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Imperfections and nonrobust behavior of practical multilevel spatial light modulators (SLMs) degrade the perfor-
mance of many proposed full-complex amplitude modulation schemes. We consider the use of more robust binary
SLMs for this purpose. We propose a generic method, by which, out of K binary (or 1 bit) SLMs of size M × N , we
effectively create a new 2K -level (or K bit) SLM of size M × N . The method is a generalization of the well-known
concepts of bit plane representation and decomposition for ordinary gray scale digital images and relies on forming
a properly weighted superposition of binary SLMs. WhenK is sufficiently large, the effective SLM can be regarded
as a full-complex one. Our method is as efficient as possible from an information theoretical perspective. A 4f
system is discussed as a possible optical implementation. This 4f system also provides a means for eliminating the
undesirable higher diffraction orders. The components of the 4f system can easily be customized for different
production technologies. © 2011 Optical Society of America

OCIS codes: 070.0070, 090.0090, 070.6120, 090.1760, 090.2870, 100.2810.

1. INTRODUCTION
Spatial light modulators (SLMs) are dynamically programma-
ble two-dimensional (2D) optical masks on which computer-
generated holograms (CGHs) are written to synthesize light
fields in a number of applications, including three-dimensional
(3D) holographic video displays [1–4]. Since CGHs are, in gen-
eral, complex valued, an SLM that provides full-complex mod-
ulation would be very convenient, but such an SLM currently
does not exist in practice. Most practical SLMs perform only
a restricted type of modulation on the incoming light, such
as amplitude-only or phase-only modulation, and even that
restricted modulation is imperfect. These restrictions and im-
perfections of SLMs need to be handled in light field synthesis
applications.

One approach is to devise coding methods such that the
ideal complex-valued CGH that generates a desired light field
is encoded in a CGH that is suitable for writing on the physical
SLM [5,6]. Many different encoding methods for multilevel
amplitude-only, multilevel phase-only, and binary SLMs have
been proposed [7–15]. In these methods, when the observa-
tion region is considered, the actual SLM behaves like a
lower-resolution full-complex SLM. However, when such
methods are used, the SLM generates side beams such as con-
jugate images, dc terms, or quantization-related noise terms in
addition to the desired light field. Removal of these side beams
is problematic, especially when many SLMs need to be placed
side by side, as in 3D display applications.

Another approach is to effectively create full-complex
SLMs out of restricted type SLMs. As for some examples, in
one of the proposed methods, an amplitude-only SLM is im-
aged on a phase-only SLM [16]. In this manner, light passing
through the SLMs is modulated both in phase and amplitude
as if it comes out of a single full-complex SLM. In another
method, the beams of two phase-only SLMs are added using
a beam splitter [17]. In that way, effectively, a new SLM is

created, where a pixel of the new SLM is equal to the sum
of two phase-only pixels, so it can be adjusted to a large
number of different complex values. Similar methods are dis-
cussed in [18–23]. These methods are successful in the sense
that the new SLM provides a richer modulation compared
to the component SLMs. However, a common problem in all
these methods is that the set of complex values available for a
pixel of the new SLM does not have a good coverage of the
complex plane, so it is hard to regard the new SLM as a sa-
tisfactory full-complex SLM. The main reason of this problem
is the imperfections of practical SLMs: for instance, most
phase-only SLMs do not cover the 0 − 2π range for the phase,
but cover only a restricted angular range. Similarly, most
phase-only SLMs perform an undesired amplitude modulation
along with the phase modulation and vice versa, which is hard
to keep track of and causes the new SLM to behave differently
than intended. Moreover, the behavior of most multilevel
SLMs changes strongly with the illumination wavelength,
causing the proposed designs to operate in a satisfactory man-
ner only for a narrow range of wavelengths.

To avoid such problems, one can consider the creation of
full-complex SLMs out of binary SLMs [24]. Although the quan-
tization constraint on binary SLMs is harsh, binary SLMs such
as digital micromirror devices by Texas Instruments [25,26]
provide the same on–off modulation regardless of the illumi-
nation wavelength, so they are more robust compared to
multilevel SLMs, and their usage in multicolor applications,
such as 3D displays, is easier. Moreover, binary SLMs seem
to have a higher potential to be miniaturized compared to mul-
tilevel SLMs.

In this paper, we first propose a generic method for effec-
tively creating full-complex SLMs out of binary SLMs, and
then we propose a possible optical implementation for the
generic method. We explain our generic method in Section 2.
This method actually trades pixel count to dynamic range and
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carries out this trade-off by generalizing the concepts of bit
plane representation and decomposition for ordinary digital
gray scale multilevel images [27]. In particular, we propose
to effectively obtain a 2K -level (or K bit) SLM by forming a
properly weighted superposition of K binary (or 1bit) SLMs.
When K is sufficiently large (such as K ¼ 16), the new SLM
can be regarded as a full-complex SLM. We show that, in this
way, information-wise, the binary SLMs are utilized in the
most efficient manner possible. In Section 3, we propose a
4f system to optically implement our generic method. With
this system, out of a binary SLM with PM × QN pixels, we can
effectively create a PQ bit (or 2PQ level) SLM with M × N
pixels. Again, when P and Q are sufficiently large (such as
P ¼ Q ¼ 4), the new SLM can be regarded as a full-complex
one. We show that the 4f system also provides a means for
eliminating the disturbing higher orders from the diffraction
field of the new SLM while preserving the central order with
little distortion. The key element of the proposed 4f system is
an optical thin mask that needs to be physically produced and
placed to the Fourier plane. In Section 4, we discuss several
alternatives for this mask depending on the production cap-
abilities and show that even very simple four-level, three-level,
or binary masks work.

2. GENERIC METHOD
In this section, we explain our generic method for effectively
creating full-complex SLMs out of binary SLMs. Here, we do
not adhere to a specific optical system, but carry out the dis-
cussion at an abstract level. In Section 3, we propose a pos-
sible optical implementation for our method. Our method is
actually based on the well-known concepts of the bit plane
representation and decomposition for ordinary digital gray
scale images [27]. Therefore, we start with a quick review
of these concepts.

