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Abstract— We consider the transmission of a Gaussian vec-
tor source over a multidimensional Gaussian channel where a
random or a fixed subset of the channel outputs are erased.
Within the setup where the only encoding operation allowed is
a linear unitary transformation on the source, we investigate
the minimum mean-square error (MMSE) performance, both in
average, and also in terms of guarantees that hold with high
probability as a function of the system parameters. Under the
performance criterion of average MMSE, necessary conditions
that should be satisfied by the optimal unitary encoders are
established and explicit solutions for a class of settings are
presented. For random sampling of signals that have a low
number of degrees of freedom, we present MMSE bounds that
hold with high probability. Our results illustrate how the spread
of the eigenvalue distribution and the unitary transformation
contribute to these performance guarantees. The performance
of the discrete Fourier transform (DFT) is also investigated.
As a benchmark, we investigate the equidistant sampling of
circularly wide-sense stationary signals, and present the explicit
error expression that quantifies the effects of the sampling
rate and the eigenvalue distribution of the covariance matrix
of the signal. These findings may be useful in understanding
the geometric dependence of signal uncertainty in a stochastic
process. In particular, unlike information theoretic measures such
as entropy, we highlight the basis dependence of uncertainty in
a signal with another perspective. The unitary encoding space
restriction exhibits the most and least favorable signal bases for
estimation.

Index Terms— Random field estimation, compressive sensing,
discrete fourier transform.

I. INTRODUCTION

WE CONSIDER the transmission of a Gaussian vec-
tor source over a multi-dimensional Gaussian channel

where a random or a fixed subset of the channel outputs
are erased. We consider the setup where the only encoding
operation allowed is a linear unitary transformation on the
source.
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A. System Model and Formulation of the Problems

In the following, we present an overview of the system
model and introduce the family of estimation problems which
will be considered in this article. We first present a brief
description of our problem set-up. We consider the following
noisy measurement system

y = H x + n = HUw + n, (1)

where x ∈ CN is the unknown input proper complex Gaussian
random vector, n ∈ CM is the proper complex Gaussian
vector denoting the measurement noise, and y ∈ CM is
the resulting measurement vector. H is the M × N random
diagonal sampling matrix. We assume that x and n are statis-
tically independent zero-mean random vectors with covariance
matrices Kx = E[xx†], and Kn = E[nn†], respectively. The
components of n are independent and identically distributed
(i.i.d.) with E[ni ni †] = σ 2

n > 0.
The unknown signal x comes from the model x = Uw,

where U is a N × N unitary matrix, and the components of w
are independently (but not necessarily identically) distributed
so that Kw = E[ww†] = diag(λ1, . . . , λN ). U may be inter-
preted as the unitary precoder that the signal w is subjected
to before going through the channel or the transform that
connects the canonical signal domain and the measurement
domain. Hence the singular value decomposition of Kx is
given by Kx = U KwU† = U�xU† � 0 where the diagonal
matrix denoting the eigenvalue distribution of the covariance
matrix of x is given by �x = Kw = diag(λ1, . . . , λN ). We
are interested in the minimum mean-square error (MMSE)
associated with estimating x (or equivalently w), that is
E[||x −E[x |y]||2 = E[||w−E[w|y]||2. Throughout the article,
we assume that the receiver has access to channel realiza-
tion information, i.e. the realization of the random sampling
matrix H .

We interpret the eigenvalue distribution of Kx as a measure
of the low dimensionality of the signal. The case where most
of the eigenvalues are zero and the nonzero eigenvalues have
equal values is interpreted as the counterpart of the standard,
exactly sparse signal model in compressive sensing. The case
where most of the power of the signal is carried by a few
eigenvalues, is interpreted to model the more general signal
family which has an effectively low degree of freedom. Yet, we
note that our model is different from the classical compressive
sensing setting. Here we assume that the receiver knows the
covariance matrix Kx , i.e. it has full knowledge of the support
of the input.
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Our investigations can be summarized under two main
problems. In the first problem, we search for the best unitary
encoder under the performance criterion of average (over
random sampling matrix H ) MMSE.

1) Problem P1 (Best Unitary Encoder For Random
Channels): Let UN be the set of N ×N unitary matrices: {U ∈
CN : U†U = IN }. We consider the following minimization
problem

inf
U∈UN

E H

[
ES[||x − E[x |y]||2]

]
, (2)

where the expectation with respect to the random measurement
matrix and the expectation with respect to random signals
involved is denoted by E H [.], and ES[.], respectively.

In the second avenue, we will regard the MMSE per-
formance as a random variable and consider performance
guarantees that hold with high probability with respect to
random sampling matrix H . We will not explicitly cast this
problem as an optimal unitary precoding problem as we have
done in Problem P1. Nevertheless, the results will illustrate
the favorable transforms through the coherence parameter
μ = maxi, j |ui j |, which is extensively used in the compressive
sensing literature [1]–[3].

2) Problem P2 (Error Bounds That Hold With High
Probability): Let tr(Kx ) = P . Let D(δ) be the smallest
number satisfying

∑D
i=1 λi ≥ δP , where δ ∈ (0, 1] and

λ1 ≥ λ2, . . . ,≥ λN . Assume that the effective number of
degrees of freedom of the signal is small, so that there exists
a D(δ) small compared to N with δ close to 1. We investigate
nontrivial lower bounds (i.e. bounds close to 1) on

P

(
ES[||x − E[x |y]||2] < fP2(�x ,U, σ

2
n )

)
(3)

for some function fP2(.) which denotes a sufficiently small
error level given total power of the unknown signal, tr (Kx),
and the noise level σ 2

n .

B. Literature Review and Main Contributions

In the following, we provide a brief overview of the
related literature. In this article, we consider the Gaussian
erasure channel, where each component of the unknown
vector is erased independently and with equal probability, and
the transmitted components are observed through Gaussian
noise. This type of model may be used to formulate vari-
ous types of transmission with low reliability scenarios, for
example Gaussian channel with impulsive noise [4], [5].
This measurement model is also related to the measure-
ment scenario typically considered in the compressive sensing
framework [6], [7] under which each component is erased
independently and with equal probability. The only difference
between these two models is the explicit inclusion of the noise
in the former. In this respect, our work contributes to the under-
standing of the MMSE performance of such measurement
schemes under noise. Although there are compressive sensing
studies that consider scenarios where the signal recovery is
done by explicitly acknowledging the presence of noise, a
substantial amount of the work focuses on the noise-free
scenario. A particularly relevant exception is [8], where the

authors work on the same setting as the one in our article
with Gaussian inputs. This work considers the scenario under
which the signal support is not known whereas we assume
that the signal support is known at the receiver.

The problem of optimization of precoders or input covari-
ance matrices is formulated in literature under different perfor-
mance criteria: When the channel is not random, [9] considers
a related trace minimization problem, and [10] a determinant
maximization problem, which, in our formulation, correspond
to optimization of the MMSE and mutual information perfor-
mance, respectively. [11] and [12] formulate the problem with
the criterion of mutual information, whereas [13] focuses on
the MMSE and [14] on determinant of the mean-square error
matrix. [15] and [16] present a general framework based on
Schur-convexity. In these works the channel is known at the
transmitter, hence it is possible to shape the input according to
the channel. When the channel is a Rayleigh or Rician fading
channel, [17] investigates the best linear encoding problem
without restricting the encoder to be unitary. [18] focuses
on the problem of maximizing the mutual information for
a Rayleigh fading channel. [4] and [5] consider the erasure
channel as in our setting, but with the aim of maximizing
the ergodic capacity. Optimization of linear precoders are
also utilized in communications applications, for instance in
broadcasting of video over wireless networks where each user
operates under a different channel quality [19].

In Section III-B and Section III-C, we investigate how the
results in random matrix theory mostly presented in compres-
sive sampling framework can be used to find bounds on the
MMSE associated with the described measurement scenarios.
We note that there are studies that consider the MMSE in
compressive sensing framework such as [8], [20]–[22], which
focus on the scenario where the receiver does not know the
location of the signal support (eigenvalue distribution). In our
case we assume that the receiver has full knowledge of the
signal covariance matrix, hence the signal support.

1) Contributions of the Paper: In view of the above lit-
erature review, our main contributions can be summarized
as follows: We formulate the problem of finding the most
favourable unitary transform under average (over random
sampling) MMSE criterion (Problem P1). We investigate the
convexity properties of this optimization problem, obtain nec-
essary conditions of optimality through variational equalities,
and solve some special cases. Among these we have identified
special cases where DFT-like unitary transforms (unitary trans-
forms with |ui j |2 = 1

N ) are optimal coordinate transforms.
We also show that, in general, DFT is not the optimal unitary
transform. For the noiseless case, we have also observed that
the identity transform turns out to be universally the worst
unitary transform regardless of the eigenvalue decomposition.

On Problem 2, under the assumption of known signal sup-
port, our results quantify the error associated with estimating a
signal with effectively low degree of freedom from randomly
selected samples, in the �2 framework of MMSE estimation
instead of the �1 framework of typical compressive sensing
results. The performance guarantees for signals that have
strictly low degree of freedom follows from recent random
matrix theory results in a straightforward manner. We present
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MMSE performance guarantees that illustrate the trade-off
between the eigenvalue distribution of the covariance matrix
of the signal (effective number of degrees of freedom) and the
unitary transform (spread of the uncertainty in the channel).
Although there are a number of works in compressive sensing
literature that consider signals with low effective degree of
freedom (see for instance [23, Sec 2.3], and the references
therein) our findings do not directly follow from these results.
As a benchmark, we investigate the case where U is the
DFT matrix and the sampling is done equidistantly. In this
case, the covariance matrix is circulant, and the resulting
signal x is referred as circularly wide-sense stationary
(c.w.s.s.), which is a natural way to model wide-sense station-
ary signals in finite dimension. We present the explicit MMSE
expression in this case. Although this result comes from simple
linear algebra arguments, to the best of our knowledge they
do not appear elsewhere in the literature.

Our results show that the general form of error bounds
that hold with high probability are the same with the error
expression associated with the equidistant sampling of band
pass c.w.s.s. signals, but with a lower effective SNR term.
The loss in the effective SNR may be interpreted to come
through two multiplicative loss factors, one due to random
sampling, (which is present even when all the insignificant
eigenvalues are zero), and the other due to the presence of
nonzero insignificant eigenvalues.

C. Motivation

Our motivation for studying these problems, in particular
our focus on the best unitary precoders, is two-fold.

In the first front, we would like to characterize the impact
of the unitary precoder on estimation performance, since such
restrictions occur in both physical contexts and applications.
Optimization of linear precoders or input covariance matrices
arises naturally in many signal estimation and communica-
tion applications including transmission over multiple input
multiple output (MIMO) channels, for instance with unitary
precoders [24], [25]. Our restriction of the transformation
matrix to a unitary transformation rather than a more general
matrix (say a noiselet transform) is motivated by some possible
restrictions in the measurement scenarios and the potential
numerical benefits of unitary transforms. In many measure-
ment scenarios one may not be able to pass the signal through
an arbitrary transform before random sampling, and may have
to measure it just after it passes through a unitary transform.
Using more general transforms may cause additional complex-
ity or may not be feasible. Possible scenarios where unitary
transformations play an important role can be given in the
context of optics: The propagation of light is governed by
a diffraction integral, a convenient approximation of which is
the Fresnel integral, which constitutes a unitary transformation
on the input field (see, for instance [26]). Moreover, a broad
class of optical systems involving arbitrary concatenations
of lenses, mirrors, sections of free space, quadratic graded-
index media, and phase-only spatial light modulators can be
well represented by unitary transformations [26]. Hence if one
wants to estimate the light field by measuring the field after it

propagates in free space or passes through such a system, one
has to deal with a unitary transform, but not a more general
one. Furthermore, due to their structure, unitary transforms
have low complexity numerical implementations. For instance,
the DFT which is among the most favourable transforms for
high probability results is also very attractive from numerical
point of view, since there is a fast algorithm with complexity
N log(N) for taking the DFT of a signal.

