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Interpolating Between Periodicity and Discreteness
Through the Fractional Fourier Transform

Haldun M. Ozaktas and Uygar Sümbül, Student Member, IEEE

Abstract—Periodicity and discreteness are Fourier duals in the
same sense as operators such as coordinate multiplication and
differentiation, and translation and phase shift. The fractional
Fourier transform allows interpolation between such operators
which gradually evolve from one member of the dual pair to the
other as the fractional order goes from zero to one. Here, we
similarly discuss the interpolation between the dual properties
of periodicity and discreteness, showing how one evolves into the
other as the order goes from zero to one. We also discuss the
concepts of partial discreteness and partial periodicity and relate
them to fractional discreteness and periodicity.

Index Terms—Chirp functions, discrete functions, fractional
Fourier transform, periodic functions, sampling.

I. INTRODUCTION

PERIODICITY and discreteness are Fourier duals (or
Fourier conjugates) in the sense that the Fourier transform

of a periodic function is discrete and the Fourier transform
of a discrete function is periodic. A periodic function
can be defined as one obtained by periodically replicating an
arbitrary function

(1)

for a specific , referred to as the period. A discrete
function can be defined as one obtained by uniformly
sampling an arbitrary function

(2)

for a specific , referred to as the sampling interval. Dis-
crete functions, as defined, may also be referred to as impulsive
functions. The reason for including the factor in front of the
summation will become apparent in Section IV.

Several common pairs of operators are Fourier duals (or con-
jugates) in the same sense. Coordinate multiplication and differ-
entiation, translation and phase shift, and chirp multiplication
and chirp convolution are well-known examples. The scaling
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operation is its own dual with reciprocal parameter. (For a dis-
cussion of such operators and duality, see, for instance, [1]–[4].)

The fractional Fourier transform operator is a generaliza-
tion of the ordinary Fourier transform operator . Although it
can be defined in a number of equivalent ways [1], a common
approach is to define it as the th operator power of the ordi-
nary Fourier operator, as already built into the notation. The
fractional Fourier transform interpolates between the identity
operator and the ordinary Fourier operator
in a continuous manner. Based on the fractional Fourier trans-
form, it is possible to interpolate between the above mentioned
common dual pairs of operators (see [1] and [4] and the refer-
ences therein). These interpolations gradually evolve from one
member of the dual pair to the other as the fractional order goes
from zero to one. These results will be reviewed in Section III.

In this paper we discuss the interpolation between the dual
properties of periodicity and discreteness. We define the con-
cepts of fractional periodicity and fractional discreteness with
order parameter , showing how one evolves into the other as
the order goes from zero to one. Although the duality between
periodicity and discreteness is widely understood, the interpo-
lation between these two properties does not seem to have re-
ceived any attention.

We also introduce the concepts of partial periodicity and dis-
creteness. In real life, ideal delta sampled functions and infi-
nite periodic functions do not exist. The sampling pulse is fi-
nite, reflecting a finite resolution, and only a finite number of
periods can exist. The concepts of partial periodicity and dis-
creteness are important because they model such real-life sam-
pled and periodic functions. An important result we derive is
that relating these partial operators to fractional periodization
and discretization operators. Therefore, under certain idealiza-
tions, the fractional periodization and discretization operators
also model real-life sampled and periodic functions.

The study of periodic functions is closely related to the study
of functions of finite extent. A periodic function may be consid-
ered a redundant representation of a function of finite extent; al-
ternatively a function of finite extent may be considered a com-
pact representation of a periodic function (with the period or
finite extent being specified in both cases). Therefore, the dis-
cussion of the present paper is relevant for functions of finite
extent as well.

While a function and its Fourier transform
cannot both be of finite extent in

the strict mathematical sense, in practice we typically assume
that both are at least approximately of finite extent in the sense
that the signal energy falling outside of that extent is negligible.
Let the extent of be denoted by and the extent of
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be denoted by , both assumed to cover an interval symmetric
around the origin. The sampling theorem implies that a sampling
interval of and will be sufficient in the

and domains respectively. In other words, the extent of the
signal (or its period) in one domain determines its resolution in
the other domain.

