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Abstract. The mutual intensity distribution of a light beam may contain available
information. The task of encoding a given mutual intensity distribution is addressed in this
paper. Various approaches for encoding the mutual intensity function have been previously
proposed. However, all of them provide low energetic efficiency and commonly require
sophisticated production methods. The idea of using a phase-only filter for performing this
synthesis is hereby investigated. The proposed method is numerically examined for the case
of placing the mutual intensity generating filter in the fractional Fourier domain.

Keywords: Statistical optics, mutual intensity, fractional Fourier transform, phase-only
filtering

1. Introduction

The behaviour of optical systems is influenced by the degree
of partial coherence. In this paper a quasi-monochromatic
light with different degrees of spatial coherence is considered.
Note that the term ‘spatially coherent’ implies a deterministic
relation between two points of the scene.

A detailed treatment of spatially incoherent systems is
well introduced by [1, 2]. The mutual intensity of a scalar
field distribution u(P, t) is defined as

J12(P1, P2) = 〈u(P1, t)u
∗(P2, t)〉 (1)

where 〈· · ·〉 is a time-averaging operation. The normalized
mutual intensity becomes

µ12 = J12(P1, P2)√
I (P1)I (P2)

(2)

where I (P ) is the intensity at location P .
These definitions are adequate for a quasi-monochro-

matic beam. For the more general case of a spatially and
temporally incoherent beam, one needs to use the mutual
coherence function defined as


12(τ ) = 〈u(P1, t + τ)u∗(P2, t)〉. (3)

Its normalized value is denoted as γ12(τ ). Obviously,

12(0) = J12(P1, P2).

For totally temporally and spatially coherent light one
has

|γ12(τ )| = |µ12| = 1 (4)

while for spatially incoherent light one has

J12(P1, P2) = kI (P1)δ(P1 − P2) (5)

and
|γ12(τ )| = |µ12| = δ(P1 − P2). (6)

In [3], the propagation of mutual intensity through linear
quadratic-phase systems, having a transformation kernel of
Bp (where p is the transformation order), was shown to be
expressed as

Jp(x1, x2) =
∫ ∞

−∞

∫ ∞

−∞
Bp(x1, x

′
1)

× B−p(x2, x
′
2)J (x

′
1, x

′
2) dx ′

1 dx ′
2 (7)

where J is the given mutual intensity and Jp is the mutual
intensity of the light after propagating through this system.
Note that the fractional order p is related to the free space
propagation distances and the focal lengths of the lenses
used in the optical implementation of the fractional Fourier
transformer. The authors of [3] discussed the case where
the transformation used is the fractional Fourier transform
(FRT) [4,5]. Thus, in that case Jp is a two-dimensional FRT
over the given mutual intensity J . In [6], this property was
used to synthesize (by proper filtering in the FRT domain)
a desired mutual intensity distribution. Additional recent
works dealing with mutual intensity synthesis may be found
in [7–10].

In this paper, we develop a mathematical expression
for synthesizing a desired mutual intensity distribution by
using a phase-only filter. This way the obtained light
efficiency is much higher and the production process of the
filter’s mask is much simpler. The computer simulations
demonstrate the synthesis ability using the phase-only filter
for a transformation kernelBp which is the kernel of the FRT.
However, the presented mathematical analysis is completely
general and valid for any other kernel of transformation
as well. For instance, a more general case is when the
chosen kernel Bp is the kernel of a canonical ABCD
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transformation [11, 12]. Note that when the FRT kernel
is used a proper optimization in a sense of minimal mean-
square error is applied to find the optimal fractional order p
of the transformation. As previously mentioned, variation
of the fractional order is related to changes in the free space
distances and the focal lengths of the lenses used in the optical
setup which implements the fractional Fourier transformer
module.

2. Motivation

The importance of the mutual coherence function is revealed
when considering a partially coherent system, in which
the signal cannot be represented properly by the complex
amplitude or the intensity distributions due to its ‘random-
process’ behaviour.

The initial motivation for this work was inspired by the
well known interview which Gabor gave when his Nobel
Prize was announced. When asked the question, ‘When
did you start working on holography?’ Gabor replied, ‘As
a high-school student I was puzzled that a photographic
plate midway between object and camera would show no
structure or pattern after being exposed and developed. Yet,
the information of the object must travel through that plane on
its way to the camera. How does the light carry information
from the object to the proper image plane?’

The answer to that question is fairly simple when
considering the coherence properties of light waves, for
the information travels by means of the mutual coherence
function. Had we measured the coherence function at any
arbitrary plane midway between the object and the camera,
all the information could have been extracted.

