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Calculation of the scalar diffraction field over the entire space from a given field over a surface is an important
problem in computer generated holography. A straightforward approach to compute the diffraction field from
field samples given on a surface is to superpose the emanated fields from each such sample. In this approach,
possible mutual interactions between the fields at these samples are omitted and the calculated field may be
significantly in error. In the proposed diffraction calculation algorithm, mutual interactions are taken into
consideration, and thus the exact diffraction field can be calculated. The algorithm is based on posing the
problem as the inverse of a problem whose formulation is straightforward. The problem is then solved by a
signal decomposition approach. The computational cost of the proposedmethod is high, but it yields the exact
scalar diffraction field over the entire space from the data on a surface.
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1. Introduction

When the input field is specified over a planar surface, the
calculation of monochromatic scalar optical diffraction can be accom-
plished in a straightforward manner by plane wave decomposition or
the Rayleigh–Sommerfeld diffraction integral, or by other methods
derived from these. Integration over the planar surface allows
computation of the exact diffraction field over the entire space.
However, if the input field is specified over a curved surface, rather
than a planar surface, straightforward integration over the curved
surfacemaynot provide the exactfield over the entire space. Calculation
of the exact diffraction field from a curved surface requires greater care
and is the subject of this work [16].

Diffraction field calculation by direct integration over the surface
on which the input field is specified, is essentially a weighted
superposition of the free-space diffraction kernel. However, direct
integration gives the exact field only when the integrated surface field
value remains unaltered by the propagation from other surface
elements. If we simply ignore suchmutual interactions, the calculated
field will be different from the actual field. The method we set forth is
based on the following observation. No such interactions exists when
the input field is specified over a plane; therefore it is straightforward
to express the field on an arbitrary curved surface (and indeed any
region of the entire space) as a weighted superposition integral of the
free-space diffraction kernel over a planar surface. In the problem we
wish to solve, the field is known over a curved surface and we wish to
obtain the field over a planar surface (which would then also enable
us to calculate it over the entire space). Since it is not straightforward
to express the field on the planar surface in terms of the field on the
curved surface, we express the field on the curved surface in terms of
that on the planar surface, and solve an inverse problem to obtain the
field on the planar surface. The inverse problem arising from this exact
formulation can be solved by employing several methods and
standard algorithms, each with their pros and cons. In this paper,
we propose a signal decomposition algorithm for this purpose.

Our interest in diffraction calculations from curved surfaces stems
from our work on computer generated holography (CGH) and three-
dimensional imaging and television [1–4,11,17,20–23]. Since the
diffraction field from an arbitrarily shaped object is the field that we
desire to recreate at the display end, its accurate calculation is of utmost
importance.

In both computer graphics and CGH, objects are commonly
modeled as a set of sample points distributed over space [8,9,14,15].
It is assumed that the characteristics of the continuous object can be
sufficiently represented by these sample points. A straightforward
approach to compute the diffraction field created by an object is to
superpose the fields created by each sample point of the object; doing
so amounts to treating each sample point as a light source. We will
refer to diffraction field calculation approaches based on superposi-
tion of the fields at each sample point of the object as “source model”
approaches. In these approaches, it is assumed that the value of each
source is independent of the field at other points. Then, the
independently computed fields from these points are superposed.
The calculated field will be the same as the actual field only if the
points truly act as sources (i.e., if the values of these sources are not
perturbed by the superposed field generated by the other sources).
However, usually there are complicating interactions. Consequently,
the field calculated using the source model will not be exact or may
even be significantly in error. Diffraction field calculations based on
the source model have the advantage of having reasonable
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computational complexities, but they are not necessarily exact except
when all the sample points are given over a planar surface.

With the termmutual interaction we refer to the fact that the field
at a given input point is not independent of the field at the other input
points; in other words, it is not possible to specify them indepen-
dently and arbitrarily.

Ignoring the mutual interactions and straightforwardly superposing
the specified input field values will not give exact results. Instead, a
simultaneous calculation of the diffraction field due to the given input
points is necessary. We will refer to approaches based on such
simultaneous calculation of the diffraction field as “field model”
approaches. The diffraction field computation method presented in
this paper is based on such an approach and uses a decomposition of the
field specified over an orientable manifold onto a function set obtained
from the intersection of the propagating plane waves by the manifold.