Our second, and primary motivation for our work comes
from the desire to understand the geometry of statistical depen-
dence in random signals. We note that the dependence of signal
uncertainty in the signal basis has been considered in different
contexts in the information theory literature. The concepts that
are traditionally used in the information theory literature as
measures of dependency or uncertainty in signals (such as the
number of degrees of freedom, or the entropy) are mostly
defined independent of the coordinate system in which the
signal is to be measured. As an example one may consider the
Gaussian case: the entropy solely depends on the eigenvalue
spectrum of the covariance matrix, hence making the concept
blind to the coordinate system in which the signal lies in.
On the other hand, the approach of applying coordinate trans-
formations to orthogonalize signal components is adopted in
many signal reconstruction and information theory problems.
For example the rate-distortion function for a Gaussian random
vector is obtained by applying an uncorrelating transform
to the source, or approaches such as the Karhunen-Loéve
expansion are used extensively. Also, the compressive sensing
community heavily makes use of the notion of coherence
of bases, see [1]–[3]. The coherence of two bases, say the
intrinsic signal domain ψ and the orthogonal measurement
system φ is measured with μ = maxi, j |ui j |, U = φψ
providing a measure of how concentrated the columns of U
are. When μ is small, one says the mutual coherence is small.
As the coherence gets smaller, fewer samples are required to
provide good performance guarantees.

Our study of the measurement problems in this article
confirms that signal recovery performance depends substan-
tially on total uncertainty of the signal (as measured by the
differential entropy); but also illustrates that the basis plays
an important role in the measurement problem. The total
uncertainty in the signal as quantified by information theoretic
measures such as entropy (or eigenvalues) and the spread of
this uncertainty (basis) reflect different aspects of the depen-
dence in a signal. Our framework makes it possible to study
these relationships in a systematic way, where the eigenvalues
of the covariance matrix provide a well-defined measure of
uncertainty. Our analysis here illustrates the interplay between
these two concepts.

Before leaving this section, we would like to discuss the role
of DFT-like transforms in our setting. In Problem P2 we will
see that, in terms of the sufficiency conditions stated, DFT-like
unitary matrices will provide the most favorable performance
guarantees, in the sense that fixing the bound on the probability
of error, they will require the least number of measurements.
We also note the following: In compressive sensing literature,
the performance results depend on some constants, and it is
reported in [23, Sec. 4.2] that better constants are available for
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the DFT matrix. Moreover, for the DFT matrix, it is known
that the technical condition that states the nonzero entries of
the signal has a random sign pattern which is typical of such
results can be removed [23, Sec. 4.2].1 Hence the current
state of art in compressive sensing suggests the idea that the
DFT is the most favorable unitary transform for such random
sampling scenarios. Yet, we will see that for Problem P1, DFT
is not, in general an optimal encoder within the class of unitary
encoders.

D. Preliminaries and Notation

In the following, we present a few definitions and notations
that will be used throughout the article. Let tr (Kx ) = P . Let
D(δ) be the smallest number satisfying

∑D
i=1 λi ≥ δP , where

δ ∈ (0, 1]. Hence for δ close to one, D(δ) can be considered
as an effective rank of the covariance matrix and also the
effective number of “degrees of freedom” (DOF) of the signal
family. For δ close to one, we drop the dependence on δ
and use the term effective DOF to represent D(δ). A closely
related concept is the (effective) bandwidth. We use the term
“bandwidth” for the DOF of a signal family whose canonical
domain is the Fourier domain, i.e. whose unitary transform is
given by the DFT matrix.

The transpose, complex conjugate and complex conjugate
transpose of a matrix A is denoted by AT, A∗ and A†,
respectively. The t th row kth column entry of A is denoted by
atk . The eigenvalues of a matrix A are denoted in decreasing
order as λ1(A) ≥ λ2(A), . . . ,≥ λN (A).

Let
√−1 = j . The entries of the N × N DFT matrix are

given by vtk = 1√
N

e j 2π
N tk , where 0 ≤ t , k ≤ N − 1. We note

that the DFT matrix is the diagonalizing unitary transform
for all circulant matrices [29]. In general, a circulant matrix
is determined by its first row and defined by the relationship
Ctk = C0 modN (k−t), where rows and columns are indexed by
t and k, 0 ≤ t , k ≤ N − 1, respectively.

We now review the expressions for the MMSE estimation.
Under a given measurement matrix H , by standard arguments
the MMSE estimate is given by E[x |y] = x̂ = Kxy Ky

−1 y,
where Kxy = E[xy†] = Kx H †, and Ky = E[yy†] =
H Kx H † + Kn . We note that since Kn � 0, we have Ky � 0,
and hence K −1

y exists. The associated MMSE can be expressed
as [30, Ch. 2]

ES[||x − E[x |y]||2]
= tr(Kx − Kxy K −1

y K †
xy) (4a)

= tr(Kx )− tr(Kx H †(H Kx H † + Kn)
−1 H Kx) (4b)

= tr(U�xU†)− tr(U�xU† H † (HU�xU† H † + Kn)
−1

HU�xU†) (4c)

Let B = {i : λi > 0}, and let UB denote the N × |B|
matrix formed by taking the columns of U indexed by B .

1We note that there are some recent results that suggest that the results
obtained by the DFT matrix may be duplicated for Haar distributed unitary
matrices: limiting distributions of eigenvalues of Haar distributed unitary
matrices and the DFT matrix behave similarly under random projections, see
for instance [27], and the eigenvalues of certain sums (for instance, ones
like in the MMSE expression) involving Haar distributed unitary matrices
can be obtained from the eigenvalues of individual components and are
well-behaved [8], [28].

Similarly, let �x,B denote the |B| × |B| matrix by taking the
columns and rows of �x indexed by B in the respective order.
We note that U†

BUB = I|B|, whereas the equality UBU†
B = IN

is not true unless |B| = N . Also note that �x,B is always
invertible. The singular value decomposition of Kx can be
written as Kx = U�xU† = UB�x,BU†

B . Hence the error may
be rewritten as

ES[||x − E[x |y]||2]
= tr(UB�x,BU†

B)− tr(UB�x,BU†
B H †(HUB�x,BU†

B H †

+ Kn)
−1 HUB�x,BU†

B)

= tr(�x,B)− tr(�x,BU†
B H †(HUB�x,BU†

B H † + Kn)
−1

HUB�x,B) (5a)

= tr ((�−1
x,B + 1

σ 2
n

U†
B H †HUB)

−1) (5b)

where (5a) follows from the identity tr(UB MU†
B) =

tr(MU†
BUB) = tr(M) with an arbitrary matrix M with con-

sistent dimensions. Here (5b) follows from the fact that �x,B

and Kn are nonsingular and the Sherman-Morrison-Woodbury
identity, which has the following form for our case (see [31]
and the references therein)

K1−K1 A†(AK1 A†+K2)
−1 AK1 =(K −1

1 + A†K −1
2 A)−1,

where K1 and K2 are nonsingular.
Here is a brief summary of the rest of the article: In

Section II, we formulate the problem of finding the most
favorable unitary transform under average MMSE criterion
(Problem P1). In Section III, we find performance guarantees
for the MMSE estimation that hold with high probability
(Problem P2). Our benchmark case for the high probability
results, the error associated with the equidistant sampling
of circularly wide-sense stationary signals, is presented in
Section III-A. We conclude in Section IV.

II. AVERAGE MMSE

In this section, we investigate the optimal unitary precoding
problem with the performance criterion of average (with
respect to random sampling matrix H ) MMSE. In Section III,
we will focus on MMSE guarantees that hold with high
probability (w.r.t. H ).

We assume that the receiver knows the channel information,
whereas the transmitter only knows the channel probability
distribution. We consider the following measurement strate-
gies: a) (Random Scalar Gaussian Channel:) H = eT

i , i =
1, . . . , N with probability 1

N , where ei ∈ RN is the i th unit
vector. We denote this sampling strategy with Ss . b) (Gaussian
Erasure Channel) H = diag(δi), where δi are i.i.d. Bernoulli
random variables with probability of success p ∈ [0, 1].
We denote this sampling strategy with Sb.

Let UN be the set of N × N unitary matrices: {U ∈ CN :
U†U = I }. We consider the following minimization problem

inf
U∈UN

E H

[
ES[||x − E[x |y]||2]

]
, (6)

where the expectation with respect to H is over admissible
measurement strategies Ss or Sb. Hence we want to determine
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the best unitary encoder for the random scalar Gaussian
channel or Gaussian erasure channel.

We note that [4] and [5] consider the erasure channel model
(Sb in our notation) with the aim of maximizing the ergodic
capacity. Their formulations let the transmitter also shape the
eigenvalue distribution of the source, whereas ours does not.

We note that by solving (6) for the measurement scheme
in (1), one also obtains the solution for the generalized the
set-up y = H V x + n, where V is any unitary matrix: Let Uo

denote an optimal unitary matrix for the scheme in (1). Then
V †Uo ∈ UN is an optimal unitary matrix for the generalized
set-up.

A. First Order Necessary Conditions for Optimality

Here we discuss the convexity properties of the optimization
problem and give the first order necessary conditions for
optimality. We note that we do not utilize these conditions for
finding the optimal unitary matrices. The reader not interested
in these results can directly continue on to Section II-B.

Let the possible sampling schemes be indexed by the
variable k, where 1 ≤ k ≤ N for Ss , and 1 ≤ k ≤ 2N for
Sb. Let Hk be the corresponding sampling matrix. Let pk be
the probability of the kth sampling scheme.

We can express the objective function as follows

E H,S[||x − E[x |y]||2]
= E H [tr ((�−1

x,B + 1

σ 2
n

U†
B H †HUB)

−1)]

=
∑

k

pk tr ((�−1
x,B + 1

σ 2
n

U†
B H †

k HkUB)
−1). (7)

The objective function is a continuous function of UB . We also
note that the feasible set defined by {UB ∈ CN×|B| : U†

BUB =
I|B|} is a closed and bounded subset of Cn , hence compact.
Hence the minimum is attained since we are minimizing a
continuous function over a compact set (but the optimum UB

is not necessarily unique).
We note that in general, the feasible region is not a convex

set. Let U1,U2 ∈ UN and θ ∈ [0, 1]. In general θU1 + (1 − θ)
U2 /∈ UN. For instance let N = 1, U1 = 1, U2 = −1,
θU1 + (1 − θ)U2 = 2θ − 1 /∈ U1, ∀ θ ∈ [0, 1]. Even if
the unitary matrix constraint is relaxed, we observe that the
objective function is in general neither a convex or a concave
function of the matrix UB . To see this, one can check the
second derivative to see if ∇2

UB
f (UB) � 0 or ∇2

UB
f (UB) � 0,

where f (UB) = ∑
k pk tr ((�−1

x,B + 1
σ 2

n
U†

B H †
k HkUB)

−1). For

example, let N = 1, U ∈ R, σ 2
n = 1, λ > 0, and p > 0

for Sb. Then f (U) = ∑
k pk

1
λ−1+U † H†

k HkU
can be written

as f (U) = (1 − q)λ + q 1
λ−1+U †U

, where q ∈ (0, 1] is the
probability that the one possible measurement is done. That
is q = 1 for Ss , and q = p for Sb. Hence ∇2

U f (U) =
q 2 3U 2−λ−1

(λ−1+U 2)3
, whose sign changes depending on λ, and U .

