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Abstract

Image capture and image display will most likely be decoupled in future 3DTV systems. Due to the need to convert

abstract representations of 3D images to display driver signals, and to explicitly consider optical diffraction and

propagation effects, it is expected that signal processing issues will be of fundamental importance in 3DTV systems. Since

diffraction between two parallel planes can be represented as a 2D linear shift-invariant system, various signal processing

techniques naturally play an important role. Diffraction between tilted planes can also be modeled as a relatively simple

system, leading to efficient discrete computations. Two fundamental problems are digital computation of the optical field

arising from a 3D object, and finding the driver signals for a given optical display device which will then generate a desired

optical field in space. The discretization of optical signals leads to several interesting issues; for example, it is possible to

violate the Nyquist rate while sampling, but still achieve full reconstruction. The fractional Fourier transform is another

signal processing tool which finds applications in optical wave propagation.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Regardless of the algorithmic, representational,
and technological choices made for the acquisition,
transmission, and display of three-dimensional (3D)
visual signals, optics is expected to play a more
important role in holographic 3D television (3DTV)
than it does in conventional display technologies
such as cathode ray tubes and liquid crystal
displays, or cinematic projection. This is because
the creation of a 3D image, or the illusion of it,
depends on the manipulation of light for the
purpose of synthesizing desired spatial light dis-
tributions. The analyses of the underlying processes
e front matter r 2006 Elsevier B.V. All rights reserved
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will almost certainly involve explicit consideration
of diffraction and related phenomena.

The image capture and image display steps will
most likely be decoupled in future 3DTV systems.
The captured 3D scene and object information will
be stored or transmitted in convenient forms. Then
the viewer at the display-end will access the abstract
3D information in an interactive fashion. Finally,
the abstract data will be converted to signals that
will drive the optical display.

As a consequence of this decoupled approach and
the need to convert abstract representations to
driver signals, as well as the need to explicitly
consider diffraction and propagation effects, it is
expected that signal processing issues will play a
fundamental role in 3DTV systems. The purpose of
this paper is to identify and revisit some of the key
.
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signal processing issues in holographic 3DTV. The
formulation of diffraction phenomena, forward and
inverse problems in holographic 3DTV, discretiza-
tion issues, and the use of the fractional Fourier
transform are the main subjects covered in this
paper.
Fig. 1. Simulation of diffraction for a 1D double slit object. We

chose X ¼ 8l, which is the physical size of a pixel along the

transversal (vertical) direction, with N ¼ 2048 pixels in both

directions. The slit widths are equal and 105 pixels wide, with a

slit separation of 90 pixels. The physical size of a pixel along the

longitudinal (horizontal) direction is 20 times greater than that in

the transversal direction. Therefore, the physical horizontal axis

is visualized 20 times compressed compared to the vertical axis,

for better viewing. The authors thank G.B. Esmer for conducting

the simulation.
2. Relationships between diffraction and basic signal

processing tools

2.1. Review of diffraction from a systems point of

view

It is well known that scalar monochromatic
diffraction in homogeneous media can be exactly
represented as a linear shift-invariant (LSI) system
[7]. Based on the well-established plane-wave
decomposition technique, which is equivalent to
Fourier decomposition, we can write

c2DZ
ðx; yÞ9cðx; y;ZÞ

¼
1

4p2

ZZ
k2

xþk2
ypk2

Tðkx; kyÞ

� exp½jZðk2
� k2

x � k2
yÞ

1=2
�

� exp½jðkxxþ kyyÞ�dkx dky, ð1Þ

where cðx; y; zÞ is the 3D coherent optical field, and
c2DZ
ðx; yÞ is its 2D cross section at z ¼ Z. Since only

the positive square-root is included in the super-
position above, it is implied that the plane-wave
components are propagating along the positive
z-direction. Furthermore, only the propagating
waves are included in the superposition, and there-
fore, the evanescent wave components are assumed
to be zero. The output function c2DZ