This implies that samples will be sufficient to com-
pletely characterize the function in both domains. This number,
which we will denote by , is referred to as the time-bandwidth
product of the signal, or its number of degrees of freedom. To
the extent that the energy outside and is negligible, the
discrete Fourier transform (DFT) maps the time samples to
the frequency samples. The exact relationship is given by a
form of Poisson’s formula [5]

(3)

which is a DFT between periodically replicated versions of
and . Here, is an integer, and are
arbitrary, and and

. Further discussion of these issues may
be found in [1, sec. 3.3]. General references on sampling and
interpolation include [5]–[7].

In the next section, we define the fractional Fourier transform
and its relation to the Wigner distribution. In Section III, we dis-
cuss several pairs of dual operators and consolidate their frac-
tional generalizations, which are continuums of operators in-
dexed by the fractional-order parameter . Section IV defines
the discretization and periodization operators and their frac-
tional generalizations. Finally, partial versions of discretization
and periodization operators are discussed in Section V.

Throughout the paper, will mean the square root of
whose argument lies in the interval and we assume
that belongs to the Schwarz space of rapidly decreasing
functions; these are the infinitely differentiable functions whose
derivatives of all orders (including the function itself) have faster
than polynomial decay. This space is dense in . In other
words, any square-integrable function can be approximated to
arbitrary accuracy by a rapidly decreasing function.

II. FRACTIONAL FOURIER TRANSFORM

The fractional Fourier transform has received considerable
interest over the past ten years and has found many applications
[8]–[23]. An important concept is that of fractional Fourier do-
mains, which are generalizations of the ordinary time and fre-
quency domains [24], [25]. This continuum of domains pro-
vides a continuous transition between the time and frequency
domains.

The th-order fractional Fourier transform
of the function is defined for as

(4)

where

(5)

The definition may be extended outside the interval
through for any integer . Moreover,

, and correspond to the identity operator , the
ordinary Fourier transform operator , and the parity operator

, respectively. The transform is a linear operator and it
is additive in index: . We also note that as
a result of index additivity, it is actually sufficient to define the
transform for , since it can then be easily generalized
to other values of using for , and

for . Other properties are given in
[1].

The Wigner distribution of is defined as

(6)

where is the Fourier transform of and indicates
complex conjugation. Properties of the Wigner distribution are
discussed in many sources, for instance see [1], [26], [27].

The effect of th-order fractional Fourier transformation on
the Wigner distribution of a signal is to rotate it by an angle
[28]. Hence, the mathematical relation between the Wigner dis-
tribution of a function and that of its fractional Fourier transform
is as follows:

(7)

The Radon transform operator , which takes the integral
projection of the function onto an axis making angle

with the axis, can be used to restate the previous
property in the following manner:

(8)

Here, the projection axis making angle with the axis, is
referred to as the th fractional Fourier domain [24], [25]. The
time and frequency domains are merely special cases of the con-
tinuum of fractional Fourier domains. Throughout this paper,

, and more generally , will be treated as dimensionless
variables.

The fractional Fourier transforms of and
are given, respectively, by [1]

(9)

When , the first expression reduces to and the
second expression reduces to . When , the first
expression reduces to and the second expression
reduces to . As is well known, the delta function and
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harmonic function are Fourier duals of each other. For inter-
mediate values of , we see that the result is in general a chirp
function which interpolates between a delta function and a har-
monic function as varies from zero to one. It also follows that
the fractional Fourier transform of a sampled function or a pe-
riodic function are both weighted summations of chirps.

III. COMMON DUAL OPERATORS AND THEIR

FRACTIONAL GENERALIZATIONS

The dual of the operator will be denoted by and satis-
fies

(10)

performs the same action on the frequency-domain repre-
sentation , that performs on the time-domain represen-
tation .