The algorithm we propose can be used for both two-dimensional
(2D) and three-dimensional (3D) spaces. For simplicity we will first
discuss the 2D case. In the 3D case, numerical issues due to larger data
sets arise. Nevertheless, as a proof of concept the extension of the
proposed algorithm to the 3D case is also presented.

2. Calculation of the diffraction field using the source model

Computation of the diffraction field arising from the samples of an
object or a set of given sample points over the space can be performed
in several ways. One of the most commonly employed methods is to
superpose the fields emitted by the sample points. As discussed in
Section 1, we refer to such methods as source model methods. In the
literature, there are several diffraction field computation algorithms
based on the source model approach [5,8,9,13]. Implementation of
source model algorithms is rather straightforward because mutual
interactions are not taken into consideration.

Depending on the distribution of the sample points over the space,
the effect of mutual interactions can be significant. A simple example
will help illustrate the issues involved (Fig. 1). We consider three
points P1, P2, P3 which create the field, ψ(x), over the entire space.
Here the coordinate vector x denotes [x z]T. According to the source
model approach, the field over the reference line is computed by
superposing the fields created by the field samples at P1=x1, P2=x2,
P3=x3 (which are assumed as sources). The diffraction field
Fig. 1. Illustration of possible mutual couplings in the source model approach for a 2D
space. The x-axis is taken as the reference line.
emanating from these sample points is usually calculated by using
the kernel of the Rayleigh–Sommerfeld (RS) diffraction integral. More
specifically, the field f(x) over the line z=0 is expressed in terms of
the strengths ψ(x1), ψ(x2), ψ(x3) of the sources as

f xð Þ = ψ x1ð Þh x−x1ð Þ + ψ x2ð Þh x−x2ð Þ + ψ x3ð Þh x−x3ð Þ ð1Þ

where h(x) denotes the 2D version (i.e., y=0 case) of the RS
diffraction kernel due to propagating waves,

h xð Þ = 1
jλ

exp j 2πλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

p cos θ; ð2Þ

where cos θ = zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

p and λ is the optical wavelength. The above

expression gives the field on the reference plane arising from these
three points. Quite often, the cosθ term is ignored; omitting this term
may result in significant errors if θ is not small. It is instructive to note
that the Rayleigh–Sommerfeld kernel is the impulse response for field
computations where the wave propagates out from a planar surface;
this is different than a spherically symmetric propagation out from a
simple free-standing point source. Using the expression we have
obtained for the field on the reference line, we may now calculate
back the field values at P1, P2, P3 again by using the RS diffraction
integral. In general it turns out that the values obtained are not equal
to the original values specified at P1, P2, P3. Thus even with such a
simple scenario, it is possible to see the effect of the interactions
between the specified source points. For instance, the deviation
between the calculated field and the initially specified field at P1 is
found as

Δψ x1ð Þ = ψ x2ð Þ cos θ1;2jr1;2 j
exp j

2π
λ

jr1;2 j
� �

+ ψ x3ð Þ cos θ1;3jr1;3 j
exp j

2π
λ

jr1;3 j
� �

ð3Þ

where r1, 2 is the vector between points P1 and P2, and θ1, 2 denotes the
angle between the vector r1, 2 and the z-axis as shown in Fig. 1.
Similarly, the vector r1, 3 denotes the difference between the position
vectors x1 and x3, and θ1, 3 is the angle between the vector r1, 3 and the
z-axis. This deviation is exactly the additional field imposed on P1 by
the sources at P2 and P3 under the RSmodel. A similar deviation can be
shown also for P2 or P3. These deviations from the initially specified
fields at each sample point depend on the initial field values on the
other sample points and their mutual positions in space. As a result of
these interactions between the fields emanating from the sources, the
sourcemodel approachmay not provide the exact field over the entire
space.

For a discrete set of points, there will be no mutual interactions
among the sample points if the following condition is satisfied:

ψ xið Þ = ∑
j

j≠i

ψ xj

� �
h xi−xj

� �
= 0; ∀ i ð4Þ

where ψ(xj)h(xi−xj) is the field generated at location xi by point j.
This is satisfied for the classical case of diffraction computation from
the points which lie on a plane.

