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1. BASIC BACKGROUND

The fractional Fourier transform (FRT) operation
has been shown to be useful for various spatial filtering
and signal processing applications [1–8]. The FRT is a
private case of the 

 

ABCD

 

 matrix. When the 

 

ABCD

 

matrix accepts the form

 

(1)

 

In this transform, the amount of shift variance may
be controlled by choosing the proper fractional order 

 

p

 

for the transformation while 

 

φ

 

 equals to 

 

φ

 

 = 

 

π

 

p

 

/2. When
the fractional order is one, the FRT becomes the con-
ventional Fourier transform which is totally shift invari-
ant. For fractional order of zero the FRT gives the input
function, i.e., totally shift variant. For any other frac-
tional order in between, the transform has partial
amount of shift variance.

 

1.1. Definition

 

There are two common interpretations for the FRT.
Both definitions were proven to be identical as shown
in [7].

 

1.1.1. Definition based on propagation in graded
index media.

 

 The first FRT definition [9–11] is based
on the field propagating along a quadratic graded index
(GRIN) medium having a length proportional to 

 

p

 

 (

 

p

 

being the FRT order). The eigenmodes of quadratic
GRIN media are the Hermite–Gaussian (HG) func-
tions, which form an orthogonal and complete basis set.
The 

 

m

 

th member of this set is expressed as

 

(2)
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The text was submitted by the authors in English.
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where 

 

H

 

m

 

 is a Hermite polynomial of order 

 

m

 

 and 

 

ω

 

 is
a constant associated with the GRIN medium parame-
ters. An extension to two lateral coordinates 

 

x

 

 and 

 

y

 

 is
straightforward, with 

 

Ψ

 

m

 

(

 

x

 

)

 

Ψ

 

n

 

(

 

y

 

) as elementary func-
tions.

The propagation constant for each HG mode is
given by

 

(3)

 

where 

 

k

 

 = 2

 

π

 

n

 

1

 

/

 

λ

 

, is the wavenumber and 

 

n

 

1

 

, 

 

n

 

2

 

 are
related to the refraction index profile within the GRIN
fiber as follows:

 

r

 

 is the radial coordinate. The HG set can be used in
order to decompose any arbitrary distribution 

 

u

 

(

 

x

 

) as
follows:

 

(4)

 

where the coefficient 

 

A

 

m

 

 of each mode 

 

Ψ

 

m

 

(

 

x

 

) is given by
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Using the above decomposition, the FRT of order 

 

p

 

 is
defined as

 

(7)

 

where

(8)

is the GRIN length that results in the conventional Fou-
rier transform. It was shown in [10] that this definition
agrees well with the classical Fourier transform defini-
tion for the case of p = 1.

1.1.2. Definition based on Wigner distribution
function. A complete signal representation, displaying
time and frequency information simultaneously, can be
achieved by the time–frequency Wigner distribution
function (WDF). In [12] the FRT operation is defined
by following the signal u(x), while its WDF is rotated
by an angle φ, which is related to the fractional order as
follows: φ = pπ/2. Note that the WDF of a 1D function
is a 2D function and the rotation interpretation is easily
displayed. In [12], the same rotation strategy was gen-
eralized to 2D signals, i.e., images, whose WDFs are
4D distributions. The WDF of a function can be rotated
with bulk optics. It was suggested [12] to use the optical
system of Fig. 1 for the implementation of the FRT
operator following this definition.

This optical setup represents in the WDF space, the
following three shearing operations: x,ν,x shearing or
ν,x,ν shearing, where ν and x are the spectral and spa-
tial coordinates, respectively. The x shearing is per-
formed by free-space propagation, followed by a lens
which performs ν shearing, and another x shearing
which is performed by free-space propagation. In his
paper [12], Lohmann characterized this optical system
using two parameters, Q and R, as follows:

(9)

where f1 is an arbitrary length, f is the focal length of
the lens, and z is the distance between the lens and the
input (or output) plane. As known from [12] for an FRT
of order p, Q, and R should be chosen as follows:

(10)

for the type I configuration or

(11)

for the type II configuration. Note that φ = pπ/2. By
analyzing the optical configuration of Fig. 1, Lohmann
[12] obtained the following:

(12)
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This last equation defines the FRT for 1D functions
where λ is the wavelength. Generalization for 2D func-
tions is straightforward. Note that λf1 is also coined the
scaling factor.

