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Abstract

Rent’s rule and related concepts of connectivity such as dimensionality, line-length distributions, and separators are discussed. Gen-
eralizations for systems for which the Rent exponent is not constant throughout the interconnection hierarchy are provided. The origin
of Rent’s rule is stressed as resulting from the embedding of a high-dimensional information flow graph to two- or three-dimensional
physical space. The applicability of these concepts to free-space optically interconnected systems is discussed. The role of Rent’s rule in
fundamental studies of different interconnection media, including superconductors and optics, is briefly reviewed.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Digital computers consist of devices connected with
wires, which enable the flow of information among differ-
ent parts of the system. Usually, as the number of devices
increases, so does the number and lengths of wires, making
the task of wiring the devices together as compactly as pos-
sible more and more difficult. For decades those involved
with engineering computing systems have confronted the
problem of allowing enough space for the wires to run, or
enough edge or surface for them to leave a subcomponent.
The most famous statement of the relationship between the
number of wiresk(Ñ) emanating from a subcomponent
containingÑ devices is known as Rent’s rule

k(Ñ) = k(1)Ñp, (1)

wherek(1) is the number of wires emanating from a sin-
gle device andp, known as the Rent exponent, is a param-
eter characterizing the connectivity of the circuit graph in
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question. How fast the number of wires grows with increas-
ing number of devices depends on the value ofp; circuits
with largerp exhibit faster growth of the number of wires.

The origins, meaning, and validity of this intriguing rela-
tionship has led to considerable discussion. Some have seen
it as implying a kind of Malthusian catastrophe, since for
large values ofp it predicts a fast increase in the number
of emanating wires and the space they occupy, outstripping
our ability to accomodate them. Others have discredited it,
claiming that it is not valid for most contemporary com-
puter circuits. A considerable amount of these discussions
have been misguided as a result of not allowing the Rent ex-
ponent to vary as we ascend the computer interconnection
hierarchy and a failure to recognize discontinuities in the
rule. It seems that in most cases of practical interest, the ex-
ponent is piecewise smoothly varying with a finite number
of discontinuities. Therefore, in Section2, we first discuss
the generalization of Rent’s rule for systems for which the
exponent is not constant throughout the interconnection hi-
erarchy. We expressk(Ñ) as a function ofÑ and an integral
of the varying value of the Rent exponent. Special emphasis
is given to discontinuities in the rule, discussed in Section
4. We argue that the existence of discontinuities does not
preclude the beneficial use of Rent’s rule.
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While not as well known as Rent’s rule, other analyti-
cal concepts whose purpose is to quantify the information
flow and communication requirements in computing sys-
tems have also been introduced. The relationships between
Rent’s rule and such other concepts of connectivity such as
dimensionality, line-length distributions, and separators are
discussed in Sections2 and3. We emphasize that all of these
are fractal concepts. An important application of these con-
cepts is the estimation of the space that must be allocated
for the wires in a system, and the estimation of the resulting
overall system size. In Section3, we show that the total wire
length and system size are invariant under different grain-
size viewpoints. In the fine-grain picture we view the sys-
tem as a collection of its most primitive devices, whereas in
the large-grain picture we view it as a collection of compo-
nents each containing many devices. This invariance result
implies that the contribution of local wires to the total area
or volume is negligible; the longer wires, though fewer in
number, constitute most of the area or volume. In the same
section, we also derive an expression for the size of a system
for the general case where the Rent exponent is not constant
and may also exhibit discontinuities. This result identifies
the dominating level of the interconnection hierarchy which
determines the system size. When there are no discontinu-
ities, the system size is primarily determined by the number
of wires required at the highest level of interconnections,
implying that the highest level of the interconnection hier-
archy is most critical in determining system performance.

In Section5, we discuss how Rent’s rule originates from
the embedding of a high-dimensional information flow graph
to two- or three-dimensional physical space; that is, from
the fact that we try to solve problems with inherently higher
dimensionality of information flow than the two- or three-
dimensional physical spaces we build our computers in.
A fundamental source of confusion with Rent’s rule stems
from not recognizing the level of abstraction of the graph
to which Rent’s rule is being applied. Several graphs, cor-
responding to different levels of abstraction, come between
the high-dimensional graph characterizing the information
flow requirements of the abstractly defined problem, and
the two- or three-dimensional physical space in which the
concrete physical circuits exist. The problem of providing a
transition between the high dimension of the problem and
the low dimension of physical space is fundamental to the
design of computing systems but is seldom directly and
consciously addressed. Posing this problem in terms of the
concepts discussed reveals a considerable amount of unex-
ploited room for improvement in the overall design of such
systems, involving choice of algorithm, multiplexing versus
parallelism, local versus global connections, and choice of
interconnection media.

