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Fresnel integrals corresponding to different distances can be interpreted as scaled fractional Fourier transformations
observed on spherical reference surfaces. Transverse samples can be taken on these surfaces with separation that
increases with propagation distance. Here, we are concerned with the separation of the spherical reference surfaces
along the longitudinal direction. We show that these surfaces should be equally spaced with respect to the fractional
Fourier transform order, rather than being equally spaced with respect to the distance of propagation along the
optical axis. The spacing should be of the order of the reciprocal of the space-bandwidth product of the signals.
The space-dependent longitudinal and transverse spacings define a grid that reflects the structure of Fresnel
diffraction. © 2011 Optical Society of America
OCIS codes: 070.2575, 070.2580, 070.7345, 050.1940, 050.5082, 070.0070.

Fresnel integrals can be interpreted as scaled fractional
Fourier transformations observed on spherical reference
surfaces. Earlier, we showed that by appropriately
choosing sample points on these reference surfaces, it
is possible to represent the diffracted signals in a nonre-
dundant manner [1]. Here we show that these reference
surfaces should be spaced equally with respect to the
fractional Fourier transform order, rather than with re-
spect to the distance of propagation.
We introduce dimensionless coordinates [2] and work

with a single transverse dimension. Let f̂ �x� and F̂�σx�
denote the space and frequency representation of a sig-
nal. We use f �u� and F�μ� to denote corresponding func-
tions with dimensionless arguments u and μ as follows:
f̂ �x�≡ s−1∕2f �x∕s�, F̂�σx�≡ s1∕2F�sσx�, where s is a scal-
ing parameter.
The fractional Fourier transform (FRT) of a function

f �u� is denoted as f a�u�, where a is the FRT order [2].
The Fresnel integral describes the propagation of light
from one transverse plane along the optical axis to
another. The output field ĝ�x; z� is related to the input
field f̂ �x� by ĝ�x; z� � R

∞
−∞ ĥ�x − x0; z�f̂ �x0�dx0, where

ĥ�x; z� � exp�i2πz∕λ� exp�−iπ∕4��λz�−1∕2 exp�iπx2∕λz�,
where z is the distance of propagation and λ is the
wavelength.
The two-dimensional (2D) Fourier transform (FT) of

ĝ�x; z� can be found by first considering the FT with re-
spect to x, using the convolution property, and finally
transforming with respect to z:

Ĝ�σx; σz� � F̂�σx�δ�σz − �1∕λ − λσ2x∕2��: (1)

This function is a modulated impulsive edge along the
parabola σz � 1∕λ − λσ2x∕2 (the parabola in Fig. 1).
It is known that the Fresnel integral can be decom-

posed into an FRT followed by magnification followed
by chirp multiplication [2–6]:

ĝ�x; z� � ei2πz∕λe−iaπ∕4
�������
1
sM

r
exp

�
iπx2
λR

�
f a

�
x
sM

�
; (2)

where

a � 2
π arctan

λz
s2

; M �
������������������
1� λ2z2

s4

s
;

R � s4 � λ2z2
λ2z : (3)

If we choose to observe the diffracted light on a spherical
reference surface of radius R, the chirp multiplication
can be dispensed with, and we simply observe the FRT
of the input, magnified by M [2]. (The constant phase
terms ei2πd∕λe−iaπ∕4 are not of significance.) Equation (2)
holds true regardless of the choice of s.

We assume that the energy of the signal at the z � 0
plane is confined to an ellipse with diameters Δx and
Δσx in the space-frequency plane, in the sense that most
of the signal energy lies within this ellipse. Δx and Δσx
also correspond to the space and frequency extents of
the signal. Since a frequency extent of Δσx implies a
sampling interval of 1∕Δσx, we would need N �
Δx∕�1∕Δσx� � ΔxΔσx samples to characterize the sig-
nal in terms of its samples, a quantity also referred to
as the space-bandwidth product.

In [1], we showed that if we choose s �
�������������������
Δx∕Δσx

p
,

then the spatial and spatial frequency extents of the dif-
fracted signal on the spherical reference surface are

Fig. 1. Truncation of Ĝ�σx; σz� in the σz-σx plane.
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Δx0 � MΔx; Δσ0x � Δσx∕M; (4)

respectively. Note that with this choice of s, the space-
bandwidth product Δx0Δσ0x on this surface is the same
as that on the input plane (other values of s result in lar-
ger space-bandwidth products). This implies that the
number of samples Δx0∕�1∕Δσ0x� required to represent
the diffracted signal is the same as that required to repre-
sent the original signal, but these samples are spaced
further apart. In [1], we further discuss sampling and
computation issues [7–16]. It is also interesting to note
that this choice of s is the square root of the recently
proposed “space-bandwidth ratio” [17].
The fact that the spatial bandwidth Δσ0x of the field on