Hence neither ∇2
U f (U) � 0 nor ∇2

U f (U) � 0 holds for all
U ∈ R.

In general, the objective function depends only on UB ,
not U . If UB satisfying U†

BUB = I|B|, with |B| < N is an

optimal solution, then a properly chosen set of column(s) can
be added to UB so that a unitary matrix U is formed. Any
such U will have the same objective value with UB , and hence
will also be an optimal solution. Therefore it is sufficient to
consider the constraint {UB : U†

BUB = I|B|}, instead of the
condition {U : U†U = IN }, while optimizing the objective
function. We also note that if UB is an optimal solution,
exp( jθ)UB is also an optimal solution, where 0 ≤ θ ≤ 2π .

Let ui be the i th column of UB . We can write the unitary
matrix constraint as follows:

u†
i uk =

{
1, if i = k,

0, if i �= k.
(8)

with i = 1, . . . , |B|, k = 1, . . . , |B|. Since u†
i uk = 0, iff

u†
kui = 0, it is sufficient to consider k ≤ i . Hence this

constraint may be rewritten as

eT
i (U

†
BUB − I|B|)ek = 0, (9)

with i = 1, . . . , |B|, k = 1, . . . , i . Here ei ∈ R|B| is the i th

unit vector.
We note that constraint gradients (gradients of the con-

ditions in (9)) are linearly independent for any matrix UB

satisying U†
BUB = IB [32]. Hence the linear indepen-

dence constraint qualification (LICQ) holds for any fea-
sible UB [33, Definition.12.4]. Therefore, the first order
condition ∇UB L(UB, ν, υ) = 0 together with the condition
U†

BUB = IB is necessary for optimality [33, Th. 12.1], where
L(UB, ν, υ) is the Lagrangian for some Lagrangian multi-
plier vectors ν, and υ. The Lagrangian can be expressed as
follows

L(UB, ν, υ) =
∑

k

pk tr ((�−1
x,B + 1

σ 2
n

U†
B H †

k HkUB)
−1)

+
∑
(i,k)∈γ̄

νi,k eT
i (U

†
BUB − I|B|)ek

+
∑
(i,k)∈γ̄

ν∗
i,k eT

i (U
T
BU∗

B − I|B|)ek

+
|B|∑
k=1

υkeT
k (U

†
BUB − I|B|)ek, (10)

where νi,k ∈ C, (i, k) ∈ γ̄ and υk ∈ R, k ∈ {1, . . . , |B|} are the
Lagrange multipliers. Here γ̄ is defined as the following set of
pairs of indices γ̄ = {(i, k)|i = 1, . . . , |B|, k = 1, . . . , i − 1}.

The first order necessary condition ∇UB L(UB , ν, υ) = 0
can be expressed more explicitly as follows:

Lemma 2.1: The following condition is necessary for opti-
mality

∑
k

pk(�
−1
x,B + 1

σ 2
n

U†
B H †

k HkUB)
−2U†

B H †
k Hk

=
∑
(i,k)∈γ̄

νi,k ekeT
i U†

B +
∑
(i,k)∈γ̄

ν∗
i,k ei e

T
k U†

B

+
|B|∑
k=1

υkekeT
k U†

B, (11)
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with νi,k and υk Lagrange multipliers as defined above, taking
possibly different values.

Proof: The proof is based on the guidelines for optimiza-
tion problems and derivative operations involving complex
variables presented in [34]–[36]. Please see [32] for the
complete proof.

Remark 2.1: For Ss, we can analytically show that this
condition is satisfied by the DFT matrix and the identity
matrix. It is not surprising that both the DFT matrix and the
identity matrix satisfy these equations, since this optimality
condition is the same for both minimizing and maximizing the
objective function. We show that the DFT matrix is indeed
one of the possibly many minimizers for the case where the
values of the nonzero eigenvalues are equal in Lemma 2.3. The
maximizing property of the identity matrix in the noiseless case
is investigated in Lemma 2.4.

In Section III, we show that with the DFT matrix, the MMSE
is small with high probability for signals that have small
number of degrees of freedom. Although these observations
and the other special cases presented in Section II-B may
suggest the result that the DFT matrix may be an optimum
solution for the general case, we show that this is not the
case by presenting a counterexample where another unitary
matrix not satisfying |ui j |2 = 1/N outperforms the DFT
[Lemma 2.7].

B. Special Cases

In this section, we consider some related special cases. For
random scalar Gaussian channel, we will show that when
the nonzero eigenvalues are equal any covariance matrix
(with the given eigenvalues) having a constant diagonal is
an optimum solution [Lemma 2.3]. This includes Toeplitz
covariance matrices or covariance matrices with any unitary
transform satisfying |ui j |2 = 1/N . We note that the DFT
matrix satisfies |ui j |2 = 1/N condition, and always pro-
duces circulant covariance matrices. We will also show that
for both channel structures, for the noiseless case (under
some conditions) regardless of the entropy or the number
of degrees of freedom of a signal, the worst coordinate
transformation is the same, and given by the identity matrix
[Lemma 2.4].

For the general Gaussian erasure channel model, we will
show that when only one of the eigenvalues is nonzero (i.e.
rank of the covariance matrix is one), any unitary trans-
form satisfying |ui j |2 = 1/N is an optimizer [Lemma 2.5].
We will also show that under the relaxed condition tr(K −1

x ) =
R, the best covariance matrix is circulant, hence the best
unitary transform is the DFT matrix [Lemma 2.6]. We note
that Ref. [5] proves the same result under the aim of max-
imizing mutual information with a power constraint on Kx ,
i.e. tr (Kx ) ≤ P . Ref. [5] further finds the optimal eigenvalue
distribution, whereas in our case, the condition on the trace
of the inverse is introduced as a relaxation, and in the
original problem we are interested, the eigenvalue distribution
is fixed.

In the next section, we will show that the observations
presented in compressive sensing literature implies that the

MMSE is small with high probability when |ui j |2 = 1/N .
Although all these observations may suggest the result that
the DFT matrix may be an optimum solution in the general
case, we will show that this is not the case by presenting a
counterexample where another unitary matrix not satisfying
|ui j |2 = 1/N outperforms the DFT matrix [Lemma 2.7].

Before moving on, we note the following relationship
between the eigenvalue distribution and the MMSE. Let H ∈
RM×N be a sampling matrix formed by taking 1 ≤ 3M ≤ N
rows from the identity matrix. Assume that �x � 0. Let the
eigenvalues of a matrix A be denoted in decreasing order as
λ1(A) ≥ λ2(A), . . . ,≥ λN (A). The MMSE can be expressed
as follows (5b)

E[||x − E[x |y]||2] = tr ((�−1
x + 1

σ 2
n

U† H †HU)−1) (12a)

=
N∑

i=1

1

λi (�
−1
x + 1

σ 2
n

U† H †HU)
(12b)

=
N∑

i=M+1

1

λi (�
−1
x + 1

σ 2
n

U† H †HU)

+
M∑

i=1

1

λi (�
−1
x + 1

σ 2
n

U† H †HU)
(12c)

≥
N∑

i=M+1

1

λi−M (�
−1
x )

+
M∑

i=1

1

λi (�
−1
x + 1

σ 2
n

U† H †HU)
(12d)

≥
N∑

i=M+1

1

λi−M (�
−1
x )

+
M∑

i=1

1
1

λN−i+1(�x )
+ 1

σ 2
n

(12e)

=
N∑

i=M+1

λN−i+M+1(�x )+
N∑

i=N−M+i

1
1

λi (�x )
+ 1

σ 2
n

(12f)

=
N∑

i=M+1

λi (�x )+
N∑

i=N−M+1

1
1

λi (�x )
+ 1

σ 2
n

, (12g)

where we have used case (b) of Lemma 2.2 in (12d),
and the fact that λi (�

−1
x + 1

σ 2 U† H †HU) ≤ λi (�
−1
x ) +

1
σ 2 λ1(U† H †HU) = λi (�

−1
x )+ 1

σ 2 in (12e).
Lemma 2.2 [4.3.3, 4.3.6, [37]]: Let A1, A2 ∈ CN×N be

Hermitian matrices. (a) Let A2 be positive semi-definite. Then
λi (A1 + A2) ≥ λi (A1), i = 1, . . . , N. (b) Let the rank of A2
be at most M, 3M ≤ N. Then λi+M (A1 + A2) ≤ λi (A1),
i = 1, . . . , N − M.

This lower bound in (12g) is consistent with our intuition:
If the eigenvalues are well-spread, that is D(δ) is large in
comparison to N for δ close to 1, the error cannot be made
small without making a large number of measurements. The
first term in (12g) may be obtained by the following intu-
itively appealing alternative argument: The energy compaction
property of Karhunen-Loève expansion guarantees that the
best representation of this signal with M variables in mean-
square error sense is obtained by first decorrelating the signal
with U† and then using the random variables that correspond
to the highest M eigenvalues. The mean-square error of
such a representation is given by the sum of the remaining
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eigenvalues, i.e.
∑N

i=M+1 λi (�x). Here we make measure-
ments before decorrelating the signal, and each component
is measured with noise. Hence the error of our measurement
scheme is lower bounded by the error of the optimum scheme,
which is exactly the first term in (12g). The second term is the
MMSE associated with the measurement scheme in which M
independent variables with variances given by the M smallest
eigenvalues of �x are observed through i.i.d. noise.

Lemma 2.3 [Scalar Channel: Eigenvalue Distribution
Flat]: Let tr(Kx ) = P. Assume that the nonzero eigenvalues
are equal, i.e. �x,B = P

|B| IB . Then the minimum average
error for Ss is given by

P − P

|B| + 1

1 + P
N

1
σ 2

n

P

|B| , (13)

which is achieved by covariance matrices with constant
diagonal. In particular, covariance matrices whose unitary
transform is the DFT matrix satisfy this property .