By the way, above observations are still valid if other diffraction
models, (for example, the Fresnel–Kirchoff approximation) are
utilized instead of the RS formulation.

In the source model, the computation of the continuous diffraction
field over the entire space can be expressed as an integral over a
surface Sa as

ψ xð Þ = ∫
Sa

ψ xð Þh x−xð ÞdS ð5Þ
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where Sa denotes a curved surface, the vector x=[x,y,z]T is used to
indicate the position of the calculated diffraction field, and
x = x′; y′; z′½ �T is another position vector running over the surface of
Sa. The kernel of the integral, h(x), is as defined in Eq. (2) when the RS
kernel is used. For computational purposes, the above integral must
be discretized by sampling the field on the surface Sa. Then, the
diffraction field over the space is obtained as the superposition of the
fields from the sample points. Each emanating field is expressed by a
column vector h(xi), which is obtained by sampling the RS diffraction
integral kernel defined in Eq. (2). (If propagation along the reverse
direction with respect to z axis is involved, then the conjugate of h(xi)
should be employed.) Thus the source model employed in our
simulations can be expressed as [4]

f = ∑
s

i=1
ψ xið Þh� xið Þ ð6Þ

where s is the number of samples in space, and ψ(xi) denotes the
complex amplitude of the ith field sample. Propagation from the
reference line towards the sample point, and propagation from the
sample point back to the reference line are related to each other by a
reversal of the sign of zi (i.e., propagation along z or−z directions). In
the source model, each field sample is considered as a source. The
locations of the sample points along the x, y, z axes are denoted as xi, yi,
zi, respectively. The column vector h*(xi) denotes the field propagat-
ing from a point source at (xi,yi,zi) towards the reference line at z=0.

3. Computation of the diffraction field using the field model

Computation of the diffraction field by using the sourcemodelmay
not always yield sufficiently accurate results as a consequence of the
mutual interactions between the specified sample points over a
curved surface. In the field model approach, such mutual interactions
are taken into consideration by enabling the calculation of the exact
field over the entire space. There is nomutual interaction between the
sample points when they lie on a planar surface and the RS model is
employed where θ is measured from the surface normal. Then, the
cosine term in Eq. (2) becomes zero, because θ = ±π

2. Therefore, while
it is not straightforward to express the field on a planar surface in
terms of that on a curved surface, it is straightforward to express the
field on a curved surface in terms of that on a planar surface. Thus we
can easily write an expression for the inverse of the problem we wish
to solve. Subsequent inversion will then allows us to obtain the exact
field. The following sections detail and illustrate this approach.

4. Mathematical basis of the proposed field model algorithm

Propagating scalar monochromatic waves have to satisfy the wave
equation. One of the simplest sets of waves that satisfy the wave
equation is the set of propagating monochromatic plane waves
[6,7,12]. It is well known that there is a Fourier transform relationship
between transverse profiles of the diffraction field and the complex
coefficients of the propagating plane wave components [6,7,10–
12,18,19].

For simplicity we will first consider the 2D case, where we wish to
obtain the 2D field arising from the field specified on a curved line on
that 2D space. The diffraction field over the entire 2D space can be
expressed in terms of propagating plane waves as,

ψ xð Þ = ∫
kx∈K

A1D kxð Þexp jkTx
� �

dkx; ð7Þ

where K is the spatial bandwidth of the field and A1D(kx)dkx denotes
the complex amplitudes of the propagating plane waves along the
direction indicated by k. The position over 2D space is denoted by x=
[x,z]T. The spatial frequencies along x and z axes are represented by
the vector k=[kx,kz] where kx is the spatial frequency along the x axis
and kz is the spatial frequency along the z axis. Since we are dealing
with monochromatic waves, the spatial frequency kz is a function of
kx,

kz =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2−k2x

q
ð8Þ

where k is the wave number and is equal to
2π
λ
.

