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Abstract—Diffraction and holography are fertile areas for
application of signal theory and processing. Recent work on 3DTV
displays has posed particularly challenging signal processing
problems. Various procedures to compute Rayleigh–Sommerfeld,
Fresnel and Fraunhofer diffraction exist in the literature. Diffrac-
tion between parallel planes and tilted planes can be efficiently
computed. Discretization and quantization of diffraction fields
yield interesting theoretical and practical results, and allow effi-
cient schemes compared to commonly used Nyquist sampling. The
literature on computer-generated holography provides a good
resource for holographic 3DTV related issues. Fast algorithms
to compute Fourier, Walsh–Hadamard, fractional Fourier, linear
canonical, Fresnel, and wavelet transforms, as well as optimiza-
tion-based techniques such as best orthogonal basis, matching
pursuit, basis pursuit etc., are especially relevant signal processing
techniques for wave propagation, diffraction, holography, and
related problems. Atomic decompositions, multiresolution tech-
niques, Gabor functions, and Wigner distributions are among
the signal processing techniques which have or may be applied
to problems in optics. Research aimed at solving such problems
at the intersection of wave optics and signal processing promises
not only to facilitate the development of 3DTV systems, but
also to contribute to fundamental advances in optics and signal
processing theory.

Index Terms—Diffraction, discretization, fast transforms,
Fresnel transform, holographic 3DTV, holography, sampling,
3DTV.

I. INTRODUCTION

ACHIEVING true 3-D video display is the ultimate goal
in research in visual technologies. Naturally, optics will

play a central role in research along this direction, and signal
processing techniques will be heavily used at every stage of an
end-to-end 3DTV system. Holographic 3DTV is a highly desir-
able end product. This survey focuses on signal processing is-
sues in diffraction and holography, with an emphasis towards is-
sues arising at the display end of envisioned holographic 3DTV
systems. We start with a brief overview of different techniques
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used in 3DTV displays in Section II. An analytical approach
to holographic 3DTV is only possible if the underlying funda-
mentals of diffraction are understood; therefore, we provide a
brief introduction to diffraction in Section III and point out that
basic forms describing diffraction are already familiar to signal
processing community. Section IV gives a short but clear defini-
tion of the key problems in holographic 3DTV display research
from a signal processing point of view. In addition, we pose the
proper discretization of diffraction related signals as a distinct
problem in this section since discretization is the natural first
step before any subsequent digital processing. Sections V–VII
review some solutions to these problems that have appeared in
the literature. Section V is devoted to techniques and algorithms
in the computation of diffraction. Most of the techniques uti-
lized in computer generated holography (CGH), are relevant to
holographic 3DTV problems; these are briefly reviewed CGH in
Section VI. Section VII highlights interesting observations re-
garding sampling and discretization of diffraction signals. De-
spite considerable work, the fundamental problems associated
with holographic 3DTV are far from being solved at a satisfac-
tory level at present. We believe that existing signal processing
tools are significantly underutilized for solving these problems.
Therefore, we provide an overview of what we consider the most
suitable signal processing techniques which can be applied to
solve the presented problems, and thus, advance the current level
of holographic 3DTV technology, in Section VIII. Although an
exhaustive survey in such a multidisciplinary area is almost im-
possible, the content of the paper and the list of references may
ease the efforts of researchers who would like to understand the
state-of-the-art in signal processing issues in holographic 3DTV,
and to identify further research directions to address the under-
lying problems.

II. SOME 3DTV DISPLAY TECHNIQUES

A. Holography and Holographic 3DTV Displays

In the broad sense, holography involves recording of all phys-
ical properties of the light in a 3-D environment containing ob-
jects, and its subsequent reconstruction (playback). If the re-
constructed light is the same as the recorded original, any ob-
server interacting with the reconstructed light will see the same
scene as the original. Therefore, in principle, holography cre-
ates true 3-D images, with all correct color, depth, shape in-
formation and parallax relation. This broad sense definition in-
volves all classical holographic techniques where coherent light
is used to record the complex valued wavefront via interference
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[1], [2] and other true 3-D imaging techniques like ideal integral
imaging [3].

Dynamic holographic display devices are necessary for holo-
graphic video. However, this does not necessarily mean that the
displayed image has been captured holographically. It is envis-
aged that the future 3DTV systems will have decoupled input
and display units where the capture unit forms an abstract 3-D
representation, and then, some intermediate units convert that
data to driver signals for a specific display device.

Candidate technologies for holographic display units include
dynamically writable/erasable chemical films [4], or on elec-
tronically controllable arrays of pixels that can alter the phase
and amplitude of light passing through (or reflected by) them,
called spatial light modulators (SLMs) [5]–[22] Specific forms,
like deflectable mirror array devices (DMADs) are also among
potential technologies that can be adapted for 3-D display; these
can also be considered as special forms of SLMs [23]–[25]. Cur-
rently, dynamic chemical film technology is not mature enough
for acceptable performance. Unfortunately, the size, quality and
geometries of SLMs are currently not sufficient for acceptable
quality 3-D displays, either. However, it is expected that both
technologies will develop in time to yield the desired quality.
There are also other techniques which are based on interac-
tion of light with acoustic signals [26]–[31] Some experimental
holographic 3DTV systems usually choose to sacrifice from the
ultimate true 3-D display quality, for example by eliminating
vertical parallax, and thus achieve higher resolution and fidelity
in other features, or reduction in computational complexity [26],
[28], [29], [32], [30], [33], [31]. Ability to steer light from each
point of a display device to arbitrary directions provides solu-
tions to the 3DTV display problem; such commercial displays
are available [34], [35]. Speckle noise in case of coherent illu-
mination is another disadvantage, and there are proposed tech-
niques to cope with this problem [36].

