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Digital Computation of Linear Canonical Transforms
Aykut Koç, Haldun M. Ozaktas, Member, IEEE, Cagatay Candan, and M. Alper Kutay

Abstract—We deal with the problem of efficient and accurate dig-
ital computation of the samples of the linear canonical transform
(LCT) of a function, from the samples of the original function. Two
approaches are presented and compared. The first is based on de-
composition of the LCT into chirp multiplication, Fourier transfor-
mation, and scaling operations. The second is based on decompo-
sition of the LCT into a fractional Fourier transform followed by
scaling and chirp multiplication. Both algorithms take ���
time, where is the time-bandwidth product of the signals. The
only essential deviation from exactness arises from the approxima-
tion of a continuous Fourier transform with the discrete Fourier
transform. Thus, the algorithms compute LCTs with a performance
similar to that of the fast Fourier transform algorithm in computing
the Fourier transform, both in terms of speed and accuracy.

Index Terms—Diffraction integrals, fractional Fourier trans-
form (FRT), linear canonical transform (LCT), time-frequency
analysis, Wigner distributions.

I. INTRODUCTION

THE class of linear canonical transforms (LCTs) [1], [2]
is a three-parameter class of linear integral transforms

which includes among its many special cases, the one-parameter
subclasses of fractional Fourier transforms (FRTs), scaling
operations, and chirp multiplication (CM) and chirp convolution
(CC) operations, the latter also known as Fresnel transforms.
These integral transforms are of great importance in electro-
magnetic, acoustic, and other wave propagation problems since
they represent the solution of the wave equation under a variety
of circumstances. At optical frequencies, LCTs can model a
broad class of optical systems including thin lenses, sections of
free space in the Fresnel approximation, sections of quadratic
graded-index media, and arbitrary concatenations of any number
of these, sometimes referred to as first-order optical systems
[2]–[6]. Therefore, the accurate and efficient digital computation
of these transforms are of great interest for many applications.

LCTs have also been referred to by different names such as
quadratic-phase integrals or quadratic-phase systems [3], gen-
eralized Huygens integrals [7], generalized Fresnel transforms
[8], [9], special affine Fourier transforms [5], [6], extended frac-
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tional Fourier transforms [10], and Moshinsky–Quesne trans-
forms [1], among others.

In this paper, we discuss two approaches for the digital
computation of LCTs. The first algorithm decomposes an LCT
with arbitrary transform parameters into some combinations of
three simpler operations: scaling, Fourier transformation, and
chirp multiplication. The second method decomposes the LCT
into fractional Fourier transformation, chirp multiplication, and
scaling. Both are fast algorithms that take time,
where is the time–bandwidth product of the input signal.
Despite the highly oscillatory nature of the integral kernel, spe-
cial care is taken to carefully manage the sampling rate so as to
ensure that the number of samples is not chosen much larger
than the time–bandwidth product of the input signal, so that the
algorithms are as efficient as possible. A naive application of
the Nyquist sampling theorem to determine the sampling rate,
on the other hand, would result in an excessively large value
of and inefficient computation. The only deviation from ex-
actness arises from the approximation of a continuous Fourier
transform with the discrete Fourier transform (DFT). Thus, the
algorithms compute LCT integrals with a performance similar
to that of the fast Fourier transform (FFT) algorithm in digitally
computing the continuous Fourier transform (FT), both in terms
of speed and accuracy.

In an earlier paper [11], we had presented an algorithm
which maps the samples of a given function to the samples of
its th-order fractional Fourier transform, which had the same
efficiency and accuracy as the FFT in computing the FT. The
present work represents the results of our efforts to obtain a
much more general algorithm that can handle all members of
the three-parameter family of LCTs with a similar performance.

In this paper, we discuss algorithms for numerically com-
puting continuous LCTs with careful attention to sampling is-
sues. Another avenue towards this end is to first define dis-
crete linear canonical transforms (DLCTs), use them to approx-
imate continuous LCTs much as the DFT is used to approxi-
mate the continuous FT, and then compute the DLCT using a
fast algorithm [12]. There has been a certain amount of work
on defining discrete/finite fractional Fourier transforms and, to
a much lesser degree, discrete/finite linear canonical transforms
[13]–[32]. While definitions of the discrete fractional Fourier
transform (DFRT) may be considered satisfactory and well rec-
ognized [22], [30], [32], definition of the DLCT is far from being
established. Further work on the definition and fast computation
of discrete transforms, and their relationship to their continuous
counterparts is desirable.