The transversal line z=0 will be denoted by S0. The field on this
line is a 1D profile of the 2D diffraction field over the entire 2D space.
Each propagating plane wave corresponds to a complex harmonic
over S0, and these complex harmonics are orthogonal to each other.
Therefore, A1D(kx) can be found by performing,

〈ψ xð Þ; exp jkTx
� �

〉jS0 = ∫
S0

ψ xð Þexp −jkTx
� �

dx

= 2πA1D kxð Þ

ð9Þ

where 〈 ⋅, ⋅ 〉 denotes the inner product. Unfortunately, a similar
approach can not be used for fields specified over a curved surface Sa.
The profiles of the propagating planewaves over the curved Sa may not
be orthogonal to each other even if the field specified on Sa can be
expressed as a linear superposition of such profiles. With “profile” we
mean the part of the 2Dfield obtained by intersecting itwith the surface
Sa. The non-orthogonality of the profiles of plane waves on curved
surfaces is illustrated by a simple example given in the Appendix A.

As mentioned above, the diffraction field over the entire space can
be expressed as a superposition of propagating plane waves.
Therefore, one approach to calculate the diffraction field over the
entire 2D space is to find the complex amplitudes of the plane waves,
from the field on the curved line. The algorithm we propose is based
on the relation between the diffraction field on Sa and the complex
amplitudes of the propagating plane waves. In the proposed
algorithm, the diffraction field over the entire space is expressed as

ψ̂ xð Þ = ∫
kx∈K

Â1D kxð Þexp jkTx
� �

dkx; ð10Þ

where

Â1D kxð Þ = argmin
A1D kxð Þ

∫
Sa

jψ xð Þ− ∫
kx∈K

A1D kxð Þexp jkTx
� �

dkxj2dS
8<
:

9=
;: ð11Þ

ˆA1D kxð Þ denotes our estimate of the complex amplitudes of the plane
waves that minimize the difference between the estimated field and
the given field over Sa. ψ̂ xð Þ is the obtained field using the estimated
Â1D kxð Þ. By the way, since the original 2D field ψ(x) was a pattern that
can be obtained by propagating plane waves, the estimation error will
be zero. Yet, to reduce the computational complexities, we introduce
further restrictions: we specify that the diffraction field over the
entire space consists of a finite number of plane waves:

ψ xð Þ = ∑
kM

A1D kmx

� �
exp jkT

Mx
� �

; ð12Þ

where kM = kmx ; kmz½ �T. The relation between kmx
and kmz

is the same
as that is given by Eq. (8): kmz =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2−k2mx

q
. The spatial frequency

kmx =
2π
MX

mx where mx∈ [−M/2,M/2). Then, the least-squares

problem given by Eq. (11) can be expressed as

Â
1D

kmx

� �
= argmin

A1D kmxð Þ

(
∫
Sa

����ψ xð Þ−∑
kM

A1D kmx

� �
exp jkT

Mx
� �����2dS

)
: ð13Þ
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The estimate of the diffraction field over Sa is related to the estimates
of the complex plane-wave coefficients as

ψ̂ xð Þ = ∑
kM

Â1D kmx

� �
exp jkT

Mx
� �

: ð14Þ

To estimate the complex amplitudes of the plane waves, we use
the profiles of the plane waves on Sa, but as already noted these
functions may not be orthogonal. To obtain orthogonal functions, we
employ Gram–Schmidt orthogonalization, and then these obtained
orthogonal functions are used to decompose the field on Sa.

The expression given in Eq. (12) can be written in more compact
form using matrix–vector notation as

ψ = Ha ð15Þ

where ψ is a vector that represents the field on the points located on Sa
and the vector a denotes the complex amplitudes of the plane waves
that we wish to obtain. The systemmatrixH is formed by the columns
from the profiles of the plane waves on Sa, as,

H = exp jkT
1x

� �
jexp jkT

2x
� �

j jexp jkT
Mx

� �h i
jx∈Sa

= Φ1 jΦ2 j… jΦM½ �:
ð16Þ

The matrix H has M column vectors, denoted by ϕi. Following
orthogonalization of the functions over the curved surface using the
Gram–Schmidt procedure, Eq. (15) can be expressed as

ψ = QRa ð17Þ

where the columns of the matrix Q form the orthogonal basis
functions that describe the system. The matrix Q has M column
vectors:

Q = q1 jq2 j… jqM½ �: ð18Þ
Fig. 2. Example where we wish to reconstruct the 2D diffraction field from the field
given over the 1D curved surface Sa which is a union of line segments as denoted by the
thick dashed lines. The integers N, m, n, p, q denote the number of samples spaced by X
along the corresponding segments.

