 f1 cot21F Du1u2

~a cos u1 1 b sin u2!
2 2 ~c cos u1 1 d sin u2!

2G ,

f92 5 f2 cot21F Du1u2

~d cos u2 1 c sin u1!
2 2 ~b cos u2 1 c sin u1!

2G ,

u91 5 cos21H~a cos u1 1 b sin u2!
2@~d cos u2 1 c sin u1!

2 2 ~b cos u2 1 a sin u1!
2#

Du1u2

J1y2

,

u92 5 cos21H~d cos u2 1 c sin u1!
2@~a cos u1 1 b sin u2!

2 2 ~c cos u1 1 d sin u2!
2#

Du1u2

J1y2

,

a9 5
csc f1@~d cos u2 1 c sin u1!cos u1 1 ~b cos u2 1 a sin u2!sin u2#

csc f91 cos~u1 2 u2!
,

b9 5
csc f2@~c cos u1 1 d sin u2!cos u1 1 ~a cos u1 1 b sin u2!sin u2#

csc f91 cos~u1 2 u2!
,

c9 5
csc f1@~d cos u2 1 c sin u1!sin u1 2 ~b cos u2 1 a sin u1!cos u2#

csc f92 cos~u1 2 u2!
,

d9 5
csc f2@~a cos u1 1 b sin u2!cos u2 2 ~c cos u1 1 d sin u2!sin u1#

csc f92 cos~u1 2 u2!
,

where we employ the intermediate variables

Du1u2
5 @~a cos u1 1 b sin u2!

2~d cos u2 1 c sin u1!
2 2 ~b cos u2 1 a sin u1!

2~c cos u1 1 d sin u2!#,

Cf1
5

cot f1$@~a cos u1 1 b sin u2!
2 2 ~c cos u1 1 d sin u2!

2# 2 Du1u2
%

$@~a cos u1 1 b sin u2!
2 2 ~c cos u1 1 d sin u2!

2# 2 cot2 f1 Du1u2
%
,

Cf2
5

cot f2$@~d cos u2 1 c sin u1!
2 2 ~b cos u2 1 c sin u1!

2# 2 Du1u2
%

$@~d cos u2 1 c sin u1!
2 2 ~b cos u2 1 a sin u1!

2# 2 cot2 f2 Du1u2
%
,

Cf 91,f 92
5 a9b9 cot f91 1 c9d9 cot f92.
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a scaled version of the nonseparable fractional Fou-
rier transform of f ~x, y!:
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where the intermediate variables are

k 5
1
D

exp~Cf1
x2 1 Cf2

y2 1 Cf91,f 92
xy!,

D 5 ~ad 2 bc!,

Cf1
5

cot f1@D
4~a2 2 c2! 2 ~a2d2 2 b2c2!2#

@D4~a2 2 c2! 2 cot2 f1~a
2d2 2 b2c2!2#

,

Cf2
5

cot f2@D
4~d2 2 b2! 2 ~a2d2 2 b2c2!2#

@D4~d2 2 b2! 2 cot2 f2~a
2d2 2 b2c2!2#

,

Cf 91,f 92
5 a9b9 cot f91 1 c9d9 cot f92.

Proof: This theorem can easily be proved by use
of the definitions of the separable and the nonsep-
arable 2-D fractional Fourier transforms through
straightforward yet lengthy algebraic manipula-
tions.