Let S denote a 2K -level (or K bit) gray scale digital image
of size M × N (K , M , N ∈ Zþ). Assume that the pixel values
of S can be equal to 0; 1; 2;…; 2K − 1. Typically, taking K ¼ 8
is sufficient for high-quality images of daily life scenes.
It is well known that S can be written as S ¼ 20B0þ
21B1 þ…þ 2K−1BK−1, where B0;B1;…;BK−1 are all M × N
binary (or 1 bit) images each pixel of which can be equal to
either 0 or 1. These binary images are called the bit planes
of S, where B0 is named the least significant bit plane and
BK−1 is named the most significant bit plane. Given S, writing
it as S ¼ 20B0 þ 21B1 þ…þ 2K−1BK−1 is called the bit plane
representation of S and the process of finding the appropriate
B0;B1;…;BK−1 is called the bit plane decomposition of S.
Note that in its bit plane representation, S is written as a par-
ticular weighted superposition of its bit planes, where the
weights are given by 20; 21;…; 2K−1. Our generic method for
creating full-complex SLMs out of binary SLMs amounts to
a generalization of this weighted superposition concept to in-
clude complex valued weighting coefficients as well.

Suppose we have K binary SLMs of size M × N at hand.
Assume the pixel periods, pixel geometries, and other physi-
cal parameters of all these SLMs are identical. Let us denote
these binary SLMs with B0;B1;…;BK−1. Let �bi½m;n� denote
the value of the ðm;nÞth pixel of Bi, where 0 ≤ m ≤ M − 1,
0 ≤ n ≤ N − 1, 0 ≤ i ≤ K − 1, and m;n; i ∈ Z. Suppose �bi½m;n�
can be set to either −1 or 1. (Throughout this paper, we
assume that binary SLM pixel values can be set to either

−1 or 1. Extension of the presented results for other binary
pixel values can be accomplished in a straightforward
manner.) Now suppose, processing these binary SLMs
with some kind of an optical system, we effectively form
a new M × N SLM denoted by S, such that S ¼ w0B0þ
w1B1 þ…þwK−1BK−1, where wi ∈ C for 0 ≤ i ≤ K − 1,
i ∈ Z. Note that, if �s½m;n� denotes the value of the
ðm;nÞth pixel of S, we have �s½m;n� ¼ w0

�b0½m;n�þ
w1

�b1½m;n� þ…þwK−1
�bK−1½m;n�. Hence, the new SLM is

obtained as a weighted superposition of the binary SLMs
where wis denote the possibly complex valued weighting
coefficients. Selecting these coefficients wisely, and taking
K as sufficiently large, we can make S a full-complex SLM.

As an example, supposeK ¼ 16, and suppose the weighting
coefficients are taken as

wi ¼
� 1

255 2
i for 0 ≤ i ≤ 7

j
255 2

i−8 for 8 ≤ i ≤ 15
ð1Þ

with j ¼ ffiffiffiffiffiffi
−1

p
. Then, adjusting �b0½m;n�; �b1½m;n�;…; �b15½m;n�,

we can set each �s½m;n� to any complex number of the form
1

255 ðRþ jIÞ, where R, I ¼ −255;−253;−251;…; 251; 253; 255.
Note that the number of different complex values available
for each �s½m;n� is 216 (corresponding to an information
content of 16bits per pixel, where with the current weights,
8 bits are reserved for the real part and 8 bits are reserved for
the imaginary part). These complex values are displayed in
Fig. 1(a). Since these complex numbers also have a good
coverage of the complex plane, S can be regarded as a full-
complex SLM. Hence, out of 16 binary (1 bit) SLMs of size
M × N , we have created a single full-complex (16bit) SLM
of size M × N .

Continuing with the current example, note that, in the be-
ginning, there are a total of 16MN pixels. At the end, there are
only MN pixels, so the pixel count is reduced. However, the
pixels in the beginning are binary (1 bit), while the pixels of
the new SLM are full complex (16bit), so the dynamic range is
increased. Thus, we have essentially traded pixel count to
dynamic range. Actually, information-wise, this trade-off is
carried out in the most efficient manner possible. To see this,
note that the information content of each of the binary SLMs is
MN bits, and since we use 16 binary SLMs, the total informa-
tion content in the beginning is 16MN bits. At the end, we ob-
tain the full-complex SLM, which has MN pixels, where each
pixel has an information content of 16bits, so the information
content of the full-complex SLM is also 16MN bits. Hence, the
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Fig. 1. (a) Complex numbers obtained with the weighting
coefficients given in Eq. (1). (b) Complex numbers obtained with
the weighting coefficients given in Eq. (2).
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full-complex SLM is created out of the binary SLMs without
any loss in the information capacity. Therefore, information-
wise, binary SLMs are utilized in the most efficient manner.

Actually, this nice result follows as a consequence of the
fact that we create the binary SLM by forming a properly
weighted superposition of the binary SLMs. That is, our choice
of the weighting coefficients as in Eq. (1) is a wise choice.
To see what happens when we do not choose these coeffi-
cients wisely, consider taking wi ¼ 1 for all i, which corre-
sponds to directly adding all 16 binary SLMs without using
any weighting. If this were the case, then each pixel of S
(obtained as S ¼ B0 þ B1 þ…þ B15) could only be set to
−16;−14;−12;…; 12; 14; 16. So, only 17 different values would
be available for each pixel of the new SLM, which is quite
small compared to 216 (which is the number of different values
obtained with the former weights). Therefore, if we directly
superposed the binary SLMs without any weighting, we would
have used them in a quite inefficient manner while creating
the new SLM (and it would not be possible to regard the new
SLM as a full-complex one at all since only 17 different values
would be available for each pixel). Therefore, a wise selection
of the weighting coefficients is crucial in our method.

As we have seen, our initial selection for the weighting coef-
ficients is a wise selection, but it is not the only possible wise
selection. For instance, again suppose that K ¼ 16, and sup-
pose the weighting coefficients are selected as

wi ¼
����1 − e

jπ
16

2

����ejiπ16 ð2Þ

for 0 ≤ i ≤ 15, i ∈ Z. Using these coefficients, each pixel of
S can be set to one of the complex numbers displayed in
Fig. 1(b). These complex numbers are different from the ones
shown in Fig. 1(a), but again there are 216 different complex
numbers on this figure and they have a good coverage of the
complex plane. Thus, the new coefficients can also be used to
create a 16bit full-complex SLM as well. Many other nice
selections (not listed here) for the weighting coefficients are
also possible.

Note that our choice of K and wis determines the values
that are available for a pixel of S. That is, if during some
application, the desired value for a pixel of S is not among
the available values, we should first perform a quantization.
Therefore, our choice of K and wis actually defines a quanti-
zer on the complex plane. In order to achieve optimum per-
formance, we should design this quantizer (i.e., choose K and
wis) by taking into account the statistical properties of the
analog source. Earlier, we provided examples for the K ¼ 16
case. However, in some applications, smaller values of K
can be sufficient. For instance, in [4,28], it is discussed that
even 4 bit quantization can be quite sufficient for holographic
applications.