The applicability of these concepts to free-space opti-
cally interconnected systems is discussed in Section6. Free-
space optical interconnections do not rely on solid wires, but
nevertheless exhibit similar area or volume requirements as
predicted by Rent’s rule. In other words, free-space optical

interconnections are not exempt from Rent’s rule. The role
of Rent’s rule and related concepts in fundamental studies of
different interconnection media, including superconductors
and optics, is briefly reviewed in Section7. When interpreted
correctly, Rent’s rule, line-length distributions, and their ex-
tensions are powerful tools for analyzing the complex inter-
play between the microscopic and macroscopic parameters
of parallel and distributed computing systems and therefore
contributing to both their design and fundamental study.

2. Connectivity, dimensionality, and Rent’s rule

The importance of wiring models has long been recog-
nized and they have been used not only for design purposes
but also for the fundamental study of interconnections and
communication in computing. A central and ubiquitous con-
cept appearing in such contexts is the connectivity of a circuit
graph or computer network. Connectedness has always been
a central concept in mathematical graph theory[3,65,70],
whose extensions play a central role in graph layout[72].
The purpose of these concepts is to quantify the commu-
nication requirements in computer circuits. We will discuss
several concepts related to the connectivity of circuits, in-
cluding Rent’s rule, dimensionality, line-length distributions,
and separators. We begin by discussing the generalization of
Rent’s rule for systems for which the Rent exponent is not
constant throughout the interconnection hierarchy.

Graph layout deals with the problem of how to situate the
nodes and edges of an abstract graph in physical space. Op-
timal graph layout[22] is in general an NP-complete prob-
lem[2]. However, if a hierarchical decomposition of a graph
is provided, this graph can be laid out following relatively
simple algorithms. A hierarchical decomposition of a graph
consisting ofN nodes and the associated decomposition
function k(Ñ) are obtained as follows: First, we remove
k(N) edges in order to disconnect the graph into 2 sub-
graphs, each of approximatelyN/2 nodes. Roughly speak-
ing, we try to do this by removing as few edges as possible.
We repeat this procedure for the subgraphs thus created. The
subgraphs will in general require differing numbers of edges
to be removed from them to be disconnected into subsub-
graphs of� N/22 nodes each. We denote the largest of these
numbers ask(N/2). Continuing in this manner until the sub-
graphs consist of a single node each, we obtain the function
k(Ñ), the (worst case) number of edges removed during de-
composition of subgraphs of̃N nodes. Once such a decom-
position is found, it is possible to lay out the graph in the
intuitively obvious manner by working upwards[2,31,72].
Whereas one can always find such a decomposition, finding
the decomposition that leads to a layout with some optimal
property (such as minimal area) is not a trivial problem. We
will assume that we agree on a particular decomposition ob-
tained by some heuristic method.

Now, let us define theconnectivityp(Ñ) and dimen-
sionality n(Ñ) associated with the hierarchical level of a
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decomposition involving subgraphs ofÑ nodes by[45]

p(Ñ) = n(Ñ) − 1

n(Ñ)
= log2

k(Ñ)

k(Ñ/2)
. (2)

In general the defined quantities satisfy 0�p(Ñ)�1 and
1�n(Ñ)�∞. It is possible to find many examples of graphs
for which the values ofk(Ñ) and p(Ñ) for different val-
ues ofÑ are totally erratic and have no correlation whatso-
ever. However, both computer circuits and natural systems
are observed to exhibit varying degrees of continuity of the
functionsk(Ñ) andp(Ñ).

Let the geometric derivativêf of a functionf at the pointx
be defined analogous to the usual arithmetic derivative[45]:

f̂ (x) = lim
�→1+ log�

f (�x)

f (x)
= lim

�→1+
ln f (�x) − ln f (x)

ln �
.(3)

If k(Ñ) does not change abruptly, we may pretend that it is
a continuous function and write

p(Ñ) = n(Ñ) − 1

n(Ñ)
= k̂(Ñ), (4)

which may be inverted as

k(Ñ) = k(1) exp

(∫ Ñ

1

[
p(Ñ ′)/Ñ ′] dÑ ′

)
, (5)

whereÑ ′ is a dummy variable.
Of course, sincek(Ñ) is actually a function of a discrete

variable, we cannot actually let� → 1. The smallest mean-
ingful value of � in our context is 2. Hence, the geomet-
ric derivative should be interpreted in the same sense as we
interpret the common derivative in the form of a finite dif-
ference for discrete functions. More generally, it should be
kept in mind that the continuous expressions are meant as
analogies and should not be taken literally. For our defini-
tion to make sense,k(Ñ) must be a function which does not
change abruptly. As already noted, this is indeed observed
over large variations of̃N in both computer circuits and nat-
ural systems. In fact, in many cases it is found thatp(Ñ)

andn(Ñ) are approximately constant over a large range of
Ñ . Such systems are said to exhibit self-similarity[13,62],
or scale invariance.