Proof: Note that if none of the eigenvalues are zero,
Kx = I regardless of the unitary transform, hence the
objective function value does not depend on it. In general,
the objective function may be expressed as (7)

E H,S[||x − E[x |y]||2]

=
N∑

k=1

1

N
tr (

|B|
P

IB + 1

σ 2
n

U†
B H †

k HkUB)
−1

= P

|B|
N∑

k=1

1

N
(|B| − 1 + (1 + P

|B|
1

σ 2
n

HkUBU†
B H †

k )
−1)

= P

|B|(|B| − 1)+
N∑

k=1

P

|B|
1

N
(1 + P

|B|
1

σ 2
n

e†
kUBU†

Bek)
−1,

(14)

where in (14) we have used [17, Lemma 2]. We now consider
the minimization of the following function

N∑
k=1

(1 + P

|B|
1

σ 2
n

e†
kUBU†

Bek)
−1 =

N∑
k=1

1

1 + P
|B|

1
σ 2

n

|B|
P zk

=
N∑

k=1

1

1 + 1
σ 2

n
zk
, (15)

where (UBU†
B)kk = |B|

P (Kx)kk = |B|
P zk with zk = (Kx )kk .

Here zk ≥ 0 and
∑

k zk = P , since tr (Kx ) = P .
We note that the goal is the minimization of a convex function
over a convex region. We note that the function in (15) is a
Schur-convex function of zk’s. This follows from, for instance,
Prop. C1 of [38, Ch. 3] and the fact that 1/(1 + (1/σ 2

n )zk) is
convex. Together with the power constraint, this reveals that
the optimum zk is given by zk = P/N . We observe that this
condition is equivalent to require that the covariance matrix has
constant diagonal. This condition can be always satisfied; for
example with a Toeplitz covariance matrix or with any unitary
transform satisfying |ui j |2 = 1/N . We note that the DFT
matrix satisfies |ui j |2 = 1/N condition, and always produces
circulant covariance matrices. �

Lemma 2.4 [Worst Coordinate Transformation]: We now
consider the random scalar channel Ss without noise,
and consider the following maximization problem which
searches for the worst coordinate system for a signal to lie
in:

sup
U∈UN

E[
N∑

t=1

[||xt − E[xt |y]||2]], (16)

where y = xi with probability 1
N , i = 1, . . . , N and

tr(Kx ) = P.
The solution to this problem is as follows: The maximum

value of the objective function is P − P/N. U = I achieves
this maximum value.

Remark 2.2: We emphasize that this result does not depend
on the eigenvalue spectrum �x .

Remark 2.3: We note that when some of the eigenvalues
of the covariance matrix are identically zero, the eigenvectors
corresponding to the zero eigenvalues can be chosen freely (of
course as long as the resulting transform U is unitary).

Proof: The objective function may be written as

E[
N∑

t=1

[||xt − E[xt |y]||2]]

= 1

N

N∑
i=1

N∑
t=1

E[||xt − E[xt |xi ]||2]] (17)

= 1

N

N∑
i=1

N∑
t=1

(1 − ρ2
i,t )σ

2
xt
, (18)

where ρi,t = E[xt x†
i ]

(E[||xt ||2]E[ ||xi ||2])1/2 is the correlation coefficient

between xt and xi , assuming σ 2
xt

= E[||xt ||2] > 0, σ 2
xi
> 0.

(Otherwise one may set ρi,t = 1 if i = t , and ρi,t = 0 if
i �= j .) Now we observe that σ 2

t ≥ 0, and 0 ≤ |ρi,t |2 ≤
1. Hence the maximum value of this function is given by
ρi,t = 0, ∀ t, i s.t. t �= i . We observe that any diagonal unitary
matrix U = diag(uii ), |uii | = 1 (and also any Ū = U�, where
� is a permutation matrix) achieves this maximum value.
In particular, the identity transform U = IN is an optimal
solution.

We note that a similar result holds for Sb: Let y = H x .
The optimal value of supU∈UN E H,S[||x − E[x |y]||2], where
the expectation with respect to H is over Sb is (1− p) tr (Kx),
which is achieved by any U�, U = diag(uii ), |uii | = 1, � is
a permutation matrix. �

Lemma 2.5 [Rank 1 Covariance Matrix]: Suppose |B| = 1,
i.e. λk = P > 0, and λ j = 0, j �= k, j ∈ 1, . . . , N.
The minimum error under Sb is given by the following
expression

E[ 1
1
P + 1

σ 2
n

1
N

∑N
i=1 δi

], (19)

where this optimum is achieved by any unitary matrix whose
kth column entries satisfy |uik |2 = 1/N, i = 1, . . . , N.
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Proof: Let v = [v1, . . . , vn]T, vi = |uki |2, i = 1, . . . , N ,
where T denotes transpose. We note the following

E[tr ( 1

P
+ 1

σ 2
n

U†
B H †HUB)

−1]

= E[ 1
1
P + 1

σ 2
n

∑N
i=1 δi |uki |2

] (20)

= E[ 1
1
P + 1

σ 2
n

∑N
i=1 δivi

]. (21)

The proof uses an argument in the proof of [18, Th. 1],
which is also used in [17]. Let �i ∈ R

N×N denote the
permutation matrix indexed by i = 1, . . . , N !. We note
that a feasible vector v satisfies

∑N
i=1 vi = 1, vi ≥ 0,

which forms a convex set. We observe that for any such v,
weighted sum of all permutations of v, v̄ = 1

N !
∑N !

i=1 �iv =
( 1

N

∑N
i=1 vi )[1, . . . , 1]T = [ 1

N , . . . ,
1
N ]T ∈ RN is a constant

vector and also feasible. We note that g(v) = E[ 1
1
P + 1

σ2
n

∑
i δivi

]
is a convex function of v over the feasible set. Hence g(v) ≥
g(v̄) = g([1/N, . . . , 1/N]) for all v, and v̄ is the optimum
solution. Since there exists a unitary matrix satisfying |uik |2 =
1/N for any given k (such as any unitary matrix whose
kth column is any column of the DFT matrix), the claim is
proved. �

Lemma 2.6 [Trace Constraint on the Inverse of the Covari-
ance Matrix]: Let K −1

x � 0. Instead of fixing the eigenvalue
distribution, let us consider the relaxed constraint tr(K −1

x ) =
R. Let Kn � 0. Then an optimum solution for

arg min
K −1

x

EH,S[||x − E[x |y]||2]

= arg min
K −1

x

EH [(tr(K −1
x + 1

σ 2
n

H †K −1
n H )−1] (22)

under Sb is a circulant matrix.
Proof: The proof uses an argument in the proof of

[5, Th. 12], [4]. Let � be the following permutation matrix,

� =

⎡
⎢⎢⎢⎣

0 1 · · · 0
0 0 1 0 · · ·
...

. . .
...

1 · · · 0 0

⎤
⎥⎥⎥⎦. (23)

We observe that � and �l (lth power of �) are uni-
tary matrices. We form the following matrix K̄ −1

x =
1
N

∑N−1
l=0 �l K −1

x (�l)†, which also satisfies the power con-
straint tr (K̄ −1

x ) = R. We note that since K −1
x � 0, so is

K̄ −1
x � 0, hence K̄ −1

x is well-defined.

E

[
tr

(
(

1

N

N−1∑
l=0

�l K −1
x (�l)† + 1

σ 2
n

H †K −1
n H )−1

)]

≤ 1

N

N−1∑
l=0

E

[
tr

(
(�l K −1

x (�l)† + 1

σ 2
n

H †K −1
n H )−1

)]
(24)

= 1

N

N−1∑
l=0

E

[
tr

(
(K −1

x + 1

σ 2
n
(�l)† H †K −1

n H�l)−1
)]

(25)

= 1

N

N−1∑
l=0

E

[
tr

(
(K −1

x + 1

σ 2
n

H †K −1
n H )−1

)]
(26)

= E

[
tr

(
(K −1

x + 1

σ 2
n

H †K −1
n H )−1

)]
(27)

We note that tr((M + K −1
n )−1) is a convex function of M over

the set M � 0, since tr(M−1) is a convex function (see for
example [39, Exercise 3.18]), and composition with an affine
mapping preserves convexity [39, Sec. 3.2.2]. Hence (24)
follows from Jensen’s Inequality applied to the summation
forming K̄ −1

x . (25) is due to the fact that �ls are unitary
and trace is invariant under unitary transforms. (26) follows
from the fact that H�l has the same distribution with H .
Hence we have shown that K̄ −1

x provides a lower bound for
arbitrary K −1

x satisfying the power constraint. Since K̄ −1
x is

circulant and also satisfies the power constraint tr (K̄ −1
x ) = R,

an optimum K −1
x is also circulant. �

We note that we cannot follow the same argument for the
constraint tr(Kx ) = P , since the objective function is concave
in Kx over the set Kx � 0. This can be seen as follows:
The error can be expressed as E[||x − E[x |y]||2] = tr (Ke),
where Ke = Kx − Kxy K −1

y K †
xy . We note that Ke is the Schur

complement of Ky in K = [Ky Kyx ; Kxy Kx ], where Ky =
H Kx H † + Kn , Kxy = Kx H †. Schur complement is matrix
concave in K � 0, for example see [39, Exercise 3.58]. Since
trace is a linear operator, tr(Ke) is concave in K . Since K is an
affine mapping of Kx , and composition with an affine mapping
preserves concavity [39, Sec. 3.2.2], tr(Ke) is concave in Kx .

Lemma 2.7 [DFT is Not Always Optimal]: The DFT matrix
is, in general, not an optimizer of the minimization problem
stated in (6) for the Gaussian erasure channel.

Proof: We provide a counterexample to prove the claim of
the lemma: An example where a unitary matrix not satisfying
|ui j |2 = 1/N outperforms the DFT matrix. Let N = 3. Let
�x = diag(1/6, 2/6, 3/6), and Kn = I . Let U be

U0 =
⎡
⎣

1/
√

2 0 1/
√

2
0 1 0

−1/
√

2 0 1/
√

2

⎤
⎦ (28)

Hence Kx becomes

Kx =
⎡
⎣

1/3 0 1/6
0 1/3 0

1/6 0 1/3

⎤
⎦ (29)

We write the average error as a sum conditioned on the
number of measurements as J (U) = ∑3

M=0 pM (1 −
p)3−MeM (U), where eM denotes the total error of all
cases where M measurements are done. Let e(U) =
[e0(U), e1(U), e2(U), e3(U)]. The calculations reveal that
e(U0) = [1, 65/24, 409/168, 61/84] whereas e(F) =
[1, 65/24, 465/191, 61/84], where F is the DFT matrix.
We see that all the entries are the same with the DFT case,
except e2(U0) < e2(F), where e2(U0) = 409/168 ≈ 2.434524
and e2(F) = 465/191 ≈ 2.434555. Hence U0 outperforms the
DFT matrix.

We note that our argument covers any unitary matrix that
is formed by changing the order of the columns of the DFT
matrix, i.e. any matching of the given eigenvalues and the
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columns of the DFT matrix: U0 provides better performance
than any Kx formed by using the given eigenvalues and any
unitary matrix formed with columns from the DFT matrix. �

III. MMSE BOUNDS THAT HOLD WITH

HIGH PROBABILITY

In this section, we focus on MMSE bounds that hold
with high probability. As a preliminary work, we will first
consider a sampling scenario which will serve as a benchmark
in the subsequent sections: estimation of a c.w.s.s. signal
from its equidistant samples. Circularly wide-sense stationary
signals provide a natural analogue for stationary signals in
the finite dimension, hence in a sense they are the most
basic signal type one can consider in a sampling setting.
Equidistant sampling strategy is the sampling strategy which
one commonly employs in a sampling scenario. Therefore,
the error associated with equidistant sampling under c.w.s.s.
model forms an immediate candidate for comparing the error
bounds associated with random sampling scenarios.