B. Integral Imaging

Integral photography [3] has been revitalized after the
progress in active pickup devices and microlens manufacturing
processes [37]. It relies on a capture device based on a mi-
crolens array to encode a true 3-D optical model of the object as
a planar intensity distribution which can then be reconstructed
by reversing the direction of incident optical rays. Analysis
of integral imaging devices can be carried out both by ray
[38] and diffractive optics [39], [40]. Improvements in related
computational procedures [41] and the incorporation of novel
techniques like moving lens arrays solved many problems
in integral imaging [42], [43]. Solutions for viewing-zone
enhancement have been tested using dynamic barrier arrays
[44], microconvex-mirror arrays [41], [45] or lens switching
techniques [46]. Very large-scale [47] and projection based
integral imaging systems [45] with increased resolution and
viewing angle are reported. Techniques have been proposed to
improve the depth of viewing field based on amplitude modu-
lated microlenses [48], a change of the optical path length [49],
synthesis of real and virtual image fields [50], or on the use of
microlenses with nonuniform focal lengths and aperture sizes
[51]. The issues of scene occlusion [52] as well as removal of
the multifacet structure [39] or suppression of color moire [53]

in the reconstructed images have been successfully resolved.
The maximum information capacity of integral imaging and
image compression by the Karhunen-Loeve transform are
discussed in [54], [55]. Holograms can be computed from
captured images during integral photography [56].

C. Stereoscopic 3DTV Displays

Past and present implementations of most 3DTV systems rely
on stereoscopy, or multiview video. In these approaches, no at-
tempt is made to duplicate the original optical field; instead, two
or more 2-D images are captured at slightly different viewing
angles. The human visual system interprets the received images.
3-D perception relies on the processing of several depth cues.
Older type systems require special goggles to direct different
images to each eye; however, newer systems utilize autostereo-
scopic systems to guide different 2-D views to different angles
[57]. Systems based on stereoscopic principles usually create a
feeling like motion sickness especially when some associated
alignments are not perfect [58]. Signal processing issues related
with such display schemes are discussed in the review paper by
Isgro et al. [59]. While the stereoscopy-based techniques are the
most popular 3-D imaging techniques to date, holography-based
techniques will most likely be the ultimate choice for 3DTV in
the future.

III. BASICS OF DIFFRACTION

Propagating optical waves in 3-D space and the associated
3-D optical field are the primary focus of diffraction and related
problems. The complex valued amplitude information over a
surface is sufficient to determine the field over the entire 3-D
space. Computing the amplitude pattern over a plane given the
amplitude pattern over another parallel plane is a classical text-
book problem, and its solutions are well known [60]. The exact
solution, for the scalar case, is conveniently formulated as a 2-D
linear shift invariant (LSI) system whose transfer function is

, where and are the spatial fre-
quencies along the two spatial axes, respectively; and is the
distance between the planes. Wavelength of the light is and

. Modeling the LSI system in the Fourier domain,
and then writing the inverse Fourier transform to find the desired
field pattern, one gets the so called plane-wave decomposition
approach to diffraction. The associated impulse response of the
2-D LSI system is the kernel of the famous Rayleigh–Sommer-
feld integral which represents the 2-D convolution [61].

When the bandwidth of the 2-D input pattern is restricted to
smaller and around zero (paraxial approximation), we
get the Fresnel diffraction where the impulse response and the
associated transfer function become [60]:

(1)

(2)

The Fresnel diffraction relation between parallel planes is given
as the convolution of one of the patterns by the above kernel;
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this convolution is also called the Fresnel transform. Due to na-
ture of the above kernel, this convolution can be converted to
a single Fourier transform with pre- and post-multiplications
by the quadratic phase function .
Provided that the given pattern has a finite extent, and if the
quadratic phase term which multiplies the function representing
the pattern is approximately equal to one where the function is
nonzero, we get the Fraunhofer diffraction which is nothing but
a chirp modulated Fourier transform.

Therefore, scalar diffraction between two parallel planes in-
volves fundamental signal processing concepts such as linear
shift-invariant filtering, Fourier transformation, and modulation.
More complicated problems, such as diffraction between two
planes tilted with respect to each other, can also be modeled
with the aid of similar signal processing concepts [62], [63].

IV. FUNDAMENTAL PROBLEMS IN HOLOGRAPHIC 3DTV

Two fundamental signal processing problems in holographic
3DTV are what we will refer to as the forward and inverse prob-
lems [64].

The forward problem is the computation of the light field dis-
tribution which arises over the entire 3-D space from a given
3-D scene or object. In traditional optical holography, this light
field would have been optically created and recorded by inter-
ferometric or other techniques, but in envisioned 3DTV systems
there will be no direct coupling between the input and output,
and it is most likely that some other abstract digital represen-
tation of the 3-D scene will be transmitted instead. Therefore,
the associated field must be computed. This is a considerably
more difficult problem than the classical textbook problems out-
lined in Section III, because the 3-D scene consists of nonplanar
surfaces.

Once the desired field is computed, physical devices will be
used to create it at the display end; the field generated by these
devices will propagate in space and reach the viewer, creating
the perception of the original 3-D scene. These devices impose
many constraints on the 3-D light distributions they can gen-
erate, as a consequence of their particular characteristics and
limitations. Therefore, given a physical device, such as a specific
SLM, finding the driving signals to get the best approximation
to the desired time-varying 3-D light field is a challenging in-
verse problem. A precise definition of this, so called, synthesis
problem, and some proposed solutions can be found in the liter-
ature [65]–[71].

Both the forward and the inverse problems require processing
of large amounts of data. Sparse signal representations and fast
techniques are of crucial importance for achieving a feasible
processing time.

Computation of the field depends on the foundations of
diffraction theory [60], [72]–[76]. Approaches in solving
diffraction problems can be investigated under four categories.
From rather simple to more complicated, these categories are
ray optics, wave optics, electromagnetic optics and quantum
optics. Ray optics describes the propagation of light by using
geometrical rules and rays [75]. In wave optics, the propagation
of light is described by a scalar wave function [60]. The scalar
function is a solution of the wave equation [75].

Signal processing approaches have been extensively em-
ployed in various problems related to wave optics; we present
some of these important contributions in the next section.
However, the present state-of-the-art does not seem to be
sufficient for solving some of the problems arising in real-time
holographic 3-D display. In order to facilitate further develop-
ments, we discuss several signal processing tools which, we
believe, have the potential of advancing the state-of-the-art in
Section VIII.