The two interpretations of the FRT operation have
been united into one formulation through a transforma-
tion kernel, as follows [8]:

(14)

where Bp(x, x') is the kernel of the transformation and p
is the fractional order. The kernel has two optical inter-
pretations, one as propagation through GRIN medium
[10]:

(15)

and the other as a rotation operation applied over the
Wigner plane [12]:

(16)

where ω is the coefficient that connects the two inter-
pretations as given below:
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Fig. 1. The two possible optical setups for obtaining the
FRT. (a) Type I configuration; (b) type II configuration.
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Careful examination of the expression of the FRT
definition shows that the FRT is a localized transforma-
tion. In this context, “localized” means that the input
function is actually multiplied by a space window as is
done in the Gabor transform [13]. In the FRT case the
space window is a phase window (the chirp phase func-
tion exp[iπ(x2 + x' 2)/(λf1 )]) rather than amplitude
window as for the case of the original Gabor transform.
In the case of the chirp function, increasing the distance
from the origin results in an increase of the spatial fre-
quency. Eventually, the spatial frequency becomes so
high that while calculating the integral according to the
FRT definition, under-sampling might occur. As a result
higher frequencies are lost and the phase window is
equivalent to an amplitude window.

1.1.3. Properties of the FRT.
(1) Linearity.
The FRT is a linear transformation. Thus,

(18)

where c1, c2 are constants.

(2) Continuity.
Two FRTs with different orders p1 and p2 yield the

following theorem:

(19)

(3) Perseval’s theorem.

(20)

(4) Shift theorem.
If the input object is shifted by an amount of a, then

its FRT yields

(21)

(5) Scaling theorem.
If the input object is scaled by the factor of a, then

its FRT yields

(22)
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1.2. Fractional Correlation

In several pattern recognition applications, the shift
invariance property within the entire input plane is not
necessary and may even be considered as a disadvan-
tage. An example is the case where the object is to be
recognized only when its location is inside a predefined
window and rejected otherwise, e.g., a passport with a
picture that should appear only at the upper right area.
Several approaches for obtaining such space variance
detection have been suggested. The first approach is the
Tandem component processor that trades the shift
invariance with high efficiency and high peak to corre-
lation-energy ratio [14]. Different approach is based on
coded phase processor that multiplexed many filters
and yet kept the space bandwidth product (SW) of the
ordinary single filter correlator [15]. A space-variant
Fresnel transform correlator [16], which is closely
related to the lensless intensity correlator [17], was also
suggested. A related approach is the tool coined frac-
tional correlation (FC) whose optical implementation is
done using a setup similar to the Vander Lugt correlator
[18, 19]. The FC operation allows controlling the
amount of shift variant property of the correlation. This
property is based on the shift variance of the FRT and it
is more significant for the fractional orders of p ≈ 0 +
2N (imaging) and less for p ≈ 1 + 2N (Fourier), where
N is an integer.

If we return again to the example of the passport pic-
ture, then opposed to a solution involving using an
appropriate input pupil which is open in the desired
location, the FC does not require any additional compo-
nents for its optical implementation. Another example
for the necessity of the FC is the case where the recog-
nition should be based mainly on the central pixels and
less on the edge pixels (for instance in systems whose
spatial resolution is improved in the central pixels and,
thus, the central region of pixels is more reliable for the
recognition process). An important application for the
FC might be the detection of localized objects using a
single cell detector, eliminating the need for a CCD
array detector. It may as well be used for efficient mul-
tiplexing of several filters with different processing
tasks. The schematic sketch of the FC as well as an
example of the optical setup that may be used for real-
izing it, are depicted in Fig. 2.