The paper is organized as follows. LCTs are reviewed in
Section II, and Section III presents a systematic analysis of
all possible decompositions of an LCT into the three basic
operations of scaling, Fourier transformation and chirp multi-
plication. Based on this, the first algorithm is also presented
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in Section III. The second approach involving the fractional
Fourier transform is given in Section IV. Numerical exam-
ples and comparison of the two approaches are presented in
Section V. In Section VI, the conclusion is given.

II. PRELIMINARIES

A. Linear Canonical Transforms

The linear canonical transform of with parameter matrix
is denoted as :

(1)

where , , and are real parameters independent of and
and where is the LCT operator. The transform is unitary.
The 2 2 matrix whose elements are , , , , represents
the same information as the three parameters , , and which
uniquely define the LCT:

(2)
The unit-determinant matrix belongs to the class of unimod-
ular matrices. More on the group-theoretical structure of LCTs
may be found in [1] and [2].

The result of repeated application (concatenation) of LCTs
can be handled easily with the above-defined matrix. When two
or more LCTs are cascaded, the resulting transform is again an
LCT whose matrix is given by multiplying the matrix of each
LCT in the cascade structure. That is, if two LCTs with matrices

and operate in a successive manner, then the equivalent
transform is an LCT with the matrix . LCTs are
not commutative. The matrix of the inverse of an LCT is simply
another LCT whose matrix is the inverse of the matrix of the
original LCT [1], [2].

This paper studies different decompositions (or factoriza-
tions) of the given LCT into other LCTs with the purpose of
fast and accurate calculation of the LCT integral. Different
decompositions may be advantageous for LCTs with different
parameters. The use of matrices will greatly facilitate our study
of different decompositions, since dealing directly with the
corresponding integral expressions is quite cumbersome.

Computation of the Fresnel diffraction integral, which is a
special case of (1) with , has received the greatest
attention since it describes the propagation of light in free
space (see [33] and [34] and the references therein). Since the
input–output relationship represented by the Fresnel integral
is time-invariant and takes the form of a convolution, it can be
computed in time. The algorithms we present can
compute (1) in time, despite the fact that the rela-
tionship represented by the more general (1) is not time-invariant
and is not a convolution. It is important to underline that here
is chosen close to the time–bandwidth product of the set of input
signals, which is usually the smallest possible value of that
can be chosen in terms of information-theoretic considerations.
Therefore, the presented algorithms are highly efficient. Indeed,
the distinguishing feature of the present approach is the care with
which sampling and time–bandwidth product issues are han-
dled. Straightforward use of conventional numerical methods

can result in inefficiencies either because their complexity is
larger than and/or because the highly oscillatory
quadratic-phase kernel in (1) forces to be chosen much larger
than the time–bandwidth product of the signals [35].

B. Relation of LCTs to the Wigner Distribution

Here we will review the relationship between LCTs and the
Wigner distribution, which will aid us in understanding the ef-
fects of the elementary blocks used in our decompositions. The
Wigner distribution of a signal can be defined as
follows [36], [37]:

(3)
Roughly speaking, is a function which gives the distri-
bution of signal energy over time and frequency. Its integral over
time and frequency, , gives the signal
energy.

Let denote a signal and be its LCT with parameter ma-
trix . Then, the Wigner distribution (WD) of can be ex-
pressed in terms of the WD of as [2]

(4)

This means that the WD of the transformed signal is a linearly
distorted version of the original distribution. The Jacobian of
this coordinate transformation is equal to the determinant of the
matrix , which is unity. Therefore, this coordinate transfor-
mation does not change the support area of the Wigner distri-
bution. (A precise definition of the support area is not neces-
sary for the purpose of this paper; it may be defined as the area
of the region where the values of the Wigner distribution are
non-negligible, or the area of a region containing a certain high
percentage of the total energy.) The invariance of support area
means that LCTs do not concentrate or deconcentrate energy.
The support area of the Wigner distribution can also be approx-
imately interpreted as the number of degrees of freedom of the
signal. Therefore, the number of samples needed to represent
the signal does not change after an LCT operation.