One of the conclusions from the above discussion is that
the mutual coherence function is a carrier of information in
optical systems, but is not utilized as such. The main reason
is that it is relatively easy to encode and decode information
from intensity or complex amplitude distributions by use
of SLMs and CCDs, while synthesizing and analysing the
coherence function of a light beam is much more difficult.
Coherent optical systems for signal processing are noisy
and exhibit speckles at their output. Evidently, incoherent
signal processing, which relies upon the intensity distribution
as a carrier of information, overcomes the speckle effect,
but usually requires more energy and allows only real and
non-negative inputs, i.e., less degrees of freedom. In
order to overcome the speckle noise and at the same time
allow complex amplitude distributions, a different type of
processing is required. Thus, having the ability to synthesize
and process mutual coherence functions with high energetic
efficiency gains ultimate significance. For instance, once
measuring the mutual coherence function the distortion
parameters of the media may be extracted. Synthesizing
the optimal distribution may allow us to overcome these
distortions; constructing a coherence processor allows one
to implement a more discriminate and more accurate optical
data processing device. A synthesis of special coherence
functions may be very applicable in the construction
of accurate measuring instrumentation (such as distance
measurement based on the coherence length or profile meter).

p2

Tp1
{...} Tp2

{...}

J x x0 1 2( , ) J x x0 1 2'( , ) J x x1 1 2'( , ) J x x1 1 2( , )

p1Optimal FRT of order Optimal FRT of order
H(x)

Figure 1. Schematic illustration of the mutual intensity
propagated through a fractional Fourier transforming system.

3. Mathematical analysis

The filtering setup is schematically illustrated in figure 1. In
this figure the transformation kernel is the kernel of the FRT.
We denote byJ d1 the desired output mutual intensity, byJ1 the
obtained output mutual intensity, and by J0 the input mutual
intensity. The definition of the mean-square error is

M =
∫ ∞

−∞

∫ ∞

−∞
|J d1 (x1, x2)− kJ1(x1, x2)|2 dx1 dx2 (8)

where k is a constant. This constant does not affect the
resulting phase-only filter and thus we can omit it from the
mathematical analysis. For unitary transformations (such as
the FRT),M may also be expressed on plane 1′ of figure 1:

M =
∫ ∞

−∞

∫ ∞

−∞
|J d1′(x1, x2)− kJ1′(x1, x2)|2 dx1 dx2. (9)

Referring again to figure 1, one may note that

J1′(x1, x2) =
∫ ∞

−∞

∫ ∞

−∞
B−p2(x1, x

′
1)

× Bp2(x2, x
′
2)J1(x

′
1, x

′
2) dx ′

1 dx ′
2

J0′(x1, x2) =
∫ ∞

−∞

∫ ∞

−∞
Bp1(x1, x

′
1) (10)

× B−p1(x2, x
′
2)J0(x

′
1, x

′
2) dx ′

1 dx ′
2

and that the input–output spectral mutual intensities
relationship is

J1′(x1, x2) = J0′(x1, x2)H(x1)H
∗(x2) (11)

whereH is our phase-only filter placed in the transformation
domain:

H(x) = exp[iw(x)] (12)

and w is the phase of the filter. Thus, using equations (9),
(11) and (12) one obtains

M =
∫ ∞

−∞

∫ ∞

−∞
{|J d1′(x1, x2)|2 + |H(x1)H

∗(x2)J0′(x1, x2)|2

− 2Re [J d
∗

1′ (x1, x2)H(x1)H
∗(x2)J0′(x1, x2)]} dx1 dx2.

(13)

Note that since we are dealing with a phase-only filter

|H(x1)H
∗(x2)|2 = 1 (14)

and thus

M =
∫ ∞

−∞

∫ ∞

−∞
{|J d1′(x1, x2)|2 + |J0′(x1, x2)|2

− 2Re [J d
∗

1′ (x1, x2)H(x1)H
∗(x2)J0′(x1, x2)]} dx1 dx2.

(15)
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Now we will allow variations in the phase of the filter

w(x) −→ w(x) + δw(x) (16)

and observe their effect over M . The optimal phase-only
filter is the filter whose variations cause zero effects overM
because only the optimal filter minimizesM . The condition
that imposes zero effects over M , will yield an iterating
equation for the phase-only filter as we are about to derive.
In order to avoid convergence to local minimas, the initial
conditions of the iterative equation have to be wisely chosen.
We will assume that the variations are small and that terms
such as δ2

w are negligible:

exp{i[w(x) + δw(x)]} ≈ exp[iw(x)][1 + iδw(x)]. (17)

Substituting this relation in equation (15), yields

Mδ =
∫ ∞

−∞

∫ ∞

−∞
{|J d1′(x1, x2)|2 + |J0′(x1, x2)|2

− 2Re [J d
∗

1′ (x1, x2)J0′(x1, x2) exp[i(w(x1)