The “fractional” operators we deal with in this paper perform
the same action in a fractional domain, that their ordinary coun-
terpart performs in the time domain. More explicitly, the frac-
tional operator has the same effect on the th fractional Fourier
transform in the th domain, as the original operator has
on the original function in the time domain. Mathemati-
cally, this can be expressed as

(11)

This equation constitutes a generalization of (10) and reduces
to it when with . Note that and are two
different operators, whose representations in the zeroth and th
domains, respectively, are identical. (The zeroth domain is the
time domain.) They are not different representations of the same
operator. Also note that, to distinguish such “fractional” opera-
tors associated with the th fractional Fourier domain, from the

th operator power of which is denoted by , we are de-
noting them by . To further discriminate the two cases, we
note that for while ; and for

while . In yet other words, interpolates
between the operator and its dual , whereas interpo-
lates between the identity operator and the operator . Equation
(11) also holds for , as follows:

(12)

Since as can be easily shown from (11), we
denote both simply by .

In what follows, we summarily discuss several common dual
pairs of operators and their fractional versions. A more detailed
treatment can be found in [4]. The symbols used to denote op-
erators are inherited from [1] and [4].

We begin by defining the coordinate multiplication operator
and the differentiation operator through their effects in the

time domain, as follows:

(13)

(14)

It can be easily shown that these operators constitute a dual pair
with and and satisfy (10). Likewise, it can be
shown that and are also a dual pair. Note that indeed
has the same effect of coordinate multiplication in the frequency
domain, as has in the time domain. (This follows from the
property that the Fourier transform of is .)

The fractional forms of these operators are defined so as to
have the same functional effect in the th domain, as follows:

(15)

(16)

It follows from these definitions that and satisfy (11) and
(12) with the special cases

. The first and fourth of these
special cases are by definition. The second and fifth follow from
the Fourier transform property mentioned in the previous para-
graph and its dual:

. The third can be obtained by sub-
stituting into (both
special cases of (11)), and the sixth can be obtained similarly to
the third.

It can be shown that the fractional operators and can be
expressed in terms of their integer counterparts as given in entry
1 of Table I. As the fractional order parameter varies from 0 to
1, the relative contributions of and to and are given
by simple trigonometric factors.

The phase shift operator and the translation operator
are defined as follows:

(17)

(18)

Such expressions are interpreted in terms of their series expan-
sions. These operators shift or translate signals in the frequency
and time domains, respectively [1], as follows:

(19)

(20)

These two operators in question are related through (10) either
with and , or with
and

.
The fractional forms of these operators are defined as

(21)

(22)

It can be shown that these operators have the same functional
effect in the th domain as their ordinary counterparts have in
the time domain and satisfy (11) and (12). Again, it is possible
to express these operators in terms of their integer counterparts,
as given in entry 2 of Table I. As the fractional order parameter

varies from 0 to 1, the relative contributions of and
to and are given by simple trigono-

metric factors.
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TABLE I
SUMMARY OF FRACTIONAL OPERATORS

The scaling operator can be defined through the co-
ordinate multiplication and differentiation operators in the fol-
lowing way:

(23)

where . Its effect in the time domain is [29, p. 275]

(24)

The scaling operator is its own dual in the sense that scaling in
the time domain corresponds to descaling in the frequency do-
main: the Fourier transform of is .
Once again, this operator satisfies (10) with and

.
The fractional form of the scaling operator is again defined in

the same manner, as follows:

(25)

This operator has the same functional effect in the th do-
main as its ordinary counterpart has in the time domain and
satisfies (11) and (12). Once again, it is possible to express
this operator in terms of its integer counterparts, as given
in entry 3 of Table I. This result expresses the fractional
scaling operator in terms of the ordinary scaling operator
or its dual (which is also a scaling operator with reciprocal
parameter). That (25) satisfies (11) can be shown by first
noting that for integer we have

. Now, we use this result in
the series expansion:

, which is the desired result. This derivation also
applies to (12) since the dual is obtained merely by replacing

by .