Assuming thatp(Ñ) = p = constant, we find from Eq.
(5) that k(Ñ) = k(1)Ñp. This is essentially Rent’s rule
[29,64] which gives the number of graph edgesk(Ñ) em-
anating from partitions of computer circuits containingÑ

nodes (such as the number of pinouts of an integrated cir-
cuit package containing̃N gates). Here,k(1) is interpreted
as the average number of edges per node andp is referred
to as the Rent exponent. (Strictly speaking, the number of
edges that have to be removed to disconnect the subgraphs
is not exactly equal to the total number of edges emanating
from the subgraph, since some of those edges might have
already been removed earlier. The factor relating these is of

the order of unity, with exact value depending on how the
edge effects and external connections are handled.)

Conversely, by taking Rent’s rule as a starting point, how-
ever allowing the exponent to be a functionp(Ñ) of Ñ , we
can derive Eq. (5) by working up the hierarchy[49]. (Read-
ers wishing to skip at first reading this reverse derivation
given below may move directly to the paragraph following
Eq. (10).) We consider a system with a total ofN primitive
elements and expressN in the form

N = Nm =
m∏

i=1

�i , (6)

i.e., we have�m groups of�m−1 groups of … of�1 primitive
elements. We are assuming all subgroups of any group to be
identical (it is of course possible to go one step further and
remove this restriction as well). The�i are sufficiently small
so that the connectivity requirements within each level of
the hierarchy can be assumed constant. The subtotals at any
level are similarly expressed as

Nj =
j∏

i=1

�i , 1�j �m (7)

with N0 = 1. If we let i andj approach continuous variables
(in the same sense as in passing from sums to Riemann
integrals) we can write this as

N(j) = exp

(∫ j

1
ln �(i) di

)
. (8)

Let it be the case that the�j subgroups forming one of�j+1
groups have connectivity requirements characterized by a
Rent exponent ofpj . The number of edgeskj emanating
from each of the�j+1 groups (each containing�j subgroups)
is

kj = kj−1�
pj

j = k0

j∏
i=1

�pi

i , (9)

wherek0 is the number of edges of the primitive elements.
In continuous form we have

k(j) = k(0) exp

(∫ j

1
p(i) ln �(i) di

)
. (10)

Now, it is possible to combine this with Eq. (8) to eliminate
�(i) to obtain Eq. (5), completing the derivation (Take the
logarithm and then the derivative with respect toj of Eq. (8),
change the dummy variable toi, and substitute for�(i) in
Eq. (10). Finally, make a variable substitution fromi to Ñ ′.)

The dimensionality and Rent exponent will depend not
only on the graph, but also on the layout of the graph. How-
ever, since there must be some layout of the graph which
results in the smallest exponent, this smallest exponent may
be considered intrinsic to the graph and representative of
the intrinsic information flow requirements of the compu-
tational problem. The minimum information flow require-
ments can be quantified for several relatively structured and
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simple problems, such as sorting, fast Fourier transforms,
etc.[72]. However, it should not be forgotten that there may
be no efficient method of finding the layout resulting in the
smallest exponent, so that it may not be possible to deter-
mine this intrinsic minimum Rent exponent (See[19] for
further discussion of related issues.)

We now briefly discuss the concept ofseparators. A graph
of N nodes is said to have anS(Ñ) separator (or to beS(Ñ)

separable) if the graph can be disconnected into two (roughly
equal) subgraphs by removal ofS(N) edges and if the sub-
graphs thus created are alsoS(Ñ) separable[72]. Although
we do not go into the details, we note that a graph with con-
nectivity functionp(Ñ) has a separator of the formS(Ñ) ∝
Ñmax[p(Ñ)] where the maximum is taken over the whole do-
main of Ñ . Separators play a central role in combinatoric
approaches to graph layout[31,72], sometimes referred to as
area–volume complexity theory (An alternative way of de-
scribing the communication requirements of graphs is based
on what are calledbifurcators [2].)

Thus, we see that both Rent’s rule and separators of the
form S(Ñ) ∝ Ñp are special cases of the more general for-
malism we have introduced. Apart from minor technicali-
ties involved in their definition, all are essentially equivalent
whenp(Ñ) = constant. In general,p(Ñ) andn(Ñ) will be
functions ofÑ .

The dimensionalityn(Ñ) defined in Eq. (4) is a fractal
dimension[62,16,34,6]. Fractal dimensions of natural sys-
tems, just as those of computer circuits, may also vary as
we ascend or descend the hierarchical structure of a sys-
tem. In any event, Rent’s rule, fractal geometry and separa-
tors are tied together by the notions of self-similarity, scale
invariance, and continuity in the relationships between the
volume-like (number of nodes) and surface-like (number of
edges) quantities.