A. Equidistant Sampling of Circularly Wide-Sense
Stationary Random Vectors

In this section, we consider the case where x is a zero-mean,
proper, c.w.s.s. Gaussian random vector. Hence the covariance
matrix of x is circulant, and the unitary transform U is fixed,
and given by the DFT matrix by definition [29].

We assume that the sampling is done equidistantly: Every 1
out of �N samples are taken. We let M = N

�N ∈ Z, and
assume that the first component of the signal is measured, for
convenience.

By definition, the eigenvectors of the covariance matrix is
given by the columns of the DFT matrix, where the elements
of kth eigenvector is given by utk = 1√

N
e j 2π

N tk , 0 ≤ t ≤ N−1.
We denote the associated eigenvalue with λk , 0 ≤ k ≤ N − 1
instead of indexing the eigenvalues in decreasing order.

Lemma 3.1: The MMSE of estimating x from the equidis-
tant noisy samples y as described above is given by the
following expression

E[||x − E[x |y]||2]

=
M−1∑
k=0

(

�N−1∑
i=0

λi M+k −
�N−1∑

i=0

λ2
i M+k∑�N−1

l=0 (λlM+k + σ 2
n )
) (30)

Proof: Proof is provided in Section IV.
A particularly important special case is the error associated

with the estimation of a band-pass signal:
Corollary 3.1: Let tr(Kx ) = P. Let the eigenvalues be

given as λi = P
|B| , if 0 ≤ i ≤ |B| − 1, and λi = 0, if |B| ≤

i ≤ N − 1. If M ≥ |B|, then the error can be expressed as
follows

E[||x − E[x |y]||2] = 1

1 + 1
σ 2

n

P
|B|

M
N

P (31)

We note that this expression is of the form 1
1+SNR P , where

SNR = 1
σ 2

n

P
|B|

M
N . This expression will serve as a benchmark

in the subsequent sections.

B. Flat Support

We now focus on MMSE bounds that hold with high prob-
ability. In this section, we assume that all nonzero eigenvalues
are equal, i.e. �x,B = P

|B| I|B|, where |B| ≤ N . We will con-
sider more general eigenvalue distributions in Section III-C.
We present bounds on the MMSE depending on the support
size and the number of measurements that hold with high
probability. These results illustrate how the results in matrix
theory mostly presented in compressive sampling framework
can provide MMSE bounds. We note that the problem we
tackle here is inherently different from the �1 set-up considered
in traditional compressive sensing problems. Here we consider
the problem of estimating a Gaussian signal in Gaussian
noise under the assumption the support is known. It is known
that the best estimator in this case is the linear MMSE
estimator. On the other hand, in scenarios where one refers to
�1 characterization, one typically does not know the support
of the signal. We note that there are studies that consider
the unknown support scenario in a MMSE framework, such
as [8], [20]–[22].

We consider the set-up in (1). The random sampling opera-
tion is modelled with a M×N sampling matrix H , whose rows
are taken from the identity matrix as dictated by the sampling
operation. We let UM B = HUB be the M × |B| submatrix
of U formed by taking |B| columns and M rows as dictated
by B and H , respectively. The MMSE can be expressed as
follows (5b)

ES[||x − E[x |y]||2] = tr ((�−1
x,B + 1

σ 2
n

U†
B H †HUB)

−1)

=
|B|∑
i=1

1

λi (
|B|
P IB + 1

σ 2
n

U†
M BUM B)

=
|B|∑
i=1

1
|B|
P + 1

σ 2
n
λi (UM B

†UM B)
. (32)

We see that the estimation error is determined by the eigen-
values of the matrix U†

M BUM B . We note that many results in
compressive sampling framework make use of the bounds on
the eigenvalues of this matrix. We now use one of these results
to bound the MMSE performance. The discussion here may
not be surprising for readers who are familiar with the tools
used in the compressive sensing community, since the analysis
here is related to recovery problems with high probability.
However, this discussion highlights how these results are
mimicked with the MMSE criterion and how the eigenvalues
of the covariance matrix can be interpreted as measure of
low effective degree of freedom of a signal family. We note
that different eigenvalue bounds in the literature can be used,
we pick one of these bounds from the literature to make the
constants explicit.

Lemma 3.2: Let U be an N × N unitary matrix with√
N maxk, j |uk, j | = μ(U). Let the signal have fixed support

B on the signal domain. Let the sampling locations be chosen
uniformly at random from the set of all subsets of the given
size M, M ≤ N. Let noisy measurements with noise power
σ 2

n be done at these M locations. Then for sufficiently large
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M(μ), the error is bounded from above with high probability:

ES[||x − E[x |y]||2] < 1

1 + 1
σ 2

n

0.5M
N

P
|B|

P (33)

More precisely, if

M ≥ |B|μ2(U)max(C1 log |B|,C2 log(3/δ)) (34)

for some positive constants C1 and C2, then

P(ES[||x − E[x |y]||2] ≥ 1

1 + 1
σ 2

n

0.5M
N

P
|B|

P) ≤ δ. (35)

In particular, when the measurements are noiseless, the error
is zero with probability at least 1 − δ.

Proof: We first note that ‖UM B
†UM B − I‖ < c implies 1−

c < λi (UM B
†UM B) < 1 + c. Consider [[1] Th. 1.2]. Suppose

that M and |B| satisfies (34). Now looking at Theorem 1.2,
and noting the scaling of the matrix U†U = N I in [1], we
see that P(0.5 M

N < λi (UM B
†UM B) < 1.5 M

N ) ≥ 1−δ. By (32)
the result follows.

For the noiseless measurements case, let ε = ES[||x −
E[x |y]||2], and Aσ 2

n
be the event {ε < σ 2

n
|B|

σ 2
n

|B|
P + 0.5M

N

} Hence

lim
σ 2

n →0
P(Aσ 2

n
) = lim

σ 2
n →0

E[1A
σ2

n
] (36)

= E[ lim
σ 2

n →0
1A

σ2
n
] (37)

= P(ε = 0) (38)

where we have used Dominated Convergence Theorem to
change the order of the expectation and the limit. By (35)
P(Aσ 2

n
) ≥ 1 − δ, hence P(ε = 0) ≥ 1 − δ. We also note that

in the noiseless case, it is enough to have λmin(U
†
M BUM B)

bounded away from zero to have zero error with high proba-
bility, the exact value of the bound is not important. �

We note that when the other parameters are fixed, as
maxk, j |uk, j | gets smaller, fewer number of samples are
required. Since

√
1/N ≤ maxk, j |uk, j | ≤ 1 , the unitary trans-

forms that provide the most favorable guarantees are the ones
satisfying |uk, j | = √

1/N . We note that for any such unitary
transform, the covariance matrix has constant diagonal with
(Kx )ii = P/N regardless of the eigenvalue distribution. Hence
with any measurement scheme with M , M ≤ N noiseless
measurements, the reduction in the uncertainty is guaranteed
to be at least proportional to the number of measurements, i.e.
the error satisfies ε ≤ P − M

N P .
Remark 3.1: We note that the coherence parameter μ(U)

takes the largest value possible for the DFT: μ(U) =√
N maxk, j |uk, j | = 1. Hence due to the role of μ(U) in the

error bounds, in particular in the conditions of the lemma
(see (34)), the DFT may be interpreted as one of the most
favorable unitary transforms possible in terms of the suffi-
ciency conditions stated. We recall that for a c.w.s.s. source,
the unitary transform associated with the covariance matrix
is given by the DFT. Hence we can conclude that Lemma 3.2
is applicable to these signals. That is, among signals with a
covariance matrix with a given rectangular eigenvalue spread,
c.w.s.s. signals are among the ones that can be estimated with

low values of error with high probability with a given number
of randomly located measurements.

We finally note that using the argument employed in
Lemma 3.2, one can also find MMSE bounds for the adverse
scenario where a signal with random support is sampled
at fixed locations. (We will still assume that the receiver
has access to the support set information.) In this case the
results that explore the bounds on the eigenvalues of random
submatrices obtained by uniform column sampling, such as
[2, Th. 12] or [40, Th. 3.1], can be used in order to bound the
estimation error.

1) Discussion: We now compare the error bound found
above with the error associated with equidistant sampling
of a low pass circularly wide-sense stationary source. We
consider the special case where x is a band pass signal with
λ0 = . . . = λ|B|−1 = P/|B|, λ|B| = . . . = λN−1 = 0. By
Corollary 3.1, if the number of measurements M is larger
than the bandwidth, that is M ≥ |B|, the error associated with
the equidistant sampling scheme can be expressed as

E[||x − E[x |y]||2] = 1

1 + P
|B|

1
σ 2

n

M
N

P. (39)

Comparing (33) with this expression, we observe the follow-
ing: The expressions are of the same general form, 1

1+c SNR P ,
where SNR � P

|B|
1
σ 2

n

M
N , with 0 ≤ c ≤ 1 taking different

values for different cases. We also note that in (33), the
choice of c = 0.5, which is the constant chosen for the
eigenvalue bounds in [1], is for convenience. It could have
been chosen differently by choosing a different probability
δ in (35). We also observe that effective SNR takes its
maximum value with c = 1 for the deterministic equidistant
sampling strategy corresponding to the minimum error value
among these two expressions. In random sampling case, c
can only take smaller values, resulting in larger and hence
worse error bounds. We note that one can choose c values
closer to 1, but then the probability these error bounds hold
decreases, that is better error bounds can be obtained at the
expense of lower degrees of guarantees that these results will
hold.

The result of Lemma 3.1 is based on high probability results
for the norm of a matrix restricted to random set of coordi-
nates. For the purposes of such results, the uniform random
sampling model and the Bernoulli sampling model where each
component is taken independently and with equal probability
is equivalent [6], [7], [41]. For instance, the derivation of
[1, Th. 1.2], the main step of Lemma 3.2, is in fact based
on a Bernoulli sampling model. Hence the high probability
results presented in this lemma also hold for Gaussian erasure
channel of Section II (with possibly different parameters).

C. General Support

In Section III-B, we have considered the case in which some
of the eigenvalues of the covariance matrix are zero, and all the
nonzero eigenvalues have the same value. This case may be
interpreted as the scenario where the signal to be estimated is
exactly sparse. In this section, our aim is to find error bounds
for estimation of not only sparse signals but also signals that
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are close to sparse. Hence we are interested in the case where
the signal has small number of degrees of freedom effectively,
that is when a small portion of the eigenvalues carry most of
the power of the signal. In this case, the signal may not strictly
have small number of degrees of freedom, but it can be well
approximated by such a signal.

We note that the result in this section makes use of a novel
matrix theory result, and provides fundamental insights into
problem of estimation of signals with small effective number
of degrees of freedom. In the previous section we have used
some results in compressive sensing literature that are directly
applicable only when the signals have strictly small number
of degrees of freedom (“insignificant” eigenvalues of Kx are
exactly equal to zero.) In this section we assume a more
general eigenvalue distribution. Our result enables us draw
conclusions when some of the eigenvalues are not exactly
zero, but small. The method of proof provides us a way to
see the effects of the effective number of degrees of freedom
of the signal (�x ) and the incoherence of measurement domain
(HU ), separately.