It is well known that a nonzero function and its FT cannot both
be confined to finite intervals. However, in practice we always
work with samples of finite duration signals. We assume that a
large percentage of the signal energy, as represented by the WD,
is confined to an ellipse with diameters in the time dimen-
sion and in the frequency dimension, which can be ensured
by choosing and suitably. This implies that the time-
domain representation is approximately confined to the interval

and that the frequency-domain representation
is approximately confined to . We then define
the time–bandwidth product , which is always , be-
cause of the uncertainty relation. Let us now introduce the scaling
parameter and scaled coordinates, such that the time- and fre-
quency-domainrepresentationsareconfinedtointervalsof length

and . Let so that the lengths of both
intervals become equal to the dimensionless quantity
which we denote by , and the ellipse becomes a circle with
diameter . In the new coordinates, signals can be represented
in both domains with samples spaced apart. We will
assume that this dimensional normalization has been performed
and that the coordinates and are dimensionless.
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Fig. 1. Effect of scaling on the Wigner distribution. (a) Before scaling operation. (b) After scaling operation with parameter M.

Fig. 2. Effect of Fourier transformation on the Wigner distribution. (a) Before Fourier transformation. (b) After Fourier transformation.

For a signal with rectangular time-frequency support, the
time-bandwidth product is equal to the number of degrees of
freedom. This is not true for signals with other support shapes.
While we have observed that LCTs do not change the number
of degrees of freedom of a signal, they may change its time–
bandwidth product. This will be illustrated in what follows.

C. Effects of Special LCTs on the Wigner Distribution

Here we discuss the effects of certain operations, all special
cases of LCTs, on the Wigner distribution of a signal. These are
of interest since we will decompose general LCTs in terms of
these operations.

1) Scaling: The scaling operation is a special case of the LCT
defined as

(5)

(6)

Its effect on the WD is given by

(7)

where . The scaling operation does not change the sup-
port area, time-bandwidth product, or required number of sam-
ples (Fig. 1), but it changes the sampling intervals in both the time
and frequency domains by factors of and respectively.

2) Fourier Transformation: The ordinary Fourier transform
operation is also a special case of the LCT

(8)

(9)

The subscript “ ” reminds us that the definition of the Fourier
transform as a special case of LCTs differs from the conven-
tional definition by the factor . Readers wishing to under-
stand the technical reason behind this inconsequential discrep-
ancy may consult [1], [2]. The effect of Fourier transformation
on the WD is given by

(10)

which is a rotation of in the clockwise direction (Fig. 2),
which again does not change the time–bandwidth product.

3) Chirp Multiplication: The chirp multiplication (CM) op-
eration is another special case of the LCT

(11)

(12)

Its effect on the WD is

(13)

Although the support area and therefore the number of de-
grees of freedom are preserved after chirp multiplication, the
time–bandwidth product increases. This is due to the increase
in signal bandwidth as a result of vertical shearing of the WD
(Fig. 3). The new time–bandwidth product is .
If we wish a signal with such a support to be recoverable from
its samples in the conventional manner, this is the number of
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Fig. 3. Effect of chirp multiplication on the Wigner distribution. (a) Before chirp multiplication. (b) After chirp multiplication.

Fig. 4. Effect of fractional Fourier transformation on the Wigner distribution. (a) Before FRT operation. (b) After FRT operation.

samples we need. (The sampling interval in the time domain is
and that in the frequency domain is .)

The chirp convolution (CC) operation is the dual of the chirp
multiplication and corresponds to a horizontal, rather than a ver-
tical shear in the time-frequency plane:

(14)

(15)

Its effect on the WD is

(16)

4) Fractional Fourier Transformation: The th-order frac-
tional Fourier transform (FRT) [2], [38]–[44] of a function ,
denoted , is most commonly defined as

(17)

when and when and
when , where is an integer.

