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Linear canonical transforms (LCTs) form a three-parameter family of integral transforms with wide applica-
tion in optics. We show that LCT domains correspond to scaled fractional Fourier domains and thus to scaled
oblique axes in the space–frequency plane. This allows LCT domains to be labeled and ordered by the corre-
sponding fractional order parameter and provides insight into the evolution of light through an optical system
modeled by LCTs. If a set of signals is highly confined to finite intervals in two arbitrary LCT domains, the
space–frequency (phase space) support is a parallelogram. The number of degrees of freedom of this set of sig-
nals is given by the area of this parallelogram, which is equal to the bicanonical width product but usually
smaller than the conventional space–bandwidth product. The bicanonical width product, which is a generali-
zation of the space–bandwidth product, can provide a tighter measure of the actual number of degrees of free-
dom, and allows us to represent and process signals with fewer samples. © 2010 Optical Society of America

OCIS codes: 050.5082, 070.0070, 070.2025, 070.2575, 070.2590, 080.2730.
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. INTRODUCTION
he conventional space–bandwidth product is of funda-
ental importance in signal processing and information

ptics because of its interpretation as the number of de-
rees of freedom of signals [1–17]. In this paper, we dis-
uss the bicanonical width product, which generalizes the
pace–bandwidth product and which can often provide a
ighter measure of the actual number of degrees of free-
om.
The definition of the bicanonical width product is based

n linear canonical transforms (LCTs), which are a three-
arameter family of linear integral transforms [16,18].
he Fourier and fractional Fourier transforms (propaga-
ion through quadratic graded-index media), coordinate
caling (imaging), chirp multiplication (passage through a
hin lens), and chirp convolution (Fresnel propagation in
ree space) are some of the special cases of this family of
ransforms. Because concatenation of LCTs are also
CTs, the family of LCTs can model a broad class of opti-
al systems involving arbitrary combinations of any num-
er of lenses, sections of free space, and sections of
raded-index media. These systems belong to the class of
uadratic-phase systems, which are also known as ABCD
ystems or lossless first-order optical systems [18–27].
CTs have also been referred to as generalized Huygens

ntegrals [28], generalized Fresnel transforms [29,30],
pecial affine Fourier transforms [31,32], extended frac-
ional Fourier transforms [33], and Moshinsky–Quesne
ransforms [18], among other things, and have found use
n image filtering [34]. In this paper we show that LCT
1084-7529/10/081885-11/$15.00 © 2
omains are essentially equivalent to fractional Fourier
omains.
We will provide motivation, interpretation, and an

verview of the main ideas and results in Section 2, which
ill then be substantiated in Sections 3–5. The definition
nd properties of LCTs will be briefly reviewed in Section
. In Section 4 we establish the equivalence of LCT do-
ains to fractional Fourier domains. The relationships

etween the space-frequency support, the bicanonical
idth product, and the number of degrees of freedom is

he subject of Section 5. We conclude in Section 6. This
ork is based on [35].

. OVERVIEW
. Equivalence of Linear Canonical Transform Domains

o Fractional Fourier Domains
ne of the most important concepts in Fourier analysis is

he concept of the frequency (or Fourier) domain. This do-
ain is understood to be a space where the frequency rep-

esentation of the signal lives. Since the fractional Fou-
ier transform (FRT) has the effect of rotating the space-
requency (phase space) representation of a signal,
ractional Fourier domains correspond to oblique axes in
he space-frequency plane (phase space) [16,36]. By anal-
gy with the concept of fractional Fourier domains, the
erm linear canonical domain has been used in several
apers to refer to the domain of the LCT representation of
signal [37–46]. However, it has not been clear what or
here these domains are. In other words, while the effect
010 Optical Society of America
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f an LCT on the space-frequency representation of a sig-
al is well understood as a linear geometrical distortion,

t has not been obvious how members of the three-
arameter family of LCT domains are related to the
pace-frequency plane, or how we should visualize them.

One of our contributions is to explicitly relate LCT do-
ains to the space-frequency plane. We will show that

ach LCT domain corresponds to a scaled FRT domain
nd thus a scaled oblique axis in the space-frequency
lane [35]. Based on this many-to-one association of LCTs
ith FRTs, LCT domains can be labeled and monotoni-

ally ordered by an associated fractional order parameter,
nstead of their usual three parameters, which do not di-
ectly lend themselves to a natural ordering.

This has important implications for optical systems
odeled by LCTs (such as those consisting of arbitrary

oncatenations of lenses and sections of free space). The
ptical amplitude distribution at any plane along the op-
ical axis can be expressed as a three-parameter LCT of
he input. Being able to associate a single monotonically
ncreasing parameter with each location along the optical
xis offers a vastly more transparent understanding of
he evolution of the optical amplitude distribution, as op-
osed to imagining that the light goes through an uniden-
ified and unsequenced series of three-parameter domains
hose whereabouts we cannot visualize. This interpreta-

ion of LCT domains also ties together the LCT descrip-
ion of such optical systems with descriptions viewing
ropagation as an act of continual fractional Fourier
ransformation [47,48].