Fig. 3. (a) Real part of the propagating plane waves intersected by the 1D manifold Sa.
(b) Corresponding propagating plane wave.
The matrix R is an upper triangular matrix. The inner product of ψ by
the orthogonal basis functions will provide possible solutions for the
complex coefficients of the plane waves

QHψ = Ra: ð19Þ

Back-substitution can be used to calculate the elements of the
vector a, because R is an upper triangular matrix, but back-
substitution may not generally provide a robust reconstruction.
Therefore, we use the singular value decomposition of R to obtain
the complex amplitudes of the plane waves. Then, the linear relation
between the diffraction field on the curved surface Sa and the complex
coefficients of the propagating plane waves can be expressed as

QHψ = UΣVHa ð20Þ

where the column vectors of U are the eigenvectors of RRH and the
column vectors of V are the eigenvectors of RHR. The diagonal
elements of the matrix Σ are the eigenvalues of the matrix R. A robust
solution for the complex coefficients of the plane waves is obtained by
discarding the singular values which are closer to the computational
machine error. The diagonal elements of the diagonal matrix Σ−1 can

be obtained as 1
li
where li is the ith diagonal element of the matrix Σ.

image of Fig.�2
image of Fig.�3
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By eliminating the singular values which are close to the computa-
tional machine error, we prevent amplification of numerical errors.
The compensated solution of the vector a is

a = VΣ−1UHQHψ: ð21Þ

The same approach can be easily extended to find the diffraction
field over the entire 3D space arising from a field specified over a 2D
curved surface. This is more realistic since most real life applications
are 3D. We again assume that the diffraction field over the 3D space
can be expressed as the superposition of plane waves, and our initial
aim is to obtain the complex amplitudes of these plane waves. The
diffraction field over the 2D curved surface Sa can be expressed in
terms of the profiles of the plane waves on Sa. The same algorithm
used in the 2D space case can be employed after vectorizing the 2D
discrete field and coefficient arrays. Each plane wave profile on Sa is
stored as a 2D array:

ψSa
= ψSa1

j ψSa2
j … jψSaN

h i
: ð22Þ

By concatenating the 1D arrays, ψSai
, we can represent the 2D field

over the curved surface Sa as a 1D array ψv. Each column vector ψSai
represents the variation of the 2D field over the curved surface Sa
along the y coordinate and the index i denotes variation along the x
coordinate. The obtained 1D array ψv is

ψv =

ψSa1
ψSa2
⋮

ψSaN

2
6664

3
7775: ð23Þ

Naturally the 1D array ψv has a very large size.
In 3D representation, a which is the complex coefficients of the

plane waves is a 2D array similar to ψSa. Conversion of a into 1D array
is also needed and the same method used for ψSa is employed.

Thesignal setwhichconsists of theprofiles of theplanewaves on Sa is

expressed as Φi;j = exp jkT
i;jx

� �
, where ki;j = kmi ; kmj ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2−k2mi

−k2mj

qh i
and i,j denote the indices of the discrete spatial frequencies along the x
400 500 600 700

D Manifold)

is function over Sa
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D Manifold)
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s along the manifold Sa.
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Fig. 6. Top: Magnitude of the propagating plane wave coefficients that form the initial diffraction field over the entire space. Middle: Magnitude of the reconstructed plane wave
coefficients by Eq. (21). Bottom: Magnitude of the difference between the initial and the reconstructed plane wave coefficients.
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andy axes, respectively. The2Darray representations of these signals are
obtained as

Φi;j = Φi;j;1 j Φi;j;2 j … jΦi;j;N
� 	 ð24Þ

where Φi, j, l is a column vector as in Eq. (22). Then, the 2D array is
converted into a 1D array as in Eq. (23),

Φv;i;j =

Φi;j;1
Φi;j;2
⋮

Φi;j;N

2
664

3
775: ð25Þ
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The system matrix Φ is now formed by the 1D arrays Φv ; i, j as

Φ = Φv;1;1 j … j Φv;1;N j Φv;2;1 j … j Φv;2;N j j Φv;N;1 j … j Φv;N;N
� 	

:

ð26Þ

Storage of these arrays requires the allocation of huge amounts of
memory. As a consequence, applications of the presented algorithm to
the 3D case may not be feasible for high resolution cases.