− w(x2))][1 + i(δw(x1)− δw(x2))]]} dx1 dx2. (18)

We will define
Mδ = M + εM (19)

where M is the part that does not depend upon the phase
variations of the filter. From equation (18) one obtains

εM = 2
∫ ∞

−∞

∫ ∞

−∞
{Re [J d

∗
1′ (x1, x2)J0′(x1, x2)][δw(x1)

− δw(x2)] sin(w(x1)− w(x2))

+ Im [J d
∗

1′ (x1, x2)J0′(x1, x2)][δw(x1)

− δw(x2)] cos(w(x1)− w(x2))} dx1 dx2. (20)

Rewriting the last equation, we have

εM = 2
∫ ∞

−∞

∫ ∞

−∞
{δw(x1)[Re [J d

∗
1′ (x1, x2)

× J0′(x1, x2)] sin(w(x1)− w(x2))

+ Im [J d
∗

1′ (x1, x2)J0′(x1, x2)] cos(w(x1)− w(x2))]

− δw(x2)[Re [J d
∗

1′ (x1, x2)

× J0′(x1, x2)] sin(w(x1)− w(x2))

+ Im [J d
∗

1′ (x1, x2)J0′(x1, x2)]

× cos(w(x1)− w(x2))]} dx1 dx2. (21)

Performing a change of variables x2 −→ x1 and x1 −→ x2

in the first term of equation (21), yields

εM = 2
∫ ∞

−∞
δw(x2)

{ ∫ ∞

−∞
−Re [J d

∗
1′ (x2, x1)J0′(x2, x1)

+ J d
∗

1′ (x1, x2)J0′(x1, x2)] × sin(w(x1)− w(x2))

+ Im [J d
∗

1′ (x2, x1)J0′(x2, x1)− J d∗
1′ (x1, x2)J0′(x1, x2)]

× cos(w(x1)− w(x2)) dx1

}
dx2. (22)

Since we wish εM to be zero for any possible phase variation
δw, we restrict∫ ∞

−∞
{GR(x1, x2) sin(w(x1)− w(x2))

+GI(x1, x2) cos(w(x1)− w(x2))} dx1 = 0 (23)

where

GR(x1, x2) = −Re [J d
∗

1′ (x2, x1)J0′(x2, x1)

+ J d
∗

1′ (x1, x2)J0′(x1, x2)] (24)

GI(x1, x2) = Im [J d
∗

1′ (x2, x1)J0′(x2, x1)

− J d∗
1′ (x1, x2)J0′(x1, x2)].

Using the trigonometric relations

sin(w(x1)− w(x2)) = sin(w(x1)) cos(w(x2))

− cos(w(x1)) sin(w(x2)) (25)

cos(w(x1)− w(x2)) = sin(w(x1)) sin(w(x2))

+ cos(w(x1)) cos(w(x2))

one obtains

sin(w(x2))

[ ∫ ∞

−∞
(GR(x1, x2) cos(w(x1))

+GI(x1, x2) sin(w(x1))) dx1

]

= cos(w(x2))

[ ∫ ∞

−∞
(GR(x1, x2) sin(w(x1))

−GI(x1, x2) cos(w(x1))) dx1

]
. (26)

Thus,

tan(w(x2)) =
{ ∫ ∞

−∞
(GR(x1, x2) sin(w(x1))

−GI(x1, x2) cos(w(x1))) dx1

}

×
{ ∫ ∞

−∞
(GR(x1, x2) cos(w(x1))

+GI(x1, x2) sin(w(x1))) dx1

}−1

. (27)

Note that equation (27) is an iterating equation, from
assuming a certain solution for w(x1), one may compute the
phase w(x2) in the next iteration:

w(x2) = arctan

[{ ∫ ∞

−∞
(GR(x1, x2) sin(w(x1))

−GI(x1, x2) cos(w(x1))) dx1

}

×
{ ∫ ∞

−∞
(GR(x1, x2) cos(w(x1))

+GI(x1, x2) sin(w(x1))) dx1

}−1]
. (28)

According to equation (28) the phase of the optimal filter
depends upon the fractional orders p1 and p2 of the
transformation kernel. We return again to the expression for
M in equation (8). This expression may also be minimized
as a function of p1 and p2. Thus, the optimal filter should be
found for various values of p1 and p2: two vectors �p1 and �p2

should be defined. Each vector contains all possible values
for the fractional orders:

�p1 = �p2 = [ −2 −2 + δp −2 + 2δp · · · 2 − δp 2 ]
(29)

where δp is the fractional order computation resolution. For
each component in the �p1, �p2 vectors a mean-square error,

85



Z Zalevsky et al

Figure 2. The horizontal and the vertical (upper and lower plots,
respectively) cross sections of the mutual intensity distribution.
Solid curve: obtained output mutual intensity distribution. Dashed
curve: the desired mutual intensity distribution.