Another problem of fundamental nature is the discretization
of signals associated with propagating optical waves. At the ac-
quisition stage, CCD or CMOS arrays capture holographic pat-
terns and convert them into digital signals [77]–[81]. While sam-
pling and quantization is an extensively studied and mature field
in the general sense, direct application of general results will not
be efficient, interesting, nor sufficient in most diffraction related
problems. Instead, systematic approaches which take the spe-
cific properties of the underlying signals into consideration and
merge them with modern digital signal processing methods are
highly desirable. The literature dealing with discretization and
quantization issues in diffraction and holography is reviewed in
Section VII. We also present an overview of signal processing
tools related to sampling in Section VIII and indicate that these
tools may form a sound basis for further developing efficient
sampling strategies and thus ease the solution of difficult holo-
graphic 3DTV related problems.

V. REVIEW OF TECHNIQUES AND ALGORITHMS FOR WAVE

PROPAGATION, DIFFRACTION, AND HOLOGRAPHY

We have already presented the fundamental problems in
Section IV. Here we give an overview of some of the available
techniques and algorithms which facilitate, or offer, solutions
to these and related problems.

Sherman gave an elegant proof of the equivalence of the
Rayleigh diffraction integral and the exact scalar solution based
on the planewave superposition of waves propagating in the

direction [61]. This is an important contribution because
the fast direct calculation of the Rayleigh integral is difficult but
efficient procedures based on FFT can be developed by using
the planewave decomposition.

Grella examined diffraction and free-space propagation of
an optical scalar field by using the Fresnel approximation [82].
The author states that Fresnel approximation can be repre-
sented as a superposition of planewaves besides the original
approach based on the series expansion of the spherical wavelet
exponent. The author provides a unified approach for Fresnel
approximation.

Ganci gives a simplified representation of diffraction of a
planewave through a tilted slit by using Fraunhofer approxima-
tion [83]. Rabal et al. generalized the method proposed by Ganci
by examining the amplitude of diffraction patterns due to a tilted
aperture [84]. They use the Fourier transform to calculate the in-
tensity pattern from a tilted plane onto another plane perpendic-
ular to the initial optical axis. As in [83] and [84] Leseberg and
Frére were interested in the computation of the diffraction pat-
tern between tilted planes, and they generalized the approach
proposed by Rabal and Ganci [85]. Leseberg and Frére used
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their proposed method to obtain computer-generated holograms
of larger objects [86].

Tommasi and Bianco investigated the relation of the angular
spectra between rotated planes [87]. They also proposed a
solution to the diffraction problem between tilted and shifted
planes [88]. Implementation employs the FFT. In [89], contin-
uous domain representation and limitations of the algorithm
are highligthed. The mathematical and physical basis of the
method together with several simulation results and their phys-
ical meaning are available in [89] and [63]. Another method
is proposed by Matsushima et al. [90] to compute diffraction
pattern on tilted planes, but the presented method is essentially
based on the method given in [87], [88], and [62]. The signif-
icance of the procedure proposed in [90] is the comparison of
several interpolation algorithms together with their effects on
the computed diffraction patterns.

Mas et al. compare fast Fourier transform methods and frac-
tional Fourier transform methods for calculation of diffraction
patterns [91]. They state that discrete Fourier transform methods
are valid only for a specific range of distances. On the other
hand, fractional Fourier transform methods provide an accurate
and easy implementation and give much better results in repro-
ducing the amplitude patterns. In another paper, Mas et al. inves-
tigate the diffraction pattern calculation under convergent illu-
mination [92]. They conclude that fractional Fourier transform
gives a unified solution of calculation of diffraction field in all
ranges of distances. Mendlovic et al. undertake similar investi-
gations, comparing different numerical approaches and identi-
fying the more advantageous one as a function of the distance
of propagation [93]. Hennelly and Sheridan provide a very gen-
eral and uniform framework to compare most such approaches
[94]. Ozaktas et al. propose an algorithm based on the fractional
Fourier transform that solves most of the problems associated
with earlier algorithms applicable to the Fresnel regime, and is
also applicable to a broader family of integrals [95].

Sypek compares the two computational approaches associ-
ated with the Fresnel diffraction [96]: one of them is the direct
convolution, whereas the other one is based on a single Fourier
transform with pre- and post-multiplications with chirp func-
tions. Two modifications on the convolution based approach are
proposed. The first one uses length vectors instead of length

vectors. The second one divides the propagation distance into
several segments. This reduces aliasing errors.

Veerman et al. propose a method that integrates the Rayleigh–
Sommerfeld diffraction integral numerically [97]. They exploit
the slow varying nature of the envelope of the highly oscilla-
tory quadratic phase function in diffraction patterns. However,
the method is not as fast as methods based on the planewave de-
composition or Fresnel approximation. An FFT-based compu-
tation of the Rayleigh–Sommerfeld diffraction is also presented
in [98].

Optical diffraction can also be represented by using wavelet
transformation [99]–[101]. Sheng et al. have shown that optical
wavelets proposed by Onural [99], [100] are the Huygens spher-
ical wavelets under Fresnel approximation [101].

Some basis functions have been designed to deal especially
with holographic signals. The wavelet-like fresnelets, which
are reviewed in Subsection VII.A.2, have been constructed for

Fresnel hologram processing [102], [103]. A Fresnel transform
is applied to a standard B-spline biorthogonal wavelet basis to
simulate the propagation in the hologram formation process.
The obtained basis functions are well localized in the sense of
the uncertainty principle for the Fresnel transform and have ex-
cellent approximation characteristics. The fresnelet transform
allows for the reconstruction of complex scalar waves at several
user-defined, wavelength-independent resolutions.

Cywiak et al. use the linearity of the Fresnel transform for
fast computation [104], They first decompose the input func-
tion into Gaussian functions. Since it is easy to compute the
Fresnel transform of a single Gaussian function, a final super-
position of the individual results gives the desired Fresnel trans-
form. It would be a much more elegant presentation if they first
observed that the Gaussian (more generally, the Hermite poly-
nomials times the Gaussian) functions are the eigenfunctions of
the Fourier, and therefore the fractional Fourier transforms; and
thus associate the easy computation of their Fresnel transform
to this property.