ðx; yÞ is the
diffraction pattern over a planar 2D surface, arising
from an input object transparency mask tðx; yÞ
located at z ¼ 0. Tðkx; kyÞ is the Fourier transform
of tðx; yÞ. Restriction of the superposition only to
propagating waves and the corresponding restric-
tion of the domain of integration to the indicated
circle imply that the mask tðx; yÞ is a low-pass
function, and therefore, does not generate any
evanescent wave components. Incidentally, this is
always the case when there is no physical mask, but
the 2D field tðx; yÞ is obtained simply by taking
the cross section of a 3D field which is composed
of propagating waves. kx and ky are the spatial
frequencies along the x and y axes, respectively. The
monochromatic light wavelength is l, and k ¼ 2p=l.
Therefore, the transfer function of the 2D LSI
system is exp½ jZðk2
� k2

x � k2
yÞ

1=2
�. Surprisingly, it is

quite difficult to find the inverse Fourier transform
of this function in texts or tables. However, it has
been proven by Sherman [29] that the inverse
Fourier transform (i.e., the impulse response of
the system representing the diffraction of light) is
the kernel of the well-known first Rayleigh–Som-
merfeld solution [7]. For distances Z, which are
large compared to the wavelength, the impulse
response reduces to the well-known kernel asso-
ciated with a spherical wave emanating from a point
source:

hZðx; yÞ �
Z

jlðx2 þ y2 þ Z2Þ
exp j

2p
l
ðx2 þ y2 þ Z2Þ

1=2

� �
.

(2)

We can rewrite Eq. (1) compactly as

c2DZ
ðx; yÞ ¼F�1 Fftðx; yÞg

n

�exp½jZðk2
� k2

x � k2
yÞ

1=2
�

o
. ð3Þ

A simulation of the diffracted field as a function
of Z, based on the exact formula given by Eq. (1)
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(or equivalently Eq. (3)), is shown in Fig. 1. A 1D
example has been considered for the sake of
illustration. The simulation utilizes the discrete
Fourier transform (DFT) instead of the continuous
Fourier transform, and therefore involves discrete
and periodic object functions. To obtain the
diffraction pattern of Fig. 1, we start with the 1D
counterpart of Eq. (3),

c1DZ
ðxÞ ¼F�1 FftðxÞg exp½jZðk2

� k2
xÞ

1=2
�

n o
(4)

and perform the discretization by sampling at
x ¼ nX , Z ¼ pX and kx ¼ 2pm=NX , where n and
m are integers in the interval ½0;N � 1�, X is the
sampling period, and p is a real variable; N is the
DFT size. Therefore, the discrete field cdðn; pÞ
becomes

cdðn; pÞ ¼ DFT�1 DFTfcdðn; 0Þg

�

� exp j
2p
N
ðb2 �m2Þ

1=2p

� ��
, ð5Þ

where b ¼ NX=l. Therefore, starting with the
discrete 1D object function cdðn; 0Þ (double slit)
and computing the diffracted field using Eq. (5) over
a range of the normalized depth parameter p, we get
the pattern in Fig. 1. The numerical values are given
in the figure caption.

Digital simulation of diffraction is crucial in many
applications, and there are various different numer-
ical approaches with different properties [2,6,20].
A comparison of different numerical implementa-
tions of the diffraction integral in the context of
holography is given in [12,13].

Under the paraxial approximation (i.e., when the
angle between the z-axis and lines connecting points
of interest on the diffraction plane to points on the
object mask are small) the impulse response and the
associated transfer functions become [7]

hZðx; yÞ ¼
1

jlZ
exp j

2p
l

Z

� �
exp j

p
lZ
ðx2 þ y2Þ

h i
,

ð6Þ

HZðkx; kyÞ ¼ exp j
2p
l

Z

� �
exp½�j

lZ

4p
ðk2

x þ k2
yÞ�. ð7Þ

The paraxial approximation above is also known as
the Fresnel approximation. The convolution of
tðx; yÞ with the impulse response given above can
be easily converted to a single Fourier transform with
pre- and post-multiplications by chirp functions:

c2DZ
ðx; yÞ

¼ c

Z Z
aðx; ZÞ exp j

p
lZ
½ðx� xÞ2 þ ðy� ZÞ2�

n o
dxdZ

¼ c exp j
p
lZ
ðx2 þ y2Þ

h i Z Z
aðx; ZÞ

� exp j
p
lZ
ðx2 þ Z2Þ

h i

� exp j
2p
lZ
ðxxþ yZÞ

� �
dxdZ, ð8Þ

where the constants are combined into the new
constant c.

Approaches based on LSI filtering which utilize
the transfer function given in Eq. (7), or the
equivalent single Fourier transform with pre- and
post-chirp multiplications given in Eq. (8), are
common in the literature (see, for example, [20]).
While the form given in Eq. (8) provides a
straightforward approach for the fast numerical
computation of the Fresnel integral using the FFT
algorithm [10,15,16], recent work to be discussed
below in Section 4 shows that this is not necessarily
the best approach and provides a good example of
the benefits of applying a rigorous signal processing
approach to such problems.

At very large distances (compared to the object
size), further approximation leads us to an expres-
sion where the diffraction pattern is given by the
Fourier transform of the object multiplied by a
chirp function [7]:

c2DZ
ðx; yÞ

¼ c exp j
p
lZ
ðx2 þ Z2Þ

h i Z Z
aðx; ZÞ

� exp j
2p
lZ
ðxxþ yZÞ

� �
dx dZ. ð9Þ

2.2. Relationship between diffraction and the

fractional Fourier transform

The discussion above clearly demonstrated the
strong links between the basic principles of wave
propagation, diffraction, and fundamental signal
processing tools. It is of interest to extend these
close links to other signal processing techniques and
results as well.

For example, the past decade has witnessed a
recognition of the relationship between the Fresnel
approximation to optical diffraction and the fractional
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Fourier transform (FRT) [26]. The FRT f aðxÞ of f ðxÞ

is defined as

f aðxÞ ¼ Kap=2

Z 1
�1

exp½ jpðx2 cotðap=2Þ � 2xx0 cscðap=2Þ

þ x0
2
cotðap=2ÞÞ� f ðx0Þdx0, ð10Þ

where Kap=2 is a factor depending on a whose exact
form is not of importance here. The key result is that
relating free-space propagation in the Fresnel approx-
imation (the Fresnel integral or the Fresnel transform
discussed above) to the fractional Fourier transform
[9,23,24,28]. Extensions of this result relate arbitrary
linear canonical transforms to the fractional Fourier
transform, for instance [22]. Linear canonical trans-
forms are a three-parameter family of integral trans-
forms which are also known as quadratic-phase
systems. This family of transforms includes the
Fourier and FRT, simple scaling including the
identity and parity operations (corresponding to
imaging in optics), chirp multiplication, and convolu-
tion operations (corresponding to passage through a
thin lens and free-space propagation in the Fresnel
approximation, respectively), and hyperbolic trans-
forms as special cases [1,32]. Since optical systems
consisting of arbitrary concatenations of lenses
and section of free space can be modeled as linear
canonical transforms, it follows that propagation
through such systems, as well as free-space propaga-
tion, can be viewed as an act of continual fractional
transformation. The wave field evolves through FRT
of increasing order as it propagates through free
space or the multi-lens system.