To clarify this point, we offer the following explanation
of why the quantity defined asn = 1/(1− p) is referred to
as a “dimension.” The perimeter of a square region is pro-
portional to the1

2 power of its area. The surface area of a
cube is proportional to the23 power of its volume. In gen-
eral, the hyperarea enclosing a hyperregion ofedimensions
is proportional to the(e − 1)/e power of its hypervolume.
Let us now make an analogy between “hyperarea”⇔ “num-
ber of graph edges emanating from a region,” and “hyper-
volume” ⇔ “number of nodes in the region.” According to
Rent’s rule, the number of edges emanating from the region
is proportional to thepth power of the number of nodes in
the region. Thus, it makes sense to speak of the quantityn
defined by the relationp = (n − 1)/n as a “dimension.”
Note that in generaln need not be an integer.

3. Area–volume estimation

Now, let us assume that a graph withn(Ñ) = n =
constant is laid out ine-dimensional Euclidean space ac-
cording to the divide-and-conquer layout algorithm (i.e., as

intuitively suggested by its decomposition)[31,72]. (e is of-
ten = 2 but always�3 and should not be confused with
the base of natural logarithm.) Such a layout will internally
satisfy Rent’s rule. Donath[14] and Feuer[17] had shown
that such a layout has a distributiong(r) of line lengths of
the form

g(r) ∝ r−e/n−1, r �
√

e N1/e, (11)

wherer denotes line lengths in units of node-to-node grid
spacing of the layout. (We assume the nodes are situated on a
regular Cartesian grid.) The functiong(r) gives us the num-
ber of lines of lengthr. Thatg(r) is a decreasing function
means that there are a greater number of shorter lines and
a smaller number of longer lines. The relationship between
such inverse-power-law distributions and fractal concepts
was discussed by Mandelbrot[35,33,32], closing the circle.
Using the above distribution, or by combinatoric methods,
we can show that whenn > e the average connection length
r̄ of such a layout ofN elements is given by[13]

r̄ = �(n, e)N1/e−1/n, (12)

where�(n, e) is a coefficient of the order of unity. The ac-
curacy of this expression requires thatN1/e−1/n � 1. It can
be derived by integratingrg(r) over the range ofr. This
result has a simple interpretation. The average connection
length is simply the ratio of the linear extentN1/e of the
system ine-dimensional space to the linear extentN1/n in
n-dimensional space. The node-to-node grid spacing nec-
essary to lay out a graph of dimensionalityn is given by
∝ r̄1/(e−1)� ≈ N(n−e)/ne(e−1)�, where� is the line-to-line
spacing of whatever interconnection technology is being
used[69,21,18]. Thus, whenn > e, the area (or volume) per
node grows withN. This has been referred to asspace dila-
tion [20]. In other words, in order for there to be sufficient
space to route all the wires, it is necessary to allow space for
a greater number of wires to pass between adjacent nodes,
increasing the node-to-node spacing. Examples of graphs
with well-defined structures which exhibit large values ofn
are hypercubes, butterflies, and shuffle-exchange graphs. It
is also easily verified that the given definition of dimension
is consistent with that for multidimensional meshes[8].

Other works on interconnection length distributions and
estimation include[38,40,67,9,68].

In the remainder of this section, we discuss two further
results regarding the calculation of the average and total
connection lengths of a layout[49]. Readers wishing to skip
these at a first reading may directly go to the next section.

First, we discuss the invariance of the total connection
length under different grain-size viewpoints. One might view
a computing system as a collection of its most primitive
elements, for instance gates or transistors. Alternately, one
might prefer to view it as a collection of higher-order ele-
ments, such as chips or processors which are simply taken
as black boxes with a certain number of pinouts. Both view-
points are perfectly valid, however one must interpret the
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average connection length with care so as to maintain con-
sistency. The average connection length will be higher when
calculated with reference to the higher-order picture, as com-
pared to the lower-order picture. This is because the shorter
interconnections inside the black boxes are not being taken
into account while computing the average. Let us quantify
this situation by consideringN/N1 black boxes (blocks)
with N1 primitive elements in each, representing a simple
partitioning of the totalN elements. Let the grid spacing of
the black boxes bed1 and that of the primitive elements be
d0. In an e-dimensional space we haved1 = N

1/e
1 d0. Let

us considern = constant> e. We let �̄ denote the average
interconnection length in real units, as opposed tor̄ which
is the average connection length in grid units.�total will de-
note the total interconnection length. Furthermore, assume
N

1/e−1/n
1 � 1 and(N/N1)

1/e−1/n � 1. The fine-grain pic-
ture yields

�̄ = r̄d0 = �N1/e−1/nd0, (13)

whereas the large-grain picture yields

�̄ = �(N/N1)
1/e−1/nd1 = �N1/e−1/nN

1/n
1 d0, (14)

from which we see that indeed the large-grain picture yields
a larger value of̄� (unlessn → ∞). However, in calculating
the total system size, it is not̄� but rather�total that is the
significant quantity. For the fine grain picture we have

�total = k0N�̄ = k0�Np+1/ed0, (15)

sincep = 1 − 1/n. For the large-grain picture we use the
number of pinouts as given byk1 = k0N

p
1 = k0N

1−1/n
1 , so

that

�total = k1(N/N1)�̄ = k0�Np+1/ed0, (16)

identical to what we found with the fine grain picture. So,
whatever way we choose to look at it we always will end up
calculating the total system size consistently.