the spherical reference surface decreases with increas-
ing z leads us to inquire whether the local bandwidth
in the longitudinal direction also decreases with z. In
other words, we may expect relatively more gradual
changes in the field with increasing z, with respect to
both the transverse and longitudinal dimensions, and
thus use of a uniformly spaced grid with equal spacings
between grid lines would not be representationally or
computationally efficient. The purpose of this Letter is
to show that this is indeed the case and quantitatively de-
rive how the nonuniform grid spacings should be.
Our approach is based on approximating integrals in-

volving chirps and is related to the stationary phase ap-
proximation [2]. The ∓∞ limits of the Fresnel integral
may be replaced by ∓Δx∕2, since f̂ �x0� is assumed zero
outside this interval. The local frequency of the chirp
function exp�iπ�x − x0�2∕λz� inside the Fresnel integral
is found by taking the derivative of its phase and dividing
by 2π, yielding −�x − x0�∕λz. Wherever the absolute value
of this frequency exceeds the highest frequency of
f̂ �x0�, which is Δσx∕2, there will be negligible contribu-
tion to the integral, since the high-frequency chirp
will wash out the signal. This will occur when
j�x0 − x�∕λzj > Δσx∕2. Therefore, the lower integral limit
need not be smaller than max�−Δx∕2; x −Δσxλz∕2�, and
the upper integral limit need not be larger than
min�Δx∕2; x�Δσxλz∕2�, unless these equations predict
the lower limit to be greater than the upper limit, in which
case the field at the point �x; z� will be approximately
zero. To proceed further, we will concentrate on the case
x � 0 for which the integral becomes symmetrical with
the lower limit being the negative of the upper limit. Note
that Δσxλz∕2 will exceed Δx∕2 when z > Δx∕Δσxλ,
which precisely corresponds to the “knee of the curve”
point discussed in [1]. Since to a good degree of approx-
imation we can write M �

�������������������������
1� λ2z2∕s4

p
≈ max�1; λz∕s2�

and 1∕M ≈ min�1; s2∕λz� [18], the lower and upper inte-
gral limits can be compactly expressed as ∓Δσxλz∕2M
with s2 � Δx∕Δσx.
The phase of the exponential in Fresnel’s integral is

πx02∕λz. We will examine the change in this phase as a
result of changes in z. We want to find the largest change
in z that will still not change the value of the Fresnel in-
tegral substantially. Assuming that z changes by δz, the
change in the phase is �d�πx02∕λz�∕dz�δz � �−πx02∕λz2�δz.
This change in the phase will be largest when x0 �
∓Δσxλz∕2M and is equal to −πΔσ2xλδz∕4M2. We equate
this to −2π, because we do not want the edge of the

new chirp to deviate from that of the original chirp
by more than a period, because a greater change would
substantially affect the result of the Fresnel integral. This
results in

δz � 8M2

λΔσ2x
: (5)

We note that δz is an increasing function of z, since M is
an increasing function of z. This implies that the z spa-
cing will not be uniform in z; the spacing will increase
with z. Now we will show that this nonuniform spacing
with respect to z corresponds to uniform spacing with
respect to the FRT order parameter a. This suggests that
increments in a are more fundamental than increments in
z and affirms the intrinsic importance of the FRT order
parameter in Fresnel propagation. The increment in z is
related to that in a through δz � �∂z∕∂a�δa. Using the ex-
pression for M and a from Eq. (3) to evaluate
∂z∕∂a � �s2∕λ��π∕2�sec2�πa∕2�, from Eq. (5) we obtain

δa � 16
π

1
ΔxΔσx

; (6)

where we have used s2 � Δx∕Δσx. The z independence
of δa implies uniform spacing with respect to a. Note that
since ΔxΔσx � N is the space-bandwidth product of the
original signal, the result is essentially δa ∼ 1∕N . Since
the nonredundant range of a is of the order of unity,
and in our case limited to [0,1], this means that there
are ∼N meaningfully distinguishable values of a in ques-
tion. That the number of meaningfully distinguishable
values of a turns out to be similar to the space-bandwidth
product is a satisfying result.