Restricting ourselves to 1D notation to keep the
equations manageable, the output gðxÞ of a quad-
ratic-phase system is related to its input f ðxÞ through

gðxÞ ¼
ffiffiffi
b

p
e�jp=4

�

Z 1
�1

exp½ jpðax2 � 2bxx0 þ gx0
2
Þ�

�f ðx0Þdx0, ð11Þ

where a; b; g are the three parameters of the system.
When all three of these parameters equal 1=lZ, this
expression reduces to the Fresnel integral (within an
inconsequential phase factor). The same relationship
can also be written in terms of an alternate set of
parameters a, M, R as follows:

gðxÞ ¼ ejpx2=lR

ffiffiffiffiffiffiffiffiffi
1

s2M

r
Kap=2

�

Z 1
�1

exp
jp
s2

x2

M2
cotðap=2Þ

��
�2
xx0

M
cscðap=2Þ þ x0

2
cotðap=2Þ

��

�f ðx0Þdx0, ð12Þ

where s is an arbitrary scale factor. This relationship
maps a function s�1=2f ðx=sÞ to gðxÞ ¼ expð jpx2=
lRÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1=sM

p
f aðx=sMÞ. That is, gðxÞ is essentially the

ath order FRT of s�1=2f ðx=sÞ, scaled by M, and
multiplied by a residual quadratic-phase factor. In
optics scaling corresponds to magnification of the
distribution of light in the transverse direction.
The existence of the quadratic-phase factor means
that the magnified FRT is observed on a spherical
reference surface, rather than on a plane. Comparing
Eqs. (11) and (12), we can relate the two sets of
parameters as follows:

a ¼
cotðap=2Þ

s2M2
þ

1

lR
, ð13Þ

b ¼
cscðap=2Þ

s2M
, ð14Þ

g ¼
cotðap=2Þ

s2
. ð15Þ

These equations allow us to switch between the two
sets of parameters and thus interpret any quadratic-
phase integral and thus the wide class of optical
systems they represent as FRT. Since the FRT has a
much broader set of properties mirroring those of the
ordinary Fourier transform, and is geometrically and
numerically much better behaved, formulating the
propagation of light through optical systems in terms
of the FRT has several advantages when compared
to expressions involving the Fresnel integral. As a
special case, when a ¼ b ¼ g ¼ 1=lZ, corresponding
to ordinary free-space propagation, we have

tanðap=2Þ ¼
lZ

s2
, ð16Þ

M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðlZ=s2Þ2

q
, ð17Þ

1

lR
¼

1

s4
þ

lZ

1þ ðlZ=s2Þ2
. ð18Þ

To relate our results to the expressions given in
Section 2.1, we may note that f ðxÞ will simply
correspond to the 1D input object mask tðxÞ and gðxÞ

will correspond to the 1D diffracted field c1DZ
ðxÞ.

An example optical system consisting of several
lenses separated by varying distances from each other
is shown in Fig. 2(a). The lenses are represented by
vertical dot-dashed lines with their focal lengths
indicated immediately overhead. The optical field
distribution at any transverse plane in such a system
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can be related to that at z ¼ 0 through a linear
canonical transform, and as explained above, can be
expressed as an ath order FRT scaled by the factor
M on a curved reference surface of radius R. Parts
(b), (c), and (d) of the figure give the values of a, M,
1=R as a function of the location z of the output
plane. Given these results, we are able to express the
relationship between the optical fields at any two
planes in such a system in the form of a FRT, and
thus apply fractional Fourier-based signal processing
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Fig. 2. The parameters a, M, and 1=R as functions of z with

l ¼ 0:5mm and s ¼ 0:3mm. In part (a), the units indicated along

the vertical axis representing the transverse spatial dimension are

arbitrary. The solid and dashed lines represent the paths of two

light rays propagating through the system. (Reprinted with

permission from [22].)
algorithms to such general optical systems. This
significantly facilitates numerical computations and
signal processing tasks, compared to expressing the
relationship between two planes as a complicated
conventional diffraction integral.