Before stating our result, we make some observations on
the related results in random matrix theory. Consider the
submatrices formed by restricting a matrix K to random set of
its rows, or columns; R1 K or K R2 where R1 and R2 denote
the restrictions to rows and columns respectively. The main
tool for finding bounds on the eigenvalues of these submatrices
is finding a bound on E||R1 K − E[R1 K ]|| or E||K R†

2 −
E[K R†

2]|| [2], [40], [42]. In our case such an approach is
not very meaningful. The matrix we are investigating �−1

x +
(HU)†(HU) constitutes of two matrices: a deterministic diag-
onal matrix with possibly different entries on the diagonal and
a random restriction. Hence we adopt another method: the
approach of decomposing the unit sphere into compressible
and incompressible vectors as proposed by M. Rudelson and
R. Vershynin [43].

We consider the general measurement set-up in (1) where
y = H x + n, with Kn = σ 2

n IM , Kx � 0. The s.v.d. of Kx

is given as Kx = U�xU†, where U ∈ CN×N is unitary
and �x = diag(λi ) with

∑
i λi = P , λ1 ≥ λ2, . . . ,≥

λN . M components of x are observed, where in each draw
each component of the signal has equal probability of being
selected. Hence the sampling matrix H is a M × N , M ≤ N
diagonal matrix, which may have repeated rows. This sampling
scheme is slightly different than the sampling scheme of the
previous section where the sampling locations are given by a
set chosen uniformly at random from the set of all subsets of
{1, . . . , N} with size M . The differences in these models are
very slight in practice, and we chose the former in this section
due to the availability of partial uniform bounds on ||HU x ||
in this case.

Theorem 3.1: Let D(δ) be the smallest number satisfying∑D
i=1 λi ≥ δP, where δ ∈ (0, 1]. Let λmax = maxi λi =

C S
λ

P
D and λi < C I

λ
P

N−D , i = D + 1, . . . , N. Let μ(U) =√
N maxk, j |uk, j |. Let N/D > κ ≥ 1. Let ε ∈ (0, 1), θ ∈

(0, 0.5], and γ ∈ (0, 1). Let

M/ ln(10M) ≥ C1 θ
−2μ2κD ln2(100κD) ln(4N) (40)

M ≥ C2 θ
−2μ2κD ln (ε−1) (41)

1 < 0.5ρ2κ (42)

ρ ≤ (1 − γ )
CκD

CκD + 1
, (43)

where

CκD = (1 − θ)0.5
(

M

N

)0.5

. (44)

Then the error will satisfy

P

(
E[||x − E[x |y]||2] ≥ (1 − δ)P

+ max(
P

CI
,

1
1

C S
λ

+ 1
σ 2

n
γ 2CκD

2 P
D

P)

)
≤ ε (45)

where

CI = (0.5ρ2κ − 1)
0.5ρ2

C I
λ

N − D

N
. (46)

Here C1 ≤ 50 963 and C2 ≤ 456.
Remark 3.2: As we will see in the proof, the eigenvalue

distribution plays a key role in obtaining stronger bounds: In
particular, when the eigenvalue distribution is spread out, the
theorem cannot provide bounds for low values of error. As
the distribution becomes less spread out, stronger bounds are
obtained. We discuss these points after the proof the result.

Proof: The error can be expressed as follows (5b)

E[||x − E[x |y]||2] = tr ((�−1
x + 1

σ 2
n
(HU)†HU)−1) (47)

=
N∑

i=1

1

λi (�
−1
x + 1

σ 2
n
(HU)†HU)

(48)

=
N−D∑
i=1

1

λi (�
−1
x + 1

σ 2
n
(HU)†HU)

+
N∑

i=N−D+1

1

λi (�
−1
x + 1

σ 2
n
(HU)†HU)

(49)

≤
N−D∑
i=1

1

λi (�
−1
x )

+
N∑

i=N−D+1

1

λi (�
−1
x + 1

σ 2
n
(HU)†HU)

(50)

≤
N−D∑
i=1

λN−i+1(�x )+D
1

λmin(�
−1
x + 1

σ 2
n
(HU)†HU)

(51)

=
N∑

i=D+1

λi (�x)+ D
1

λmin (�
−1
x + 1

σ 2
n
(HU)†HU)

, (52)

where (50) follows from case (a) of Lemma 2.2.
Hence the error may be bounded as follows

E[||x − E[x |y]||2] ≤ (1 − δ)P

+D
1

λmin (�
−1
x + 1

σ 2
n
(HU)†HU)

. (53)

The smallest eigenvalue of A = �−1
x + 1

σ 2
n
(HU)†HU is

sufficiently away from zero with high probability as noted in
the following lemma:
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Lemma 3.3: Under the conditions stated in Theorem 3.1,
the eigenvalues of A = �−1

x + 1
σ 2

n
(HU)†(HU) are bounded

from below as follows:

P
(

inf
x∈S N−1

x†�−1
x x + 1

σ 2
n

x†(HU)†HU x

≤ min(CI
D

P
,

1

C S
λ

P
D

+ 1

σ 2
n
γ 2CκD

2)
) ≤ ε. (54)

Here SN−1 denotes the unit sphere where x ∈ SN−1 if x ∈ CN ,
and ||x || = 1.

The proof of this lemma is given in Section IV-C of the
Appendix.

We now conclude the argument. Let us call the right-hand
side of the eigenvalue bound in (54) λ̄min . Then (54) states that
P(λmin(A) > λ̄min) ≥ 1−ε, and hence we have the following:
P( 1

λmin (A)
< 1

λ̄min
) ≥ 1 − ε. Together with the error bound in

(53), we have P(E[||x − E[x |y]||2] < (1 − δ)P + D 1
λ̄min

) ≥
1 − ε, and the result follows. �

We now discuss the error bound that Theorem 3.1 provides.
The expression in (45) can be interpreted as an upper bound on
the error that holds with probability at least 1 − ε. The bound
consists of a (1 − δ)P term and a max term. This (1 − δ)P
term is the total power in the eigenvalues that are considered
to be insignificant (i.e. λi such that i /∈ D = {1, . . . , D}). This
term is a bound for the error that would have been introduced
if we had preferred not estimating the random variables
corresponding to these insignificant eigenvalues. Since in our
setting we are interested in signals with effectively small
number of degrees of freedom, hence δ close to 1 for D
much smaller than N, this term will be typically small. Let
us now look at the term that will come out of the maximum
function. When the noise level is relatively low, the P

CI
term

comes out of the max term. Together with the ρ and κ
whose choices will depend on D, order of magnitude of this
term substantially depends on the value of the insignificant
eigenvalues. This term may be interpreted as an upper bound
on the error due to the random variables associated with the
insignificant eigenvalues acting as noise for estimating of the
random variables associated with the significant eigenvalues
(i.e. λi such that i ∈ D). Hence in the case where the noise
level is relatively low, the random variables associated with
the insignificant eigenvalues become the dominant source of
error in estimation. By choosing κ and γ appropriately, this
term can be made small provided that D is small compared
to N , which is the typical scenario we are interested in.
When the noise level is relatively high, the second argument
comes out of the max term. Hence for relatively high levels
of noise, system noise n rather than the signal components
associated with the insignificant eigenvalues becomes the dom-
inant source of error in the estimation. This term can be also
written as

1
1

C S
λ

+ 1
σ 2

n
γ 2CκD

2 P
D

P = 1
1

C S
λ

+ 1
σ 2

n
γ 2(1 − θ)M

N
P
D

P (55)

= 1
1

C S
λ

+ γ 2(1 − θ) SNR
P, (56)

where SNR = 1
σ 2

n

P
D

M
N . We note that the general form of this

expression is the same as the general form of the error expres-
sion in Section III-B (see (39)), where the error bound is of
the general form 1

1+cS N R P , where c ∈ (0, 1]. In Section III-B,
the case where the signal have exactly small number of degrees
of freedom with D is considered, in which case C S

λ = 1, δ = 1
and D = |B|. We observe that here, there are two factors that
forms the effective SNR loss c = γ 2(1 − θ). A look through
the proof (in particular, Lemma 4.3 and Lemma 4.4) reveals
that the effective SNR loss due to (1 − θ) factor is the term
that would have been introduced if we were to work with
signals where κD eigenvalues are equal and nonzero, and the
others zero. This factor also introduces a loss of SNR due
to considering signals with κD, κ > 1 instead D nonzero
eigenvalues. The γ 2 term may be interpreted as an additional
loss due to working with signals for which λi such that i /∈ D
are not zero.

IV. CONCLUSIONS

We have considered the transmission of a Gaussian vector
source over a multi-dimensional Gaussian channel where a
random or a fixed subset of the channel outputs are erased.
The unitary transformation that connects the canonical signal
domain and the measurement space played a crucial role in
our investigation. Under the assumption the estimator knows
the channel realization, we have investigated the MMSE per-
formance, both in average, and also in terms of guarantees that
hold with high probability as a function of system parameters.

We have considered the sampling model of random era-
sures. We have considered two channel structures: i) random
Gaussian scalar channel where only one measurement is
done through Gaussian noise and ii) vector channel where
measurements are done through parallel Gaussian channels
with a given channel erasure probability. Under these channel
structures, we have formulated the problem of finding the
most favorable unitary transform under average (w.r.t. random
erasures) MMSE criterion. We have investigated the convexity
properties of this optimization problem, and obtained neces-
sary conditions of optimality through variational equalities. We
were not able to solve this problem in its full setting, but we
have solved some related special cases. Among these we have
identified special cases where DFT-like unitary transforms
(unitary transforms with |ui j |2 = 1

N ) turn out to be the
best coordinate transforms, possibly along with other unitary
transforms. Although these observations and the observations
of Section III-B (which are based on compressive sensing
results) may suggest that the DFT is optimal in general, we
showed through a counterexample that this is not the case
under the performance criterion of average MMSE.

In Section III, we have focused on performance guarantees
that hold with high probability. We have presented upper
bounds on the MMSE depending on the support size and
the number of measurements. We have also considered more
general eigenvalue distributions, (i.e. signals that may not
strictly have low degree of freedom, but effectively do so),
and we have illustrated the interplay between the amount of
information in the signal, and the spread of this information
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in the measurement domain for providing performance guar-
antees.

To serve as a benchmark, we have considered sampling of
circularly wide-sense stationary signals, which is a natural way
to model wide-sense stationary signals in finite dimension.
Here the covariance matrix was circulant by assumption, hence
the unitary transform was fixed and given by the DFT matrix.
We have focused on the commonly employed equidistant
sampling strategy and gave the explicit expression for the
MMSE.

In addition to providing insights into the problem of unitary
encoding in Gaussian erasure channels, our work in this
article also contributed to our understanding of the relationship
between the MMSE and the total uncertainty in the signal as
quantified by information theoretic measures such as entropy
(eigenvalues) and the spread of this uncertainty (basis). We
believe that through this relationship our work also sheds light
on how to properly characterize the concept of “coherence of
a random field”. Coherence, a concept describing the overall
correlatedness of a random field, is of central importance in
statistical optics; see [44], [45] and the references therein.