The chirp multiplication operator and the chirp convo-
lution operator are defined as follows:

(26)

(27)

Their effect in the time domain is given by

(28)

(29)

These two operators again form a Fourier dual pair satisfying
(10) either with and , or with

and , which readily follow from their series
expansions:

Multiplication with a chirp may be interpreted as frequency
modulation with a linearly varying frequency component. Since

and are duals satisfying (10), the effect of in
the time domain must be functionally equivalent to the effect of

in the frequency domain. Therefore, is given
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by the inverse Fourier transform of the frequency domain func-
tion , which can be evaluated using the convolution
theorem and the Fourier transform pair

.
We define the fractional forms of these operators as

(30)

(31)

These operators have the same functional effect in the th do-
main as their ordinary counterparts have in the time domain, and
satisfy (11) and (12). These fractional chirp operators can be ex-
pressed in terms of and as given in entry 4 of Table I.

IV. PERIODICITY AND DISCRETENESS OPERATORS AND THEIR

FRACTIONAL GENERALIZATIONS

In the previous section, we reviewed common pairs of dual
operators and their fractional versions. In this section we turn
our attention to the main focus of this paper, which is to explore
fractional generalizations of the dual properties of periodicity
and discreteness. To facilitate our analysis, we define two op-
erators corresponding to these two properties, such that when
one of these operators acts on an arbitrary function, it produces
a function with the corresponding property.

We define the discretization and periodization
operators in terms of the phase shift and translation

operators

(32)

(33)

We will see below that the parameters and
correspond to the period of replication in the time and frequency
domains respectively. (Remember that, sampling in the time do-
main corresponds to periodic replication in the frequency do-
main.) We also define and , denoting
the sampling interval in the time and frequency domains, respec-
tively.

From this definition and the duality of the phase shift and
translation operators, it immediately follows that these two op-
erators are also Fourier duals:

(34)

which follow from (32) and (33),
, and the duality relations

.

The effects of the discretization and periodization operators
in the time domain can be expressed as

(35)

(36)

where we used another form of Poisson’s summation
formula [5]

(37)

to get (35). The function defined as

(38)

can now be used to rewrite (35) and (36) in the following
manner:

(39)

(40)

From the above equations, it is apparent that is the
operator which multiplies a function in the time domain by a
delta train, thereby creating a weighted sequence of impulses.
On the other hand, is the operator that periodically
replicates a function in the time domain.

The Fourier transform of is
. Using this result, the Fourier transforms of the

right hand sides of (39) and (40) are, respectively, given by

(41)

(42)

from which we observe that the effects of the two operators are
exchanged in the frequency domain, with the discretization op-
erator leading to periodic replication and the periodization oper-
ator leading to multiplication by a delta train. This is precisely
what is meant by the duality of the two operators. The reader
might also want to compare (41) and (42) with (35) and (36).

We now define the fractional generalizations of these opera-
tors as

(43)

(44)
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where is the fractional discretization operator and
is the fractional periodization operator. We prove in

Appendix I that these operators satisfy the form of (11)

(45)

(46)

Using these equations and (34), we can further show

(47)

The right-hand sides of (43) and (44) can be expanded by
using entry 2 of Table I to obtain

(48)

(49)

where we used and
, which can easily be proved from their defining equa-

tions.
We now derive an intermediate result for the fractional phase

shift operator

which means that the fractional phase shift operator can be ex-
pressed as

(50)

Employing a similar technique for the fractional translation op-
erator yields

(51)

Now by substituting (50) in (43), we obtain

(52)

Likewise, substituting (51) in (44) yields

(53)

We can obtain two more equations by using the duality of and
, and and

(54)

where we used (34) and . Similarly

(55)

Equation (52)–(55) express the fractional discretization and pe-
riodization operators in terms of their nonfractional counter-
parts, revealing that the fractional periodization/discretization
operators can be implemented by using only ordinary chirp and
ordinary periodization or discretization operations. The frac-
tional operators interpolate between periodicity and discrete-
ness with the smooth transition being governed by the param-
eter . Therefore, these equations have been included alongside
other similar formulas in Table I.