The square root is defined such that the argument of the result

lies in the interval . For ,
can be rewritten without ambiguity as

(18)

where is the sign function. When is outside the interval
, we need simply replace by its modulo 4 equiva-

lent lying in this interval and use this value in (18).
The FRT is also a special case of the LCT with matrix

(19)

differing only by the factor :

(20)

Again the subscript “ ” denotes this inconsequential discrep-
ancy between the definition of the FRT given by (17) and the
FRT defined as a special case of the LCT [1], [2]. The FRT ro-
tates the WD in the clockwise direction with an angle of

, as shown in Fig. 4:

(21)
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III. SYSTEMATIC ANALYSIS OF DECOMPOSITIONS AND

METHOD I

The proposed algorithms use matrix factorizations to decom-
pose LCTs into cascade combinations of the elementary LCT
blocks discussed above. Since each stage can be computed in

time, the overall LCT can also be. Numerous such de-
compositions are possible [2], but they are not equally suited for
numerical purposes. For instance, direct naive application of the
decomposition of chirp multiplication, Fourier transformation,
scaling (magnification), and again chirp multiplication, which
suggests itself upon inspection of (1) will in general lead to very
high sampling rates. We have carried out a systematic exhaustive
analysis of all possible decompositions of arbitrary LCTs into the
three basic operations of scaling, chirp multiplication (CM), and
Fourier transformation (FT). We have considered all possible
decompositions with three, four, and five cascade blocks. Every
permutation has been checked to see if that decomposition is
capable of expressing an LCT with arbitrary parameters.

It is well known that arbitrary LCTs can be decomposed in
either the form or , where and
are the chirp multiplication and convolution operations respec-
tively [2]. Chirp convolutions can be realized as a Fourier trans-
form followed by a chirp multiplication followed by an inverse
Fourier transform (the Fourier transform of a chirp is also a
chirp). Since we already consider all permutations involving
chirp multiplication and Fourier transformation, approaches in-
volving chirp convolution are also included in our development.

While generating all possible decompositions through per-
mutations, duplicate decompositions arise. For example, two

consecutive scaling or two consecutive chirp multiplication op-
erations can both be collapsed into one. Or, for instance, in the
case of five-stage decompositions with more free parameters
than the three free parameters of LCTs, we have the freedom of
choosing the additional parameters. When we select the scaling
parameter as 1, this reduces to an equivalent four stage decom-
position. In other words, some decompositions turn out to be
equivalent to others, reducing the total number of possible de-
compositions.

Careful consideration shows that there are a total of 16 dis-
tinct decompositions. Four of these have four stages and 12 of
them have five stages; decompositions with three stages are not
flexible enough to match arbitrary LCTs. However, some de-
compositions among this 16 are equivalent in implementation.
For example a scaling and FT cascade can be replaced with a FT
and inverse scaling cascade, a trivial and inconsequential differ-
ence. When such trivial replacements are deducted from the set
of 16 decompositions, we end up with 12 decompositions. We
will immediately eliminate two of these decompositions. These
two decompositions involve significantly more computational
load than the others. As will be seen, the CM stages, especially
when they occur early in the cascade, require us to increase the
sampling rate and thus the complexity. Generally speaking it
is desirable to have as few CM stages as possible and to have
them appear as late in the cascade as possible. Therefore, we
eliminate the two decompositions having three CM stages. Fi-
nally, our exhaustive consideration and careful sorting out of all
decompositions with three, four, and five stages leaves us with
ten distinct decompositions to consider: see equations (22)–(31)
shown at the bottom of the page. Recall that the diagonal ma-

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)
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Fig. 5. Sequence of geometrical distortions for the decomposition in (22). The parallelogram in (c) is obtained by shearing the dashed rectangle in (b) in order to
cover the worst case. (a) After the first stage: CM I. (b) After the second stage: FT. (c) After the third stage: CM II. (d) After the fourth stage: scaling.

trices correspond to scaling, the skew-diagonal ones to FT, and
the lower-triangular ones to CM. The parameters , , of these
operations are chosen in terms of the elements , , , of the
matrix so as to equate the left and right hands of the above
equations [see (2)].

Scaling and FT do not require an increase in the number of
samples. However, since CM will change the time-bandwidth
product, we introduce 2 oversampling when confronted with
the first CM operation, to allow us room to maneuver. We will
however try to avoid oversampling beyond this, as much as pos-
sible. Specifically, we will impose any necessary restrictions so
as to avoid further oversampling until the stage that involves the
very last CM.