Theorem 2 states that the separable fractional
Fourier transform of any function f ~ax 1 by, cx 1

y! can be represented as a linearly distorted ver-
ion of the nonseparable fractional Fourier trans-
orm of the original function. This result indicates
hat the six-parameter definition is redundant.
n analogy with the common Fourier transform
ight be useful. We know that, when a function is

caled, its Fourier transform can be represented as
scaled version of the Fourier transform of the

riginal function. Thus it is redundant to define a
ransform called the “scaled Fourier transform.”
ikewise, a definition for the 2-D fractional Fourier
ransform with more than four parameters will be
edundant.
4. Properties of the Nonseparable Fractional Fourier
Transform

Theorem 3: The kernel of the inverse transform
is

Ba1,a2,u1,u2

21 ~r, r (! 5 A2f1,2f2
exp@2ip~rTCr 1 2rTBTr (

1 r (TAr (!#, (12)

where A, B, and C are given in Eqs. ~8!–~10!. Note
that the kernel of the inverse transform Ba1,a2,u1,u2

21 ~r,
r (! is not equivalent to B2a1,2a2,2u1,2u2

~r, r (! or
B2a1,2a2,u1,u2

~r, r!.
Proof: We know that the fractional Fourier

ransform according to the new definition can be de-
omposed into an affine transform followed by the
eparable definition. Thus

^u1,u2

a1,a2@ f ~x, y!# 5 ^a1,a2$ f @~cos u1x 1 sin u1y!ycos~u1 2 u2!,

~2sin u2x 1 cos u2y!ycos~u1 2 u2!#%.

(13)

y using the inverse kernel given in Eq. ~3! and ap-
lying the inverse of the linear coordinate distortion,
e find that the result follows easily.

Theorem 4: The nonseparable definition is uni-
ary:

B*a1,a2,u1,u2
~x, y; x0, y0! 5 Ba1,a2,u1,u2

21 ~x0, y0; x, y!. (14)

Proof: By using the kernel of the nonseparable
transform in Eq. ~6! and its inverse in Eq. ~12!, we

nd that the proof follows.

Theorem 5: Let Wf ~x, y; mx, my! be the Wigner
istribution of f ~x, y!. If g~x, y! is the nonseparable
ractional Fourier transform of f ~x, y! with the pa-
^a1,a2@ f ~ax 1 by, cx 1 dy!#~x, y! 5 k^u 91,u 92
a 91,a 92 @ f ~x, y!#~a9x 1 b9y, c9x 1 d9y!,

D 5 ~ad 2 bc!, k 5
1
D

exp@Cf1
x2 1 Cf2

y2 1 Cf 91,f 92
xy#,

f91 5 f1 cot21F~a2d2 2 b2c2!

D2~a2 2 c2! G , f92 5 f2 cot21F~a2d2 2 b2c2!

D2~d2 2 b2! G ,

u91 5 cos21F a2~d2 2 b2!

~a2d2 2 b2c2!G
1y2

, u92 5 cos21F d2~a2 2 c2!

~a2d2 2 b2c2!G
1y2

,

a9 5
csc f1~d cos u1 1 b sin u2!

D csc f91 cos~u1 2 u2!
, b9 5

csc f2~c cos u1 1 a sin u2!

D csc f92 cos~u1 2 u2!
,

c9 5
csc f1~d sin u1 2 b cos u2!

D csc f92 cos~u1 2 u2!
, d9 5

csc f2~a cos u2 2 c sin u1!

D csc f92 cos~u1 2 u2!
,

10 August 1998 y Vol. 37, No. 23 y APPLIED OPTICS 5447



d
i
t

T
f
t
R
f
t

t
w
H

a
t

r
t

p
d
i
p
t

a

5

rameters a1, a2, u1, and u2, then the Wigner distribu-
tion of g~x, y! is related to that of f ~x, y! through the
following:

Wg~r, m! 5 Wf~Ar 1 Bm, Cr 1 Dm!, (15)

r 5 @x y#T, m 5 @mx my#
T, (16)

where

A 5
1

cos~u1 2 u2!
F cos f1 cos u1 cos f2 sin u1

2cos f1 sin u2 cos f2 cos u2
G ,

(17)

B 5
1

cos~u1 2 u2!
F2sin f1 cos u1 2sin f2 sin u1

sin f1 sin u2 2sin f2 cos u2
G ,

(18)

C 5
1

cos~u1 2 u2!
F sin f1 cos u2 sin f2 sin u2

2sin f1 sin u1 sin f2 cos u1
G ,

(19)

D 5
1

cos~u1 2 u2!
F cos f1 cos u2 cos f2 sin u2

2cos f1 sin u1 cos f2 cos u1
G .