Onural and Scott mainly concentrated on eliminating the
twin-image in in-line holograms [105]. Since the twin image
and the desired image overlap with each other in in-line holog-
raphy, twin-image elimination is more important compared
to the off-axis case. Moreover Onural [106] presented and
compared the two digital Fresnel diffraction computation
algorithms: one based on direct convolution with a chirp, and
the other one based on a single Fourier transform with pre-
and post-multiplications by a chirp. There are earlier works
in the literature that discuss the application of DFT for holo-
gram computation and the associated aliasing effects due to
sampling [107].

Esmer et al., presented algorithms based on pseudo matrix
inversion, projections onto convex sets and conjugate gradient
methods, together with performance comparisons for com-
puting the diffraction pattern over a reference plane due to
distributed discrete data in 3-D space [108].

Mapping from a 3-D problem into its 2-D counterpart, and
other issues associated with resolution and accuracy, involves
issues related to degrees of freedom in optics [69], [109],
[110], [68]. A special case of optical field generation is pre-
sented as an optimization problem in [111]. Some associated
algorithms based on optimization techniques are proposed
[68], [67]. Wave field synthesis methods found applications in
synthesis of some important beams and unconventional waves
[112], [113], [70], [114]–[118]. Specific solutions of the wave
equation for different purposes may be adopted to solve the
3DTV display related problems [112], [119]–[121], [70], [122],
[111], [123]–[130], [113]. Interesting solutions provided for
some other related cases, that might be applicable also to the
holographic 3DTV problems, can be found in the literature
[131]–[141].

Efficient and effective computation of holograms using
modern computer graphics procedures and hardware are also
reported [142]. Furthermore, 3-D objects are extracted from
holograms digitally and displayed on conventional 2-D displays
using computer graphics methods [143].

Compression of holographic signals require special tech-
niques for improved compression performance due to the
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specific form and nature of such signals [144]. It is also shown
that the 3-D objects can be reconstructed only from the phase in-
formation of the optical field calculated from the phase-shifting
digital holograms [145]. Compression of holographic signals
by constructing the hologram by pre-computed, indexed, stored
small-size fringe patterns is demonstrated to yield real-time
operation for horizontal parallax only (HPO) holograms [32],
[30], [33].

A vast literature, which may offer solutions to problems re-
lated to those posed in Section IV, exists in the area of CGH The
next section is devoted to a brief review of CGH techniques.

VI. COMPUTER GENERATED HOLOGRAPHY

CGH have about a forty years of history [146]–[149]. In-
stead of optical recording, the hologram associated with the
wavefront representing the object is generated by employing
different computational techniques and numerical approaches
by mathematically simulating the optical wave propagation.
An ideal CGH should achieve complex light modulation at a
high diffraction efficiency and precise reconstruction of the
target image. The CGHs outperform conventional refractive
and diffractive components as a consequence of their ability
to create any desired wavefront and thus to modify the input
wavefront with much better flexibility [150]. For this reason
CGHs find a wide range of application as display elements,
optical interconnectors, aberration compensators in optical
testing, spatial filters for optical signal processing and com-
puting, beam manipulators and array generators etc. CGHs
can be considered as thin optical elements with a complex
amplitude transmittance; however, in many cases, they are
phase only elements [12]. There are different classification of
CGHs depending on the complex amplitude representation on
the recording media (binary, phase,amplitude and combined
phase-amplitude media), and the encoding method [151]. The
algorithm to form a CGH is chosen according to the desired
image characteristics and the associated computational com-
plexity. Analytical approaches such as phase-detour method,
kinoform method, double or multiple phase methods, explicit
spatial carrier methods, 2-D simplex representation, represen-
tation by orthogonal and bi-orthogonal components, coding
by “symmetrization,” etc., can be used for computing digital
holograms [151]. There are cell-oriented and point-oriented
methods. In cell-oriented CGHs the hologram plane is divided
into small resolution elements. The number of resolution cells
needed depends on the complexity of the wavefront that is
to be produced [149], [152], [153]. Iterative approaches such
as iterative Fourier transform algorithm [154], direct binary
search [155], simu1ated annealing [156] have been proposed
and used. These methods are computationally demanding.

However, CGHs which are intended for dynamic displays
need faster algorithms. It is difficult to realize SLMs which can
provide the desired complex phase [157]. SLMs with only bi-
nary modulation are particularly desirable for display of CGHs.
Computer generated binary reflection holograms may be dis-
played using micromirror devices (DMD) [23]. The SLM prop-
erties are crucial for the quality of the optical reconstruction of
digital holograms. A comparison of the the optical reconstruc-
tion of phase and amplitude holograms by different modulators

in terms of diffraction efficiency and recovery quality is pre-
sented in [158]. CGHs offer the possibility of displaying high
quality 3-D images of 3-D objects with appropriate depth cues
based on various algorithms [159]–[162]. A Fourier transform
based algorithm for fast calculation of diffractive structures,
which permits image reconstruction on cylindrically and spher-
ically curved surfaces, is developed in [163]. Another popular
approach is to calculate the CGH as a superposition of analytic
distributions by decomposing the object surface into a certain
number of discrete independent point sources, line segments or
higher-order image elements. The modeled underlying physical
phenomenon is the interference between the light waves coming
from the analytically defined “holoprimitives” constructing the
object and the reference wave to form the resulting complex am-
plitude distribution on the hologram plane [85], [164]. Hard-
ware [165] and look-up table based computations are proposed
[166], [167]. Representation of image elements at different loca-
tions by scaling and translation of similar elemental diffractive
structures permits fast updating of the CGH by the so called in-
cremental computing [168]. Real color fractional Fourier trans-
form holography is proposed in [169]. Many other techniques
for CGHs can be found in the literature [170]–[173], [167],
[174]–[177].

VII. DISCRETIZATION AND QUANTIZATION ISSUES IN

DIFFRACTION AND HOLOGRAPHY

The discretization of diffraction related signals by taking their
specific characteristics into consideration is an interesting and
fruitful area. Unfortunately, general approaches in sampling are
not efficient nor adequate for such signals as also described in
Section IV. Here we present available work in the literature in
this area.