In summary, our generic method for creating full-complex
SLMs out of binary SLMs can be described as follows: Using
some optical system, effectively form a weighted superposi-
tion of K binary SLMs to obtain a new SLM, where K is suffi-
ciently large. Select the weights such that each pixel of the
new SLM can be set to 2K different complex values, where
these values also have a satisfactory coverage of the complex
plane. Under these conditions, the new SLM can be regarded
as a full-complex one. In this way, information-wise, the

binary SLMs are utilized in the most efficient manner while
creating the full-complex SLM.

Before closing this section, let us discuss how to configure
the binary SLMs in order to make the new SLM S equal to
some desired full-complex SLM denoted by Sd. That is, we
wish to determine B0;B1;…;BK−1 such that we achieve
S ¼ Sd, where S ¼ w0B0 þw1B1 þ…þwK−1BK−1. Let us as-
sume that the weighting coefficients are selected wisely such
as in Eq. (1) or in Eq. (2), so that each pixel of S can be set to
2K different complex values. Let us also assume that Sd is
already quantized. Then, for each pixel of Sd, we should
solve the equation �sd½m;n� ¼ P

K−1
i¼0 wi

�bi½m;n� and determine
�bi½m;n� under the constraint that �bi½m;n� ¼ �1. An easy meth-
od is to prepare a lookup table that holds the mapping
between the possible binary patterns of size 1 × K and the
complex numbers produced by them and use this lookup table
to determine �b0½m;n�; �b1½m;n�;…; �bK−1½m;n�. Note that this
lookup table will have 2K entries. When K ≤ 16, such a lookup
table can be handled easily with today’s computation and stor-
ing technology. If the achievable complex numbers are listed
in the lookup table in an intelligent manner, search times may
be minimized or, in certain cases, no search may be needed
at all.

3. PRACTICAL IMPLEMENTATION
USING A 4f SYSTEM
In the previous section, we described our generic method for
creating a K bit SLM out of K binary SLMs. We carried that
discussion at an abstract level without adhering to a specific
optical system and concluded that we can successfully create
the full-complex SLM if we have some kind of an optical sys-
tem that effectively forms a properly weighted superposition
of K binary SLMs. In this section, we propose an optical
system that forms this weighted superposition. We assume
that we have a binary SLM of size PM × QN at hand, and
out of it, we will create a PQ bit SLM of size M × N , where
M;N; P;Q ∈ Zþ. While doing so, we will view the binary
SLM as a collection of PQ sub-SLMs, where each sub-SLM
is also binary and has size M × N . We will form the weighted
superposition of these sub-SLMs to obtain the PQ bit
SLM. We explain our optical system in three subsections.
In Subsection 3.A, we propose a simple linear shift invariant
(LSI) system through which we obtain the weighted superpo-
sition of the sub-SLMs. In Subsection 3.B, we consider a
bandlimited version of the LSI system we propose in Subsec-
tion 3.A because although we planned a 4f system-based im-
plementation, the initial LSI system has infinite bandwidth, so
it is not possible to practically implement. In Subsection 3.C,
we propose a 4f system that implements the bandlimited LSI
system considered in Subsection 3.B.

A. LSI System to Form the Weighted Superposition of
Binary SLMs
Consider a binary SLM that has PM × QN pixels. Let Δx

and Δy denote the pixel periods of the SLM. Let aðx; yÞ de-
note the pixel aperture function of the SLM such that
aðx; yÞ ¼ 0 for x∉½0;Δx� or y∉½0;Δy�. In most cases,
aðx; yÞ ¼ rectð x

Δx
− 0:5Þrectð y

Δy
− 0:5Þ, where rectðxÞ ¼ 1 for

jxj < 0:5, rectðxÞ ¼ 0:5 for jxj ¼ 0:5, and rectðxÞ ¼ 0 for
jxj > 0:5. Let �b½m;n� denote the value of the ðm;nÞth SLM
pixel (m;n ∈ Z) for 0 ≤ m ≤ PM − 1 and 0 ≤ n ≤ QN − 1 such
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that �b½m;n� can be set to either −1 or 1. If bðx; yÞ denotes the
complex transmittance of the binary SLM, we have

bðx; yÞ ¼ aðx; yÞ � �
XPM−1

m¼0

XQN−1

n¼0

�b½m;n�δðx −mΔx; y − nΔyÞ:

ð3Þ

In Eq. (3), �� denotes the 2D convolution operation
such that f 1ðx; yÞ � �f 2ðx; yÞ ¼

R
∞
−∞

R
∞
−∞ f 1ðx0; y0Þf 2ðx − x0;

y − y0Þdx0dy0. With the definitions above, the SLM is assumed
to lie in the region 0 ≤ x ≤ PMΔx and 0 ≤ y ≤ QNΔy. Note that
we can view our binary SLM as a collection of PQ sub-SLMs
(which are also binary) where each sub-SLM consists of
M × N pixels. In this respect, we can write bðx; yÞ as

bðx; yÞ ¼
XP−1
p¼0

XQ−1
q¼0

bp;qðx − pMΔx; y − qNΔyÞ; ð4Þ

where bp;qðx; yÞ denotes the complex transmittance of the
ðp; qÞth sub-SLM and is given as

bp;qðx; yÞ ¼ bðxþ pMΔx; yþ qNΔyÞrect
�
x − 0:5MΔx

MΔx

�

× rect

�
y − 0:5NΔy

NΔy

�
ð5Þ

for 0 ≤ p ≤ P − 1 and 0 ≤ q ≤ Q − 1. Note that all sub-SLMs have
pixel aperture function aðx; yÞ and pixel periods Δx and Δy.

When forming the binary SLM, the ðp; qÞth sub-SLM is placed
in the region pMΔx ≤ x ≤ ðpþ 1ÞMΔx and qNΔy ≤ y ≤

ðqþ 1ÞNΔy [a one-dimensional (1D) illustration is provided
in Fig. 2, where P ¼ 4 and the sub-SLMs are denoted by b0,
b1, b2, and b3]. Our purpose is to form a weighted superposi-
tion of these sub-SLMs. We will accomplish this by processing
bðx; yÞ with a suitably defined LSI system.