(20)

Proof: This is again a direct consequence of the
efinition of the nonseparable transform and the def-
nition of the Wigner distribution. The Wigner dis-
ribution is defined as

W~r, m! 5 *
2`

`

f Sr 1
r*

2 Df*Sr 2
r*

2 Dexp~i2pmTr*!dr*,

(21)

where

r 5 @x y#T, r* 5 @x9 y9#T, m 5 @mx my#
T. (22)

he relation between the Wigner distribution of a 2-D
unction and the Wigner distribution of the affine-
ransformed version of that 2-D function is given in
ef. 27. We also know the effect of the separable 2-D

ractional Fourier transform on the Wigner distribu-
ion.24 The above result follows easily from these

facts when they are applied succesively. Results of a
similar nature for various kinds of transforms are
discussed in Ref. 28.

It should be noted that the nonseparable transform
discussed in this paper is not a fractional operator in
the strict sense. For u1 5 u2 5 0, it does correspond
o the identity transform and the Fourier transform
hen a1 5 a2 5 0 and a1 5 a2 5 1, respectively.
owever, the operator ^u1

a1
,
,
u2

a2 is not the fractional
power of ^u1,u2

1,1 . Nevertheless, because the trans-
form is motivated by the desire to fractional Fourier-
transform an image along directions other than the
orthogonal x and y axes and because its applications
re natural extensions of those of the separable frac-
ional Fourier transform, we find it appropriate to
448 APPLIED OPTICS y Vol. 37, No. 23 y 10 August 1998
efer to it as the nonseparable fractional Fourier
ransform.

5. Digital Implementation of the Nonseparable
Transform

Because of the oscillatory nature of the fractional
Fourier transform, its digital implementation is time
consuming with simple integration techniques.
However, in Ref. 29 a fast algorithm for the frac-
tional Fourier transform is presented. Although
direct computation would require O~N2! multiplica-
tions, this fast algorithm computes the transform in
O~N log N! time.

To use the nonseparable definition for practical
urposes, we need a fast digital implementation. By
efinition, it is composed of a linear distribution that
s followed by the separable definition. In image
rocessing several algorithms exist for linear distor-
ions.30,31 To implement the nonseparable fractional

Fourier transform of f ~x, y! with the parameters
1, a2, u1, and u2, we first compute f @~cos u1x 1

sin u1y!ycos~u1 2 u2!, ~2sin u2x 1 cos u2y!ycos~u1 2 u2!#.
This is achieved by use of the bilinear interpolation
method. Then the fast algorithm given in Ref. 29 is
applied. The resulting transformation is the nonsep-
arable fractional Fourier transform. The computa-
tion time is again of the order of O~N log N!, where N
is the number of pixels in the 2-D function ~image!.

6. Optical Implementation of the Nonseparable
Transform

To implement the nonseparable fractional Fourier
transform optically, it is necessary to employ anamor-
phic or cylindrical lenses and anamorphic sections of
free space. When a distribution of light passes
through an anamorphic lens, it is multiplied by the
function

expF2ipS x2

lfx
1

y2

lfy
1

xy
lfxy

DG , (23)

where fx, fy, and fxy are the parameters of the lens.
Such a lens can be simulated by two cylindrical lenses
that make appropriate angles with the x and the y
axes. When a distribution of light propagates

Fig. 2. Optical setup for simulating anamorphic sections of free
space.
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through an anamorphic free space, it is convolved by
the function

expFipS x2

ldx
1

y2

ldy
1

xy
ldxy

DG , (24)

here dx, dy, and dxy are the parameters of the ana-
morphic free space. Such anamorphic sections of free
space can be simulated by use of anamorphic lenses, as
shown in Fig. 2. This is based on the fact that con-
volution in the space domain corresponds to multipli-
cation in the Fourier domain. The parameters dx, dy,
and dxy of the anamorphic sections of free space that
we are simulating are related to the parameters of the
anamorphic lens fx, fy, and fxy, according to

dx 5
s4~ fxy

2 2 fx fy!

l2fx fxy
2 , dy 5

s4~ fxy
2 2 fx fy!

l2fy fxy
2 , (25)

dxy 5
s4~ fx fy 2 fxy

2 !