We will make sure that after each stage, the number of sam-
ples is sufficient (in the Nyquist sense) for recovery of the con-
tinuous signal. In order to illustrate how we deal with each de-
composition, we consider the decomposition given in (22) as an
example (Fig. 5). For graphical purposes, here we assumed that
the initial time-frequency support is a square of edge length
rather than a circle. Since we require that samples be suffi-
cient, we must ensure that the time–bandwidth product does not
exceed :

(32)

Therefore, we obtain the restriction for the pa-
rameter appearing in the first chirp multiplication operation.
This restriction ensures that oversampling by two is sufficient,

by ensuring that the bandwidth following the geometric distor-
tion has not increased by more than a factor of two. After the
FT, the second chirp multiplication operation, and the scaling
operation, the time-bandwidth product becomes

(33)

Note that the parallelogram in Fig. 5(c) is obtained by shearing
the dashed rectangle in Fig. 5(b) in order to cover the worst case.
Is the above expression greater than and if so,
how greater is it? Let denote the additional oversampling
factor required. Equating the above expression to the number of
samples corresponding to a total of oversampling, leads
us to the minimum value of as

(34)

If the right-hand side of this expression turns out to be ,
that means that we do not need any additional oversampling,
in which case we simply take . Before continuing, we
also note that the scaling operation merely changes the sampling
interval in the sense of reinterpretation of the same samples with
a scaled sampling interval, in a manner which corresponds to
scaling of the underlying continuous signal.

Thus, by carefully following the evolution of the time-fre-
quency support region through each stage of the decomposition,
we have obtained i) any necessary restrictions on the parameters
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TABLE I
RESTRICTIONS AND OVERSAMPLING FACTORS

TABLE II
COMPUTATIONAL COMPLEXITIES. ���� �� STANDS FOR THE COST

TO INTERPOLATE � SAMPLES BY A FACTOR OF � TO OBTAIN

�� SAMPLES AND ���� STANDS FOR THE COST OF THE SCALING OPERATION

ON � SAMPLES

of the stages appearing in the decomposition, so that oversam-
pling beyond 2 is not required until the last CM stage, ii) the
additional oversampling factor which may be needed before
the last CM stage to fully represent the continuous output signal.
We underline that these considerations are guided by our goal to
accommodate arbitrary input signals. In those cases where there
exists some a priori knowledge of the input signal or the signal
is restricted to a particular class, it may be possible to customize
the approach here with benefit.

The same procedure has been repeated for the decomposi-
tions given in (23)–(31), and the results are given in Table I. It
will be convenient to choose as the smallest integer sat-
isfying the applicable inequality.

We have also added together the computational complexity
of each stage to obtain the overall computational complexity of
each decomposition and presented these in Table II. These com-
plexity expressions will be reconsidered with a specific expres-
sion for in Section V.

Observation of Table I reveals a natural grouping of the ten
decompositions. The decompositions given in (22)–(24) exhibit
the same restriction and oversampling factors. Likewise, the de-
compositions given in (25)–(27) share the same restriction and
oversampling factors. Moreover, the restrictions of these two
groups are complementary, the first three can be used for
and the last three can be used for , spanning the whole
parameter space of LCTs.

TABLE III
PERCENTAGE ERRORS FOR DIFFERENT FUNCTIONS � , TRANSFORMS � , AND

ALGORITHMS 	

Finally, we observe that the computational complexity of the
third and last group of four decompositions is larger than the
others. This group has a term with complexity
due to the second CM operation being followed by a DFT op-
eration. Therefore, we discard the last four decompositions be-
longing to the third group. It should be noted that our elimination
procedure is primarily based on complexity as opposed to error.
However, as we will see in Table III, the algorithm obtained pro-
duces results with errors as small as can be reasonably expected;
therefore we have not really lost anything by basing our proce-
dure primarily on complexity.

Use of the information summarized in the two tables finally
leads us to choose to work with two decompositions, one from
the first and one from the second group of three. To ensure that
oversampling by two is sufficient, we ended up using two com-
plementary decompositions for different regions of the param-
eter space. Since they have a slightly lower complexity, we will
prefer to work with the second decomposition in both groups,
whose advantage arises primarily from the relative positions of
the scaling and CM operations. The algorithm can now be out-
lined as follows.

• If , use the decomposition

(35)

In operator notation

(36)

where represents the oversampling operation. The
minimum value of is

(37)

• If , use the decomposition

(38)

In operator notation

(39)

The minimum value of is:

(40)

A recent work also discusses the use of decompositions to an-
alyze algorithms for related transforms [45]. This work also em-
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phasizes the importance of tracking the time-bandwidth product
through successive stages of the decomposition and sets forth a
systematic, uniform, and general approach to determining the
overall increase in time–bandwidth product of the final trans-
formed signal. We have chosen to avoid unnecessary increases
in the time-bandwidth product in the early stages to avoid in-
creasing the number of samples until the last CM stage, where
the major and unavoidable increase in sampling rate occurs.