The association between LCT and FRT domains is
ased on expressing the LCT as a chirp multiplied and
caled FRT, which is a special case of the widely known
wasawa decomposition [24,25,49]. Multiplication with a
unction is not usually considered to be an operation that
hanges the domain of a signal, and scaling of the axis is

relatively trivial modification of a domain. Therefore,
CTs of a signal that are associated with the same FRT
rder parameter essentially live in the same domain (the
RT domain with that order). We will speak of LCT do-
ains sharing the same order parameter as essentially

quivalent domains. If a signal is confined to a finite in-
erval in a certain LCT domain, it will also be confined to
finite interval in all essentially equivalent domains.

. Generalization of the Space–Bandwidth Product: The
icanonical Width Product

. Space–Bandwidth Product
et us first recall the construction of the concept of the
onventional space–bandwidth product. Consider a family
f signals whose members are approximately confined to
n interval of length �u in the space domain and to an
nterval of length �� in the frequency domain in the
ense that a large percentage of the signal energy is con-
ned to these intervals. The space–bandwidth product N

s defined [12,16] as

N � �u��, �1�

nd is always greater than or equal to unity because of
he uncertainty relation.
The conventional space–bandwidth product is the mini-
um number of samples required to uniquely identify a

ignal out of all possible signals whose energies are ap-
roximately confined to space and frequency intervals of
ength �u and ��. This argument is based on the
hannon–Nyquist sampling theorem, which requires that
he spacing between samples not be greater than �u
1/��, so that the minimum number of samples over the
xtent �u is given by �u /�u=�u��. Alternatively, if we
ample the signal in the frequency domain, the spacing
etween samples should not be greater than ��=1/�u, so
hat the minimum number of samples over the extent ��
s given by �� /��=�u��. The minimum number of
amples needed to fully characterize an approximately
pace- and band-limited signal can also be interpreted as
he number of degrees of freedom of the set of signals.
his number of samples turns out to be the same whether
ounted in the space or frequency domain, and is given by
he space–bandwidth product.

When the approximate space and frequency extents are
pecified as above, this amounts to assuming that most of
he energy of the signal is confined to a �u��� rectan-
ular region in the space–frequency plane, perpendicular
o the space–frequency axes (Fig. 1). In this case, the
umber of degrees of freedom and the space–bandwidth
roduct are both equal to the area of this rectangular re-
ion. More generally, the number of degrees of freedom is
iven by the area of the space–frequency support (phase
pace support), regardless of its shape [14,16]. (The
pace–frequency support can be roughly defined as the re-
ion in the space–frequency plane in which a large per-
entage of the total energy is confined.) When the space–
requency support is not a rectangle perpendicular to the
xes, the actual number of degrees of freedom will be
maller than the space–bandwidth product of the signal
14,16].

The space–bandwidth product is a notion originating
rom the simultaneous specification of the space and fre-
uency extents. Although this product is commonly seen
s an intrinsic property, it is in fact a notion that is spe-
ific to the Fourier transform and the frequency domain.
t is also possible to specify the extents in other FRT or
CT domains. The set of signals thus specified will in gen-
ral exhibit a nonrectangular space–frequency support.
e will show that when two such extents are specified,

he support will be a parallelogram. In all cases, the area
f the support will correspond to the number of degrees of
reedom of the set of signals thus defined. If we insist on
haracterizing this set of signals with conventional space

µ

u∆µ

∆u
ig. 1. Rectangular space–frequency support with area equal to
he space–bandwidth product �u��.
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nd frequency extents, the space–bandwidth product will
verstate the number of degrees of freedom.

Obviously, specifying a finite extent in a single LCT do-
ain does not define a family of signals with a finite num-

er of degrees of freedom, just as specifying a finite extent
n only one of the conventional space or frequency do-

ains does not. However, specifying finite extents in two
istinct LCT domains allows us to define a family of sig-
als with a finite number of degrees of freedom. The num-
er of degrees of freedom will depend on both the specified
CT domains and the extents in those domains.

. Bicanonical Width Product
e now define the space–canonical width product, which

ives the number of degrees of freedom of signals that are
pproximately confined to a finite interval �u in the con-
entional space domain and to a finite interval �uT in
ome other LCT domain [35,50]:

N � �u�uT���. �2�

his is always greater than or equal to unity because of
he uncertainty relation for LCTs [16,18,40,45]. Here T
epresents the three parameters of the LCT, which will be
xplicitly defined in Section 3. Here �, which can assume
ny real value, is one of the three parameters of the LCT
n question. The space–canonical width product consti-
utes a generalization of the space–bandwidth product,
nd reduces to it when the LCT reduces to an ordinary
ourier transform, upon which �uT reduces to �� and
=1.
In the above, one of the two domains was chosen to be

he conventional space domain. More generally, the two
CT domains can both be arbitrarily chosen. In this case,
e use the more general term bicanonical width product

o refer to the product [35,50]