As can be seen, the process is based on obtaining the
product of the fractional transforms of the distributions
that are to be correlated and then rendering an addi-
tional FRT to obtain the final result. Analytically, the
operation of FC of an input function, f(x), with a refer-
ence pattern, g(x), is defined as follows:

(23)Cp1 p2 p3, , x'( ) �
p3 �

p1 f x( )[ ] �
p2 g x( )[ ]×{ },=
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where p1, p2, p3 are the orders of the FRTs. Due to var-
ious reasons, detailed in [18, 20], for optimization, the
following relation should be realized:

(24)

and the most obvious choice is

(25)

where p ranges from 0 to 1. In this case, if the input
coincides with the reference object, a perfect phase
matching between the FRT of the object and the refer-
ence is obtained in the fractional domain. The inverse
Fourier transform will just focus the resulting plane
wave and produce a delta, i.e., a correlation peak.

An alternative optical implementation of the FC is
based on illuminating, the object with a converging
beam, as can be seen in Fig. 2b [21, 22]. This imple-
mentation permits the change of the convergence phase
factor, multiplying the object, by displacing it along the
optical axis. The matching between the distance–object
filter and the convergence of the beam may produce any
desired order and scaling factor. Hence, this approach is
more convenient from the experimental point of view,
since the exact dimensions of the input and filter trans-
parencies are often not precisely determined. This is
especially important for the case of using spatial light
modulators (SLMs) for real time implementation of the
filter. As the FRT is not exact there will be a quadratic
phase factor multiplying the output plane. Therefore,
the correlation plane will be displaced along the optical
axis.

2. GENERAL APPLICATIONS

Besides the ability to change easily the space vari-
ance of the optical system, the FRT has shown to be
very useful for many other signal processing applica-
tions. The main application is related to chirp noise
removal. This application is based on the fact that if a

1/ φ1tan 1/ φ2tan 1/ φ3tan+ + 0,=

p1 p, p2 p, p3– 1,–= = =

chirp type noise of exp(–iax2) is fractionally Fourier
transformed with the order of

(26)

the result is a delta function. Thus, in order to remove
the noise, a simple notch filter may be placed in the
proper FRT plane, using the fractional correlator con-
figuration. Since the filter is a notch filter, the amount
of loss signal’s information is minimal. Another impor-
tant application of the FRT is related to the fact that
according to its second definition the FRT corresponds
to the rotation of the Wigner chart by an angle of pπ/2.
Thus, assuming that the Wigner chart for the signal and
the noise distributions are as illustrated by Fig. 3a, one
may see that filtering either in the Fourier plane (corre-
sponds to projection of the Wigner chart over the fx
axis) or filtering in the spatial plane (corresponds to
projection of the Wigner chart over the fx axis), will
result in partial loss of the signal’s information. How-
ever, filtering in the proper FRT plane (the angle in the
Wigner chart at which full separation exists between
the projections of the signal and the noise) will allow
full reconstruction of the signal by its noise [6]. Addi-
tional important application of the FRT is related to sig-
nal multiplexing. Due to the ability of the FRT to rotate
the Wigner chart, the Wigner distribution of a signal
may be arranged in a more efficient manner [8] as can
be seen in Fig. 3b. This efficient arrangement saves
additional bandwidth that may be needed for the trans-
mission of the signal.

After performing this short overview of the basic
fundamentals of the FRT, we will now describe the
usage of this transformation for two new applications.
The first one is related to blind source separation of
images and the second one for RF photonics. Regarding
blind source separation (BSS) there are many
approaches, such as Principal Component Analysis
(PCA), which uses second order statistics and decorre-
lates the outputs by using an orthogonal demixing
matrix [23–25], algorithm that recovers images on the
pixel-by-pixel basis [26] and approaches based upon
adaptive filter that performs image separation in the

p 2/π( ) 1/a( )tan
1–

=

(a) (b)
Reference
object: f

FRT order p1

FRT order p2

FRT order p3
Input
object: g

Filter (P) f = d/2 Output

Z

d

Input Filter (–P)