An alternative of this approach is to work in the fre-
quency domain, by calculating ĝ�x; z� using the transfer
function of free space:

ĝ�x; z� � ei2πz∕λ
Z

∞

−∞

F�σx�e−iπσ2xλzei2πσxxdσx: (7)

Since f̂ �x� is bandlimited, the limits of this integral will
not be wider than from −Δσx∕2 to Δσx∕2. The local fre-
quency of the chirp with respect to σx is −�σxλz − x�.
Washout occurs when this frequency exceeds the
maximum frequency in F�σx�, when jσxλz − xj > Δx∕2.
Thus the lower integral limit need not be smaller than
max�−Δσx∕2; �−Δx∕2� x�∕λz�, and the upper integral
limit need not be larger than min�Δσx∕2; �Δx∕2� x�∕
λz�. Concentrating on the optical axis, we obtain the lim-
its as a function of z. Note that the second terms above
will dominate when z > Δx∕Δσxλ. Again using 1∕M ≈

min�1; s2∕λz�, the lower and upper limits can be
compactly expressed as ∓Δσx∕2M � ∓Δσ0x∕2 with
s2 � Δx∕Δσx. When z changes by δz, the change in the
phase of the chirp inside the integral is �d�−πσ2xλz�∕
dz�δz � −πσ2xλδz. This change in the phase will be largest
when σx � ∓Δσx∕2M and is equal to −πΔσ2xλδz∕4M2.
The rest of the derivation leading to Eq. (6) follows as
before.

An alternative approach will shed further light. We
know that the integral in Eq. (7) needs to be evaluated

104 OPTICS LETTERS / Vol. 37, No. 1 / January 1, 2012



only over a symmetrical interval of extent Δσ0x �
Δσx∕M . While the symmetrical extent of F̂�σx� is origin-
ally specified as Δσx, we now observe that truncating its
extent to Δσ0x and using this truncated version in the in-
tegral will not change the resulting field. In other words,
the frequency extent of F̂�σx� is effectively limited to
Δσ0x. We refer to Eq. (1), which gives the 2D FT of
ĝ�x; z�. Since we have seen that the effective frequency
extent of F̂�σx� is Δσ0x, we observe that Ĝ�σx; σz� will be
nonzero only between 1∕λ − λ�Δσ0x∕2�2∕2 and 1∕λ. This is
because the parabola will be truncated to zero for σz <
1∕λ − λΔσ02x ∕8 and the apex of the parabola is at σz � 1∕λ
(Fig. 1). Thus the extent over which Ĝ�σx; σz� is nonzero
along the σz dimension is λΔσ02x ∕8 � λΔσ2x∕8M2. This z
bandwidth translates into δz � 8M2∕λΔσ2x, consistent
with our earlier Eq. (5). (Note that when z � 0, we have
Δσ0x � Δσx and M � 1. The z bandwidth λΔσ2x∕8 in this
case is the global bandwidth of ĝ�x; z� and will imply a δz
value of 8∕λΔσ2x. However, this z independent spacing is
a worst case result and does not account for the fact that
the local z bandwidth decreases with increasing z.)
We may also interpret these results more physically.

The effective frequency extent Δσ0x implies an angular
divergence of λΔσ0x. Over a distance of δz, this corre-
sponds to a spread of λΔσ0xδz. When this spread becomes
comparable to the smallest feature of the transverse field
profile, we will observe a substantial change in the
transverse profile. Since the smallest feature size is
∼1∕Δσ0x, we write λΔσ0xδz ∼ 1∕Δσ0x, which leads to
δz ∼ 1∕λΔσ02x � M2∕λΔσ2x, which is the same as Eq. (5)
within numerical factors. In physical terms, the band-
width and angular divergence decrease with increasing
z. Smaller divergence means that there will be smaller
changes in the wavefield for a given increment in z. Thus,
we observe that variation of the field with respect to both
the transverse and longitudinal dimensions becomes
smaller with increasing z.
Finally, let us write ĝ�x; z� � v̂�x; z� exp�i2πz∕λ�

and consider the paraxial Helmholtz equation: ∂2v�x; z�∕
∂x2 � �i4π∕λ�∂v�x; z�∕∂z � 0. Very crudely, we will de-
fine a substantial change as a change comparable to
the value of the function itself: j∂v�x; z�∕∂zjδz∼
jv�x; z�j. Additionally, we would expect a signal to
change substantially over a spatial extent that is compar-
able to the inverse of its frequency extent. Combining
this with the previous idea applied to x, we get
j∂v�x; z�∕∂xj�1∕Δσ0x� ∼ jv�x; z�j. The frequency extent
of the derivative of a signal is the same as that of the sig-
nal itself. Thus writing the last result for ∂v�x; z�∕∂x in-
stead of v�x; z� and using the last result to substitute
for ∂v�x; z�∕∂x, we obtain j∂2v�x; z�∕∂x2j ∼Δσ02x jv�x; z�j.
Using these in Helmholtz’s equation, we obtain
Δσ02x jv�x; z�j ∼ �4π∕λ��1∕δz�jv�x; z�j, which again leads
to Eq. (5) within numerical factors.

Figure 2 shows the grid implied by the z dependent
transverse spacing 1∕Δσ0x and longitudinal spacing δz.
The consecutive spherical reference surfaces shown cor-
respond to uniformly spaced FRT orders. This grid re-
flects the fundamental structure of Fresnel diffraction.

H. M. Ozaktas acknowledges the partial support of the
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