This result means that we can ignore the contributions of
the local interconnections in calculating the total area (or
volume) required for wiring. The longer interconnections, al-
though much fewer in number, constitute most of the wiring
volume. The total interblock wiring length is, once again

k0N
1−1/n
1 (N/N1)�(N/N1)

1/e−1/nd1, (17)

whereas the total local wiring length is

(N/N1)k0N1�N
1/e−1/n
1 d0. (18)

The ratio of the former to the latter is

Total interblock wire length

Total local wire length
= (N/N1)

1/e−1/n, (19)

which we had assumed to be� 1 from the beginning. When
n is bounded away fromeand whenN1 andN/N1 are large,
it is the higher level of the interconnection hierarchy that

limits how dense the elements can be packed. This conclu-
sion can also be traced to the fact that the integrandrg(r)

in the first moment integral ofg(r) decays slower than 1/r

whenn > e.
Once�total is obtained, calculation of the system linear

extentN1/ed0 is easy. We simply equate the total available
area (volume) to the total wire area (volume)[25]

Nde
0 = �total�

e−1, (20)

where� is the line spacing. Thus, within a wiring inefficiency
factor we obtain

N1/ed0 = (k0�Np)1/(e−1)�. (21)

Next, we derive an expression for the layout area for a
system with arbitrary, possibly discontinuousk(Ñ) in two
dimensions. So as to simplify the representation of the re-
sults, we will restrict ourselves top(Ñ) > 1

2. First, consider
a group of�1 primitive elements. This group can be laid out
with linear extentd1 = k0�1�

p1
1 � = k1�1� where�1 is the

coefficient corresponding top1. Thus, the total system lin-
ear extent must be at least(N/�1)

1/2 = (N/N1)
1/2 times

the extent of this group, where in generalNj is given by
Eq.7. Now consider a supergroup of�2 such groups. Taking
� = 1, the linear extent of this supergroup satisfies

max(k2�2, �
1/2
2 d1) � d2 � k2�2 + �1/2

2 d1. (22)

In general,

max(kj�j , �
1/2
j dj−1) � dj � kj�j + �1/2

j dj−1. (23)

Here,kj�j is the wiring requirement obtained at thejth level

and�1/2
j dj−1 is the requirement inherited from lower levels.

The maximum and summation represent best case and worst
case assumptions on how these requirements interact. Taking
d0 = 1, and expanding the recursion on both sides leads to
the following bounds for the linear extentdm of the complete
system:

max

[
ki�i

(
N

Ni

)1/2
]m

i=1

� dm

�
m∑

i=1

ki�i

(
N

Ni

)1/2

. (24)

The right-hand side of the above can be at mostm times
greater than the left-hand side. Sincem� log2 N , the sys-
tem linear extent is given by the left-hand side within this
logarithmic factor. In continuous form, the linear extent is
given by

N1/2 max

[
k(Ñ)�(Ñ)

Ñ1/2

]
Ñ

, (25)

where�(Ñ) ∼ 1 is only weakly dependent oñN .
If k(Ñ) does not change abruptly, it may be expressed by

Eq. (5) over the whole range of̃N . Now if p(Ñ) > 1
2 as we
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have assumed, it is possible to show thatk(Ñ) grows faster
thanÑ1/2 so that the expression in the square brackets above
is maximized forÑ = N . Thus, the system linear extent is
given by

k(N)�(N) ∼ k(N). (26)

That is, the system size is set by the highest level of intercon-
nections ifk(Ñ) does not change abruptly andp(Ñ) > 1

2.
This implies that the choice of interconnection technology
for the highest level is the most critical.

4. Discontinuities

Whereas it is observed that the functionk(Ñ) exhibits
considerable continuity over large variation ofÑ , it is also
observed that it occasionally exhibits sharp discontinuities.
In other words, it no longer becomes possible to predict the
value of the functionk(Ñ) for certainÑ by knowing its val-
ues at nearbỹN . For instance, in the context of Rent’s rule,
it may not be possible to predict the number of pinouts of a
VLSI chip by observing its internal structure, or vice versa
[16]. However, this does not imply that Rent’s rule (in its
generalized form, as given by Eq. (5)) is useless. Consider a
multiprocessor computer. Rent’s rule may be used to predict
the wiring requirements internal to each of the processors. It
may also be used for similar purposes for the interconnection
network among the processors. In fact, the Rent exponent
may even be similar in both cases. However, the function
k(Ñ) may exhibit a steep discontinuity (often downward), as
illustrated in Fig.1 [45]. As is usually the case, a finite num-
ber of discontinuities in an otherwise smooth function need
not inhibit us from piecewise application of our analytical
expressions. Such discontinuities are often associated with
the self-completenessof a functional unit[64,16]. Similar
examples may be found in nature. For instance, mammalian
brains seem to satisfyn > 3 (i.e. p > 2