N � �uT1
�uT2

��1,2�, �3�

here �uT1
and �uT2

are the extents of the signal in two
rbitrary LCT domains and �1,2 is the parameter of the
CT between these two domains (the LCT that trans-

orms the signal from the first LCT domain to the second).
f �=� in Eq. (2) or �1,2=� in Eq. (3), then the product N
ill not be finite, and the number of degrees of freedom
ill not be finite. We shall see in Section 3 that when this
arameter is infinity, the two domains are related to each
ther simply by a scaling or chirp multiplication opera-
ion. But as discussed before, domains related by such op-
rations are essentially equivalent. Thus, specification of
he extent in two such domains does not constrain the
amily of signals more than the specification of the extent
n only one domain, which, as noted, is not sufficient to

ake the number of degrees of freedom finite.
The space–canonical width product is the minimum

umber of samples required to uniquely identify a signal
ut of all possible signals whose energies are approxi-
ately confined to a space interval of �u and a particular
CT interval of �uT. This number of samples can be used
o reconstruct the signal. This can be justified by the use
f the LCT sampling theorem [38,51,52], which is a gen-
ralization of the FRT sampling theorem [53–58]. Accord-
ng to the LCT sampling theorem, the space-domain sam-
ling interval for a signal that has finite extent �uT in a
articular LCT domain should not be larger than �u
1/ �����uT�. If we sample the space-domain signal at this
ate, the total number of samples over the extent �u will
e given by �u /�u=�u�uT���, which is precisely equal to
he space–canonical width product. Alternatively, if we
ample in the LCT domain, the sampling interval should
ot be larger than �uT=1/ �����u�. Sampling at this rate,
he total number of samples over the extent �uT is given
y �uT /�uT=�u�uT���, which once again is the space–
anonical width product.

The derivation above can be easily replicated for the
ore general bicanonical width product defined in Eq. (3).
herefore, the bicanonical width product can also be in-

erpreted as the minimum number of samples required to
niquely identify a signal out of all possible signals whose
nergies are approximately confined to finite intervals in
he two specified LCT domains, and therefore as the num-
er of degrees of freedom of this set of signals.

. Space–Frequency Support and Degrees of Freedom
inite extent constraints in the space and frequency do-
ain are well-known to translate to vertical and horizon-

al corridor constraints in the space–frequency plane.
With the term “corridor” we are referring to an infinite
trip in the space–frequency plane perpendicular to a par-
icular domain.) This result can be precisely stated in
erms of the Wigner distribution, one of the most fre-
uently used space–frequency representations in optics
59–63]. It is not difficult to extend this result to FRT do-
ain constraints, which translate to oblique corridor con-

traints in the space–frequency plane. However, without
he equivalence of LCT domains to scaled FRT domains
hat we present, the effect of LCT domain constraints in
he space–frequency plane has not been clear. With this
quivalence, it becomes possible to see that LCT domain
onstraints also translate to oblique corridor constraints.
herefore, restricting the signal to finite intervals in two
istinct LCT domains implies that the space–frequency
upport is a parallelogram (see Fig. 2 below); moreover, the
rea of the parallelogram is equal to the bicanonical width
roduct [35]. (Indeed, the bicanonical width product can
e interpreted as a formula for the area of the parallelo-
ram.) This provides further justification for interpreting
he bicanonical width product as the number of degrees of
reedom of LCT-limited signals.

µ

u

ua1
ua2

∆uT1

M1

∆uT2

M2

ig. 2. Space–frequency support when finite extents are speci-
ed in two LCT domains. The area of the parallelogram is equal
o �u �u �� �. This figure will be revisited in Section 5.
T1 T2 1,2
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. Efficient Signal Representation
here is no reason to think that families of signals en-
ountered in practice will necessarily uniformly fall into a
ectangular region in the ordinary space–frequency
lane. As well understood, when the family of signals does
ot have a rectangular space–frequency support perpen-
icular to the space–frequency axes, the space–bandwidth
roduct overstates the actual number of degrees of free-
om. That is, we can represent these signals with a num-
er of samples less than the space–bandwidth product. In
ome applications, where the underlying physics involves
CT type integrals (as is the case with many wave propa-
ation problems and optical systems), parallelograms
ay be excellently, if not perfectly, tailored to the true

pace–frequency supports.
Even when this is not the case, it may frequently be

ossible to more tightly enclose the actual space–
requency support with a parallelogram than with a rect-
ngle perpendicular to the axes, or indeed with any rect-
ngle. Then, the bicanonical width product may better
epresent the actual number of degrees of freedom, and
e will be able to represent the signals with fewer

amples [35].
Even when confronted with a space–frequency support

f arbitrary shape, it is quite common to assume the num-
er of degrees of freedom to be equal to the space–
andwidth product and work with that many samples,
ithout regard to the shape of the space–frequency sup-
ort. In reality, this is an inefficient worst-case approach,
hich encloses the arbitrary shape within a rectangle
erpendicular to the axes, and thus which overstates the
umber of degrees of freedom. Why is this approach so
ommon? Because in general there is no easy and general
ay of handling arbitrary irregular space–frequency sup-
orts. There is no guarantee that such signals can be rep-
esented with space domain or other linear unitary trans-
orm domain samples with the number of samples being
qual to the number of degrees of freedom. In general, it
s necessary to find a custom basis in which the signals
an be represented with a number of coefficients equal to
he number of degrees of freedom, and it may not always
e easy to find such a convenient basis.
While our approach does not fully solve this problem, it

ffers a general approach allowing the representation and
rocessing of signals with a number of samples closer to
heir true number of degrees of freedom. Having the free-
om to enclose a given region with an arbitrary parallelo-
ram is much more flexible than being restricted to enclos-
ng the region with a rectangle perpendicular to the axes,
r indeed with any rectangle, and in general will allow a
maller area and number of samples to be achieved [35].
nce a parallelogram minimally enclosing the true

pace–frequency support is found (which gives us two
CT domains in which the signals are confined to the ex-
ents �uT1

and �uT2
), the signal can be represented with

uT1
�uT2

��1,2� uniform samples in these LCT domains.
Therefore, the problem of finding the smallest number

f samples required to represent signals with an arbitrary
pace–frequency support reduces to a simple geometrical
roblem [35]. We simply need to find the smallest paral-
elogram enclosing the space–frequency support. Then
he area of the parallelogram, which is equal to the bica-
onical width product, will give us the minimum number
f samples required to represent the signal using the LCT
ampling theorem. The continuous signals can be recov-
red using the LCT interpolation formula [44,46].