2l2fx fy fxy
, (26)

here s is the scale factor associated with the Fourier
blocks and is given by s 5 =lf, with f being the focal
length of the spherical lens used to realize the Fourier
transforms. Thus by control of the parameters of
the lenses, it is possible to simulate sections of ana-
morphic free space with desired parameters.

If an input function f# ~x# , y#! is given with its argu-
ments in meters, we can then introduce the input
scale factors sxin
and syin

and the output scale factors
sxout

and syout
to obtain the function f ~x, y! with dimen-

sionless arguments, according to f ~x, y! 5 f# ~sxin
, syin

!.
The output is given by Eq. ~6! in a form that again
takes dimensionless arguments. It can easily be
converted into a form whose arguments are in meters
by substitution of ~x#ysxout

, y#ysyout
! for ~x, y!.

With this understanding, the system shown in Fig.
will realize the nonseparable transform with the

pecified parameters f1, f2, u1, u2, sxin
, sxout

, and syout
if

e choose the design parameters dx, dy, dxy, fx1, fx2,
fxy1, fx2, fy2, and fxy2 according to the following:
Fig. 3. Optical setup for realizing the nonseparable fractional
Fourier transform.
dx 5
sxin

sxout
cos~u1 2 u2!

2l cos u2 csc f1
, (27)

dy 5
syin

syout
cos~u1 2 u2!

2l cos u1 csc f2
, (28)

dxy 5
sxin

syout
cos~u1 2 u2!

2l sin u2 csc f2
5

2syin
sxout

cos~u1 2 u2!

2l sin u1 csc f1
, (29)

1
lfx1

5
2 cos u2 csc f1

sxin
sxout

cos~u1 2 u2!
2

cos2 u2 cos f1 1 sin2 u2 cot f2

sxin

2 cos2~u1 2 u2!
, (30)

1
lfy1

5
2 cos u1 csc f2

syin
syout

cos~u1 2 u2!
2

cos2 u1 cos f2 1 sin2 u1 cot f1

syin

2 cos2~u1 2 u2!
, (31)

1
lfxy1

5
2 sin u2 csc f2

sxin
syout

cos~u1 2 u2!
1

2 sin u1 cos u2 cot f1 2 2 cos u1 sin u2 cot f2

sxin
syin

cos2~u1 2 u2!
, (32)

1
lfx2

5
2 cos u2 csc f1

sxin
sxout

cos~u1 2 u2!
2

cot f1

sxout

2 , (33)

1
lfy2

5
2 cos u1 csc f2

syin
syout

cos~u1 2 u2!
2

cot f2

syout

2 , (34)

1
lfxy2

5
2 sin u2 csc f2

sxin
syout

cos~u1 2 u2!
. (35)
10 August 1998 y Vol. 37, No. 23 y APPLIED OPTICS 5449
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Unfortunately this system does not allow the spec-
ification of all four of the scale parameters sxin

, syin
,

sxout
, and syout

independently. If we specify sxin
and

yin
, then sxout

and syout
must be chosen in a way

to satisfy the following:

sxout

syout

5
2sxin

sin u1 csc f1

syin
sin u2 csc f2

. (36)

If we specify sxout
and syout

instead, then sxin
and syin

must be chosen in a way to satisfy the following:

sxin

syin

5
2sxout

sin u2 csc f2

syout
sin u1 csc f1

. (37)