Consider an LSI system whose impulse response hðx; yÞ is
given as

hðx; yÞ ¼
XP−1
p¼0

XQ−1
q¼0

�w½p; q�δðx − pMΔx; y − qNΔyÞ; ð6Þ

where �w½p; q� ∈ C for 0 ≤ p ≤ P − 1, 0 ≤ q ≤ Q − 1, p; q ∈ Z.
As seen, hðx; yÞ consists of a P × Q grid of impulses that
are spaced by MΔx and NΔy. The ðp; qÞth impulse is located
at ðpMΔx; qNΔyÞ and has strength �w½p; q�. IfHðνx; νyÞ denotes
the frequency response of this LSI system, we have

Hðνx; νyÞ ¼ Ffhðx; yÞg

¼
Z

∞

−∞

Z
∞

−∞

hðx; yÞ expf−j2πðxνx þ yνyÞgdxdy

¼
XP−1
p¼0

XQ−1
q¼0

�w½p; q�e−j2πfνxpMΔxþνyqNΔyg: ð7Þ

It is easy to see that Hðνx; νyÞ is periodic with periods 1
MΔx

and 1
NΔy

.

Fig. 2. 1D illustration of the process through which sðx; yÞ is created out of bðx; yÞ. bðxÞ, hðxÞ, gðxÞ, sðxÞ, and �w½p� respectively denote the 1D
counterparts of bðx; yÞ, hðx; yÞ, gðx; yÞ, sðx; yÞ, and �w½p; q�, which are discussed in the text. In the 1D case, we assumed that the binary SLM is divided
into four sub-SLMs of size M , and denoted these sub-SLMs with b0, b1, b2, and b3.
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Suppose bðx; yÞ is processed by this LSI system. Let
gðx; yÞ denote the resulting output such that gðx; yÞ ¼
bðx; yÞ � �hðx; yÞ. Then we can write

gðx; yÞ ¼
XP−1
p¼0

XQ−1
q¼0

�w½p; q�bðx − pMΔx; y − qNΔyÞ: ð8Þ

The spatial support of gðx; yÞ is given by the region 0 ≤ x ≤

ð2P − 1ÞMΔx and 0 ≤ y ≤ ð2Q − 1ÞNΔy. Examining gðx; yÞ, we
see that the LSI system actually forms a superposition of
shifted and weighted replicas of bðx; yÞ. Such LSI systems
are usually called echo systems in the signal processing litera-
ture, since 1D versions of them are used to produce synthe-
tically generated echoes of sound signals in audio processing.

Now, define sðx; yÞ such that

sðx; yÞ ¼ gðx; yÞrect
�
x − ðP − 0:5ÞMΔx

MΔx

�

× rect

�
y − ðQ − 0:5ÞNΔy

NΔy

�
: ð9Þ

Hence, sðx; yÞ is obtained by windowing gðx; yÞ in space.
The window selects the portion of gðx; yÞ lying in the region
ðP − 1ÞMΔx ≤ x ≤ PMΔx and ðQ − 1ÞNΔy ≤ y ≤ QNΔy. It is
straightforward to show that

sðx; yÞ ¼
XP−1
p¼0

XQ−1
q¼0

�w½P − 1 − p;Q − 1 − q�bp;qðx − x0; y − y0Þ

ð10Þ

with x0 ¼ ðP − 1ÞMΔx and y0 ¼ ðQ − 1ÞNΔy.
Equation (10) is the result we have been seeking. We see

that sðx; yÞ is obtained as the weighted superposition of
bp;qðx; yÞ, where the weights are given by �w½p; q� (a 1D illus-
tration of the process through which sðx; yÞ is obtained from
bðx; yÞ is provided in Fig. 2 for P ¼ 4). Hence, sðx; yÞ repre-
sents the complex transmittance of a new SLM that is ob-
tained as the weighted superposition of the sub-SLMs of the
binary SLM. Note that the new SLM also has the pixel aperture
function aðx; yÞ and pixel periods Δx and Δy. It lies in the re-
gion ðP − 1ÞMΔx ≤ x ≤ PMΔx and ðQ − 1ÞNΔy ≤ y ≤ QNΔy.
We know from Section 2 that, properly choosing �w½p; q�,
we can make this new SLM a PQ bit SLM. We also know that
when P and Q are chosen sufficiently large (such as P ¼
Q ¼ 4), the new SLM can be regarded as a full-complex one.
Hence, using the proposed LSI system, we can create an M ×
N full-complex (PQ bit) SLM out of a PM × QN binary SLM.

As an illustration for the P ¼ Q ¼ 4 andM ¼ N ¼ 256 case,
Fig. 3 shows a 1024 × 1024 binary SLM. Figures 4 and 5 respec-
tively show the real and imaginary parts of gðx; yÞ ¼ hðx; yÞ �
�bðx; yÞ when �w½p; q� are taken as

2
664
�w½0; 0� �w½0; 1� �w½0; 2� �w½0; 3�
�w½1; 0� �w½1; 1� �w½1; 2� �w½1; 3�
�w½2; 0� �w½2; 1� �w½2; 2� �w½2; 3�
�w½3; 0� �w½3; 1� �w½3; 2� �w½3; 3�

3
775

¼ 1
255

2
664
j27 j26 j25 j24

j23 j22 j21 j20

27 26 25 24

23 22 21 20

3
775: ð11Þ

Figures 6(a) and 6(b), which are respectively the magnified
versions of the signals within the windows in Figs. 4 and 5,
show the real and imaginary parts of sðx; yÞ. As seen, a
256 × 256 full-complex SLM has been successfully created
out of the binary SLM. (In this example, we took Δx ¼ Δy ¼
10 μm and assumed rectangular pixels. In Fig. 3, black pixels
have value −1 and white pixels have value 1.)

B. Imposing a Bandwidth Limitation
In theory, the LSI system proposed in Subsection 3.A enables
us to effectively create a PQ bit M × N SLM out of a PM × QN
binary SLM. It is well known that 4f systems can be used
to optically implement LSI systems, and we do so in
Subsection 3.C. However, before proceeding, we analyze
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Fig. 3. Binary SLM pattern.
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Fig. 4. Real part of gðx; yÞ.
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the effects of imposing a bandwidth restriction to the LSI sys-
tem we used in Subsection 3.A. The reason is, the frequency
response Hðνx; νyÞ of that LSI system occupies the entire
frequency spectrum, whereas a 4f setup that consists of
finite-sized lenses and optical masks can only support a finite
bandwidth. In this respect, let us consider a new LSI system
with impulse response hLðx; yÞ such that

hLðx; yÞ ¼ hðx; yÞ � �hBðx; yÞ; ð12Þ

where hBðx; yÞ denotes the impulse response of an ideal low-
pass filter with bandwidths Bx and By such that

hBðx; yÞ ¼ BxBysincðxBxÞsincðyByÞ ð13Þ

with sincðxÞ ¼ sinðπxÞ
πx . Hence, the new LSI system is the ban-

dlimited version of the original LSI system. Note that, if
HLðνx; νyÞ and HBðνx; νyÞ respectively denote the Fourier