It is worth noting the similarity between entry 4 of Table I and
(52)–(55). These eight equations are repeated for easy compar-
ison:

Notice especially the similar appearance of the chirp multipli-
cation and convolution operators on the right-hand sides of the
equations. Although one may be tempted to think that similar
relations are satisfied between all dual pairs and their fractional
versions, in Appendix II, we show that this is not the case by
considering the fractional scaling operator .
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We also note that the discretization and periodization op-
erators do not in general have left-hand inverses. The effects
of the discretization and periodization operators may be un-
done only if the function under consideration is of finite ex-
tent in the frequency domain (for discretization) or time domain
(for periodization). The first of these corresponds to the stan-
dard sampling theorem. In other cases, it is impossible to recon-
struct the original signal. These operators also do not, in general,
have right-hand inverses. If is not discrete or periodic to
begin with, with whatever operation we precede the discretiza-
tion or periodization operator, we cannot recover . Notice
that these properties of the discretization and periodization op-
erators contrast with all the other dual operators and their frac-
tional versions discussed earlier, all of which have inverses.

For completeness, we also present the explicit functional for-
mulas for the effects of fractional periodization and discretiza-
tion operators acting on a function

(56)

(57)

The discretization and periodization operators and their frac-
tional versions are somewhat different than the other operators
discussed in that these are not operators which we usually sim-
ulate with discrete versions; rather, it is these operations which
constitute the bridge between continuous and finite signals.

V. PARTIAL PERIODIZATION AND DISCRETIZATION OPERATORS

The expressions in Table I show how the fractional operators
defined can be expressed in terms of their non-fractional ordi-
nary counterparts. Entry 1 of the table shows us how and

can be written as linear combinations of and . The frac-
tional operator consists partially of and partially of ,
the amount of the contributions being given by trigonometric
factors. Entry 2 shows us how and can be written
in terms of and . The fractional operator consists
partially of and . This time, however, rather than a linear
combination, the amount of the contributions are determined by
the parameters of these operators. Entry 4 shows a similar rela-
tion for the chirp multiplication and convolution operators, with
similar interpretation.

From these observations, we would expect the effect of
to consist of partial contributions from and . What is
not initially clear is what it means for a function to be partially
discrete or periodic. In the case of and , partialness was ob-
tained by multiplying with scalars of magnitude less than unity.
That this will not do for the case of discretization and periodiza-
tion is obvious. In the case of and , partialness was ob-
tained by multiplying the translation or phase shift parameter

with scalars of magnitude less than unity. This may lead us to in-
quire whether partial discretization or partial periodization can
be obtained by adjusting the period or sampling interval to vary
between its original value and zero or infinity. However, we have
found this not to be a satisfactory way of defining the concept
of partial discretization or partial periodization.

To make some of the above observations more precise, we
state two propositions, whose proofs are given in Appendix III.
The first proposition shows that it is not possible to write the
fractional discretization or periodization operators as linear
combinations of the nonfractional discretization and periodiza-
tion operators:

The fractional operator or cannot
be written as some finite weighted sum of

for any , where .

The second proposition shows that it is not possible to write the
fractional discretization or periodization operators as product
forms of the non-fractional discretization and periodization op-
erators:

The fractional operator or cannot
be written as some finite product of
and a scalar for any , where .

These two propositions suggest that other means of defining par-
tialness should be considered.