To summarize, the expression for scalar diffrac-
tion and its Fresnel and Fourier approximations,
the former possibly expressed as a FRT, are of
fundamental importance and are key relationships
whose manipulation and computation are of im-
portance for the synthesis and/or reconstruction of
3D light fields.
2.3. Using basic signal processing tools to solve

diffraction between tilted planes

The benefits of formulating optical problems
within a sound signal processing framework become
particularly apparent when one deviates from
standard problems. For instance, consider the
rather difficult problem of diffraction between two
planes which are not parallel but tilted with respect
to each other [3,5]. Using the plane wave decom-
position approach for scalar optical waves, we can
form superpositions in 3D space for monochro-
matic waves. Intersecting such a 3D pattern by two
tilted planes, we observe that each 3D plane wave
component yields a 2D frequency component over
one of the planes, where the corresponding pattern
over the other (not necessarily parallel) plane has a
different frequency due to the tilt. It is then easy to
compute the corresponding amplitude, frequency,
and phase component pairs over the two planes of
interest. To do so, we start with the representation
of the coordinates of the observation (diffraction)
plane x0 as

x0 ¼ Rxþ b, (19)

where R is a 3D rotation matrix, b is the 3D
translation vector in space, and x is the coordinates
½x y z�T of the object (input) plane. Therefore, the
two planes are related by a rotation and a shift.
The desired diffraction between the tilted planes
can be derived using the Fourier transform relation
associated with the coordinate transform given by
Eq. (19): if F ðkÞ ¼Fff ðxÞg, then GðkÞ ¼FfgðxÞg ¼
exp½jðRkÞTb�F ðRkÞ, where gðxÞ9f ðRxþ bÞ. If we
denote the 2D patterns over the object plane S1

and the observation plane S2 as, c2D;S1
ðx; yÞ and

c2D;S2
ðx; yÞ, respectively, the desired diffraction
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pattern can now be found as

c2D;S2
ðx; yÞ ¼F�1

ðk0x;k
0
yÞ!ðx;yÞ

� Fðx;yÞ!ðkx;kyÞfc2D;S1
ðx; yÞg

	 


k!Rk0

Hðk0;R; bÞ
kz

k0z

�
,

ð20Þ

where F represents the 2D Fourier transform, and
its arrowed subscripts denote the variables of
the pre- and post-Fourier transform domains.
The function Hðk0;R; bÞ provides the kernel of the
corresponding system, represented by

Hðk0;R; bÞ ¼ exp½jk0
T
ðRTbÞ�. (21)

Furthermore, the two 2D frequency vectors ðkx; kyÞ,
ðk0x; k

0
yÞ at the object and the observation planes,

respectively, are related by k ¼ Rk0.
The sequence of basic signal processing opera-

tions outlined by the above equation, which
compactly gives the desired relation between the
input and the observation planes, can be verbally
restated as follows: (i) take the 2D Fourier trans-
form of the input pattern; (ii) reorganize the
obtained frequency components so that the ampli-
tude obtained for the frequency pair ðkx; kyÞ is
now associated with the frequency pair ðk0x; k

0
yÞ;

(iii) further modify the newly obtained frequency
components by adjusting their phase due to shift as
described by b; and finally (iv) take the inverse
Fourier transform.

From a signal processing point of view, we simply
filtered a frequency-reordered input function to get
the desired output. The filtering is essentially similar
to the filtering described in Section 2.1, except the
amplitude correction factor kz=k0z due to the tilt
between the planes. Therefore, we see that a
seemingly difficult problem in diffraction is com-
pactly and neatly described by commonly used
signal processing operations. The equation also
prescribes the computational algorithm which can
be efficiently implemented once the associated
discretization issues are carefully handled.

3. Forward and inverse problems in Holographic

3DTV

The two fundamental problems in holographic
3DTV are what we will refer to as the forward and
the inverse problems.

The forward problem is the computation of the
light field distribution over the entire 3D space,
given an abstract representation of a 3D structure
with specified shape and texture. This is the light
field distribution which we will desire to create at
the display end, but in order to do so, we must first
compute what it is. This is a considerably more
difficult problem compared to the classical textbook
problems outlined in the previous sections which
involved computation of the relationship between
two planes, because the 3D structure is not a simple
plane, but consists of a complex structure of opaque
or transparent or semi-transparent surfaces.