Figure 3. The phase of the phase-only filter.

M(p1, p2), between the desired and the obtained mutual
intensities, should be computed. The pair of values p1, p2

for which the matrix M(p1, p2) achieves the minimal value
is chosen to be the optimal fractional order pair.

Note that equation (28) is a general equation and thus the
same procedure may be applied for a general ABCD kernel.

4. Computer simulation

In order to examine the ability of the suggested approach,
computer simulations were performed. A given mutual
intensity, similar to the one assumed in [6], was taken;
specifically

J0(x1, x2) = exp

(
− (x1 − x2)

2

2σ 2

)
, (30)

which means that the correlation between each two spatial
points in the illuminating source behaves as Gaussian
function of the difference between the points. σ is the width
of the Gaussian. Note that for σ → 0, J0 becomes spatially
incoherent light J0(x1, x2) = δ(x1 − x2). For σ → ∞ the
light becomes fully coherent since J0 is then a constant. In
the simulations we took σ = 14.31 pixels.

To examine the ability of the suggested approach one
may choose a non-physical desired distribution and then the
obtained result will be the closest (in the sense of minimal

Figure 4. The horizontal and the vertical (upper and lower plots,
respectively) cross sections of the mutual intensity distribution.
Solid curve: obtained output mutual intensity distribution. Dashed
curve: the desired mutual intensity distribution.

Figure 5. The phase of the phase-only filter.

mean-square error) physical distribution. However, in such
a case part of the remaining convergence error is due to the
non-feasibility of the solution. Thus, we choose to examine
the suggested technique by converging it to several physically
feasible and commonly used [1] desired distributions. In the
first simulation we chose the following desired distribution:

J d1 (x1, x2) = �
( |x1 − x2|

2r1

)
rect

(
x1

2r2

)
rect

(
x2

2r2

)
(31)

with r1 = 10, r2 = 17 pixels. � is a triangle function and
rect is a rectangle function:

�
( x
 x

)
= 1 −

∣∣∣ x
 x

∣∣∣ (32)

for |x| <  x and zero otherwise, and

rect
( x
 x

)
= 1 (33)

for |x| <  x/2 and zero otherwise.
The iterating formula of equation (28) was used in

order to obtain the desired synthesis while the transformation
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kernel was chosen to be the kernel of the FRT. The iterating
algorithm was investigated for different fractional orders.
The best synthesis was obtained for p1 = 0.71, p2 = −0.71.

The solid curve shown in figure 2 illustrates the cross
section of the obtained 2D output mutual intensity function
while the dashed curve illustrates the cross section of the
desired 2D mutual intensity function. The upper part of the
figure is a horizontal and the lower part is a vertical cross sec-
tion of the 2D mutual intensity function. Figure 3 illustrates
the obtained phase of the computed phase-only filter.

Another simulation was performed with a desired
distribution of

J d1 (x1, x2) = sinc

(
x1 − x2

r1

)
rect

(
x1

2r2

)
rect

(
x2

2r2

)
(34)

once again with r1 = 10, r2 = 17 pixels, while the sinc
function is defined as

sinc (x) = sin x

x
. (35)

In this case the best synthesis was obtained for p1 =
0.27, p2 = −0.27 while here once again the transformation
kernel was chosen to be the kernel of the FRT.

The solid curve shown in figure 4 illustrates the cross
section of the obtained 2D output mutual intensity function
while the dashed curve illustrates the cross section of the
desired 2D mutual intensity function. The upper part of the
figure is a horizontal and the lower part is a vertical cross sec-
tion of the 2D mutual intensity function. Figure 5 illustrates
the obtained phase of the computed phase-only filter.

5. Conclusions

In this paper a new iterating algorithm was derived
for obtaining the phase-only filter which is optimal for

synthesizing a desired mutual intensity distribution. The
synthesis was achieved by placing this phase-only filter
in the transformation domain, as illustrated in figure 1.
The computer simulations demonstrated the synthesis ability
for a FRT kernel. However, the mathematical derivation
is completely general and could be used for any other
transformation’s kernel. Except for the iteration procedure,
the chosen fractional orders of the filtering system were found
to optimize the synthesized distribution (they minimized the
mean-square error).

Since the obtained filter was a phase-only filter, high
efficiency was achieved in the output plane. In addition, the
production process of a phase-only filter is much simpler
than producing a general filter containing both phase and
amplitude.
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