IV. METHOD II

The second approach we discuss is based on the fol-
lowing decomposition involving the FRT, scaling, and chirp
multiplication:

(41)

Here , where is the order of the FRT, is the chirp
multiplication parameter, and is the scaling factor. As we
will see, these three parameters are sufficient to satisfy the above
equality for arbitrary ABCD matrices, so that this decomposi-
tion is capable of representing arbitrary LCTs. Since the fast
method proposed in [11] can be used for the computation of
the FRT, this decomposition leads to a fast algorithm for LCTs.
This decomposition was inspired by the optical interpretation
in [44] and is also a special case of the widely known Iwasawa
decomposition [46]–[48]. It was also proposed later in [35] and
[45]. Fig. 6 illustrates the sequence of geometrical distortions
corresponding to this decomposition, where the initial time-fre-
quency support is a circle of diameter .

If we multiply out the right-hand side of (41) and replace the
matrix entries , , , with , , , we obtain

(42)

which is equivalent to four equations which we can solve for ,
, :

(43)

(44)

(45)

The ranges of the square root and the arccotangent both lie in
. Fig. 6 shows the geometric effect of the decompo-

sition stages on the WD of a function, which is rotation, scaling,
and shearing, respectively. In operator notation this algorithm
can be expressed as

(46)

In this method, the first operation is a FRT, whose fast compu-
tation in time is presented in [11] and [49]. (Other
works dealing with fast computation of the FRT include [50]

Fig. 6. Sequence of geometrical distortions for the decomposition in (41).
(a) After the first stage: FRT. (b) After the second stage: scaling. (c) After the
third stage: CM.

and [51].) The algorithm presented in [11] was based on decom-
posing the FRT into a CM followed by a CC followed by a final
CM, and computed the samples of the continuous FRT in terms
of the samples of the original signal. Just as in the present work,
care was taken to ensure that the output samples represented the
continuous FRT in the Nyquist–Shannon sense. The presently
discussed algorithm employs the algorithm in [11] as a subrou-
tine. The only approximation in this subroutine comes from the
step involving chirp convolution in which a DFT/FFT is used
to approximate the samples of the continuous FT. No other ap-
proximation need be made, either in this subroutine or in any of
the other operations that we employ. Thus, the only source of
approximation can be traced to the evaluation of a continuous
FT by use of a DFT (implemented with a FFT), which is a con-
sequence of the fundamental fact that the signal energy cannot
be confined to finite intervals in both domains. The second op-
eration in this method is scaling, which only involves a reinter-
pretation of the same samples with a scaled sampling interval.
The final operation is CM which takes time, leading to an
overall complexity of . (Detailed expressions will be
given in Section V.) As in the first method, it is again necessary
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to ensure that the output samples are sufficient to represent the
transformed signal in the Nyquist–Shannon sense. Since LCTs
distort the original time-frequency support, both the time and
frequency extent of the signal, as well as its time–bandwidth
product may increase, despite the fact that the area of the support
remains the same. Therefore, a greater number of samples than

may be needed to represent the transformed signal (unless
we use some sophisticated basis to represent the signals) [35].

Delaying confrontation with the necessity to deal with this
greater number of samples until the very last step is a signifi-
cant advantage of this method. Since the FRT corresponds to ro-
tation and scaling only to reinterpretation of the samples, these
steps do not require us to increase the number of samples. At
the last CM step, if we multiply the samples of the intermediate
result with the samples of the chirp, the samples obtained will
be good approximations of the true samples of the transformed
signal at that sampling interval. If these samples are sufficient
for our purposes, nothing further need be done. However, in gen-
eral these samples will be below the Nyquist rate for the trans-
formed signal and will not be sufficient for full recovery of the
continuous function. To obtain a sufficient number of samples
that will allow full recovery, we must interpolate the interme-
diate result at least by a factor corresponding to the increase
in time–bandwidth product

(47)

Again, for convenience we choose to be the smallest integer
satisfying this inequality.