A. Sampling in Optics, Diffraction and Holography

1) Sampling of Optical Signals With Finite Extent in Dif-
ferent Domains: A signal can be space- or band-limited but
never both. For optical signals, the so called -Fresnel lim-
ited functions turned to be more convenient and efficient than
the band-limited functions in terms of sampling and recover-
ability [178]. -Fresnel limited functions are defined to have
finite extent of in their Fresnel transform domain associ-
ated with the parameter . Such functions are not band-lim-
ited, however, they can be reconstructed from their samples
taken at a rate . The proof of this result is
given by Gori [178]. Another theorem proven in [178] indi-
cates that the Fresnel transform of a space-limited function (a
function vanishing for ) can be fully recovered
from its -Fresnel domain samples. The same result was also
proven later independently by Onural [179] who also stated the
prefect reconstruction conditions for both band- and space-lim-
ited cases. In particular, it is shown that full recovery of space-
limited signals from their below Nyquist rate sampled Fresnel
diffraction patterns is possible. It is also shown in [180] and
[181] that it is possible to reconstruct objects from hologram
samples obtained below the Nyquist rate; real-life applications
by considering finite number of samples and finite (nonimpul-
sive) area of the capturing charge coupled devices (CCD) array
elements are discussed. Furthermore, the effect of sampling in
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noisy conditions is also analyzed. The possibility of full re-
covery from undersampled holographic signal is observed also
in [182]. The authors considered the case of large numerical
apertures, where the nonconstructive superposition of planar-
wave components of the propagating diffraction field at the loca-
tions of the replicas essentially washes out the unwanted replicas
of the original, and thus naturally accomplishes the full recon-
struction. Full mathematical proof of this phenomena is recently
given by Onural [183].

The effects of the shape of the sensing elements and the
overall array size to the CCD captured optical data and sub-
sequent digital reconstruction of off-axis holography are
examined in [184]. A frequency domain analysis of the overall
transfer function is carried out for both the planar and the
spherical reference beam cases.

In a work by Stern and Javidi [185] it is shown that neither
band-, nor space-limited functions can be fully recovered from
their samples if the replicas of their Wigner distributions due to
sampling do not overlap.

Several nonuniform sampling schemes have been suggested
based on the observation that the bandwidth of the object re-
mains unchanged as a consequence of the all-pass nature of the
linear system that represents the diffraction [186], [187], [188].
Another approach observes that the information of interest in a
hologram is carried in the complex envelope of the fringe pattern
and not in the carrier ([189]). Based on this, Khare and George
have suggested sampling the recorded hologram about twice the
Nyquist rate for the object (or baseband) signal. This may be
regarded as a generalization in the shift-invariant space spirit of
[190]. Connection with the work in [102], where the modulation
is replaced by the Fresnel transform, can be noted as well.

2) Wavelet-Inspired Discretization of Optical Signals:
Wavelets have inspired several interesting approaches in the
area of optical signal sampling and reconstruction. In [99], the
diffraction integral is viewed as a continuous wavelet transform.
The light field at different distances is regarded as the result of
an inner product of the light distribution at some initial plane
and scaled-shifted chirp functions. In contrast to conventional
wavelet analysis, these scaling functions however, are not
limited in neither the spatial nor the frequency domain. The
transform has been named scaling chirp transform and shown
to be valid and reversible in [100]. A number of inversion for-
mulas are provided with a discussion on their redundancy and
ways to possibly exploit this redundancy. For fixed scale, the
scaled and shifted chirp functions form a complete orthogonal
set, while they form a redundant frame over different scales.
This also suggests a way to sample the light field throughout
the space by using scaled chirp expansions.

Some related wavelet-like functions, called chirplets have
been suggested in [191] and [192], and used for instantaneous
frequency measurements [193]. A chirplet is a compact support
signal with increasing (decreasing) frequency [191], [192]. It
is band and time localized version of the scaling chirp function
mentioned above. Chirplets are rather attractive for represen-
tation of holograms since they have minimal energy spread
for the Fresnel transform in a similar sense as Gabor functions
[102]. In [194], [195], and [196], methods for finding a sparse
chirplet signal representation are suggested.

An interesting strategy to construct bases suitable for pro-
cessing digital holograms is presented in [102]. Based on the
observation that digital holography tends to spread out sharp
details such as object edges over the entire imaging plane,
standard wavelets have been ruled out as directly applicable
to holograms. Instead, a Fresnel transform is applied to a
wavelet basis to simulate the propagation in the hologram
formation process and thus to build an adapted fresnelet basis.
In contrast to classical wavelets, where multiresolution spaces
are generated through dilation of one single function, in the
fresnelets case there is one generating function for each scale.
B-spline biorthogonal wavelets have been used to construct
the fresnelet dictionaries due to their excellent approximation
characteristics and analytical expression in spatial domain.
Subsequently, their Fresnel transform associated wavelets are
derived explicitly [102]. Thus, this new diffracted basis can be
used to analyze the light field distribution at some distance and
once a decomposition is obtained, the field can be calculated
immediately in the original (initial) plane.

Digital reconstructions of diffraction patterns or holograms
require algorithmic digital implementations of the underlying
continuous mathematical models which represent diffrac-
tion. Common implementations of the Fresnel case are either
based on convolution, or on a single Fourier transformation
[106], [197]. Inevitably, either the kernel which represent
the wave-propagation (diffraction), or its analytically known
Fourier transform (the transfer function) of (2) should be dis-
cretized when the convolution is implemented digitally. This
problem is in the focus of the paper [198] where some well
known properties of the continuous Fresnel kernel, together
with rather overlooked ones are presented. Furthermore, ef-
ficient computation of the exact Fresnel transform of some
periodic input (object) functions at some specific discrete
distances is given, too. Another observation is the perfectly
discrete and periodic nature of the continuous Fresnel transform
of periodic and discrete input functions for certain distances.

B. Quantization

From a theoretical point of view, the diffraction is an oper-
ation which disperses the information content of simple object
patterns over the entire space; therefore, it is quite immune to
noise or loss of information: reconstructions from partial holo-
grams could be pretty much satisfactory, with some bearable
quality degradation. Therefore, it is expected that grossly digi-
tized holograms would still yield reasonable reconstructions. In-
deed, this fact was utilized for the computer-generation of holo-
graphic masks, going all the way to binary holograms. It might
be interesting to look at oversampled, but coarse digitized cases.