Therefore, the matrix equation that describes the calculation of 3D
diffraction field can be expressed as

ψv = Φa ð27Þ
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l field on the reference line
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where a is a 1D array which denotes the complex coefficients of the
propagating plane waves.

5. Simulation results

Here we illustrate and evaluate the proposed field model
algorithm and compare it with the source model approach for both
the 2D and 3D cases. We have tested the algorithms for several
different fields and for several curved surfaces, of which two examples
are shown here. The proposed field model algorithm provides perfect
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0 100 200 300
0

0.5

1

1.5
Magnitude of the initi

0 100 200 300
0

1

2

3
x 10-15 Magnitude of the initi

Fig. 9. Top: Original diffraction field on the manifold Sa.Middle: The reconstructed field on Sa
magnitude of the difference between the original and the reconstructed fields on Sa.
reconstruction of the field when the given information (the field
values at specified sample points over the curved surface Sa) is
sufficient.

In our first example, the diffraction field over 2D space arising from
a 1D object is considered (Fig. 2).

The “curved” surface Sa and the segment over the x-axis form a
closed loop. We denote the sampling interval by X. The parametersm,
n, p, q that define the lengths of the segments that make up the
manifold Sa are chosen as 100, 128, 125, and 128, respectively. The
number of samples along the x-axis is denoted by N, which we choose
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0 100 200 300 400 500 600 700
0

0.5

1

1.5
Magnitude of the original diffraction field on Sa

0 100 200 300 400 500 600 700
0

0.5

1

1.5
Magnitude of the reconstructed diffraction field on Sa

0 100 200 300 400 500 600 700
0

0.5

1

Magnitude of the difference between

the original and the reconstructed diffraction fields over Sa

Fig. 10. Top: Original diffraction field on the manifold Sa.Middle: The reconstructed field on Sa by using the source model algorithm. Bottom: Themagnitude of the difference between
the original and the reconstructed fields on Sa.

Fig. 11. Example where we wish to reconstruct the 3D diffraction field from the field
given over the 2D curved surface Sa.

Fig. 12. (a) Magnitude of the synthetically generated diffraction field on the reference plane. T
is the spatial sampling period. (b) Magnitude of the reconstructed diffraction field over th
diffraction field over the manifold by Eq. (21).
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as 256, and the variable X is taken as λ/2 where the wavelength λ is
chosen as 0.5μm. Larger sampling step sizes can be used if the

bandwidth is smaller than
1
λ
cycles/m, which is themaximum possible

spatial frequency along the x-axis for propagating waves. As
mentioned in Section 3, the field over the entire space is composed
of propagating plane waves only. The propagation of these plane
waves is explained by Eq. (12) for the discrete case. We take the
number of propagating planewaves also as 256. In Figs. 3(b) and 4(b),
two of these 256 propagating plane waves are illustrated. The
propagation directions of the plane waves can be found by the spatial

frequencies kmx =
2π
NX

mx, wheremx∈ −N=2 ; N=2Þ½ . As a consequence

of employing a finite number of propagating waves with discrete

kmx =
2π
NX

mx and integer mx which is defined as mx∈ −N=2 ; N=2Þ½ ,

the entire 2D field is periodic along the x-direction with a period NX.
In order to assure zero error in the minimization of Eq. (13), the

given field ψ xð Þ on themanifold Sa should be consistent with the wave
equation. Oneway to assure a consistent ψ xð Þ on Sa for purposes of our
numerical experiments is to start with some field pattern on the
reference line, and then propagate it to Sa. Ensuring that the specified
his is a square pulse in 2D. Its width along both transversal axes is chosen as 8Xwhere X
e reference plane by the proposed field method from computed coefficients using the

image of Fig.�12


Fig. 13. (a)Magnitude of the synthetically generateddiffractionfield on the reference plane. This is a squarepulse in 2D. Itswidth along both transversal axes is chosen as 8XwhereX is the
spatial sampling period. (b)Magnitude of the reconstructed diffraction field over the reference plane by the sourcemodel approach by Eq. (6) form the field given over the 2Dmanifold Sa.
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fields are consistent in our experiments, as they would be if the
specified fields are indeed samples of a true propagating wave, we
check whether our proposed method indeed can reconstruct the
pattern on the reference line perfectly.

