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The problem of enhancing the resolution of wavefield or beam profile

measurements obtained using low resolution sensors is addressed by

solving the problem of interpolating signals from partial fractional

Fourier transform information in several domains. The iterative inter-

polation algorithm employed is based on the method of projections

onto convex sets (POCS).

Introduction: The fractional Fourier transform (FRT) has received

significant interest since the early 1990s [1, 2]. The ath order FRT

operation corresponds to the ath power of the ordinary Fourier

transform operation. The zeroth-order FRT of a function is the

function itself and the first-order FRT is equal to the ordinary Fourier

transform. For additional properties and references, see [3].

In this Letter, an iterative algorithm for signal interpolation or

extrapolation from partial FRT information is developed. More speci-

fically, it is assumed that partial sets of samples are available for several

a values. The problem is to interpolate or extrapolate the signal from

this information. The reconstruction algorithm is globally convergent

and it is based on the method of projections onto convex sets (POCS), a

classical numerical technique [4–6]. The convergence of this algorithm

can be proved easily in both continuous and discrete FRT domains

because low resolution fractional Fourier measurements in both contin-

uous and discrete domains correspond to closed and convex sets in L2

or ‘2, respectively.

The FRT has been shown to describe the evolution of waves and

beams as they propagate in space, in the Fresnel approximation [3].

Wavefields or beam profiles undergo continual fractional Fourier

transformation as they propagate. Increasing values of a correspond

to different measurement planes further along the direction of propaga-

tion. Therefore the problem solved here corresponds to the problem of

reconstructing wavefields or beam profiles from partial measurements

at more than one plane. This covers a wide range of applications where

it is possible to make measurements in more than one plane, but not at

every point or over the complete interval in any given plane. The

availability of information from several planes is used to compensate

the missing information in each of them.

Let us denote the ath order FRT operator as F
a. The ath FRT

xa¼F
ax of a function x is given by
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Positive and negative integer values of a simply correspond to repeated

application of the ordinary forward and inverse Fourier transforms,

respectively. The fractional Fourier transform operator satisfies index

additivity: F a2F
a1 ¼F

a2þa1. F 4 equals the identity operator.

The ath order discrete FRT xa of an N� 1 vector x is defined as

xa¼F ax, where F a is the N�N discrete FRT matrix [7], which is

essentially the ath power of the ordinary discrete Fourier transform

matrix F. Let the discrete-time vector x contain the samples of the

continuous time or space signal x(v). If N is chosen equal to or greater

than the time- or space-bandwidth product of the signal x(v), then the

discrete FRT approximates the continuous FRT.

In the problem considered, it is assumed that low resolution fractional

Fourier domain measurements of x are available at several fractional

domains, i.e. xa1
(kJD), k¼ 0, �1, � 2, . . . , �K1, where J is

an integer � 2; and xa2
(kJD), k¼ 0, � 1, � 2, . . . , �K2, etc. are

available for a1, a2, . . . , aM. The signal interpolation problem is the

estimation of original signal samples xo(nD), n¼ 0, � 1, � 2, . . . ,�Ko,

from the above measurements.

Iterative signal recovery algorithm: The key idea of the POCS-based

signal recovery algorithm is to obtain a solution which is consistent

with all the available information [4–6]. In this method the set of all

possible signals is assumed to constitute a Hilbert space with an

associated norm in which the prior information about the desired

signal can be represented in terms of convex sets. Let us suppose that

the information about the desired signal is represented by M sets, Cm,

m¼ 1, 2, . . . , M. The desired signal must be in the intersection set

C0 ¼ \ m¼1
M Cm. Any member of the set C0 is called a feasible solution

[5]. If all of the sets Cm are closed and convex then a feasible solution

can be found by making successive orthogonal projections onto the

sets Cm. Let Pm be the orthogonal projection operator onto the set Cm.

The iterates defined by the equation: ykþ1 ¼P1P2, . . . , PMyk, k¼ 1,

2, . . . converge to a member of the set C0, regardless of the initial

signal y0. In some problems, the set C0 contains only the desired

signal xo. In this case, the iterates converge to xo.