A recent paper [199] discusses the quantization effects in
phase-shifting holography. It provided both numerical simula-
tions and experimental quality assessment and concludes that,
for both uniform (specular) and random (diffuse) objects a 4-bit
quantization is sufficient to recognize the reconstructed objects
and the difference between 6 and 8 bits is not perceivable.
Above 4 bits, the effect of quantization on the reconstructed
image quality seems to be independent of the object phase
distribution. In [200] it has been observed, that the quality of
the reconstructed images from recorded holograms is more
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influenced by the phase information than the magnitude infor-
mation. The paper assumes, with relevant arguments, that the
magnitude has a Raleigh distribution, whereas the phase is uni-
formly distributed over the interval. Then, a solution for
minimum-mean-squared-error quantizer in polar form is formu-
lated and numerically solved for some quantization levels. The
allocation of bits between phase and magnitude is discussed.
It is observed that even though the phase and magnitude are
statistically independent, the optimum magnitude quantization
scheme depends on the number of phase quantization levels.
The effects of phase quantization in Fourier holography is
discussed in [201]. Binary and three-level hologram recordings
are considered. It is concluded that phase quantization results in
ghost images located at different depths; it is further concluded
that these ghost images are less disturbing particularly for
high-contrast images, due to their different depths. Nonuniform
quantization through companding of complex numbers by
employing nonuniform grid patterns over the complex plane is
shown to be efficient for digital holograms with a reconstruc-
tion quality comparable to that obtained by quantization by the

-means algorithm [202]. Quantization issues associated with
holographic signals are discussed in [144]. It is shown that
degradation in reconstructed image quality is minimal for 10
bits or more, and the distortion becomes severe below 5 bits;
numerical error plots together with reconstructed images are
presented.

VIII. SIGNAL PROCESSING TOOLS FOR DIFFRACTION AND

HOLOGRAPHY RELATED PROBLEMS

So far, we presented the fundamental signal processing prob-
lems in holographic 3DTV (Section IV), and gave an overview
of related work in the literature (Sections V, VI and VII). Here
in this section we turn our attention to signal processing tools
and techniques which we believe have the potential to signifi-
cantly advance the state-of-the art in holographic 3DTV related
issues.

A. Sampling From Shannon’s Theorem to Frame Theory

The most well known and by far the most influential paper
in sampling is published in 1949 by Shannon [203]–[205] The
theorem formalized by Shannon simply states that a band-lim-
ited function can be fully recovered from its equispaced sam-
ples taken at a rate which is at least twice the highest frequency
component of the function. The reconstruction (interpolation)
formula is based on shifted sinc functions [203] and is known
as cardinal series expansion, a term introduced by E. T. Whit-
taker [206] and used by Shannon through the work by J. M.
Whittaker [207], [208]. The roots of this result have been traced
back to Cauchy in 1841 [209], [210]. Kotel’nikov [211] formu-
lated the same theorem independently in 1933. Japanese authors
(e.g., in [212]) pay credit for this result to Someya [213]. For the
huge amount of work done on uniform sampling after Shannon
we refer to milestone reviews, tutorials and books and the refer-
ences therein [214]–[218].

Naturally, the theory and applications of sampling and recon-
struction have been significantly developed to handle various
other constraints than the band-limited case since Shannon’s

work. Recent works have addressed the sampling through the
more general shift-invariant space framework [219]. Other basis
functions than the shifted sinc functions have been favored for
sampling and reconstruction of real-life signals [190], and their
approximation properties are studied [220]–[222]. Optimized
designs lead to functions minimizing approximation error
kernels [223]–[225]. An important subset of the shift-invariant
spaces is the subset of wavelet spaces possessing additional
multiresolution property [226], [227]. Sampling theorems [228]
and sampling techniques for wavelet spaces have been studied
extensively [229]–[231].

For the case of nonuniform sampling, Benedetto and Fereira
[209, Sec. 1], have emphasized the results by Paley and Wiener
[232] and Kadec [233]. These results have also inspired the
study of nonharmonic Fourier series which then evolved into the
theory of frames (see [234] and the references therein). Frames
are a generalization of bases and in the most general case they
provide the harmonics for signal reconstruction formulas. In
Bendetto’s work [234], most of the proofs of nonuniform sam-
pling theorems have been stated from that frame theory point of
view.

In an attempt to unify uniform and nonuniform sampling
within the shift-invariant space framework, Aldroubi and
Gröchenig have surveyed some 119 sources “ bringing to-
gether wavelet theory, frame theory, reproducing kernel Hilbert
spaces, approximation theory, amalgam spaces, and sampling”
([235, p. 591]). Interested readers can find precise mathemat-
ical proofs together with practical iterative frame algorithms
for signal reconstruction in that survey. The formulation of
the sampling problem from a shift-invariant space perspective
might turn to be quite important for the problems in diffraction
and holography. The Fresnel approximation, extensively used
for description of diffraction processes, is in fact a convolution
integral which preserves the shift-invariance. Therefore, the
nonbandlimited sampling and reconstruction schemes proved
to be efficient for digital images can be appropriately modified
and extended to handle holography problems. One example is
the so-called Fresnel-splines [102].

A straightforward extension of the classical sampling and
interpolation is presented in [236], where the so called quasi-
Fourier transform is introduced by replacing the exponent in
the Fourier basis functions by a function . Thus a new
band-limited function, which is recoverable from its periodic
samples, is generated.

B. Transformation Theory and Space-Frequency Analysis

As elementary as it is, planewave decomposition remains a
key tool for understanding optical diffraction. Plane wave de-
composition is directly related to Fourier decomposition, with
planewaves propagating in different directions corresponding
to different spatial frequencies. Therefore, the Fourier trans-
form has been the most natural tool for space-frequency anal-
ysis of optical signals. Algorithms for fast implementation of
its discrete version, the discrete Fourier transform (DFT), the
so-called FFT algorithms are extensively studied. The famous
Cooley–Tukey algorithm is just one from this family. Among
others are prime-factor (Good–Thomas) FFT algorithm [237],
[238], Bruun’s FFT algorithm [239], Rader’s FFT algorithm
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[240], and Bluestein’s FFT algorithm [241]. See also a tuto-
rial review on FFT algorithms [242]. A rather new approach
to the efficient implementation of Fourier transforms is com-
puting it via the Walsh–Hadamard transform (WHT) [243].The
approach is based on the Good’s theorem [244], which sug-
gests factorizing a Kronecker product structured transform ma-
trix into a product of several sparse matrices. Since the WHT
matrix has exactly such a recursive Kronecker product structure
the WHT coefficients can be computed very efficiently, and then
converted into FT coefficients by a special conversion matrix
[243].