APPENDIX A
NOTES ON EQUIDISTANT SAMPLING OF C.W.S.S. SIGNALS

We believe that error expressions related to the equidistant
sampling of the c.w.s.s. signals can be also of independent
interest. Hence we further elaborate on this sampling scenario
in this section. We first present the result for the noiseless case
and then give the relevant proofs, including that of Lemma 3.3
which is for the noisy sampling case.

A. Equidistant Sampling Without Noise

Our set-up is the same with Section III-A except here we
first consider the case where there is no noise so that y = H x .
We now present an explicit expression and an upper bound for
the mean-square error associated with this noiseless set-up.

Lemma 4.1: Let the model and the sampling strategy be as
described above. Then the MMSE of estimating x from these
equidistant samples can be expressed as

E[||x − E[x |y]||2] =
∑
k∈J0

(

�N−1∑
i=0

λi M+k

−
�N−1∑

i=0

λ2
i M+k∑�N−1

l=0 λlM+k
), (57)

where J0 = {k : ∑�N−1
l=0 λlM+k �= 0, 0 ≤ k ≤ M − 1} ⊆

{0, . . . ,M − 1}.
In particular, choose a set of indices J ⊆ {0, 1, . . . , N − 1}

with |J | = M such that ∀i, j, 0 ≤ i, j ≤ �N − 1, i �= j

j M + k ∈ J ⇒ i M + k /∈ J (58)

with 0 ≤ k ≤ M − 1. Let PJ = ∑
i∈J λi . Then the MMSE is

upper bounded by the total power in the remaining eigenvalues

E[||x − E[x |y]||2] ≤ 2(P − PJ ). (59)

In particular, if there is such a set J so that PJ = P, the
MMSE will be zero.

Remark 4.1: The set J essentially consists of the indices
which do not overlap when shifted by M.

Remark 4.2: We note that the choice of the set J is not
unique, and each choice of the set of indices may provide a
different upper bound. To obtain the lowest possible upper
bound, one should consider the set with the largest total
power.

Remark 4.3: If there exists such a set J that has the most
of power, i.e. PJ = δP, δ ∈ (0, 1], with δ close to 1, then
2(P − PJ ) = 2(1 − δ)P is small and the signal can be
estimated with low values of error. In particular, if such a
set has all the power, i.e. P = PJ , the error will be zero.
A conventional aliasing free set J may be the set of indices
of the band of a band-pass signal with a band smaller than
M. It is important to note that there may exist other sets J
with P = PJ , hence the signal may be aliasing free even if
the signal is not bandlimited (low-pass, high-pass etc) in the
conventional sense.

Proof: Proof is given in Section IV-B of the Appendix.
We observe that the bandwidth (or the effective degrees

of freedom) turn out to be good predictors of estimation
error in equidistant sampling scenario. On the other hand,
the differential entropy of an effectively bandlimited Gaussian
vector can be very small even if the bandwidth is close to N ,
hence may not provide any useful information with regards to
estimation performance.

We now compare our error bound with the related results
in the literature. In the following works, similar problems
with signals defined on R are considered: In [46], mean-
square error of approximating a possibly non-bandlimited
wide-sense stationary (w.s.s.) signal using sampling expansion
is considered and a uniform upper bound in terms of power
outside the bandwidth of approximation is derived. Here we
are interested in the average error over all points of the N
dimensional vector. Our method of approximation of the signal
is possibly different, since we use the MMSE estimator. As a
result our bound also makes use of the shape of the eigenvalue
distribution. [47] states that a w.s.s. signal is determined
linearly by its samples if some set of frequencies containing
all of the power of the process is disjoint from each of its
translates where the amount of translate is determined by the
sampling rate. Here for circularly w.s.s. signals we show a
similar result: if there is a set J that consists of indices which
do not overlap when shifted by M , and has all the power, the
error will be zero. In fact, we show a more general result for
our set-up and give the explicit error expression. We also show
that two times the power outside this set J provides an upper
bound for the error, hence putting a bound on error even if it
is not exactly zero.

B. Proof of Lemma 4.1

We remind that in this section utk = 1√
N

e j 2π
N tk , 0 ≤ t , k ≤

N − 1 and the associated eigenvalues are denoted with λk

without reindexing them in decreasing/increasing order. We
first assume that Ky = E[yy†] = H Kx H † is non-singular.
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The generalization to the case where Ky may be singular is
presented at the end of the proof.

The MMSE for estimating x from y is given by [30, Ch. 2]

E[||x − E[x |y]||2] = tr(Kx − Kxy K −1
y K †

xy)

= tr(�x −�xU† H †(HU�xU† H †)−1 HU�x). (60)

We now consider HU ∈ CM×N ,

(HU)lk = 1√
N

e j 2π
N (�Nl)k = 1√

N
e j 2π

M lk , (61)

where 0 ≤ l ≤ N
�N − 1, 0 ≤ k ≤ N − 1. We observe that

for a given l, e j 2π
M lk is a periodic function of k with period

M = N
�N . Hence, lth row of HU can be expressed as

(HU)l: = 1√
N

[e j 2π
M l[0...N−1]]

= 1√
N

[e j 2π
M l[0...M−1]| . . . |e j 2π

M l[0...M−1]].
Let UM denote the M × M DFT matrix, i.e. (UM )lk =

1√
M

e j 2π
M lk with 0 ≤ l ≤ M − 1, 0 ≤ k ≤ M − 1. Hence HU

is the matrix formed by stacking �N M × M DFT matrices
side by side

HU = 1√
�N

[UM | . . . |UM ]. (62)

Now we consider the covariance matrix of the observations
Ky = H Kx H † = HU�xU† H †. We first express �x as a
block diagonal matrix as follows

�x =

⎡
⎢⎢⎢⎢⎣

λ0 0 · · · 0

0 λ1
...

...
. . .

...
0 · · · 0 λN−1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

�0
x 0̄ · · · 0̄

0̄ �1
x

...
...

. . .
...

0̄ · · · 0̄ ��N−1
x

⎤
⎥⎥⎥⎥⎦

where 0̄ ∈ RM×M denotes the matrix of zeros. Hence �x =
diag(�i

x) with �i
x = diag(λi M+k ) ∈ RM×M , where 0 ≤ i ≤

�N − 1, 0 ≤ k ≤ M − 1. We can write Ky as

Ky = HU�xU† H †

= 1√
�N

[UM | . . . |UM ] diag(�i
x )

⎡
⎢⎣

U†
M
...

U†
M

⎤
⎥⎦ 1√

�N

= 1

�N
UM (

�N−1∑
i=0

�i
x )U

†
M

We note that
∑�N−1

i=0 �i
x ∈ RM×M is formed by summing

diagonal matrices, hence also diagonal. Since UM is the
M × M DFT matrix, Ky is again a circulant matrix whose
kth eigenvalue is given by

λy,k = 1

�N

�N−1∑
i=0

λi M+k , 0 ≤ k ≤ M − 1. (63)

Hence Ky = UM�yU†
M is the eigenvalue-eigenvector decom-

position of Ky , where �Y = 1
�N

∑�N−1
i=0 �i

x = diag(λy,k).
There may be aliasing in the eigenvalue spectrum of Ky

depending on the eigenvalue spectrum of Kx and �N . We also
note that Ky may be aliasing free even if it is not bandlimited
(low-pass, high-pass, etc.) in the conventional sense. We note
that since Ky is assumed to be non-singular, λy,k > 0. K −1

y
can be expressed as

K −1
y = (UM�yU†

M )
−1 = UM diag(

1

λy,k
)U†

M

= UM diag(
�N∑�N−1

i=0 λi M+k
)U†

M .

We are now ready to consider the error expression in (60). We
first consider the second term, that is

tr(�xU† H †K −1
y HU�x)

= tr(
1√
�N

⎡
⎢⎣

�0
xU†

M
...

��N−1
x U†

M

⎤
⎥⎦ (UM�

−1
y U†

M )

× 1√
�N

[UM�
0
x | . . . |UM�

�N−1
x ])

=
�N−1∑

i=0

1

�N
tr(�i

x�
−1
y �i

x )

=
�N−1∑

i=0

M−1∑
k=0

λ2
i M+k∑�N−1

l=0 λlM+k

Hence the MMSE becomes

E[||x − E[x |y]||2]

=
N−1∑
t=0

λt −
�N−1∑

i=0

M−1∑
k=0

λ2
i M+k∑�N−1

l=0 λlM+k

=
M−1∑
k=0

�N−1∑
i=0

λi M+k −
�N−1∑

i=0

M−1∑
k=0

λ2
i M+k∑�N−1

l=0 λlM+k

=
M−1∑
k=0

(

�N−1∑
i=0

λi M+k −
�N−1∑

i=0

λ2
i M+k∑�N−1

l=0 λlM+k
).

We note that we have now expressed the MMSE as the sum
of the errors in M frequency bands. Let us define the error at
kth frequency band as

ewk =
�N−1∑

i=0

λi M+k −
�N−1∑

i=0

λ2
i M+k∑�N−1

l=0 λlM+k
, (64)

where 0 ≤ k ≤ M − 1. Hence the total error is given by

E[||x − E[x |y]||2] =
M−1∑
k=0

ewk .

That proves the expression for the error. We now consider the
upper bound. Before moving on, we study a special case:
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Example 4.1: Let �N = 2. Then

ewk = λk + λ N
2 +k −

λ2
k + λ2

N
2 +k

λk + λ N
2 +k

=
2λkλ N

2 +k

λk + λ N
2 +k

.

Hence 1
ewk

= 1
2 (

1
λ N

2 +k
+ 1

λk
). We note that this is the MMSE

for the following single output multiple input system

zk = [
1 1

] [
sk

0
sk

1

]
, (65)

where sk ∼ N (0, Ksk ), with Ksk = diag(λk, λ N
2 +k). Hence

the random variables associated with the frequency compo-
nents at k, and N

2 + k act as interference for estimating the
other one. We observe that for estimating x we have N

2 such
channels in parallel.

We may bound ewk as

ewk =
2λkλ N

2 +k

λk + λ N
2 +k

≤
2λkλ N

2 +k

max(λk, λ N
2 +k)

= 2 min(λk , λ N
2 +k).

This bound may be interpreted as follows: Through the scalar
channel shown in (65), we would like to learn two random
variables sk

0 and sk
1 . The error of this channel is upper bounded

by the error of the scheme where we only estimate the one with
the largest variance, and don’t try to estimate the variable with
the small variance. In that scheme, one first makes an error
of min(λk, λ N

2 +k), since the variable with the small variance
is ignored. We may lose another min(λk, λ N

2 +k), since this
variable acts as additive noise for estimating the variable with
the larger variance, and the MMSE associated with such a
channel may be upper bounded by the variance of the noise.

Now we choose the set of indices J with |J | = N/2 such
that k ∈ J ⇔ N

2 + k /∈ J and J has the most power over
all such sets, i.e. k + arg max

k0∈{0,N/2} λk0+k ∈ J , where 0 ≤ k ≤
N/2 − 1. Let PJ =

∑
k∈J

λk . Hence

E[||x − E[x |y]||2] =
N/2−1∑

k=0

ewk ≤ 2
N/2−1∑

k=0

min(λk , λ N
2 +k)

= 2(P − PJ ).

We observe that the error is upper bounded by 2× (the power
in the “ignored band”).