Z

Output

d

Fig. 2. (a) Schematic sketch for obtaining a generalized fractional correlation; (b) its experimental optical setup.
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Fourier space [27]. Another very common approach is
called the “Block Gaussian likelihood” (BGL) algo-
rithm suggested by D. T. Phalm and J. F. Cardoso [28].
We base our technique for images separation following
an algorithm that seeks for the smallest fractional cross
correlation [29] or the largest fractional auto correla-
tion. RF photonics is a new evolving research field that
deploys optical based processing techniques into RF
and RADAR detection problems involving RF phased
array sensors [30, 31] and filters [32]. Photonic RF fil-
ters have a lot of potential due to their capability to
obtain high dynamic range, tunability and reconfigura-
tion. Several configurations have been suggested
employing highly dispersive fibers [33], fiber gratings
[34], fiber optics prisms [35] or arrayed waveguide
gratings (AWG) [36] or optical spectrum analyzers
[37]. In this paper we present the usage of the FRT to
separate between multiple chirped RF photonic signal.

3. BLIND SOURCE SEPARATION OF IMAGES

The novel algorithm that we have examined and
which is based on the FRT managed to improve the
blind source separation capability of mixed images
[29].

The BSS process consists of recovering source

images sn using only the observed data , where theM̂

source images and the mixing are unknown. The BSS
process can be formulated by the linear mixing equa-
tion

(27)

where sn, n = 1…N are N unknown independent uncor-
related noiseless image sources. These sources are
instantaneously mixed with an unknown linear N × N
matrix, A, which produces N observation images Mn
n = 1…N. The N source images are to be uncorrelated

noiseless images. The matrix  is a normalized
matrix. Our basic assumptions to make this process
work properly are

(28)

where 〈 |〉 is a scalar product and 〈 〉 is the mean. In order
to span the vectors space, which contains the mixtures

 in a convenient manner, we define a new vector
basis V. The vectors comprising this basis for the case
of N = 2 are obtained by the following linear combina-
tion:

(29)

M̂ Aŝ,=

M̂

M̂n M̂n M̂n〈 | 〉 1 and MN〈 〉 0,= =

M̂n

V̂1 M̂1 M̂2+( )/ 2,=

V̂2 M̂1 M̂2–( )/ 2,=

(a)

(b)

fx

x

φ

fx
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x

x

Fig. 3. (a) A Wigner chart of a signal and a noise where the FRT filtering is very applicable; (b) a Wigner chart of a signal that may
be more efficiently multiplexed via an FRT.
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so that

(30)

where δpq is the Kronecker delta.
Each of the original images sn is a linear combina-

tion of the basis vector V, yet with an unknown coeffi-
cient’s set. This argument may be stated in the follow-
ing way:

(31)

where the parameters φn are to be determined.
The method by which the values of the parameters

φn (corresponding to the original images) shall be found
is as follows: any pair of images sp, sq may be charac-

V̂ p V̂q〈 | 〉 δpq,=

ŝ1 V̂1 φ1sin V̂2 φ1,cos+=

ŝ2 V̂1 φ2sin V̂2 φ2,cos+=

terized by the FC function generally defined as in
Eq. (23) [22]. We use fractional orders p1, p2, p3, with
the values of: p1 = p, p2 = –p, p3 = –1, where p is ranging
from 0 to 1. We search for the minimal cross correlation
function for all values of the parameter φn and for all
values of the fractional order p. Allocating such values
provides us with the parameter φn and, therefore, with
the separated images sn.

Here are some numerical simulations. As seen in
Fig. 4a, two mixed images of LENA and TIRE were
separated. The left part of Fig. 4a presents the separa-
tion results of the two images for FRT order of 0.7 and
the right part displays the SNR as function of the frac-
tional order. Figure 4b presents additional simulations
in which the LENA image was separated from random
noise. Once again the left part of the figure presents the
separation results of the two mages for FRT order of 0.6
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Fig. 4. Two numerical examples for blind source separation of images using fractional correlation. (a) Separation between LENA
and a TIRE; s1, dashed; s2, solid; (b) Separation between LENA and noise; s2, dashed; s1, solid.
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and the right part displays the SNR as function of the
fractional order. Just for comparison the common BGL
algorithm obtained SNR of only approximately –10 dB
for the mixture between the LENA and the TIRE
images.