transforms of hLðx; yÞ and hBðx; yÞ, we have HBðνx; νyÞ ¼
rectðνxBx

ÞrectðνyBy
Þ and HLðνx; νyÞ ¼ Hðνx; νyÞHBðνx; νyÞ. Let

gLðx; yÞ denote the output when the binary SLM is processed
by the new LSI system, so that gLðx; yÞ ¼ bðx; yÞ � �hLðx; yÞ.
We can also write

gLðx; yÞ ¼ gðx; yÞ � �hBðx; yÞ; ð14Þ

which indicates that the output of the new LSI system is a
blurred version of the output of the original LSI system.
Recall that when the original LSI system was used, the
full-complex SLM [represented by sðx; yÞ] was selected out
of gðx; yÞ with a simple windowing operation in space.
Suppose we apply the same window to gLðx; yÞ and denote
the resulting output with sLðx; yÞ such that sLðx; yÞ ¼
gLðx; yÞrectðx−ðP−0:5ÞMΔx

MΔx
Þrectðy−ðQ−0:5ÞNΔy

NΔy
Þ. Assuming that the

blurring is not too strong (i.e., Bx and By are sufficiently large,
or hBðx; yÞ is sufficiently narrow) so that leakages due to
infinite tails of hBðx; yÞ can be ignored, we can write

sLðx; yÞ ≈ sðx; yÞ � �hBðx; yÞ: ð15Þ

Hence, when the new LSI system is used, we approximately
obtain a blurred version of the full-complex SLM pattern re-
presented by sðx; yÞ. Since the free space propagation is also a
LSI system, the light field produced by the SLM at any distance
will also experience the same blurring. Obviously, we do not
want to lose any important information present in the gener-
ated light field due to this blurring effect. Thus, there is a limit
to the degree of blurring we can tolerate. It is well known that
the light field produced by a pixellated SLM consists of dif-
fraction orders, which are shifted, modulated, and dispersed
versions of each other, so they essentially carry the same in-
formation [15,29,30]. The order that has the lowest frequency
content is called the central order. The blurring will not cause
any information loss as long as the central order remains
unaffected from it. This is the case if Bx and By are greater
than the bandwidths of the central order, which are given
as 1

Δx
and 1

Δy
in our case. Hence, the bandlimited LSI system

can be confidently used instead of the original LSI system if

Bx >
1
Δx

and By >
1
Δy

: ð16Þ

Indeed, if the above conditions are met near the limit
(i.e., Bx ≈ 1

Δx
and By ≈ 1

Δy
), central order of the light field pro-

duced by the full-complex SLM is preserved (with little distor-
tion) while higher orders are almost eliminated. This result
may be explicitly desired in certain applications, such as
3D displays, where presence of higher orders is disturbing.
As for an illustration, assume P ¼ Q ¼ 4, M ¼ N ¼ 256, and
consider the 1024 × 1024 binary SLM depicted in Fig. 7
(Δx ¼ Δy ¼ 10 μm, the SLM has rectangular pixels). Suppose
the weighting coefficients are as given in Eq. (11). If we pro-
cessed this binary SLM with the original LSI system (no band
limitation), we would obtain the full-complex SLM depicted in
Fig. 8(a), which would produce the diffraction field depicted
in Fig. 8(b) at a distance of 50 cm. Note that, since the SLM
in Fig. 8(a) has rectangular pixels, the diffraction field in
Fig. 8(b) consists of diffraction orders (the bright guitar at the
center is the central diffraction order while its replicas are the
higher diffraction orders). Next, Fig. 8(c) depicts the blurred
version of the full-complex SLM depicted in Fig. 8(a) that
we obtain when we process the binary SLM with the new
LSI system with bandwidths given by Bx ¼ 1

Δx
and By ¼ 1

Δy
.

Figure 8(d) displays the new diffraction field. As explained
earlier, the central order is almost unaffected from the
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Fig. 5. Imaginary part of gðx; yÞ.
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blurring, while the higher orders are almost eliminated. [In
these figures, hzðx; yÞ denotes the impulse response of free
space propagation. We computed the diffraction fields taking
hzðx; yÞ ¼ ðjλzÞ−1ej2πzλ expfjπλz ðx2 þ y2Þg, which is the impulse
response of the commonly used Fresnel approximation with
z denoting the propagation distance and λ denoting the wave-
length. We took λ ¼ 632:9nm.]

C. Implementation with a 4f System
Now, the ground for optical implementation is established.
For a single wavelength, the LSI system described by Eq. (12)
can be optically implemented using a 4f system. Consider the
system depicted in Fig. 9. As seen, two positive thin lenses
(denoted by L1 and L2) with focal lengths f (f > 0) are placed
at z ¼ f and z ¼ 3f planes. If the illumination wavelength is λ,
the complex transmittances of these lenses are given by

tlðx; yÞ ¼ exp

�
−
jπ
λf ðx

2 þ y2Þ
�
: ð17Þ

At the Fourier plane (z ¼ 2f plane), an optical thin mask
(that we name the Fourier plane mask) denoted by MF is
placed. LetmF ðx; yÞ denote the complex transmittance of this
mask. At the output plane (z ¼ 4f plane), another thin mask
(that we name the output plane mask) denoted by MO is
placed. Let mOðx; yÞ denote the complex transmittance of
this mask. We assume that both of these masks are passive
components, implying that their magnitude transmission at
any point should be less than or equal to unity. We simply as-
sume that maxfjmF ðx; yÞjg ¼ 1 and maxfjmOðx; yÞjg ¼ 1. Let
u0ðx; yÞ denote the light field over the input plane (z ¼ 0
plane). As explained in [31], according to the Fresnel scalar
diffraction theory, the light field just to the left of the output
plane mask is given as

u4f −ðx; yÞ ¼
e
j8πf
λ

ðjλf Þ2 u0ð−x;−yÞ � �MF

�
x
λf ;

y
λf

�
; ð18Þ

where MF ðνx; νyÞ denotes the Fourier transform of mF ðx; yÞ.
We see that if we take u0ðx; yÞ ¼ j2e