A number of newer transforms have been found applicable
or at least promising for analysis of signals modeling optical
diffraction. They can be unified under the notion of atomic de-
compositions. More specifically, these are signal representations
in terms of basis sets with particular features especially suited to
an application, allowing the capture of the signal characteristics
by only a few significant coordinates. A selection of references
to the most important atomic decompositions are given below.

Wavelets have been perhaps the most inspirational construc-
tions due to their ability to represent transient signals by offering
a trade-off between space and frequency (scale) resolution. As
basis functions, they separate the space of square-integrable
functions into a set of nested subspaces. We refer the reader
to the book by Mallat [226] and to book review by Benedetto
[245] for basic information regarding wavelets. To improve
the time-frequency (space-scale) resolution, wavelets have
been extended also to overcomplete schemes such as wavelet
packets [246], [226], [247] and bases with improved directional
and translational-invariant properties, such as Gabor wavelets
[248], [249] and Dual tree-complex wavelets [250]. Other
bases, such as ridgelets, curvelets, beamlets, brushlets have
been designed for effective representation of ridges, curves,
lines or oriented textures, respectively [251]–[259].

The chirplets, which are also already commented in the light
of holographic signal sampling (cf. Section VII-A.2), can be
useful in digital holography for space-frequency analysis since
they are known to be good instantaneous frequency estimators
[193].

In general, atoms are organized in overcomplete dictionaries
and the task is to obtain a sparse or super-resolving representa-
tion with preferably or number of computa-
tions [260]. Several methods have been proposed for obtaining
optimal signal representations from overcomplete dictionaries,
such as frame decomposition [261], matching pursuits, [262],
basis pursuits, [263], [260], best orthogonal basis search [246],
[247]. We briefly review them here because of their potential
importance for processing of holographic signals, where, due to
the high amount of data, sparse and adapted signal decomposi-
tions are highly appreciated.

The frame decomposition has been acknowledged as a sam-
pling approach (see Section VIII-A) and can be stated within
the classical least squares problem. In this setting, a set of linear
equations relate the linear expansion coefficients with the output
signal samples through a transform (frame operator) matrix, that
is

(3)

Here, is the -dimensional vector of input unknown coeffi-
cients, is the known system matrix, and is the -di-
mensional vector of given data (e.g., desired wavefield). Usu-
ally, . In this case, only an approximate solution is found
minimizing the norm of the error vector .
In the case of , this is the least squares (LS) solution which
is found when the error vector is orthogonal to all the columns
of and explicitly given by taking the pseudoinverse of the
matrix , as , [264].

Numerical solutions of (3) involve LU factorization for the
case of square transform matrices [264] or QR factorization for
the case of full-rank LS problems with , implemented
via Gramm-Schmidt orthogonalization, Householder transfor-
mations or Givens rotations [265]. Considered as a particular
case of optimization problem with linear equality constraints,
the inverse problem (3) can be solved by employing linear
programming (LP). It is especially appropriate for undeter-
mined cases or for achieving partial orthogonality of
the error vector in LS problems. From a geometrical point of
view, two major LP approaches have been developed based on
the Dantzig’s simplex method [266] and on the interior point
method [267], [268]. Modifications, addressing the computa-
tional efficiency by combining the benefits of these two have
been suggested [354], [269]–[272].

Best Orthogonal Basis (BOB) relies on organizing the basis
elements (e.g., wavelet packets) into tree structures having
parent-children subspace relations and fast searching the best
set of orthogonal subspaces that form a complete representation
of the signal [246], [247].

Matching Pursuits, suggested by Mallat and Zhang [262] find
an approximate and sparse signal decomposition employing a
recursive and adaptive algorithm that builds up a signal repre-
sentation one element at a time, picking the most contributive
element at each step. Starting from an initial residual ,
the element chosen at the th step is the one which minimizes

. It is the same as the one which maximizes
, since . The MP ap-

proach is quite powerful for extracting structure from signals
which consist of components with widely varying space-fre-
quency localizations [262]. Particularly interesting works that
can relate digital holography and MP algorithm are [196] and
[195]. There are proposed methods for fast MP algorithm with
the dictionary of Gaussian chirp functions that find decom-
position atoms in operations for a signal of length .

Basis Pursuits (BP), suggested by Chen and Donoho, aim at
finding the coefficients in (3) yielding minimal norm. In
this setting, the matrix is an matrix with the dictio-
nary elements collected as columns. It is a convex,
nonquadratic optimization problem which involves consider-
ably more effort and sophistication compared to the case of
norm minimization. Solution of the BP method has been sought
by employing the simplex and interior points linear program-
ming techniques [263].

FOCUSS, suggested by Rao and Kreutz-Delgado
[273]–[275] finds an optimal basis selection by minimizing
diversity measures proposed by Wickerhauser and Donoho
[246], [276]. The method uses a factored representation for the
gradient and involves successive relaxation of the Lagrangian
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necessary condition. This yields algorithms that are intimately
related to the affine scaling transformation (AST) based
methods commonly employed by the interior point approach
to nonlinear optimization [277]. In [273] and [274], the
authors give comprehensive analysis of the convergence of
these methods, showing that the rate of convergence can be
controlled in some range. The Gaussian entropy minimization
algorithm is shown to be equivalent to a well-behaved
norm-like optimization algorithm. Computer experiments
demonstrate that the -norm-like and the Gaussian entropy
algorithms perform well, converging to sparse solutions.

K-SVD, suggested by Aharon, Elad, and Bruckstein [278] is
an algorithm for adapting dictionaries to a collection of signals
rather than a single signal. Given a set of training signals, they
seek the dictionary that leads to the sparsest possible represen-
tation. The method can be viewed also as a generalization of
the K-Means clustering process. K-SVD is an iterative method
that alternates between sparse coding of the examples based on
the current dictionary, and a process of updating the dictionary
atoms to better fit the data.