3), since the vol-
ume per neuron has been found to be greater in species with
larger numbers of neurons[26]. The human brain has 1011

neurons each making about 1000 connections[71]. Thus, we

1000 100 x 1000

lo
g 

k(
N

)
~

log N~

Fig. 1.k(Ñ) for a system ofN = 100×1000 primitive elements consisting
of 100 processors of 1000 elements each. The number of “pinouts” of the
processors bears no relationship to their internal structure. Eq. (5) may
be used directly for the range 1< Ñ < 1000, and with a shift of origin
for the range 1000< Ñ < 100×1000. Reproduced with permission from
[45,49].

would expect at least 1000(1011)2/3 ∼ 1010 “pinouts.” How-
ever, we have only about 106 fibers in the optic nerve and
108 fibers in thecorpus callosum.

In the context of microelectronic packaging, a quote from
C. A. Neugebauer offers some insight as to why such dis-
continuities are observed: “Since the I/O capacity (of the
chip carrier) is exceeded, a significant number of chips can
be interconnected only if the pin/gate ratio can be drasti-
cally reduced, normally well below that predicted by Rent’s
rule. Rent’s rule can be broken at any level of integration.
The microprocessor chip is an example of the breaking of
Rent’s rule in its original form for gate arrays on the chip
level. Being able to delay the breaking of Rent’s rule un-
til a much higher level is always an advantage because it
preserves many parallel data paths even at very high levels
of integration, and thus offers higher systems performance
and greater architectural flexibility”[44]. The breaking of
Rent’s rule seems to be a technological necessity, and un-
desirable from a systems viewpoint. We will later discuss
studies which indicate that superconducting or optical inter-
connections may allow the maintainment of a large dimen-
sionality and Rent exponent throughout higher levels of the
hierarchy.

The continuous segments ofk(Ñ) have been referred to
as Regions I, II, etc.[29,66].

5. The origin of Rent’s rule

The origin of Rent’s rule has intrigued many researchers.
Donath had shown that Rent’s rule is a consequence of
the hierarchical nature of the logic design process[11,12].
Some have viewed it merely as an empirical observation ob-
tained from an examination of existing circuits. Others have
suggested that it is as natural as the branching of trees or
the human lung (a consequence of their growth process),
or that it represents the adaptation of computer circuits to
serve the needs of percolation of information. Fractal con-
cepts have been quite successful in describing natural phe-
nomena. However, it is often more challenging to explain
why fractal forms come up so often. Why do computer cir-
cuits lend to such a description? One suspects that fractal
forms may exhibit certain optimal properties. For instance,
bitonic (divide-and-conquer) algorithms can be viewed as
elementary fractal forms. Is it possible to postulate gen-
eral principles (such as the principle of least action in me-
chanics) regarding optimal information flow or computation
that would lead to an inverse-power-law distribution of line
lengths (a constant fractal dimension)? Mandelbrot has pos-
tulated maximum entropy principles to predict the observed
inverse-power-law distribution of word frequencies (linguis-
tics) [33] and monetary income (economics)[32]. Christie
has pursued the idea that the wires in a computing system
should obey Fermi–Dirac statistics, based on the observa-
tion that the wires are indistinguishable (any two wires of
same length can be exchanged) and that they obey an ex-
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clusion principle (only one wire need connect two points)
[5,7]. Keyes[26] has shown how the number of distinct ways
one can wire up an array of elements increases with average
wire length. In[51] we showed that the number of distinct
ways one can “wire up” an optical interconnection system
increases similarly with a fundamental quantity known as
the space-bandwidth product of the optical system, and thus
the average interconnection length.

The author finds the following viewpoint especially il-
luminating [49]. At the microscopic level, all information
processing involves the distributed manipulation and back-
and-forth transfer of pieces of information. There is a cer-
tain requirement on the amount of information that must
flow or percolate depending on the particular problem we
are trying to solve. This requirement can be embodied in
an information flow graph. The dimensionality of this graph
can then be taken as a measure of the information flow re-
quirements of the problem. For some problems which re-
quire little transfer of information, this dimension may be
small. For others, it may be large. When the dimensionality
associated with the problem exceeds the dimensions of the
physical space in which we construct our circuits (often 2
but at most 3), we are faced with the problem of embedding
a higher-dimensional graph into a lower-dimensional space.
This is what leads to Rent’s rule with exponents greater
than(e − 1)/e: the fact that we try to solve problems with
inherently higher dimensionality of information flow than
the two- or three-dimensional physical spaces we build our
computers in.