To motivate our definition of the partial periodization oper-
ator, consider the following expression, which is a truncated ver-
sion of the “complete” periodization operator defined in (33):

(58)

When the odd integer , this operator approaches the
complete periodization operator. When , this operator
reduces to the identity operator which does not result in any
periodic replication of the function to which it is applied. For a
signal whose energy is mostly concentrated in an interval
of extent centered around the origin, the effect of the above
defined operator may be approximately expressed as

(59)

where when and 0 elsewhere.
Again, to motivate our definition of the partial discretization

operator, let us consider the dual of the operator defined in (58)

(60)

which is a truncated version of the “complete” discretization op-
erator defined in (32). When , this operator approaches
the complete discretization operator. When , this oper-
ator reduces to the identity operator which does not result in any
discretization of the function to which it is applied. For a signal
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whose inverse Fourier transform energy is mostly concen-
trated in an interval of extent centered around the origin,
the effect of the above defined operator may be approximately
expressed as

(61)

which is the dual of (59) (multiplication with a rectangle
function corresponds to convolution with a sinc function,
where ( ). We see that the effect of the
operator defined in (60) is to broaden the sampling impulses,
corresponding to a loss of resolution.

While the operators defined in (58) and (60) could constitute
a self-consistent pair of definitions for the partial periodiza-
tion and discretization operators respectively, the use of a
rectangle–sinc function pair is undesirable in certain respects.
One reason is the sharp transition of the rectangle function.
Furthermore, it would be desirable to choose a function whose
Fourier transform is of the same form as itself to obtain a sym-
metric formulation. While there are many such functions, our
choice here will be the chirp function because of the important
role it plays in the theory of the fractional Fourier transform:
The fractional Fourier transform of a chirp function is, in
general, another chirp function, with the delta function and
the harmonic function being limiting special cases [1, p. 149].
While the magnitude of the chirp function is unity for all , it
effectively behaves as a convolutive or multiplicative window
function since i) the chirp function tends to a delta function as
the chirp parameter goes to infinity, just like a Gaussian
function

(62)

ii) for finite values of the chirp parameter, the tails of the chirp
function oscillate so fast that it effectively behaves like a func-
tion which is non-zero only over a finite interval, and iii) the
chirp function tends to the constant value of 1 as the chirp pa-
rameter goes to zero, again like a Gaussian

(63)

Therefore, we define the partial periodization operator
in terms of the chirp multiplication operator as

(64)

whose effect on a function is

(65)

which is similar to (59) apart from the fact that a chirp “window”
has replaced the rectangular window. Here, is the
parameter characterizing the degree of partialness. It tends to
infinity when we have complete periodization with an infinite
number of periods, and equals 1 when only one period is
retained. In general, can be roughly interpreted as the
number of periods retained.

The partial discretization operator is defined as
the dual of the partial periodization operator and involves the
chirp convolution operator

(66)

whose effect on a function is

(67)

Here, is the parameter characterizing the degree of
discretization. It tends to infinity when we have complete dis-
cretization with ideal delta samples, and equals 1 when the width
of the sampling pulses approximately equals the sampling in-
terval. In general, can be roughly interpreted as the ratio
of the sampling interval to the width of the sampling pulse.

Thus, we have defined partial periodization as complete pe-
riodization followed by chirp multiplication (which effectively
windows the number of periodic replicas) and partial discretiza-
tion as complete discretization followed by chirp convolution
(which effectively broadens the sampling impulses). The param-
eters of the chirp multiplication and convolution operations de-
termine the degree of partialness. By using (52)–(55), we can
write the following relations between partial periodization and
discretization operators and the fractional periodization and dis-
cretization operators defined earlier:

(68)

These relations show how the fractional periodization and dis-
cretization operators can be expressed in terms of nonfractional
partial periodization and discretization operators. As such, these
equations, together with (52)–(55), are of similar significance as
those in Table I. They express fractional operators in terms of
their nonfractional counterparts.