. Relation to the Discrete LCT
t is worth tying our development to a recent result [50]
hat showed that if the number of samples N is chosen to
e at least equal to the bicanonical width product, the dis-
rete LCT (DLCT) can be used to obtain a good approxi-
ation to the continuous LCT, limited only by the funda-
ental fact that a signal cannot have strictly finite extent

n more than one domain [50,64]. The exact relation be-
ween the discrete and continuous LCT derived in [50]
recisely shows the approximation involved and demon-
trates how the approximation improves with increasing
.
Because this exact relation generalizes the correspond-

ng relation for Fourier transforms [65], the DLCT de-
ned in [66] and discussed in [50,64,67,68] approximates
he continuous LCT in the same sense that the DFT ap-
roximates the continuous Fourier transform. This el-
gant and natural formulation of discrete LCT computa-
ion mirrors several of the concepts we have been
iscussing. Rather than assuming that the space and fre-
uency extents of the signals are specified in the conven-
ional manner and determining the number of samples
rom the standard Nyquist–Shannon sampling theorem
s in [69–75], in this formulation the extents are specified
n the input and output LCT domains, and the number of
amples are determined from the LCT sampling theorem
50]. The minimum number of samples required for com-
utation is given by the bicanonical width product and
he DLCT defined in [66] works with this number of
amples without requiring any interpolation or oversam-
ling. On the other hand, sampling the input and output
onventionally as in the above cited papers usually leads
o a greater number of samples and sometimes requires
ifferent numbers of samples for the input and output sig-
als. Finally we note that the DLCT in [50,64,66–68] can
e efficiently computed in O�N log N� time by successively
erforming a chirp multiplication, a fast Fourier trans-
orm (FFT), and a second chirp multiplication [50,56,66]
n a straightforward manner without the need for sophis-
icated algorithms or space–frequency support tracking.

Fast computation, a well-defined relationship to the
ontinuous LCT, and unitarity make this definition of the
LCT an important candidate for being a widely accepted
efinition of the discrete version of the LCT.

. LINEAR CANONICAL TRANSFORMS
ptical systems involving thin lenses, sections of free

pace in the Fresnel approximation, sections of quadratic
raded-index media, and arbitrary combinations of any
umber of these are referred to as first-order optical sys-
ems or quadratic-phase systems. Mathematically, such
ystems can be modeled as linear canonical transforms
LCTs). The output light field fT�u� of a quadratic-phase
ystem is related to its input field f�u� through [16,18]
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fT�u� � �CTf��u� � �
−�

�

CT�u,u��f�u��du�,

CT�u,u�� �� 1

B
e−i�/4ei��D

B
u2−2

1
B

uu�+
A
B

u�2� , �4�

or B�0, where CT is the unitary LCT operator with pa-
ameter matrix T= 	A B ;C D
 with AD−BC=1. In the
rivial case B=0, the LCT is defined simply as fT�u�
�Dexp	i�CDu2
f�Du�. Sometimes the three real param-

ters �=D /B, �=1/B, 	=A /B are used instead of the
nit-determinant matrix T whose elements are A, B, C,
. (One of the four matrix parameters is redundant be-

ause of the unit-determinant condition). These two sets
f parameters are equivalent, and either set of param-
ters can be obtained from the other [16,18]:

T = �A B

C D� = � 	/� 1/�

− � + �	/� �/�� . �5�

he transform matrix T is useful in the analysis of optical
ystems because if several systems are cascaded, the
verall system matrix can be found by multiplying the
orresponding matrices.

The LCT family includes the Fourier and fractional
ourier transforms, coordinate scaling, and chirp multi-
lication and convolution operations as its special cases.
The ath-order fractional Fourier transform (FRT) [16]

f a function f�u�, denoted by fa�u�, is most commonly de-
ned as

fa�u� � �Faf��u� � �
−�

�

Ka�u,u��f�u��du�,

Ka�u,u�� � A
 ei��cot
 u2−2csc
 uu�+cot
 u�2�,

A
 = �1 − i cot 
, 
 = a�/2 �6�

hen a�2j, Ka�u ,u��=��u−u�� when a=4j, and
a�u ,u��=��u+u�� when a=4j±2, where j is an integer.
he FRT is a special case of the LCT with matrix

Fa = � cos 
 sin 


− sin 
 cos 
� , �7�

iffering only by an inconsequential factor: CFaf�u�
e−ia�/4Faf�u� [16,18].
Another special case of the LCT is multiplication with a

hirp function of the form exp	−i�qu2
, which corresponds
o a thin lens in optics. The corresponding LCT matrix is
iven by