V. NUMERICAL RESULTS AND COMPARISON OF METHODS

We have considered several examples to illustrate and com-
pare the presented methods. We refer to the first algorithm in-
volving Fourier transformation, scaling, and chirp multiplica-
tion as A1, and the second algorithm involving the fractional
Fourier transform as A2. We consider the chirped pulse func-
tion , denoted F1, and the trapezoidal func-
tion , denoted F2

. Since these two functions are well confined to a circle
with diameter we take . We also consider the bi-
nary sequence 01101010 occupying with each bit 2 units
in length, so that . This binary sequence is denoted by
F3 and the function shown in Fig. 7 is denoted by F4, again
with . These choices for result in 0 , 0.0002%,
0.47%, 0.03% of the energies of F1, F2, F3, F4 respectively, to
fall outside the chosen frequency extents. The chosen time ex-
tents include all of the energies of F2, F3, F4 and virtually all
of the energy of F1. We consider two transforms, the first (T1)
with parameters , and the second (T2)
with parameters . The LCTs T1 and T2 of the func-
tions F1, F2, F3, F4 have been computed both by the presented
fast methods A1 and A2 and by a highly inefficient brute force
numerical approach which is here taken as a reference.

The results for all functions (F1, F2, F3, F4) and both algo-
rithms (A1, A2) are plotted in Fig. 8 for transform T1, and tab-
ulated in Table III for both transforms (T1, T2). Also shown are
the errors that arise when using the DFT in approximating the
FT of the same functions, which serves as a reference. (The error

Fig. 7. Example function F4.

Fig. 8. Transforms (T1) of F1, F2, F3, F4. The results obtained with Methods I
and II and the reference result have been plotted with dotted, dashed, and solid
lines respectively. However, in most cases these lines are indistinguishable since
the results are very close.

is defined as the energy of the difference normalized by the en-
ergy of the reference, expressed as a percentage.)

The key observations that can be made from this table are as
follows. The errors obtained depend on the function, since dif-
ferent functions have different amounts of energy contained in
their tails which fall outside the assumed time and frequency
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Fig. 9. Percentage errors versus� for selected functions and transforms [35].

extents (or assumed time-frequency region). For those cases in
which the error is large, such as F3, this means that we have de-
termined the time–bandwidth product less conservatively than
the other examples, and the error can be reduced by increasing

. Generally speaking, the errors obtained depend very little on
the transform parameters or which method we use, and are com-
parable to the error arising when we use the DFT to approximate
the FT. Since a DFT lies at the heart of both methods, this is the
smallest error we could have hoped to achieve to begin with.

Fig. 9 shows the error versus number of sample points for
selected functions and transforms. We observe that the error de-
creases steeply at first with increasing as expected, but satu-
rates when we approach and exceed the time-bandwidth product
of the signals (here 64). This demonstrates that the number of
samples can be chosen comparable to the time–bandwidth
product, which is the smallest number we can expect to work
with, and need not be chosen larger. A2 was used to obtain this
plot for illustration purposes but similar results can also be ob-
tained when we use A1.

We now turn our attention to discussing the complexity (cost)
of the algorithms as a function of , the number of sample
points. Based on the preceding paragraph, can be chosen
comparable to the time-bandwidth product so that the expres-
sions given below can also be interpreted as functions of time-
bandwidth product.

The computational complexity of the first method is given by
either of the following expressions, depending on which decom-
position is used (which was determined by whether or
not, respectively):

• ;
•

.
On the other hand, for the second method, one of the fol-

lowing applies depending on the branch of the FRT algorithm
used, which depends on whether or ,
respectively. Not surprisingly, this turns out to be the same as
the condition or , respectively:

• ;

•
.

The above expressions are derived by calculating the com-
plexity of the FRT algorithm of [11] in its most efficient im-
plementation , and
adding the cost of the other operations.

Although included for completeness, the cost of the
scaling operation is minimal and not of much consequence,
since it amounts only to a reinterpretation of samples. In the
above expressions, stands for the cost to interpolate

samples by a factor of to obtain samples. There are
several efficient approximate interpolation methods which have
complexities of order [52]. We will write this cost as
where is a constant.