Several structured problems, such as sorting and discrete
Fourier transforming, are known to have global information
flow requirements leading to separators which are∝ Ñ , cor-
responding to large dimensions and nearly unity Rent expo-
nents. The dimensionality associated with general purpose
computing may also be presumed to be large. In any event, it
certainly seems that quite a fraction of interesting problems
have dimensions higher than two or three, so that the space
dilation effect associated with Rent’s rule is expected.

Despite these considerations, Rent’s rule may not apply to
a particular circuit we examine. The challenges involved in
dealing with greater numbers of interconnections may lead
designers to reduce the number of physical ports and chan-
nels, and to shift the “communication burden” to other lev-
els of the computational hierarchy[48]. Careful examination
often reveals that the price of reducing the number of wires
is often paid in terms of computation time, intermediated by
techniques such as multiplexing or breaking the transfer of
information into multiple steps. Clever schemes can reduce
the number of wires that are apparently needed, but these
often essentially amount to reorganizing the processing of
information in such a way that the same information is in-
directly sent in several pieces or different times. Ultimately,
a certain flow and redistribution of information must take
place before the problem is solved.

Several levels of graphs can come between then � 1
dimensional graph characterizing the information flow re-

n

e

dimensionality

abstract <--  levels -->  concrete

c
a

b

Fig. 2. The dimensionality of graphs corresponding to different levels for
a hypothetical system with four levels. Reproduced with permission from
[49].

quirements of the problem to be solved, and thee�3 dimen-
sional physical space. These graphs correspond to different
levels of the computational hierarchy, ranging from the ab-
stract description of the problem to the concrete physical
circuits. The dimensionality of these graphs provide a step-
wise transition fromn to e dimensions (Fig.2) [49]. Level
transitions involving large steps (steep slopes) are where the
greatest implementation burden is felt. For line a in Fig.2,
this burden is felt at the relatively concrete level, and for
line c at the relatively abstract level. The burden is more
uniformly spread for line b. Shifting the burden from one
level to the others may be beneficial because of the differ-
ent physical and technological limitations associated with
each level. Techniques such as algorithm redesign, multi-
plexing, parallelism, use of different kinds of local or global
interconnection networks, use of alternative interconnection
technologies such as optics, can be used to this end. Better
understanding and deliberate exploitation of these concepts
and techniques may be expected to translate into practical
improvements.

A particular question that may be posed in this context is
whether the burden should lean primarily towards the soft-
ware domain or primarily towards the hardware domain. An
embodiment of the first option may be a nearest-neighbor
connected mesh-type computer in which the physical inter-
connect problem is minimized. Global flows of information
are realized indirectly as pieces of information propagate
from one neighbor to the next. The second option, in con-
trast, might rely on direct transfer of information through
dedicated global lines which result in heavy physical inter-
connect congestion. Although determination of the proper
balance between these two extremes is in general a very
complex issue, it has been addressed in a specific context
in [57]. The conclusion is that use of direct global lines is
more beneficial than simulating the same information flow
on a locally connected system. This conclusion assumes the
use of optical lines to overcome the severe limitations asso-
ciated with resistive interconnections.

Contexts in which the nature of the problem to be solved
does require global information flows, but only at a relatively
low rate, may result in poor utilization of dedicated global
lines, which nevertheless contribute significantly to system
area or volume. This situation can be especially common
with optical interconnections which can exhibit very high
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bandwidths which are difficult to saturate. For this reason,
techniques have been developed for organizing information
flow such that distinct pairs of transmitters and receivers can
share common high-bandwidth channels to make the most
of the area or volume invested in them[56].

6. Free-space optical interconnections

The concepts discussed in this paper are immediately
applicable to three-dimensional layouts[63,30,37,36,4,52],
including those based on optical waveguides or fibers.
However, the extension of results originally developed for
“solid wires” to free-space optics, which can offer much
higher density than waveguides and fibers, is not immediate.

Since optical beams can readily pass through each other,
it has been suggested that optical interconnections may not
be subject to area–volume estimation techniques developed
for solid wires. However, proper accounting for the effects
of diffraction leads to the conclusion that from a global
perspective, optical interconnections can also be treated as
if they were solid lines for the purpose of area and vol-
ume estimation, so that most of the concepts discussed in
this paper are applicable to free-space optical systems as
well.

This conclusion is based on the following result[53]: The
minimum total communication volume required for an opti-
cal systemwhose total interconnection length is�total is given
by �total�

2. Here � is the wavelength of light. This result
is stated globally; it does not imply that each optical chan-
nel individually has cross-sectional area�2, but only that
the total volume must satisfy this minimum. Indeed some
channels may have larger cross-sectional areas but share the
same extent of space with other channels which pass through
them. The bottom line is that even with the greatest possible
amount of overlap and space sharing, the global result is as
if each channel required a cross-sectional area of�2, as if
they were solid wires. If the average connection length in
grid units is given bȳr = �Np−2/3 as before, then the min-
imum grid spacingdmust satisfyNd3 = Nkr̄ d�2, leading
to a minimum system linear extent ofN1/3d = (k�Np)1/2�,
just as would be predicted for solid wires of width� (Eq.
(21) with e = 3 and the subscript 0 suppressed).