Qq = � 1 0

− q 1� . �8�

Propagation through a section of free space in the
resnel approximation is equivalent to convolution with a
hirp function of the form e−i�/4�1/rexp	i�u2 /r
. The cor-
esponding LCT matrix is given by

Rr = �1 r

0 1� . �9�
Optical imaging can be modeled as a scaling operation,
hich maps a function f�u� into �1/Mf�u /M� with M�0.
he transformation matrix is

MM = �M 0

0 1/M� . �10�

An arbitrary LCT can be decomposed into a FRT fol-
owed by scaling followed by chirp multiplication [16,71]:

T = �A B

C D� = � 1 0

− q 1�
M 0

0
1

M
�� cos 
 sin 


− sin 
 cos 
� .

�11�

ere, q is the chirp multiplication parameter, M�0 is the
caling factor, and 
=a� /2, where a is the order of the
RT. The decomposition can be written more explicitly in

erms of the LCT and FRT domain representations of the
ignal as

fT�u� = exp	− i�qu2
� 1

M
fa� u

M� . �12�

This decomposition is a special case of the Iwasawa de-
omposition [24,25,49]. (For a discussion of the implica-
ions of this decomposition to the propagation of light
hrough first-order optical systems, see [47].) As we will
ee, by appropriately choosing the three parameters a, M,
, the above equality can be satisfied for any ABCD ma-
rix. Solving for a, M, q in Eq. (11), we obtain the decom-
osition parameters in terms of the matrix entries A, B,
, D:

a = �
2

�
arctan�B

A� , if A � 0

2

�
arctan�B

A� + 2, if A  0� , �13�

M = �A2 + B2, �14�

q = �−
C

A
−

B/A

A2 + B2 , if A � 0

−
D

B
, if A = 0 � . �15�

he range of the arccotangent lies in �−� /2 ,� /2
.
The Wigner distribution (WD) of a signal Wf�u ,�� is a

hase-space distribution that gives the distribution of sig-
al energy over space and frequency, and is defined as
16,76]

Wf�u,�� =�
−�

�

f�u + u�/2�f*�u − u�/2�e−i2��u�du�. �16�

he WD of fT�u� can be related to the WD of f�u� by a lin-
ar distortion [16]:
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WfT
�u,�� = Wf�Du − B�,− Cu + A��. �17�

he Jacobian of this coordinate transformation is equal to
he determinant of the matrix T, which is unity. There-
ore, this coordinate transformation will geometrically
istort the support region of the WD, but the support area
ill remain unchanged.

. RELATION BETWEEN FRACTIONAL
OURIER DOMAINS AND LINEAR
ANONICAL DOMAINS
s is well-known, fractional Fourier domains correspond

o oblique axes in the space–frequency plane [36]. The ef-
ect of ath-order fractional Fourier transformation on the

igner distribution of a signal is to rotate the Wigner dis-
ribution by an angle 
=a� /2 [36,77,78]:

Wfa
�u,�� = Wf�u cos 
 − � sin 
,u sin 
 + � cos 
�.

�18�

he Radon transform operator RDN
, which takes the in-
egral projection of the Wigner distribution of f�u� onto an
xis making an angle 
 with the u axis, can be used to
estate this property in the following manner [16]:

�RDN
	Wf�u,��
��ua� = �fa�ua��2, �19�

here ua denotes the axis making angle 
=a� /2 with the
axis. That is, projection of the Wigner distribution of

�u� onto the ua axis gives �fa�ua��2, the squared magnitude
f the ath-order FRT of the function. Hence, the projec-
ion axis ua can be referred to as the ath-order fractional
ourier domain (see Fig. 3) [36,77]. The space and fre-
uency domains are merely special cases of the con-
inuum of fractional Fourier domains.

Recently, there has been considerable interest in gener-
lizing the fractional Fourier transform and its properties
o linear canonical transforms. In analogy with fractional
ourier domains, the term LCT domain has been used to
efer to the domain of the LCT representation of a signal
37–40,44,45,79]. However, unlike fractional Fourier do-
ains, which are recognized as oblique axes in the space–

requency plane [16,18,36], it has not been well under-
tood where these LCT domains exist and how they are
elated to the space–frequency plane. Moreover, LCT do-
ains are characterized by three independent param-

ters. Therefore, LCT domains populate a three-
arameter space, which makes them hard to visualize.
We first introduce the concept of essentially equivalent

omains by using the Iwasawa decomposition. As given in

µ

u

ua

µa

φ

Fig. 3. ath-order fractional Fourier domain.
q. (12), any arbitrary LCT can be expressed as a chirp
ultiplied and scaled FRT. Thus, in order to compute the
CT of a signal, we can first compute the ath-order FRT
f the signal, which transforms the signal to the ath-order
ractional Fourier domain. Second, we scale the trans-
ormed signal. Because scaling is a relatively trivial op-
ration, we need not interpret it as changing the domain
f the signal, but merely a scaling of the coordinate axis in
he same domain. Finally, we multiply the resulting sig-
al with a chirp to obtain the LCT. Multiplication with a
unction is not considered an operation that transforms a
ignal to another domain, but one that alters the signal in
he same domain. (For instance, when we multiply the
ourier transform of a function with a mask, the result is
onsidered to remain in the frequency domain.) Therefore,
nly the FRT part of the LCT operation corresponds to a
enuine domain change, and the linear canonical trans-
ormed signal essentially lives in a scaled fractional Fou-
ier domain. In other words, LCT domains are essentially
quivalent to scaled fractional Fourier domains. Despite
heir three parameters, LCT domains do not constitute a
icher family of domains than FRT domains. More explic-
tly:

In the space–frequency plane, the LCT domain with pa-
ameter matrix 	A B ;C D
 corresponds to a scaled oblique
xis making angle arctan�B /A� with the u axis (or equiva-
ently having slope B /A) and with scale parameter M
�A2+B2.