The interpolation problem can be posed in discrete spaces. Partial

information in the discrete fractional Fourier domains can be repre-

sented as convex sets in ‘2. We define C1 and C2 in ‘2 as the set of

signals the discrete FRTs of which are equal to xa1
(uk) in uk2U¼

{uk¼ k JD, k¼ 0, �1, � 2, . . . , K1} in the a1st fractional domain, and

xa2
(vk) in vk2V¼ {vk¼ k JD, k¼ 0, � 1, � 2, . . . , K2} in the a2nd

fractional domain. The sets C1 and C2 are convex because the integral

operator in (1) is a linear operator, or equivalently, the discrete FRT

operator is a matrix. If data is also available in further fractional

domains a3, a4, . . . , then corresponding sets can be defined in a similar

manner. If the original space-domain signal samples xo(nD) are avail-

able for certain integer n values then this information can be modelled

as a convex set in a similar manner as well, as the space domain is

merely a special fractional domain with a¼ 0. Similarly, if the signal is

known to be of finite extent, then this information can be modelled as a

closed and convex set. Other space-domain information about the

original signal including non-negativity and finite energy information

belongs to the above class of sets. When such an information is

available, it can be beneficially incorporated in our algorithm in a

convenient manner to have robustness against noise.

Projection operations onto the sets C1, C2, . . . , CM are straightfor-

ward to implement. Let x(l ) be the lth iterate of the iterative recovery

process. Let xa
(l ) be the FRT of x(l ) in the ath domain. The projection

operator replaces the FRT values of xa
(l ) (u) in U

xðlþ1Þ
a ðuk Þ ¼ xaðuk Þ; uk 2 U ð2Þ

and retains the rest of the data outside the band U:

xðlþ1Þ
a ðuk Þ ¼ xðlÞa ðuk Þ u 62 U ð3Þ

The algorithm starts with an arbitrary initial estimate y02Ł2. The initial

estimate y0 is successively projected onto the sets Cm, m¼ 1, 2, . . . , M,

representing the partial fractional Fourier domain information in

fractional domains am, m¼ 1, 2, . . . , M, 0� am� 1 by using (2) and

(3). In this manner the first iteration cycle is completed. This iterative

procedure is repeated until a satisfactory level of error difference in

successive iterations is obtained.

Fig. 1 Reconstructed signal in first example, and per cent error against
number of iteration cycles

a Reconstructed signal
b Per cent error against number of iteration cycles

Simulation examples and conclusions: It is assumed that a1 ¼ 0.5th

and a2 ¼ 0.75th order fractional Fourier domain measurements of the
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signal xo¼ {1, 1, 2, 3, 2, xo(0)¼ 1, 2, 3, 2, 1, 1, 0, 0, . . . } are

available on a uniform grid: x0.5(k), k¼ 1, 3, 5, . . . , 63, and x0.75(k),

k¼ 2, 4, 6, . . . , 64 (the discrete FRT size is N¼ 64). That is, we know

only every other sample in the discrete FRT domains of a1 ¼ 0.5 and

a2 ¼ 0.75 (the sampling period is assumed to be D¼ 1 without loss of

generality). The original signal is almost perfectly reconstructed from

the above information after 5000 iteration cycles. This corresponds to

situations where the measuring device being used has only half the

desired resolution and we are attempting to compensate for this by

measuring the waves or beams at more than one plane.

Fig. 2 Reconstructed signal using finite support information, and per cent
error against number of iteration cycles

a Reconstructed signal
b Per cent error against number of iteration cycles

Let us consider another example in which partial measurements of

the above original signal are available at a1¼ 0.5 and a2¼ 0.75, and

a3¼ 0.0 which corresponds to the space (or time) domain: x0.5(k),

k¼ 1, 3, 5, . . . , 13, and x0.75(k), k¼ 1, 3, 5, . . . , 13; and in a3¼ 0 space

domain it is assumed that only even indexed samples of xo(n) are

available. The initial estimate is taken as y0(n)¼ 0 for all n.

The reconstructed signal obtained after 5000 iteration cycles is shown

in Fig. 1a. The interpolated sample values are x(�1)¼ 2.004,

x(�3)¼ 1.986, x(�5)¼ 1.001. The per cent error against the number

of iteration cycles is shown in Fig. 1b. The per cent restoration error is

defined as follows: 100�kyk� xok
2=kxok

2 where yk is the kth iterate.

If, in addition to the above information, it is assumed that the original

signal has a finite support in the time domain, i.e. x0(n)¼ 0, for

jnj � 10, this constraint improves the speed of convergence as shown

in Fig 2. Iterates converge to the desired solution after 100 iteration

cycles as shown in Fig. 2b.

In general, if the number of observations is larger than or equal to the

number of original signal samples to be estimated then iterates converge

to a unique solution in noise-free cases. The performance of the

algorithm under noisy observations is similar to the classical signal

reconstruction problem involving only ordinary Fourier data. If data is

available only in a narrow interval, then the reconstruction process can

be noise sensitive as in the case of classical reconstruction from partial

Fourier domain reconstruction problem. The existence of redundant

data from several domains and the use of a finite energy set increases

the noise robustness of the method.
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