The fractional Fourier transform (FRT) is a generalization of
the ordinary Fourier transform with a fractional order param-
eter such that the zeroth order transform is the identity opera-
tion, the first order transform is the ordinary Fourier transform,
and the fractional transform interpolates between them in an
index-additive manner [279]–[286]. It has found a large number
of applications in signal processing (for instance [287]–[290])
and optics (for instance [291]–[297]). The relationship of the
FRT to optical propagation and diffraction rests on the result
relating free-space propagation in the Fresnel approximation
(namely the Fresnel integral or the Fresnel transform [298])
to the FRT [295], [299], [296]. Extensions of this result relate
arbitrary linear canonical transforms to the fractional Fourier
transform; for instance [297]. Optical systems consisting of ar-
bitrary concatenations of lenses and section of free space can
be modeled as linear canonical transforms, and thus propaga-
tion through such systems, including free-space propagation,
can be viewed as an act of continual fractional transformation.
The wave field evolves through fractional Fourier transforms of
increasing order as it propagates through free space or the mul-
tilens system. While these results are directly relevant to holog-
raphy, relatively few works have explicitly applied the FRT to
holographic problems [300]. Sampling and periodicity issues
related to the fractional Fourier transformation have been dis-
cussed in [301]–[306]. The discrete fractional Fourier transform
has been defined in [307] and [308]; other works in this area,
including some alternative definitions include [309]–[317]. The
applications of other fractional transformations in optics is re-
viewed in [318].

Linear canonical transforms (LCT) are a class of integral
transforms which include the fractional Fourier and Fresnel
transforms and other important operations as special cases
[319]. They are also known as quadratic-phase systems or
integrals, generalized Huygens integrals, generalized Fresnel
transforms, ABCD integral transforms, or similar names. Fast
numerical algorithms for LCTs exist [320], [94].

Integrals involving highly oscillatory exponential terms play
an important role in optics [97]. Under certain approximations

these take the form of quadratic-phase integrals which are equiv-
alent or related to linear canonical transforms. During numerical
evaluation of these integrals, naive application of the Nyquist-
Shannon approach may require very large sampling rates due to
the highly oscillatory nature of the kernels. It has been shown
that by careful consideration of sampling issues, the number of
samples need not be allowed to be larger than the space-band-
width product of the signals. A fast algorithm for com-
puting the samples of the continuous FRT of a function from the
samples of that function is presented in [321] and [322], where

is the space-bandwidth product of the signal. Related issues
are discussed in [323]–[329]. This algorithm has been extended,
with the same properties, to arbitrary LCTs [95]. This approach
employs the smallest possible number of samples implied by
the space-bandwidth product of the output signal. Recalling that
linear canonical transforms can model systems consisting of ar-
bitrary concatenations of lenses and sections of free space, this
algorithm can be used to compute the input-output relation for
such systems with an efficiency and accuracy comparable to the
use of the FFT in computing the Fourier transform Comparisons
of different approaches to calculating Fresnel integrals may be
found in [93], [91], [320] which shed light onto the limitations
of certain earlier methods.

For a review of the literature on space-frequency representa-
tions we refer the reader to [330]–[334]. Some of these have re-
ceived greater attention in optics, such as the windowed/short-
time Fourier transform, which is closely related to Gabor ex-
pansions [335], [336], and the Wigner distribution and ambi-
guity function. Reviews of the applications of the Wigner dis-
tribution in optics are given in [337] and [338]. A Special Issue
[339] is devoted to the Wigner distribution and phase space in
optics. Related topics are sometimes referred to as operator op-
tics [340]–[345].

The relationship between the Wigner distribution and linear
canonical transforms and fractional Fourier transforms is of key
importance. Fractional Fourier transformation corresponds to
rotation of the Wigner distribution [284], [287], [289], [346].
The Wigner distribution and linear canonical transforms were
established as a standard tool in optics primarily by Bastiaans
[347], [348], based on a number of earlier works [349]–[351].

Recently, the diffraction problem is revisited and formulated
using the projection-slice theorem as a tool using impulse func-
tions defined over curves and impulses [352], [353].

IX. CONCLUSION

While signals and systems concepts have been applied to
optical problems for decades, the degree of sophistication at-
tained seems short of that in mainstream signal processing and
insufficient to handle certain problems arising in 3DTV, pos-
sibly as a result of the interdisciplinary nature of the problems.
While the accumulated knowledge in certain areas, such as in
optical signal recovery, has reached a highly sophisticated state,
in others it falls short. Most strikingly, the issue of sampling
and quantization (and more generally finite representation) of
optical fields, that lies at the heart of computational techniques,
seems to be handled mostly in an ad hoc manner, despite the fact
that the tools necessary to put these issues on firm ground are
part of standard information theory and signal analysis topics.
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While there is a bulk of articles on the topic, the recent achieve-
ments in frame and wavelet theory are still to meet the chal-
lenging problems in optics, diffraction and holography. In a very
general setting, the sampled representation of the 3-D scene will
be in the form of nonuniformly distributed samples over the 3-D
space. Such a setting requires rather novel approaches based on
frame theory instruments for dealing with irregularly distributed
samples. Another promising topic for further research is the use
of application-tuned bases for achieving sparse signal expan-
sions (so-called atomic decompositions). Fresnelets, chirplets,
and scaling chirps, while being defined and reasoned mathemat-
ically, are still to be implemented and tested in real holography
and diffraction applications.

The problem of computing the optical field emanating from
a field specified over an arbitrary surface profile does not seem
to have been solved satisfactorily from a theoretical or numer-
ical perspective. Although past work on 3-D light synthesis ex-
hibits considerable sophistication, the various alternative ap-
proaches to synthesize desired dynamic optical fields using dif-
ferent SLM technologies have not been sufficiently explored.
While such tools as atomic decompositions, space-frequency
representations, fractional Fourier transforms, and the like, are
understood to be relevant for optical problems, they have not
been fully exploited for purposes of diffraction problems. Espe-
cially in the context of holography and integral imaging, there
seems to be a great deal of confusion regarding the required in-
formation capacity to record 3-D images.

Improvements and developments in the above mentioned
areas will not only pave the way to the realization of efficient
3DTV systems, but also constitute advances in optics and signal
processing theory.
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