Note that any LCT domain is completely characterized
y the two parameters A and B (or equivalently by a and
, or by 	 and �) instead of all three of its parameters.
Observe that LCTs with the same value of B /A (or

quivalently the same value of 	) will have the same
alue of a in the decomposition in Eq. (13), and therefore
ill be associated with the same FRT domain. We refer to

uch LCT domains, as well as their associated FRT do-
ain, as essentially equivalent domains. Note that if a

ignal has a compact support in a certain LCT domain,
hen the signal will also have compact support in all es-
entially equivalent domains.

The concept of essentially equivalent domains we intro-
uce allows many earlier observations and results to be
een in a new light, making them almost obvious or more
ransparent. For instance, it has been stated that if a par-
icular LCT of a signal is band limited, then another LCT
f the signal cannot be band limited unless B1 /A1
B2 /A2 [40]. Since we recognize the domains associated
ith two LCTs satisfying this relation to be essentially
quivalent, this result becomes obvious. Although we will
ot further elaborate, other results regarding the
ompactness/band limitedness of different LCTs of a sig-
al [80] can be likewise easily understood in terms of the
oncept of essentially equivalent domains. As a final ex-
mple, we consider the LCT sampling theorem [38,51,52],
ccording to which if the LCT of a signal has finite extent
uT, then we should sample it with spacing �u
�B � /�uT. Such a sampling scheme collapses when B=0.

t is easy to understand why if we note that B=0 implies
hat the LCT domain in question is essentially equivalent
o the a=0th FRT domain; that is, the domain in which
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he signal is specified to have finite extent is essentially
quivalent to the domain in which we are attempting to
ample the signal.

Let us now optically interpret the equivalence of LCT
omains to FRT domains. Consider a signal that passes
hrough an arbitrary quadratic-phase system. Since the
ight field at any plane within the system is related to the
nput field through an LCT, the signal will incrementally
e transformed through different LCT domains. Because
he three parameters of the consequential LCT domains
re not sequenced, it is not easy to give any interpretation
r visualize the nature of the transformation of the optical
eld. However, if we think of the LCT domains as being
quivalent to scaled FRT domains, it becomes possible to
nterpret every location along the propagation axis as a
RT domain of specific order. Moreover, it has been shown
hat if we take the fractional order a to be equal to zero at
he input of the system, then a monotonically increases as
function of the distance along the optical axis [47,48]. In

ther words, propagation through a quadratic-phase sys-
em can be understood as passage through a continuum of
caled FRT domains of monotonically increasing order, in-
tead of passage through an unsequenced plethora of LCT
omains.
(To see that the FRT parameter a is monotonically in-

reasing along the z axis, observe from Eq. (13) that a
arctan�B /A�, so that a increases with B /A. Passage

hrough a lens involves multiplication with the matrix
iven in Eq. (8), which does not change B /A. Passage
hrough an incremental section of free space involves
ultiplication with the matrix given in Eq. (9), which al-
ays results in a positive increment in a. This is because
is proportional to the distance of propagation, and the

erivative of the new value of B /A with respect to r is al-
ays positive, which implies that B /A always increases
ith r. A similar argument is possible for quadratic
raded-index media. A more precise development may be
ound in [47,48].)

The distribution of light is continually fractional Fou-
ier transformed through fractional domains of increasing
rder, which we know are oblique axes in the space–
requency plane. This understanding of quadratic-phase
ystems yields much more insight into the nature of how
ight is transformed as it propagates through such a sys-
em, as opposed to thinking of it in terms of going through
series of unsequenced LCT domains whose whereabouts
e cannot visualize.
As a final remark, we note that the relation in Eq. (19)

an be rewritten for the LCT of a signal as

1

M
�RDN
	Wf�u,��
��uT

M � = �fT�uT��2, �20�

y using Eqs. (19) and (12), where uT denotes the axis
aking angle 
=arctan�B /A� with the u axis and scaled

y M. This is another way of interpreting scaled oblique
xes in the space–frequency plane as the LCT domain
ith parameter T.

. SPACE–FREQUENCY SUPPORT AND
EGREES OF FREEDOM
aving established the relationship of LCT domains to

he space–frequency plane, we can now investigate the
pace–frequency support of the set of signals whose ex-
ents are approximately limited in two LCT domains.