4. RF-PHOTONICS RELATED APPLICATIONS

RF photonics is a field in which RF signals are pro-
cessed with optical modules to obtain simplicity and
performance. In synthetic aperture radars (SAR), one
sends chirp signals towards objects and then receives it
at the receiver. In case where there are several chirps
sent towards several potential targets, the secondary
reflections from the first object may mix with the first

reflection from the second object etc. In addition some-
times there is a desire to map wide field of view and,
thus, to multiplex and to transmit several RF chirp sig-
nals simultaneously. In both cases a great advantage
can be obtained if the antenna will transmit several
chirps each having different temporal starting position
and spectral specification and yet at the receiver those
different chirps could be separated efficiently without
damaging the information of the other chirps. To do
that, we suggest using the x–p chart [22] and to apply
filtering in the FRT domain. The x–p chart of a signal is
a chart in which one axis is the various fractional orders
and the other axis is the FRT distribution that is
obtained for those orders. For explaining, let us start
with an example where two different chirps are added
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Fig. 5. (a) Detection of several chirps: schematic sketch; (b) the input signal consisting out of 11 chirps; (c) the x–p chart; (d) the
peak obtained at one of the fractional order where one of the chirps becomes a delta function; (e) the x–p chart after filtering the
11 chirps; (f) the signal in the time domain.
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to a general signal. Its Wigner space could be as
depicted in Fig. 5a where the two different chirps are
the two lines. By applying FRT with proper order we
may rotate the Wigner space such that the first chirp
could be filtered out (as depicted in the lower part of
Fig. 5a). The chirps can be filtered out when they
become horizontal line since then their projection over
the frequency axis is compressed into a single fre-
quency (a delta function). Then, by applying additional
FRT with different fractional order, the Wigner space
could be rotated again such that the second chirp will
become a horizontal line. Thus, by cascading several
FRT filtering systems that will process the RF signals
one may deal with detection of several chirps while
their number does not exceed the number of the cas-
caded systems. Note that the RF signals can be pro-
cessed by optical modules if the detected RF signal is
modulated on an optical carrier.

Figures 5b–5f present several numerical simula-
tions. In Fig. 5b, 11 different chirps were summed
together in time window of 25 µs and bandwidth of
15 MHz. Each chirp had a different temporal starting
points and different bandwidth. In Fig. 5b, one may see
the temporal distribution of the summed signals. Fig-
ure 5c presents its x–p chart. In that chart, one may see
several points of focus (delta functions) while each
point corresponds to the parameters of a different chirp
signal. The focusing points are marked by arrows in
Fig. 5c. The mathematical relation between the order at
which the delta function is obtained and its temporal
position, in the case where the chirp function expressed
as exp[–iπα(t – t0)2], is as follows:

(32)

where p0 is the fractional order at which the delta func-
tion is obtained and t ' is its temporal position while t0
was the position of the center of the original chirp. Fig-
ure 5d presents how each plane of the focusing point
looks like prior to the notch filtering procedure. The
delta function obtained at that specific plane corre-
sponds to a single chirp function whose parameters
match the applied fractional order as described by
Eq. (32). The rest of the chirps are spread all over the
temporal window and thus their energy is not damaged
when a notch filters out the delta function of that single
predetermined chirp. The result obtained after the notch
filtering is seen in Figs. 5e–5f. The filtering procedure
consists out of performing FRT with fractional order
that corresponds to the focusing points, then filtering
the delta function using notch filter and then perform-
ing an inverse FRT. This operation is repeated eleven
times for all the chirps in the summed signal. In Fig. 5e,
one may see the x–p chart after filtering all the eleven
chirps and, in Fig. 5f, we present the temporal behavior
of the remaining components. As seen from Fig. 5e, the
chirps were filtered out and no focusing points were
remained.

p0 2 1/α( )tan
1–[ ]/π, t ' t0 πp/2( ),sin= =
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