Observing the general form of the above four equations
tempts us to eliminate the operators or from the right-hand
side by absorbing them in the definition of the partial peri-
odization and discretization operators. A partial periodization
operator thus defined would involve multiplication with a
window not only after ordinary periodization, but before as
well. Likewise, a partial discretization operator thus defined
would involve convolution with a window not only after or-
dinary discretization, but before as well. If the function to
be periodized was negligible outside an interval of length

around the origin, or the function to be discretized
had a negligible Fourier content outside an interval of length
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around the origin, these definitions would be nearly
identical to those given in (64) and (66). If the function or its
Fourier transform are not negligible outside an interval of length

or , respectively, these definitions will differ
from those given in (64) and (66), essentially because they
clip the tails of the function (beyond ) or its Fourier
transform (beyond ) prior to periodic replication or
sampling. These definitions also satisfy duality and coincide
with complete periodization or complete discretization as
or respectively go to infinity. If these definitions are
employed, we obtain the following set of particularly simple
relations between fractional periodization and discretization
and partial non-fractional periodization and discretization:

(69)

which simply say that fractional periodization or discretization
can be interpreted as partial nonfractional periodization or
discretization with another period or sampling interval. These
relations provide an alternative means of interpreting fractional
periodization and discretization operators, compared with
(52)–(55).

We can also define fractional versions of the partial periodiza-
tion and discretization operators

(70)

(71)

These operators, which are both fractional and partial, are also
Fourier duals

(72)

VI. DISCUSSION AND CONCLUSION

A variety of Fourier dual (or conjugate) operators play im-
portant roles both in the theory of the Fourier transform and the
time-frequency plane, and in certain areas including quantum
mechanics, optics, and signal analysis and processing. Common
examples of these operators are coordinate multiplication and
differentiation, translation and phase shift, chirp multiplication
and convolution, and scaling (which is self-dual). The fractional
Fourier transform allows us to define a continuum of opera-
tors which interpolate between such dual pairs. These gradu-
ally evolve from one member of the dual pair to the other as
the fractional order goes from zero to one. Several of these op-
erators and their fractional versions were discussed in previous
literature (see [4] and the references therein).

The concepts of periodicity and discreteness are also Fourier
duals in the same sense. The Fourier transform of a periodic
function is discrete and the Fourier transform of a discrete func-
tion is periodic. (Here, the term discrete refers to an impulse
train sampled function.) In this paper, we have discussed the

interpolation between the dual properties of periodicity and dis-
creteness, showing how one evolves into the other as the order
goes from zero to one. In order to base our analysis in the same
framework as that used to discuss the dual operators mentioned
above, we defined the periodization and discretization operators,
whose effect is to create periodic and discrete functions respec-
tively, when applied to an arbitrary function. The definition of
the periodization and discretization operators are based on the
translation and phase shift operators, the latter which constitute
a dual pair themselves. We defined fractional periodization and
discretization operators in the same manner as other fractional
dual operators have been defined—they all have the same effect
in the th fractional Fourier domain as their ordinary counter-
parts have in the zeroth (time) domain.

A common goal in dealing with fractional operators is to show
how they are related to their non-fractional counterparts (Table I).
We have derived various expressions relating the fractional peri-
odizationanddiscretizationoperators totheirnonfractionalcoun-
terparts. With some dual operators, such as in entry 1 of the table,
the fractional operators are given as linear superpositions of the
non-fractional operators. With others, as in entry 2, the param-
eters of the non-fractional operators take values reflecting their
partial effect. For instance, fractional translation will involve par-
tial translation and partial phase shifting. In the case of fractional
periodization and discretization, it seems that neither of these is
the proper way for a full periodization or discretization operator
to make a partial contribution to a fractional periodization or dis-
cretization operator. We argue that a suitable way of partializing
the periodization operator is to window a finite number of periods
and a suitable way of partializing the discretization operator is
to smooth an impulse sampled function. With these definitions,
the fractional periodization and discretization operators can be
related to partial nonfractional periodization and discretization
operators in a relatively simple manner. As explained in detail
in Section V, we chose to work with chirp windows which in
our opinion lead to the analytically most elegant and symmetric
formulation. However, in certain situations, especially involving
applications, one may be willing to sacrifice symmetry in favor
of other objectives, and standard window functions such as Ham-
ming, Kaiser, Hanning, etc., may be preferred. Perhaps the most
important observation regarding the concepts of partial period-
icity and discreteness is that they model real-life sampled and
periodic functions. In real life ideal delta sampled functions and
infinite periodic functions do not exist. The sampling pulse is
finite, reflecting a finite resolution, and only a finite number of
periods can exist. Since we have shown that fractional periodiza-
tion and discretization operators are related to partial operators,
the fractional periodization and discretization operators are also
related to real-life sampled and periodic functions.