In our example, a synthetic signal on the reference line z=0 is
chosen. From this we compute the diffraction field over the entire
Fig. 14. (a) Magnitude of the synthetically generated original diffraction field on the manifol
over the reference plane that was computed by the proposed field method.
space. The synthetic signal on the reference line is chosen as a unit
square pulse whose width is 1

8 of NX. Then, the complex amplitudes of
the propagating planes can be obtained from the synthetic signal by
taking the forward Fourier transform. By using the propagation
behavior of the plane waves through the free space the diffraction
field over the entire space can be computed. These plane waves are
d Sa. (b) Magnitude of the reconstructed diffraction field on Sa from the diffraction field

image of Fig.�13
image of Fig.�14
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intersected by the manifold Sa. The signals obtained by the
intersection are expressed asΦi where i denotes the spatial frequency
kmx

. Real parts of Φ1 and Φ50, the cross-sections of the plane waves
along the manifold Sa, can be seen in Figs. 3 and 4, respectively.

After performing Gram–Schmidt orthogonalization of these plane
waves along the manifold as in Eq. (17), we obtain a set of orthogonal
functions qi where i is related to spatial frequency as in Φi. Real parts
of the orthogonal basis functions that are related to the functions
given in Figs. 3 and 4, are shown in Fig. 5.

Then, the complex coefficients of the plane waves are obtained by
Eq. (21). In Fig. 6, the magnitudes of the reconstructed coefficients of
the plane waves that form the diffraction field over the space are
illustrated. The magnitudes of the differences between the initial and
the reconstructed coefficients are also shown in Fig. 6.

Both Figures represent discrete values for kmx =
2π
NX

mx where mx

is an integer such that mx∈ −N=2 ; N=2Þ½ , corresponding to plane
wave components of the diffraction field, but figures plotted as
continuous graphs by using linear interpolation for convenience.
Then, the diffraction field along the reference line is reconstructed
from the intersections of the planewaves along the reference line. The
original and the reconstructed fields are shown in Fig. 7. The
magnitude of the difference between the original and the recon-
structed fields is also given in Fig. 7.

To compare the performance of a source model algorithmwith the
proposed field model algorithm, the same scenario shown in Fig. 2 is
implemented by using the source model algorithm given by Eq. (6).
The magnitude of the reconstructed and the original fields along the
Fig. 15. (a) Magnitude of the synthetically generated diffraction field on the manifold Sa. (b)
reference plane that was computed by the source model approach.
reference line can be seen in Fig. 8. The difference between the
original and the reconstructed fields is quite significant.

Another example is presented in Figs. 9 and 10. First we compute
the field on the reference line from the given field over the curved
surface. Then we compute the diffraction field along the manifold Sa
from the found field over the reference line, for comparison. Such
reconstructed field on Sa and its deviation from the original are
shown. The results for the proposed accurate field model are shown in
Fig. 9. On the other hand, the results for the commonly used source
model are presented in Fig. 10. The source model does not yield the
accurate results obtained by the field model.

As noted, the application of the proposed method to 3D fields
requires large amounts of memory; nevertheless we present a simple
example as a proof of concept. The reference plane is assumed to have
32 samples along both transversal axes. The 32×32 synthetic signal
on the reference plane is assumed to have a unit magnitude 2D square
pulse located at its center, with a width of 8 samples along both
transversal dimensions. An illustration of the chosen field over the
reference plane can be seen in Fig. 12(a). Then, the diffraction field
over the entire 3D space due to this 2D square pulse is computed by
using the plane wave decomposition. The 2D curved surface
employed in the 3D simulations is shown in Fig. 11.