−j8πf
λ bð−x;−yÞ (which cor-

responds to placing the 180° rotated version of the binary SLM
pattern to the third quadrant of the input plane and illuminat-
ing it with a normally incident plane wave of complex ampli-

tude j2e
−j8πf

λ ) and if we have MF ð xλf ; y
λfÞ ¼ 1

η ðλf Þ2hLðx; yÞ (where
1
η is included to satisfy the passive mask condition), we can

obtain u4f −ðx; yÞ ¼ 1
η gLðx; yÞ. Therefore, we should have

mF ðx; yÞ ¼
1
ηHL

�
−
x
λf ;−

y
λf

�

¼ 1
ηHB

�
−
x
λf ;−

y
λf

�
H
�
−
x
λf ;−

y
λf

�

¼ 1
η rect

�
x
Wx

�

× rect

�
y
Wy

�XP−1
p¼0

XQ−1
q¼0

�w½p; q�ej2πλf fxpMΔxþyqNΔyg; ð19Þ

where Wx ¼ Bxλf , Wy ¼ Byλf . It is easy to see that mF ðx; yÞ
corresponds to the complex transmittance of a periodic
grating that is windowed in space, where the grating periods

are λf
MΔx

and λf
NΔy

and the window widths are Wx and Wy. Be-

cause of Eq. (16), we should have Wx > λf
Δx

and Wy > λf
Δy
, so at

least M × N periods of the grating should be preserved after
windowing. For the weights given in Eq. (11), mF ðx; yÞ is
illustrated in Fig. 10(a) for five periods in each dimension.
(In this figure, P ¼ Q ¼ 4, M ¼ N ¼ 256, Δx ¼ Δy ¼ 10 μm,
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Fig. 7. Binary SLM pattern.

Fig. 8. (a) Full-complex SLM pattern obtained by processing the bin-
ary SLM pattern in Fig. 7 with the LSI system described by hðx; yÞ.
(b) Resulting diffraction field at 50 cm. (c) Full-complex SLM pattern
obtained with the LSI system described by hBðx; yÞ. (d) Resulting dif-
fraction field at 50 cm.
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f ¼ 10 cm, λ ¼ 632:9nm.) Recall that the 1
η factor is included in

Eq. (19) to ensure that maxfjmF ðx; yÞjg ¼ 1. The value of η is
given as

η ¼ max

(����XP−1
p¼0

XQ−1
q¼0

�w½p; q�ej2πfx0pþy0qg
����
)

ð20Þ

for x0; y0 ∈ R.
Finally, to select 1

η sLðx; yÞ out of u4f −ðx; yÞ ¼ 1
η gLðx; yÞ, we

can use the following simple output plane mask

mOðx; yÞ ¼ rect
�
x − ðP − 0:5ÞMΔx

MΔx

�
rect

�
y − ðQ − 0:5ÞNΔy

NΔy

�
:

ð21Þ

At the end, we obtain u4fþðx; yÞ ¼ u4f −ðx; yÞmOðx; yÞ ≈
1
η sLðx; yÞ as desired.

D. Discussion about the 4f Setup
First, we should remind that the proposed 4f setup is analyzed
using Fresnel scalar diffraction theory, which is accurate un-
der paraxial cases, i.e., the light rays traveling throughout the
system must be confined to the vicinity of the optical axis and
they should have small angles. Hence, the physical optical set-
up must be prepared accordingly. The binary SLM size should
not be too large, and the focal length of the positive lenses
should not be too small. Usually, these are already a straight-
forward consequence of typical component sizes in an optical
lab environment. We also assumed during the analysis that the
overall bandwidth of the system is mainly restricted by the

Fourier plane mask. This means that the lens apertures should
not be too small, so that they do not cause a further restric-
tion on the bandwidth. Under these conditions, Eqs. (17)–(21)
provide a fairly accurate description of behavior of the
physical setup.

Second, we should note that other optical implementations
are also possible for the generic method proposed in Section 2.
Assuming that we start with a single PM × QN binary SLM, the
critical issue is that, the binary SLM should be divided into PQ
sub-SLMs of size M × N and a properly weighted superposi-
tion of these sub-SLMs must be formed optically in a coherent
manner. That superposition can be effectively formed using
other optical components, such as beam splitters or prisms.
However, in such options, each sub-SLM must be illuminated
with a plane wave whose complex amplitude is equal to the
corresponding weighting coefficient of that sub-SLM. Hence,
a nonuniform illumination must be used for the binary SLM.
In addition, since there are many sub-SLMs, we would need
many beam splitters or prisms, whose physical dimensions
must be suitable for placing side by side. All these factors
complicate the implementation. But the presented 4f system
only requires the lenses and the Fourier and output plane
masks. A common plane wave illumination is sufficient for the
entire binary SLM. Then, the 4f system automatically handles
the mentioned properly weighted superposition of the sub-
SLMs. Moreover, while creating the full-complex SLM, adjust-
ing the widths of the Fourier plane mask, we can get rid of the
diffraction orders of the SLM output. Hence, while not being
the only possible option, we believe that the 4f system is a
convenient option.

Finally, let us discuss the main drawbacks of the proposed
4f system. One of the significant drawbacks is that precise
alignment is required between the optical components. For
instance, if other components are perfectly placed but the
Fourier plane mask is slightly off-positioned on the transverse
plane, the sub-SLMs will be superposed with weights that are
different than intended, and this will result in a malfunctioning
of the system. However, we believe that easy test procedures
can be developed to achieve the required precision in align-
ment in an optical environment.

Another drawback might be due to the light efficiency of
the 4f system. In practice, the input power (i.e., the power
used to illuminate the binary SLM) will be partly lost as the
light passes through the binary SLM, the lenses, and the
masks, so that only a fraction of the input power will be de-
livered to the full-complex SLM and to the observation region.
Actually, if we ignore the losses due to the binary SLM, the

Fig. 9. 4f setup. L1 and L2 denote positive thin lenses of focal length f . MF and MO respectively denote the Fourier and output plane masks.
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Fig. 10. (a) Fourier plane mask for the weights given in Eq. (11).
(b) Pixellated Fourier plane mask that should be used for the weights
given in Eq. (11). Both masks are displayed for five periods in each
dimension, and only real parts are shown.
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lenses, and the finite aperture size of the Fourier plane mask,
and if we assume that the binary SLM pixels are independently
distributed and for each pixel the values −1 or 1 are equally
likely, a straightforward analysis yields that, on average, the
fraction of the input power delivered to the full-complex SLM
(i.e., the light efficiency of the system) is given by

Leff ¼
1
PQ

1
η2

XP−1
p¼0

XQ−1
q¼0

j�w½p; q�j2; ð22Þ

where η is as given in Eq. (20). Hence, Leff depends on the
selection for �w½p; q�. It can be shown that Leff varies between

1
ðPQÞ2 and

1
PQ. For instance, for the P ¼ Q ¼ 4 case, Leff changes

between 0.39% and 6.25%, and for the weights given in
Eq. (11), it is about 1.08%. For some applications, these effi-
ciencies might be low. But as we pointed out in Section 2,
for holographic purposes, even 4bit quantization is usually
sufficient [4,28], so taking P ¼ 2 and Q ¼ 2, Leff can be made
to vary between 12.5% and 25%. We believe that, at least for 3D
display purposes, this efficiency is sufficient, comparable to
that of other schemes based on binary SLMs, and can be tol-
erated to enjoy the benefits of having a full-complex SLM.