7. Application to Signal Restoration

Fractional Fourier domain filtering2,32–38 has been
applied successfully to the restoration of both 1-D and
signals and 2-D images. Allowing different trans-
form orders along the x and the y directions gives
reater flexibility and results in smaller mean-square
rrors ~MSE’s! in the restoration of images. This

flexibility is exploited in Ref. 39. However, in Ref.
39 the separable fractional Fourier transform is em-
ployed so that the fractional transform orders cannot
be specified along arbitrary directions but are re-
stricted along the orthogonal x and y axes. Here we
show that allowing the transform orders to be speci-
fied along arbitrary directions results in greater flex-
ibility and further reduction in estimation error.

Consider the following signal observation model:

o 5 *~f! 1 n, (38)

where *~. . .! is a linear system that degrades the
desired signal f and n is an additive-noise term.
Our problem is to recover f as closely as possible.
The error criterion to be minimized is the MSE. It is
assumed that the correlation functions of the input
and the noise processes are known: Rf ~x, y; x9, y9! 5
E@ f ~x, y! f ~x9, y9!#, Rn~x, y; x9, y9! 5 E@n~x, y!n~x9, y9!#.

Fig. 4. ~a! Original image. ~b! N
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We first apply the fractional Fourier transform oper-
ator ^u1

a1
,
,
u2

a2 to the observation o to transform it to the
fractional Fourier domain characterized by the four
parameters a1, a2, u1, and u2. Then we apply a mul-
tiplicative filter g in this domain. Finally, we in-
verse transform to the original space domain. Thus
the estimate can be expressed in the form

f̂ 5 $^u1,u2

a1,a2%21@g z ^u1,u2

a1,a2~o!#,

where $^u1

a1
,
,
u2

a2%21 is the inverse nonseparable frac-
tional Fourier transform operator. The MSE is

se
2 5 E@uf 2 f̂u2#.

Because the nonseparable fractional Fourier trans-
form is unitary, this MSE is equal to the error in the
transform domain. It can be shown by modification
of the solution in Ref. 39 that the optimal filter func-
tion that minimizes the MSE is

gopt~x, y! 5
Rf̃ ,õ~x, y; x9, y9!

Rõ,õ~x, y; x9, y9!
. (39)

In Eq. ~39!, f̃ and õ are the nonseparable fractional
Fourier transforms of f ~x, y! and o~x, y!, respectively,
with the parameters a1, a2, u1, and u2. Rf̃, õ~x, y; x9,
y9! and Rõ,õ~x, y; x9, y9! are the correlation functions in
the transform domain. They are defined as

Rf̃ , õ~x, y; x9, y9! 5 E@ f̃ ~x, y!õ~x9, y9!#, (40)

Rõ,õ~x, y; x9, y9! 5 E@õ~x, y!õ~x9, y9!#. (41)

These correlation functions can easily be calculated
from the correlation functions in the space domain.
The optimal choice of a1, a2, u1, and u2 are those that
result in the minimum MSE.

We now consider an example that benefits from the
use of the nonseparable transform. We choose a de-

image with a value of SNR 5 1.
oisy



a

u
i
~
o
p
s

terministic additive distortion with well-defined
time–frequency characteristics:

f ~x, y! 1 C$exp@1.6ip~x9 2 7.3!2#

1 exp@1.4ip~y9 1 7.3!2#%, (42)

where f ~x, y! is the desired image and C is a constant
that allows us to adjust the signal-to-noise ratio
~SNR! to different values. The original and the dis-
torted images can be seen in Figs. 4 and 5.