We now return to the general case. Although it is possible
to consider any set J that satisfies the assumptions stated in
(58), for notational convenience we choose the set J = {0, . . . ,
M − 1}. Of course in general one would look for the set J
that has most of the power in order to have a stricter bound
on the error.

We consider (64). We note that this is the MMSE of
estimating sk from the output of the following single output
multiple input system

zk = [
1 · · · 1

]
⎡
⎢⎣

sk
1
...

sk
�N−1

⎤
⎥⎦ ,

where sk ∼ N (0, Ksk ), with Ksk as follows

Ksk = diag(σ 2
sk

i
) = diag(λk , . . . , λi M+k , . . . , λ(�N−1)M+k).

We define

Pk =
�N−1∑

l=0

λlM+k , 0 ≤ k ≤ M − 1

We note that
∑M−1

k=0 Pk = P .
We now bound ewk as in the �N = 2 example

ewk =
�N−1∑

i=0

λi M+k −
�N−1∑

i=0

λ2
i M+k∑�N−1

l=0 λlM+k

=
�N−1∑

i=0

(λi M+k − λ2
i M+k

Pk
)

= (λk − λ2
k

Pk
)+

�N−1∑
i=1

(λi M+k − λ2
i M+k

Pk
)

≤ (Pk − λk)+
�N−1∑

i=1

λi M+k

= (Pk − λk)+ Pk − λk = 2(Pk − λk),

where we have used λk − λ2
k

Pk = λk(Pk−λk)
Pk ≤ Pk − λk since

0 ≤ λk
Pk ≤ 1 and λi M+k−λ2

iM+k
Pk ≤ λi M+k since

λ2
iM+k
Pk ≥ 0. This

upper bound may interpreted similar to the Example 4.1: The
error is upper bounded by the error of the scheme where one
estimates the random variable associated with λk , and ignore
the others.

The total error is bounded by

E[||x − E[x |y]||2] =
M−1∑
k=0

ewk ≤
M−1∑
k=0

2(Pk − λk)

= 2(
M−1∑
k=0

Pk −
M−1∑
k=0

λk) = 2(P − PJ ).

Remark 4.4: We now consider the case where Ky may be
singular. In this case, for MMSE estimation, it is enough
to use K +

y instead of K −1
y , where + denotes the Moore-

Penrose pseudo-inverse [30, Ch. 2]. Hence the MMSE may
be expressed as tr(Kx − Kxy K +

y K †
xy). We have K +

y =
(UM�yU†

M )
+ = UM�

+
y U†

M = UM diag(λy,k
+)U†

M , where
λ+

y,k = 0 if λy,k = 0 and λ+
y,k = 1

λy,k
otherwise. Going through

the calculations with K +
y instead of K −1

y reveals that the error
expression remains essentially the same

E[||x −E[x |y]||2]=
∑
k∈J0

(

�N−1∑
i=0

λi M+k −
�N−1∑

i=0

λ2
i M+k∑�N−1

l=0 λlM+k
),

where J0 = {k : ∑�N−1
l=0 λlM+k �= 0, 0 ≤ k ≤

M − 1} ⊆ {0, . . . ,M − 1}. We note that �Nλy,k

= ∑�N−1
l=0 λlM+k = Pk.
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C. Proof of Lemma 3.1

The proof of Lemma 3.1 follows from the proof of
Lemma 4.1 as follows: We first note that in the noisy case
Kxy = Kx H †, as in the noiseless case. We also note that in
the noisy case, Ky is given by Ky = H Kx H † + Kn . Now
the result is obtained by retracing the steps of the proof of
Lemma 4.1, which is given in Section IV-B, with Ky replaced
by the above expression, that is Ky = H Kx H † + Kn .

APPENDIX B
PROOF OF LEMMA 3.3

Our aim is to show that the smallest eigenvalue of A =
�−1

x + 1
σ 2

n
(HU)†HU is bounded from below with a sufficiently

large number with high probability. That is, we are interested
in

inf
x∈S N−1

x†�−1
x x + 1

σ 2
n

x†(HU)†HU x . (66)

To lower bound the smallest eigenvalue, we adopt the approach
proposed by [43]: We consider the decomposition of the unit
sphere into two sets, compressible vectors and incompressible
vectors. We recall the following from [43]:

Definition 4.1 [43, p. 14]: Let |supp(x)| denote the number
of elements in the support of x . Let η, ρ ∈ (0, 1). x ∈ C

N is
sparse, if |supp(x)| ≤ ηN. The set of vectors sparse with a
given η is denoted by Sparse(η). x ∈ SN−1 is compressible,
if x is within an Euclidean distance ρ from the set of all
sparse vectors, that is ∃ y ∈ Sparse(η), d(x, y) ≤ ρ. The
set of compressible vectors is denoted by Comp(η, ρ). x ∈
SN−1 is incompressible if it is not compressible. The set of
incompressible vectors is denoted by Incomp(η, ρ).

Lemma 4.2 [43, Lemma 3.4]: Let x ∈ Incomp(η, ρ). Then
there exists a set ψ ⊆ {1, ..., N} of cardinality |ψ| ≥ 0.5ρ2ηN
such that

ρ√
2N

≤ |xk| ≤ 1√
ηN

, ∀k ∈ ψ. (67)

The set of compressible and incompressible vectors pro-
vide a decomposition of the unit sphere, i.e. SN−1 =
Incomp(η, ρ)

⋃
Comp(η, ρ) [43]. We will show that the

first/second term in (66) is sufficiently away from zero for x ∈
Incomp(η, ρ)/ x ∈ Comp(η, ρ) respectively. The parameters
ρ and η = κD/N , κ > 1 are going to be chosen appropriately
to satisfy the conditions of Lemma 3.3.

As noted in [43], for any square matrix A

P( inf
x∈S N−1

x† Ax ≤ C) ≤ P( inf
x∈Comp(η,ρ)

x† Ax ≤ C)

+P( inf
x∈I ncomp(η,ρ)

x† Ax ≤ C).

(68)

We also note that

inf
x∈I ncomp(η,ρ)

x†�−1
x x + x† 1

σ 2
n
(HU)†HU x

≥ inf
x∈I ncomp(η,ρ)

x†�−1
x x

= inf
x∈I ncomp(η,ρ)

||�−1/2
x x ||2, (69)

and

inf
x∈Comp(η,ρ)

x†�−1
x x + x† 1

σ 2
n
(HU)†HU x

≥ 1

λmax
+ inf

x∈Comp(η,ρ)
x† 1

σ 2
n
(HU)†HU x

= 1

λmax
+ 1

σ 2
n
( inf

x∈Comp(η,ρ)
||HU x ||2), (70)

where λmax = maxi λi and the inequalites are due to the fact
that �−1

x , H †H are both positive-semidefinite.
We now recall the following result from [23], which

expresses the eigenvalue bound for sparse vectors.
Lemma 4.3 [23, Th. 8.4]: Let U be an N × N unitary

matrix with μ = √
N maxk, j |uk, j |. Let ε ∈ (0, 1), θη ∈

(0, 0.5]. If

M/ ln(10M) ≥ C1 θ
−2
η μ2κD ln2(100κD) ln(4N) (71)

M ≥ C2 θ
−2
η μ2κD ln ε−1 (72)

Then,

P( inf
x∈Sparse(η)

||HU x ||2 ≤ (1 − θη)
M

N
||x ||2) ≤ ε. (73)

Here C1 ≤ 50 963, C2 ≤ 456 and η = κD/N.
We now show that this result can be generalized to an

eigenvalue bound for compressible vectors x ∈ Comp(η, ρ),
where ρ will be appropriately chosen.

Lemma 4.4: Let the conditions of Lemma 4.3 hold. Let
CκD = (1 − θη)

0.5(M
N )

0.5. Choose ρ such that

ρ ≤ (1 − γ )
CκD

CκD + 1
, (74)

where 0 ≤ γ ≤ 1. Then,

P( inf
x∈Comp(η,ρ)

||HU x || ≤ γ CκD) ≤ ε. (75)

Proof: We will adopt an argument in the proof of
[43, Lemma 3.3]. That is, we will show that the event Ec

that ||HU x || ≤ γ CκD for some x ∈ Comp(η, ρ), implies the
event Es that ||HUv|| ≤ CκD ||v|| for some v ∈ Sparse(η)
(for ρ appropriately chosen). Note that P(Es) ≤ ε by
Lemma 4.3. If Ec implies Es , then we have P(Ec) ≤ P(Es) ≤
ε, which is the desired result in (75).

We first note that every x ∈ Comp(η, ρ) can be written as
x = y + z, where v = y/||y||, v ∈ Sparse(η) and ||z|| ≤ ρ.
Hence we have the following

||HU y|| ≤ ||HU x || + ||HUz|| ≤ ||HU x || + ||z||
≤ γCκD + ρ

where we have used the fact that ||HUz|| ≤ ||HU || ||z|| ≤
||z||, and the assumption ||HU x || ≤ γCκD . Since ||y|| ≥
|||x || − ||z||| = 1 − ρ, we can also write the following

||HU
y

||y|| || ≤ γ CκD+ρ
1−ρ . (76)

Let us now choose ρ as stated in the condition of the lemma.
Then we have ||HUv|| ≤ CκD for some v ∈ Sparse(η),
||v|| = 1. Hence we have shown that the event Ec implies the
event Es . This proves the claim in (75). �
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We have now established a lower bound for
infx∈Comp(η,ρ) ||HU x ||2 that holds with high probability. We
now turn our attention to incompressible vectors. For this
purpose, we consider (69). We note that none of the entities
in this expression is random. We note the following

inf
x∈I ncomp(η,ρ)

||�−1/2
x x ||2 = inf

x∈I ncomp(η,ρ)

N∑
i=1

1

λi
|xi |2

≥
∑
i∈ψ

1

λi

ρ2

2N
, (77)

where the inequality is due to Lemma 4.2. We observe that in
order to have this expression sufficiently bounded away from
zero, the distribution of 1

λi
should be spread enough.

Let us assume that λi < C I
λ

P
N−D , for i = D + 1, . . . , N ,

where C I
λ ∈ (0, 1). Let 0.5ρ2ηN = 0.5ρ2κD > D. Then we

have

inf
x∈I ncomp(η,ρ)

||�−1/2
x x ||2

≥
∑
i∈ψ

1

λi

ρ2

2N
≥ (|ψ| − D)

N − D

C I
λ P

0.5ρ2

N

≥ (0.5ρ2κD − D)
0.5ρ2

C I
λ

N − D

N

1

P
≥ CI

D

P
, (78)

where we have used |ψ| ≥ 0.5ρ2κD, and CI is defined
straightforwardly as in (46).

We will now complete the argument to arrive at
P(infx∈S N−1 x† Ax ≤ C) ≤ ε, where C is defined as min( 1

σ 2
n

(γ CκD)
2+ 1

λmax
, D

P CI ), with λmax parametrized as λmax =
Cs
λ

P
D . By (69) and (78), we have P(infx∈I ncomp(η,ρ) x† Ax <

CI
D
P ) = 0. By (70) and Lemma 4.4, we have

P(infx∈Comp(η,ρ) x† Ax ≤ 1
σ 2

n
(γ CκD)

2 + D
Cs
λP ) ≤ ε.

The claim of Lemma 3.3 follows from (68).
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