Let us consider a set of signals whose members are ap-
roximately confined to the intervals 	−�uT1

/2 ,�uT1
/2


nd 	−�uT2
/2 ,�uT2

/2
 in two given LCT domains, uT1
and

T2
. We want to investigate the space–frequency support

f this set of signals. Since LCT domains are equivalent to
caled fractional Fourier domains, each finite interval in
n LCT domain will correspond to a scaled interval in the
quivalent FRT domain. To see this explicitly, we again
efer to Eq. (12), which implies that if fT�u� is confined to
n interval of length �uT, so is fa�u /M�. Therefore, the ex-
ent of fa�u� in the equivalent ath-order FRT domain is
uT /M. Thus, the set of signals in question is approxi-
ately limited to an extent of �uT1

/M1 in the a1th-order
RT domain, and an extent of �uT2

/M2 in the a2th-order
RT domain, where a1, a2 and M1, M2 are related to T1,
2 through Eqs. (13) and (14).
It is well known that if the space-, frequency-, or FRT-

omain representation of a signal is identically zero (or
egligible) outside a certain interval, so is its Wigner dis-
ribution [16,59]. As a direct consequence of this fact, the
igner distribution of our set of signals is confined to cor-

idors of width �uT1
/M1 and �uT2

/M2 in the directions or-
hogonal to ua1

and ua2
, respectively. (With the term “cor-

idor” we are referring to an infinite strip in the space–
requency plane perpendicular to the ua axis.) The
arallelogram defined by the intersection of these two cor-
idors gives us the space–frequency support of the signals
see Fig. 2). The area of the parallelogram is equal to the
icanonical width product of the set of signals in question.
his result will be stated as a theorem.
Theorem 1. Consider a set of signals whose members

re approximately confined to finite extents �uT1
and �uT2

n the two LCT domains uT1
and uT2

, respectively. Let �1,2
enote the � parameter of the LCT that transforms signals
rom the first LCT domain to the second. Then, the area of
he space–frequency support of these signals, which is
iven by a parallelogram defined by these extents (Fig. 2),
s equal to the bicanonical width product �uT1

�uT2
��1,2� of

he set of signals.
Proof. The two heights of the parallelogram defined by

he extents �uT1
and �uT2

are �uT1
/M1 and �uT2

/M2, cor-
esponding to the widths of the corridors. Moreover, the
ngle between the corridors is 
2−
1. Then, the area of
he parallelogram is

Area =
�uT1

M1

�uT2

M2
�csc�
2 − 
1�� �21�

=
�uT1

�uT2

M1M2�sin 
2 cos 
1 − cos 
2 sin 
1�
�22�

=
�uT1

�uT2

�A1B2 − B1A2�
�23�

=�uT1
�uT2

��1�2�

�	1 − 	2�
�24�
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=�uT1
�uT2

��1,2�, �25�

here the third and fourth equalities follow from Eqs.
11) and (5), respectively. The final result can be obtained
rom the matrix corresponding to the LCT operation be-
ween these two domains, which is given by T2T1

−1. �

Since the number of degrees of freedom of a set of sig-
als is given by the area of their space–frequency support,
he theorem provides further justification for interpreting
he bicanonical width product as the number of degrees of
reedom of LCT-limited signals.

Let us now for a moment focus on the space–canonical
idth product; we assume a finite extent has been speci-
ed in the space domain and in some other LCT domain.
he corresponding space–frequency support is shown in
ig. 4 (left). If we transform to precisely the same LCT do-
ain in which the extent has been specified, the new

pace–frequency support becomes as shown in Fig. 4
right). Here M and M� are the scaling parameters asso-
iated with the LCT and inverse LCT operations, respec-
ively. Note that in both parts of the figure, the support is
ounded by a vertical corridor, perpendicular to the space
omain in the left part and to the LCT domain in the
ight. We are not surprised that the transformed support
s again a parallelogram, since the linear geometric dis-
ortion imparted by an LCT always maps a parallelogram
o another parallelogram. Moreover, the areas of both par-
llelograms are equal to each other and given by the bi-
anonical width product �u�uT���, so that the number of
egrees of freedom also remains the same after the LCT.
his does not surprise us either, since LCTs are known
ot to change the support area in phase space. We may
ummarize by stating that the bicanonical width product
s a measure for the number of degrees of freedom of sig-
als that is invariant under linear canonical transforma-
ion [35]. The fact that LCTs model an important family of
ptical systems makes the bicanonical width product a
uitable invariant measure for the number of degrees of
reedom of optical signals.

On the other hand, the space–bandwidth product,
hich is the area of the smallest bounding perpendicular

ectangle, may change significantly after linear canonical
ransformation and quadratic-phase optical systems.
This is the reason the number of samples must be in-
reased at some intermediate stages of certain previously
roposed FRT and LCT algorithms that rely on the

ig. 4. Space-frequency support of f�u� (left) and fT�u� (right) for
pace- and LCT-limited signals. The area of both parallelograms
s equal to �u�u ���.
T
pace–bandwidth product either as the measure of the
umber of degrees of freedom or as the minimum number
f samples required [69–75]. In contrast, fast computation
f LCTs based on the results presented in [50] allows us to
ork with the same number of samples in both domains
ithout requiring any oversampling. This number of

amples is the minimum possible for both domains, and is
iven by the bicanonical width product.) This factor
akes the conventional space–bandwidth product unde-

irable as a measure of the number of degrees of freedom,
hich we expect to be an intrinsic and conserved quantity
nder invertible unitary transformations.
The so-called generalized space–bandwidth product,

hich essentially removes the requirement that the rect-
ngular support be perpendicular to the axes, has been
roposed [81] as an improvement over the conventional
pace–bandwidth product. It has been noted that this en-
ity is invariant under the FRT operation (rotational in-
ariance), but it was emphasized that “further research is
equired in obtaining other forms of generalized space–
andwidth products that are invariant under more gen-
ral area preserving time-frequency operations: the sym-
lectic transforms” ([81], pp. 1238–1239 ). The bicanonical
idth product meets precisely this demand and allows us

o compute LCTs with the minimum possible number of
amples without requiring any interpolation or oversam-
ling [50].