The two chirps that constitute the distortion are
not oriented along the x and the y directions but along
arbitrary x9 and y9 directions. We consider two cas-
es: SNR 5 1 and SNR 5 0.1. The SNR is defined
as

SNR 5
** u f ~x, y!u2dxdy

** un~x, y!u2dxdy

. (43)

Fig. 5. Original image. ~b! Noi

Fig. 6. Images with a value of SNR 5 1: ~a! Image filtered by the
We compare the use of our nonseparable transform
with the separable transform. The method in Ref.
39 makes use of the separable definition and mini-
mizes the MSE by optimization over all possible com-
binations of a1 and a2. With the same approach the
optimum transform orders are found to be a1 5 0.35
nd a2 5 20.4. ~Remember that the separable

transform is a special case of the nonseparable trans-
form with u1 5 u2 5 0.! The restored images for
SNR 5 1 and SNR 5 0.1 can be seen in Figs. 6~a! and
7~a!, respectively.

When we use the filtering method based on the
nonseparable transform, we optimize over u1 and u2
in addition to a1 and a2. The optimum parameters
are found to be ~a1 5 0.35, u1 5 15°! and ~a2 5 20.4,

2 5 30°!. Figures 6~b! and 7~b! show the restored
mages for SNR 5 1 and SNR 5 0.1, respectively.
Because of computational constraints, we restrict
ur search to a local minimum only. It might be
ossible to obtain even better results by use of more
ophisticated optimization methods.!

age with a value of SNR 5 0.1.

able transform. ~b! Image filtered by the nonseparable transform.
sy im
separ
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The improvement when SNR 5 0.1 is immediately
visible when Figs. 7~a! and 7~b! are compared. In
this case the nonseparable definition gives a MSE of
0.020, whereas the separable definition results in a
MSE of 0.101. Thus the MSE is reduced by a factor
of 5. When SNR 5 1, the visible improvement is less
evident, but nevertheless the MSE has decreased
from 0.029 to 0.0084, and the MSE is reduced by a
factor of 3. ~The MSE values given here are all nor-
malized by the energy of the original image.!

Figures 8 and 9 illustrate the nature of the mini-
mum point as they show how the MSE changes as
either u1 or u2 is perturbed from its optimum value.
We expect 2-D fractional Fourier domain filtering to
find many applications in optical systems. This is
because the types of distortion for which fractional
Fourier domain filtering achieves the greatest bene-
fits arise naturally in optical systems. For example,
line defects on optical components produce a chirplike
distortion. Because the angle between the defects
will not necessarily be 90°, use of the nonseparable
transform will result in greater improvements com-
pared with use of the separable fractional Fourier
transform and the ordinary Fourier transform.
452 APPLIED OPTICS y Vol. 37, No. 23 y 10 August 1998
Such filtering schemes could also find application in
optical systems to remove twin images in hologra-
phy.40

8. Conclusion

The fractional Fourier transform has been general-
ized to two dimensions by application of the 1-D def-
inition in the x and the y directions separately.

ecause the transform defined in this manner is sep-
rable, its properties are similar to that of the 1-D
ransform. The separable definition fails to satisfy
ertain properties that the common Fourier trans-
orm satisfies. When a linear distortion is applied to
he function, its 2-D fractional Fourier transform can-
ot be represented as a linearly distorted version of
he fractional Fourier transform of the original func-
ion. In this paper we have defined the nonsepara-
le fractional Fourier transform for which it is
ossible to specify the transform orders along arbi-
rary directions without being constrained to the or-
hogonal x and y axes. We have also shown that an
ven more general definition is redundant because it
an be expressed as a scaled version of the definition
Fig. 7. Images with a value of SNR 5 0.1: ~a! Image filtered by the separable transform. ~b! Image filtered by the nonseparable
transform.
Fig. 8. Normalized MSE as a function of u1 for a value of SNR 5 1.

Fig. 9. Normalized MSE as a function of u2 for a value of SNR 5 1.



based on a modular lens system,” Appl. Opt. 34, 6016–6020
proposed in this paper. The digital and optical im-
plementations of the nonseparable definition have
been given, and its properties have been presented.
Finally, we have considered an application that jus-
tifies our new definition.
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