In many optical systems, the devices are restricted to
lie on a plane, rather than being able to occupy a three-
dimensional grid. Although in general these systems are sub-
ject to the same results, certain special considerations apply
[54,50,60,10].

The above does not imply that there is no difference
between optical and electrical interconnections. Optical
interconnections allow the realization of three-dimensional
layouts. Optical beams can pass through each other, making
routing easier. Furthermore, the linewidth and energy dissi-
pation for optical interconnections is comparatively smaller
for longer lines (This latter advantage is also shared by
superconducting lines.)

It should be pointed out that several approaches to three-
dimensional integration of conventional electronic circuits
have also been pursued recently (see[15] and the references
cited therein).

7. Fundamental studies of interconnections

Rent’s rule and associated line-length distributions have
been of great value in fundamental studies of integrated sys-
tems [27,24,23,1]. Two considerations are fundamental in
determining the minimum layout size and thus the signal de-
lay: interconnection density and heat removal[61,42,43,39].
Both considerations are interrelated since, for instance, the
energy dissipation on a line also depends on its length, which
in turn depends on the grid spacing, which in turn depends
on both the total interconnection length and the total power
dissipated. The complex interplay between the microscopic
and macroscopic parameters of the system must be simulta-
neously analyzed. Rent’s rule and line-length distributions
are indispensable to this end. However, it is necessary to
complement these tools with physically accurate models of
interconnection media. Such analytical models for normally
conducting, repeatered, superconducting, and optical inter-
connections which take into account the skin effect, both
unterminated and terminated lines, optimization of repeater
configurations, superconducting penetration depth and crit-
ical current densities, optical diffraction, and similar effects
have been developed in[54] and subsequently applied to
determine the limitations of these interconnection media
and their relative strengths and weaknesses[54,52,47,46,57].
Treating inverse signal delaySand bandwidthB as perfor-
mance parameters, these studies characterize systems withN
elements by surfaces of physical possibility inS–B–N space,
which are to be compared with surfaces of algorithmic ne-
cessity in the same space.

This approach has allowed comparative studies of differ-
ent interconnection media to move beyond comparisons of
isolated electrical and optical lines, to evaluation of the ef-
fects of their different characteristics at the system level.
These studies clearly show the benefit of optical and super-
conducting interconnections for larger systems. One of the
most striking results obtained is that there is an absolute
bound on the total rate of information that can be swapped
from one side of an electrically connected system to the
other, and that this bound is independent of scaling. Such a
bound does not exist for optics and superconductors[54,41].

An interesting extension is to allow the longer lines
in a system to be of greater width to keep their RC de-
lays within bounds. Use of the calculus of variations has
shown that the widths of lines should be chosen propor-
tional to the cube root of their length for two-dimensional
layouts and to the fourth root of their length for three-
dimensional layouts[58]. Staircase approximations to
these analytical expressions can serve as practical design
guidelines.
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These studies have also been extended to determine how
electrical and optical interconnections can be used together.
It is generally accepted that optics is favorable for the longer
lines in a system whereas the shorter lines should be electri-
cal. Results based on comparisons of isolated lines may not
be of direct relevance in a system context. The proper ques-
tion to ask is not “Beyond what length must optical intercon-
nections be used?”, but “Beyond how many logic elements
must optical interconnections be used?”. Studies have deter-
mined that optical interconnections should take over around
the level of 104–106 elements[59,55,28].

This body of work has demonstrated that inverse-power-
law type line-length distributions are very suitable for such
studies. This is because distributions which decay faster,
such as an exponential distribution, effectively behave like
fully local distributions in which connections do not reach
out beyond a bounded number of neighbors. Such layouts
are essentially similar to nearest-neighbor connected lay-
outs; their wiring requirements are similar to layouts with a
dimensionality ofn = e. On the other hand, for any layout
in which the number of connections per element is bounded,
the behavior is at worst similar to that described by a Rent
exponent of unity. Thus, although all systems may not ex-
hibit a precise inverse-power-law distribution of line lengths,
Rent’s rule is nevertheless sufficient to represent the range
of general interest.

8. Conclusion

We believe that many criticisms of Rent’s rule are a re-
sult of not allowing the Rent exponent and dimensionality
to vary as we ascend the hierarchy and a failure to recognize
discontinuities. It seems that in most cases of practical inter-
est, the decomposition functionk(Ñ) is piecewise smooth
with a finite number of discontinuities. The role of disconti-
nuities in an otherwise smooth decomposition function, and
whether it is beneficial to construct systems in the form of a
hierarchy of functionally complete entities, are less under-
stood issues. Is it functionally desirable to construct systems
that way, or do physical and technical limitations force us
to?
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