. CONCLUSION
e showed that LCT domains correspond to scaled frac-

ional Fourier transform (FRT) domains, and thus to
caled oblique axes in the space–frequency plane (phase
pace). Based on a many-to-one association of LCTs with
RTs, LCT domains can be labeled and monotonically or-
ered by the corresponding fractional order parameter in-
tead of their usual three parameters, which do not di-
ectly lend themselves to a natural ordering. Despite
heir three parameters, LCT domains do not constitute a
ruly richer family of domains than FRT domains. LCTs
f a signal that are associated with the same FRT order
arameter essentially live in the same domain (the FRT
omain with that order). We have referred to such LCT
omains as essentially equivalent domains. If a signal is
onfined to a finite interval in a certain LCT domain, it
ill also be confined to a finite interval in all essentially
quivalent domains.

An optical system consisting of arbitrary combinations
f lenses, sections of free space, and quadratic graded-
ndex media can be modeled as an LCT. The distribution
f light at any plane perpendicular to the optical axis is
iven by an LCT of the input distribution. The equiva-
ence of LCT domains to scaled FRT domains implies that
he evolution of light through LCTs with different param-
ters can also be interpreted as an evolution through
caled FRT domains of monotonically increasing order.
his offers a more transparent view of the propagation of

ight through the system, as opposed to imagining that
he light goes through an unsequenced series of three-
arameter domains whose whereabouts we cannot visual-
ze.
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The significance of the bicanonical width product,
hich is a generalization of the space–bandwidth product,

an be established in a number of different ways. We used
he LCT sampling theorem to conclude that the bicanoni-
al width product is the minimum number of samples to
niquely identify a signal out of all possible signals whose
nergies are approximately confined to finite intervals in
wo given LCT domains. The bicanonical width product
ives the number of degrees of freedom of this set of sig-
als, and this number of samples can be used to recon-
truct the signal by using the LCT sampling theorem.

Another line of development involves the equivalence
etween LCT and FRT domains. If one conventionally
pecifies the space-domain and frequency-domain extents
or a set of signals, the space–frequency support becomes
rectangular region (Fig. 1). The space–bandwidth prod-
ct is equal to the area of the rectangle. By using the fact
hat LCT domains correspond to scaled oblique axes in
he space–frequency plane, we showed that when the ex-
ents are specified in two LCT domains, the space–
requency support becomes a parallelogram defined by
he intersection of two oblique corridors (Fig. 5). The bi-
anonical width product is equal to the area of the paral-
elogram.

When confronted with a space–frequency support of ar-
itrary shape, it is quite common to assume the number
f degrees of freedom to be equal to the space–bandwidth
roduct, without regard to the shape of its space–
requency support. In reality, this is a worst-case ap-
roach that encloses the arbitrary shape within a rect-
ngle perpendicular to the axes and overstates the
umber of degrees of freedom (see Fig. 5).
The bicanonical width product provides a tighter mea-

ure of the number of degrees of freedom than the conven-
ional space–bandwidth product and allows us to repre-
ent and process the signals with a smaller number of
amples, since it is possible to enclose the true space–
requency support more tightly with a parallelogram of
ur choice, as compared with a rectangle perpendicular to
he axes, or indeed any rectangle. In some applications,
here the underlying physics involves LCT type integrals

as is the case with many wave propagation problems and
ptical systems), parallelograms may be excellently, if not
erfectly, tailored to the true space–frequency supports of
he signals.

Another important feature of the bicanonical width
roduct is that it is invariant under linear canonical

µ

u

∆uT1

M1

∆uT2

M2

∆µ

∆u
ig. 5. Parallelogram shaped space–frequency support with
rea equal to the bicanonical width product �uT1

�uT2
��1,2�, which

s smaller than the space–bandwidth product �u��.
ransformation. The fact that LCTs model an important
amily of optical systems makes the bicanonical width
roduct a suitable invariant measure for the number of
egrees of freedom of optical signals. On the other hand,
he space–bandwidth product, which is the area of the
mallest bounding perpendicular rectangle, may change
ignificantly after linear canonical transformation.

Finally, we note that we can accurately compute an
CT with a minimum number of samples given by the bi-
anonical width product, so that the bicanonical width
roduct is also a key parameter in fast discrete computa-
ion of LCTs [50].

Given the fundamental importance of the conventional
pace–bandwidth product in signal processing and infor-
ation optics, we believe the bicanonical width product
ill also play an important role in these areas.

Note added on proof: We have recently been made
ware of two new works [82,83] on the subject of fast LCT
omputation, which have a graphic illustration of the LCT
lgorithm mentioned in Subsection 2.B.5.
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