Once this optical field is determined, physical
devices will be used to create this field at the display
end for the viewer. These physical devices impose
many constraints as a consequence of their parti-
cular characteristics and limitations. Therefore, the
3D light distribution we are able to generate with
these devices might not exactly match the desired
3D field computed by solving the forward problem
outlined above. Furthermore, the relationship
between the electronic or other forms of driving
signals of these devices, to the generated 3D light
field, may be quite complex. Therefore, given a
physical device, like a specific spatial light mod-
ulator [4], or an acousto-optical element [21],
finding the driving signals to get the best approx-
imation to the given desired 3D light field is an
intriguing and challenging inverse problem. Solu-
tions to these difficult problems with efficient
implementations will doubtless involve the judicious
adoption of appropriate signal processing techni-
ques. Although the examples given in the previous
sections are encouraging, finding explicit solutions
to these problems are still the subject of current
research.

4. Sampling issues in diffraction

Discretization and subsequent quantization are
unavoidable in digital computations within the
context of the forward or the inverse problems
outlined above. In dealing with digital versions of
the systems discussed in Section 2, one is confronted
with the problem of sampling quadratic-phase
signals and kernels. Due to the specific nature of
these diffraction kernels, naive attempts at discreti-
zation will usually not lead to satisfactory results. It
is of paramount importance to understand the exact
effects of sampling on these special types of systems
and their interpretation. This allows much more
efficient sampling schemes than naive approaches
based on straightforward application of the Ny-
quist–Shannon sampling theorem would achieve.
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We discuss a number of related issues in what
follows.

Looking back on the exact scalar diffraction
expression given by Eq. (1), we see that the transfer
function is band limited to a circle. However, the
Fresnel diffraction kernel, given by Eq. (7), is
neither band- nor space-limited. Direct application
of the Nyquist–Shannon sampling theory, employ-
ing band-limited sampling and associated sinc
interpolation, results in unnecessarily large and
extremely redundant sampling rates [8,17]. This
high redundancy exists even when the input pattern
is band-limited, and therefore the sampling rate is
adjusted to its Nyquist rate. Instead, using the
concept of a-Fresnel limitedness, which fits natu-
rally to most diffraction cases under the Fresnel
approximation, the sampling rates can be signifi-
cantly reduced below the Nyquist rate, while still
yielding perfect reconstruction of the underlying
analog functions. For example, it is shown in [17]
that a finite-rate sampling strategy generates modu-
lated and shifted replicas of the original space-
limited object as

cRðxÞ ¼
X
k

ckf x�
lz

2p
Uk

� �
expðjkTUTxÞ, (22)

where ck is the indexed set of related coefficients,
and the periodicity matrix U is related to the
sampling matrix, V by U ¼ 2pV�T. The boldface
symbols x and k represent the vectors ½x y�T and
½kx ky�

T, respectively. Therefore, full recovery is still
possible even if the Nyquist criteria is severely
violated (note that neither the input function nor the
kernel is band-limited) by simply windowing the
desired space-limited object and leaving the replicas
out.

Yet another interesting sampling-related result is
presented in [18], where it is shown that for some
periodic input patterns, the exact continuous Fresnel
diffraction pattern at given distance can be com-
puted by discrete signal processing techniques
involving the DFT.

The FRT formulation provides an integral
approach to handling the sampling issue for a
broad class of problems. Referring to Eq. (10), we
again observe that naive application of the Ny-
quist–Shannon approach may require very large
sampling rates due to the highly oscillatory nature
of the kernel. However, by careful consideration of
sampling issues, it is possible to accurately and
efficiently compute this integral with a number of
samples close to the space-bandwidth product of
f ðxÞ [25].