Taking the difference of the costs of the two methods, Method
II will have lower cost if

(48)

where and are associated with Method I and Method II
respectively. If we go back to the steps of each method, we ob-
serve that it is usually possible to choose much more tightly
than . Numerical simulations also confirm that is usually
smaller than . Therefore, either method may turn out to have
lower cost depending on the values of , , , and it is not
possible in general to declare one method superior over the other
in this respect. If need be, both methods can be incorporated in
the same code and the more efficient one invoked based on the
parameters, but in many cases the difference may not be very
significant. However, apart from its effect on cost of computa-
tion, having the lowest oversampling factor is desirable in itself
since it produces an output represented with the least number of
samples. This is a plus for Method II, which we also favor for
its elegant construction.

Finally, we compare Method I and Method II, with the direct
use of the well-known CM-CC-CM decomposition [2] without
the kind of sampling rate management undertaken in this paper
(“Method III”):

(49)

which is valid as long as . The CC stage has been imple-
mented in the Fourier domain as a CM operation. At each step
of the process, the sampling rate has been chosen as the min-
imum compatible with the shear-induced increases in the time
and frequency extents. Considering T1, the minimum oversam-
pling rate is , , for Methods I, II, and III, respectively. With
the more demanding T2, the minimum value of is , , ,
respectively. Larger values of and thus larger total numbers
of samples not only result in representational redundancy, but
also they translate into greater computational time. For instance,
for F4 and T2, the time of computation in seconds is ,

, for Methods I, II, and III, respectively (obtained
with MATLAB running on a personal computer), demonstrating
that Method III is significantly slower. The corresponding per-
centage errors are comparable as expected: , , ,
respectively.
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VI. CONCLUSION

In this paper, two algorithms for the computation of linear
canonical transforms (LCTs) from the samples of the input
signal in time are discussed. Our approach is based
on concepts from signal analysis and processing rather than
conventional numerical analysis. With careful consideration of
sampling issues, can be chosen very close to the time-band-
width product of the signals, and need not be much larger. The
transform output may have a higher time-bandwidth product due
to the nature of the transform family.

Both algorithms relate the samples of the input function to the
samples of the continuous LCT of this function in the same sense
that the fast Fourier transform (FFT) implementation of the dis-
crete Fourier transform (DFT) computes the samples of the con-
tinuous FT of a function. Since the sampling rates are carefully
controlled, the output samples obtained are accurate approxima-
tions to the true ones and the continuous LCT can be recovered
via interpolation of these samples. The only inevitable source of
deviation from exactness arises from the fundamental fact that a
signal and its transform cannot both be of finite extent. This is the
same source of deviation encountered when using the DFT/FFT
to compute the continuous FT. Thus, the algorithms compute
LCTs with a performance similar to the DFT/FFT in computing
the Fourier transform, both in terms of speed and accuracy.

The fact that the two methods, although being arrived at
from considerably different starting points, both exhibit similar
limits in performance, strongly suggests that the performance
achieved is close to the best achievable. Indeed, as already
noted, it is difficult to expect an accuracy which is better than
that of the DFT in approximating the FT, and a cost which is
less than with being close to the time–band-
width product. Despite the different decompositions employed,
an interesting structural similarity emerges between the two
methods in their optimized forms. Both methods have two
branches, the first one determined by whether or not,
and the second one determined by whether or not. If

is expressed in terms of the LCT parameters , , , we see
that the two conditions are the same. Therefore, the separation
of the LCT parameter space into two regions is most likely
not a characteristic of the algorithm chosen, but an intrinsic
structural property of the LCT parameter space.

Compared to earlier approaches, these algorithms not only
handle a much more general family of integrals, but also effec-
tively address certain difficulties, limitations, or tradeoffs that
arise in other approaches to computing the Fresnel integral,
which is of importance in the theory of diffraction (see [45]
for a systematic comparison of several approaches). These
algorithms can also be used for efficient realization of filtering
in linear canonical transform domains [53].
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[20] M. A. Kutay, H. Özaktaş, H. M. Ozaktas, and O. Arikan, “The frac-
tional Fourier domain decomposition,” Signal Process., vol. 77, pp.
105–109, 1999.

[21] A. I. Zayed and A. G. Garcia, “New sampling formulae for the frac-
tional Fourier transform,” Signal Process., vol. 77, pp. 111–114, 1999.

[22] C. Candan, M. A. Kutay, and H. M. Ozaktas, “The discrete fractional
Fourier transform,” IEEE Trans. Signal Process., vol. 48, no. 5, pp.
1329–1337, May 2000.
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