The definitions and relations given in this paper may be useful
especially when dealing with signals with irregular time-fre-
quency support. If a set of signals has a time-frequency sup-
port which is a rectangle orthogonal to the coordinate axes, the
time-bandwidth product, the area of the rectangular support, and
the number of degrees of freedom are roughly equal. However,
if the support is not orthogonal to the axes (especially if it has a
large aspect ratio), or if it is completely irregular, the time-band-
with product and the number of degrees of freedom may signif-
icantly differ. This is particularly noticeable for certain signals,
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such as those of a chirped nature. For instance, when sampling
such a signal, sampling at the conventional Nyquist rate over
some finite interval will produce a number of samples equal to
the time-bandwidth product, whereas if we were to sample the
signal in a fractional domain where the rectangle bounding the
time-frequency support is smallest, the signal can be represented
with fewer samples. Fractional periodicity may be useful in mul-
tiplexing signals. Multiplexing in either the time or frequency
domain often involves adjacently situating signals which exhibit
similar characteristics. While this does not create strictly period-
ically replicated signals, it is possible to associate the time slot or
frequency band used in multiplexing with the replication period
in our formulation. If the set of signals has a support like that de-
scribed above, straightforward multiplexing will be inefficient
since the support of each signal will occupy only a certain part
of the time-frequency “tile” allocated to it. Again working in the
fractional domain where the bounding rectangle is smallest (or
possibly even considering hexagonal etc. packing strategies),
more efficient time or frequency multiplexing making better
use of the channel is possible. Other applications may be based
on the relationship of fractional or partial periodicity or dis-
creteness operators to real-world sampled or periodic functions
which involve finite-size pulses or a finite number of periods.

APPENDIX I

The fractional discretization and periodization operators
satisfy the form of (11)

Proof: Using (32), (43), and ,
we find

which is the desired result. The expression for the fractional
periodization operator is proved in exactly the same way.

APPENDIX II

The fractional scaling operator with given
and cannot be expressed in either of the following forms
for any

(73)

Proof: The proof follows by using the matrix represen-
tations of the operators. When the matrix representations of

linear canonical transformation theory are substituted in the
above equations [4], it can be shown that for the above forms to
be satisfied, we must have , which
shows that these forms cannot be satisfied for arbitrary and

. (For a general reference on linear canonical transforms, see
[29].)

APPENDIX III

Here, we prove the two quoted propositions in Section V:

The fractional operator or cannot
be written as some finite weighted sum of

for any , where .

Proof: Assume that such a form exists for , as
follows:

for some , and some scalars . Then,

The right-hand side has impulsive components in the time
and/or frequency domains while the left-hand side does not, for
some , as can be deduced from (52)–(55). This contradiction
completes the proof for . The same result is valid for ,
which can be shown in exactly the same way.

The fractional operator or cannot
be written as some finite product of
and a scalar for any , where .

Proof: Assume that such a form exists for , as
follows:

for some , some scalar , and some product function
multiplying its arguments in one of their possible permuta-

tions. Then

The right-hand side has impulsive components in the time
and/or frequency domains while the left-hand side does not, for
some . This contradiction completes the proof for . The
same result is valid for , which can be shown in exactly
the same way.

Extending the proof to the case where the product terms are
raised to arbitrary real powers would be desirable, but is cur-
rently not available.
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