This approach can be most generally formulated
in terms of linear canonical transforms, which as we
have already seen are able to model a broad class of
optical systems. The output of a linear canonical
transform can be expressed as [10,27]

gðxÞ ¼ e�jap=4 e�jpqx2

f scðxÞ, ð23Þ

f scðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi
1=M

p
f aðx=MÞ, ð24Þ

where f aðxÞ is the FRT of f ðxÞ and

a ¼ ð2=pÞ arc cot g, ð25Þ

M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
=b; gX0;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
=b; go0;

8<
: ð26Þ

q ¼ gb2=ð1þ g2Þ � a. ð27Þ

The ranges of the square root and the arccotangent
both lie in ð�p=2;p=2�. The first operation in this
decomposition is the FRT, whose fast computation
in �N logN time is presented in [25]. The second
operation in our decomposition is scaling, which is
actually not a real operation, but only involves a
reinterpretation of the same samples with a scaled
sampling interval. The final operation is chirp
multiplication which takes �N time, leading to an
overall complexity of �N logN. What is unique
about this approach is that, by reducing arbitrary
linear canonical transforms to the FRT, the
problem of sampling is neatly solved. Since frac-
tional Fourier transformation corresponds to pure
rotation in the space-frequency plane (phase space),
neither the spatial nor frequency extent of the signal
is altered, and the algorithm of [25] is able to
compute the FRT in �N log N time with N being
comparable to the space-bandwidth product of f ðxÞ,
regardless of the high oscillations of the kernels in
question. Furthermore, it is shown in [27] that since
the only approximation involved in these computa-
tions is that arising from approximate computation
of a continuous Fourier transform using a DFT, the
accuracy obtained in computing arbitrary linear
canonical transforms is likewise comparable to that
obtained in using the FFT to compute continuous
Fourier transforms. In other words, this algorithm
computes linear canonical transforms representing
general optical systems, with a performance similar
to that of the fast Fourier transform algorithm in
computing the Fourier transform, both in terms of
speed and accuracy. This approach should therefore
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greatly facilitate the solution of both forward and
inverse problems in optical diffraction in general
and holographic 3DTV in particular. An alternative
approach to computing linear canonical transforms
which does not involve the FFT has been presented
in [11].

A comprehensive discussion of sampling issues
with reference to Wigner distributions may be found
in [10,30,31].

It is also interesting to note that wavelet
structures, and their applications to diffraction
problems [14,19] provide rich signal processing tools
for approaching and efficiently solving problems of
a nature outlined above.

5. Conclusion

Optical diffraction and propagation in general,
and specific issues in holographic 3DTV in parti-
cular, naturally allow the application of fundamen-
tal concepts and tools from signal processing
with great benefit. The classical linear shift-invar-
iant system structure characterizing diffraction
between two parallel planes has been well known
and utilized. However, there currently exist several
problems deviating from this that have not yet been
satisfactorily solved. The ideas outlined and the
work reviewed in this paper represent efforts toward
the application of signal processing concepts and
tools to these problems.
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holography: a comparison, in: Proceedings of SPIE, vol.

3098, 1997, 224–233.

[14] M. Liebling, T. Blu, M. Unser, Fresnelets: new multi-

resolution wavelet bases for digital holography, IEEE Trans.

Image Process. 12 (2003) 29–43.

[15] D. Mas, J. Garcia, C. Ferreira, L.M. Bernardo, F. Marinho,

Fast algorithms for free-space diffraction patterns calcula-

tion, Opt. Commun. 164 (1999) 233–245.

[16] D. Mendlovic, Z. Zalevsky, N. Konforti, Computation

considerations and fast algorithms for calculating the

diffraction integral, J. Mod. Opt. 44 (1997) 407–414.

[17] L. Onural, Sampling of the diffraction field, Appl. Opt. 39

(2000) 5929–5935.

[18] L. Onural, Some mathematical properties of the uniformly

sampled quadratic phase function and associated issues

in Fresnel diffraction simulations, Opt. Eng. 43 (2004)

2557–2563.

[19] L. Onural, M. Kocatepe, Family of scaling chirp functions,

diffraction, and holography, IEEE Trans. Signal Process. 43

(1995) 1568–1578.

[20] L. Onural, P.D. Scott, Digital decoding of in-line holograms,

Opt. Eng. 26 (11) (November 1987) 1124–1132.
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