The parameters m, n, p, q are taken as 12, 16, 10, and 16,

respectively and N=32. The spatial sampling interval is chosen as
λ
2

and the optical wavelength is chosen as 0.5μm as in the 2D space
example discussed earlier. To have a consistent field, we start by
setting the field on themanifold as the intersection of a 3D field by the
Magnitude of the reconstructed diffraction field on Sa from the diffraction field over the

image of Fig.�15
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manifold. Such a field over the 2D manifold Sa is shown in Fig. 14. By
using the proposed algorithm as outlined by Eqs. (21–26), the
diffraction field over the reference plane, due to the given field over
the 2D manifold Sa, is computed. The difference between the initial
and the reconstructed fields on the reference plane determines the
performance of the proposed algorithm. The reconstructed field over
the reference plane is shown in Fig. 12b.

The same 3D space simulation is performed by source model
approach of Eq. (6) and the obtained results are shown in Fig. 13(b).
The original and the reconstructed fields on the reference plane are
shown in Fig. 13. As seen in this figure, the source model does not
provide correct results.

The diffraction field over the manifold Sa is computed from the
reconstructed field over the reference plane that was obtained by the
proposed field model. Again a perfect result is obtained. The
reconstructed diffraction field over the 2D manifold Sa can seen in
Fig. 14.

For comparison, the reconstructed field over the 2D manifold Sa
from the diffraction field on the reference plane that was computed by
a source model approach, is given in Fig. 15(b).
Fig. 16. A simple 1D example to illustrate the nonorthogonality of the profiles of the
plane waves on Sa.
6. Conclusion

Computation of the exact diffraction field over the space from the
field specified on an arbitrary curved surface is a basic problem with
several applications. Our interest in this problem stems from
computer generated holographywhere computation of the diffraction
field from an object with arbitrary surface profile is necessary to
obtain the optical field which must be generated at the display end of
the system.

Commonly, the calculation of the diffraction field over the space
from field values on a curved surface is based on what we referred to
as the source model. However, these approaches are only approxi-
mate and provide satisfactory results only under restricted conditions,
such as planar objects or objects which have surfaces that only slightly
deviate from a plane [4]. On the other hand, field model based
algorithms provide computation of the exact diffraction field over the
entire space, and errors arise only due to arithmetic precision. In this
work, we present a field model algorithm based on decomposition of
the given field on a curved surface onto a set of functions which are
profiles of the propagating plane waves on the curved surface. In
practice, the presented approach can be easily used for 2D problems
with realistic resolutions. However, its applications to 3D problems
demand high computational complexity, and therefore, realistic size
problems cannot be accommodated with presently available com-
puters. Although the presented solution is computationally costly, we
are not aware of any other method that yields exact results for the
given problem.
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Appendix A

Here we show that the profiles of the plane waves on the curved
surface Sa are not orthogonal through a simple example (Fig. 16).

The inner product of two different complex exponentials over Sa
can be expressed as

〈 exp jkT
1x

� �
; exp jkT

2x
� �

〉jSa = ∫
Sa

exp j k1−k2ð ÞTx
h i

dS ð28Þ
= ∫
Sa

exp jkT
3x

� �
dS ð29Þ

= ∫
0

−∞
exp jk3;xx

� �
exp jk3;zzb

� �
dx + ∫

za

zb

exp jk3;zz
� �

dz

+ ∫
∞

0

exp jk3;xx
� �

exp jk3;zza
� �

dx
ð30Þ

= − 1
jk3;x

+ πδ k3;x
� � !

exp jk3;zzb
� �

+
exp jk3;zza

� �
− exp jk3;zzb

� �
jk3;z

+
1

jk3;x
+ πδ k3;x

� � !
exp jk3;zza

� �
:

ð31Þ

Since, the result of the integral given above is not always proportional
to δ(k3, x), the profiles of the planes waves on the curved surface Sa are
not in general orthogonal. The first and the third integrals in Eq. (30)
are computed by using the Fourier transform of the sign function sgn
(x):

sgn xð Þ =
1
2

x≥ 0

−1
2

x < 0
:

8>><
>>: ð32Þ

The result obtained in Eq. (31) shows that orthogonality may not
be satisfied even for this simple example. Therefore, to obtain
orthogonal functions, we employ an orthogonalization as discussed
in Section 4.
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