4. PIXELLATED AND QUANTIZED FOURIER
PLANE MASKS
The Fourier plane mask, denoted by mF ðx; yÞ and given in
Eq. (19), is the key component of the proposed 4f system. This
mask should be physically produced and placed in the Fourier
plane. The problem is, the mask given in Eq. (19) is a contin-
uous function of space coordinates taking on continuously
varying gray values, so it is hard to physically produce. In this
section, we consider the usage of pixellated and quantized
Fourier plane masks, since such masks are easier to produce
in practice.

Actually, the mask given in Eq. (19) is a continuous function
of space coordinates because Hðνx; νyÞ given in Eq. (7) is a
continuous function of νx and νy. Recall thatHðνx; νyÞ denotes
the frequency response of the LSI system discussed in Subsec-
tion 3.A. Now, suppose instead of that system, we use another
LSI system whose frequency responseHSðνx; νyÞ is defined as:

HSðνx; νyÞ ¼ rectðνxPMΔxÞrectðνyQNΔyÞ

� �
�
Hðνx; νyÞ

X∞
r¼−∞

X∞
t¼−∞

δ
�
νx −

r
PMΔx

;

νy −
t

QNΔy

��
: ð23Þ

As seen, HSðνx; νyÞ is obtained by sampling Hðνx; νyÞ and
then applying zero-order interpolation on the resulting dis-
crete signal. Recall that Hðνx; νyÞ is periodic with 1

MΔx
and 1

NΔy
.

Since it is sampled with sampling periods 1
PMΔx

and 1
QNΔy

,

HSðνx; νyÞ is also periodic with 1
MΔx

and 1
NΔy

. Because of zero-

order hold interpolation, HSðνx; νyÞ has a piecewise constant
structure. Actually, this is the main reason for us to consider
the new LSI system instead of the original LSI system; if we
manage to create the full-complex SLM using the new LSI
system, the new Fourier plane mask given as

mS
F ðx; yÞ ¼

1
ηHB

�
−
x
λf ;−

y
λf

�
HS

�
−
x
λf ;−

y
λf

�
ð24Þ

will become a pixellated mask. However, we should first show
that we can also create the full-complex SLM using the new
LSI system.

Taking the inverse Fourier transform of HSðνx; νyÞ, we see
that the impulse response of the new LSI system is given as

hSðx; yÞ ¼ sinc

�
x

PMΔx

�
sinc

�
y

QNΔy

�

×
X∞
r¼−∞

X∞
t¼−∞

hðx − rPMΔx; y − tQNΔyÞ; ð25Þ

where hðx; yÞ denotes the impulse response of the original
LSI system [see Eq. (6)]. As seen, sampling of Hðνx; νyÞ
causes a periodic replication of hðx; yÞ in space where the
replicas are spaced by PMΔx and QNΔy, and zero-order
hold interpolation creates the sinc roll-off factor. Similar
to hðx; yÞ, hSðx; yÞ consists of impulses that are spaced
by MΔx and NΔy, but unlike hðx; yÞ, the number of
impulses in hSðx; yÞ is infinite. Similar to Subsection 3.A,
let gSðx; yÞ ¼ bðx; yÞ � �hSðx; yÞ and sSðx; yÞ ¼ gSðx; yÞ
rectðx−ðP−0:5ÞMΔx

MΔx
Þrectðy−ðQ−0:5ÞNΔy

NΔy
Þ. It is easy to show that

sSðx; yÞ ¼
XP−1
p¼0

XQ−1
q¼0

�w0½P − 1 − p;Q − 1 − q�bp;qðx − x0; y − y0Þ;

ð26Þ

where x0 ¼ ðP − 1ÞMΔx, y0 ¼ ðQ − 1ÞNΔy, and

�w0½p; q� ¼ �w½p; q�sinc
�
p
P

�
sinc

�
q
Q

�
ð27Þ

for 0 ≤ p ≤ P − 1 and 0 ≤ q ≤ Q − 1. We see upon comparison of
Eq. (26) with Eq. (10) that, when we use the new LSI system,
the only change is that, when forming sSðx; yÞ, sub-SLMs are
weighted by �w0½p; q� instead of �w½p; q�. The main reason for
this change is the zero-order hold interpolation that is used
when obtaining HSðνx; νyÞ from Hðνx; νyÞ. However, this
change does not create any problem. In particular, now we
should specify �w0½p; q� rather than specifying �w½p; q�. After spe-
cifying �w0½p; q�, we should find �w½p; q� according to Eq. (27),
and then we should design the new LSI system according
to Eqs. (7) and (23). When this is done, the new LSI system
will produce the same output as the original LSI system
(i.e., sSðx; yÞ ¼ sðx; yÞ), implying that instead of the old Four-
ier plane mask given in Eq. (19), we can use the mask given in
Eq. (24). This new mask, which has a pixellated structure, is

also periodic in its spatial support with periods λf
MΔx

and λf
NΔy

.

The pixel widths of the new mask are given by λf
PMΔx

and λf
QNΔy

.

Therefore, in each period of the mask, there are P × Q pixels.

Note that, since the mask widths must be greater than λf
Δx

and
λf
Δy

by Eq. (16), the new mask should have at least PM × QN

pixels.
If the physical production process only dictates that the

Fourier plane mask should be pixellated, but no quantization
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on pixel values is required, given �w0½p; q�, we only need to
compute �w½p; q�,Hðνx; νyÞ, andHSðνx; νyÞ as explained earlier,
and prepare the pixellated Fourier plane mask mS

F ðx; yÞ ac-
cording to Eq. (24). For instance, for the P ¼ Q ¼ 4 case, if we
want �w0½p; q� to be equal to the weights given in Eq. (11), the
pixellated mask shown in Fig. 10(b) should be used. The mask
in Fig. 10(b) produces the same output (possibly up to a con-
stant amplitude factor) with the mask in Fig. 10(a).

In practice, usually, there is also a quantization constraint
on the pixel values of the Fourier plane mask. In such cases,
the correct approach is to take the Fourier plane mask as
given and determine the implied �w0½p; q�. Given mS

F ðx; yÞ,
using simple Fourier transform relations, it can be shown that
the implied �w0½p; q� becomes

�w0½p; q� ¼ 1
16

sinc
�
p
P

�
sinc

�
q
Q

�

×
XP−1
r¼0

XQ−1
t¼0

mS
F

�
rλf

PMΔx
;

tλf
QNΔy

�
e
j2π
�

pr
Pþqt

Q

�
ð28Þ

for 0 ≤ p ≤ P − 1 and 0 ≤ q ≤ Q − 1. Note that, in the above
equation,mS

F ð rλf
PMΔx

; tλf
QNΔy

Þ denotes the pixel values of the Four-
ier plane mask. In the presence of a quantization constraint,
Fourier plane masks should be designed according to the
above equation. In particular, we should first assign the values
of the pixels of the mask taking into account the quantization
constraint on them. Then, we should compute the implied
weights according to the above equation, and then we should
compute the complex values achievable by a pixel of the new
SLM based on these weights. If these values are few in number
or have poor coverage of the complex plane, we should rede-
sign the mask.

Assuming P ¼ Q ¼ 4, we go through a number of examples
and show that even Fourier plane masks with quite limited
pixel values can lead to �w0½p; q� that generate a large number
of complex values for the pixels of the new SLM. Figure 11(a)

illustrates a mask whose pixels are equal to �1 or �j. Hence,
there are only four levels available for a pixel of the mask.
Figure 11(b) illustrates the complex numbers available for
a pixel of the new SLM when we use this mask. There are 216

different complex numbers on this figure. Another four-level
example is illustrated in Figs. 11(c) and 11(d). The number of
achievable complex numbers is again 216. [In Figs. 11(a) and
11(c), white, light gray, dark gray, and black pixels respec-
tively have values 1, j, −j, and −1.] Therefore, even using
the simple masks illustrated in Fig. 11, we can produce the
new full-complex SLM without any loss in the information
content. Moreover, the achievable complex numbers have a
good coverage of the complex plane. Even simpler masks
can be used if we accept a slight degradation in this coverage.
Figures 12(a) and 12(c) illustrate two masks whose pixels are
equal to �1 or 0. Hence, there are only three levels available
for a pixel of the mask. Figures 12(b) and 12(d) illustrate the
resulting complex numbers that can be achieved. There are
again 216 different complex numbers in both figures, but their
coverage of the complex plane is slightly worse than the
four-level examples. [In Figs. 12(a) and 12(c), white, gray,
and black pixels respectively have values 1, 0, and −1.) Yet
even simpler masks can be used if we accept to achieve a
reduced number of complex numbers (i.e., if we tolerate
some loss in the information content). Figures 13(a) and 13(c)
illustrate two binary masks whose pixels are equal to �1.
Figures 13(b) and 13(d) illustrate the resulting complex
numbers that can be achieved. This time, there are only 215

different complex numbers in both figures (implying that the
full-complex SLM is 15bit, so 1 bit of information is lost per
pixel), which is lower than 216 but still high, and the coverage
of the complex plane is acceptable. [In Figs. 13(a) and 13(c),
white and black pixels respectively have values 1 and −1.] The
1 bit per pixel loss in the information content may be tolerated
for the convenience of using binary masks, which are quite
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Fig. 11. (a), (c) Four-level Fourier plane masks. (b), (d) Achievable
complex numbers.
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Fig. 12. (a), (c) Three-level Fourier plane masks. (b), (d) Achievable
complex numbers.
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easy to physically produce. These examples show that as the
quantization constraint on the Fourier plane mask gets
harsher, the number of available complex values for a pixel of
the SLM can decrease and the coverage of the complex plane
can get worse. However, since the number of available levels
is still large, given a typical desired full-complex SLM pattern,
the quantization error will be still quite low (though it may
increase slightly) and no noticeable degradation in final recon-
struction quality will take place.

To sum up, Eqs. (26) and (27) indicate that, instead of any
continuous Fourier plane mask, we can design and use an
equivalent pixellated mask and get the same output. The ex-
amples in Figs. 11–13 indicate that, even in the case of a severe
quantization constraint, it is possible to design Fourier plane
masks such that the complex values that are available for a
pixel of the full-complex SLM are large in number and have
a good coverage of the complex plane. Therefore, pixellation
and quantization of the Fourier plane mask do not cause any
noticeable degradation in the system performance in terms of
reconstruction quality. However, in the case of a pixellated
mask, the light efficiency will be slightly decreased relative to
the continuous mask case. This is because of the fact that the
pixellated mask will cause the emergence of higher-order
waves, which divert some of the input power. These waves
travel in high angles and are blocked at the output plane mask
stage, causing a smaller portion of the input power to be de-
livered to the full-complex SLM and thus to the observation
region. Roughly, on average, the efficiency will be decreased
by about 20% at this stage relative to the continuous mask
case. This decrease can be minimized if phase-only Fourier
plane masks, such as the ones shown in Figs. 11 and 13, are
used. We assume that this additional loss can be tolerated for
the convenience of using pixellated and quantized Fourier
plane masks.

5. CONCLUSION
In this paper, we first proposed a generic method for effec-
tively creating full-complex SLMs out of binary SLMs. The
method relies on forming a properly weighted superposition
of binary SLMs. We showed that, in this manner, information-
wise, binary SLMs are utilized in the most efficient manner.
Then, we proposed a 4f system as a possible optical imple-
mentation of our generic method. In addition to forming
the full-complex SLM, this 4f setup also enables us to get
rid of the disturbing higher diffraction orders of the SLM out-
put. We showed that the parameters and components of the
system can easily be customized for different production tech-
nologies. One main drawback of the system is the precise
alignment requirement, but we believe that easy-to-apply op-
tical test procedures can be designed to satisfy it. Another
drawback may be due to light efficiency, but we assume that,
in 3D display applications, the levels are tolerable. Compared
to previous approaches, the most important feature of our ap-
proach is that we tried to use the full potential of the binary
SLMs when creating the full-complex SLMs. Actually, our gen-
eric method can be tailored to create full-complex SLMs out of
multilevel amplitude-only or phase-only SLMs. In this case,
less complicated optical systems can be used for optical im-
plementation. However, we believe that the robust behavior of
binary SLMs justify our choice for selecting them to create the
full-complex SLMs. We believe that, for commercially avail-
able binary SLMs, the proposed 4f system can be implemen-
ted within a small volume. Therefore, multiple replicas of the
4f system can be conveniently placed side by side to create
full-complex SLM arrays to be used in applications such as
3D displays.
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