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a b s t r a c t

Optical fields propagating through quadratic-phase systems (QPSs) can be modeled as magnified frac-
tional Fourier transforms (FRTs) of the input field, provided we observe them on suitably defined
spherical reference surfaces. Non-redundant representation of the fields with the minimum number of
samples becomes possible by appropriate choice of sample points on these surfaces. Longitudinally, these
surfaces should not be spaced equally with the distance of propagation, but with respect to the FRT order.
The non-uniform sampling grid that emerges mirrors the fundamental structure of propagation through
QPSs. By providing a means to effectively handle the sampling of chirp functions, it allows for accurate
and efficient computation of optical fields propagating in QPSs.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Quadratic-phase systems (QPSs), also known as first-order
optical systems or ABCD systems, are a very general family of
optical systems encompassing arbitrary concatenations of various
components such as thin lenses and sections of free space in the
Fresnel approximation, as well as quadratic graded-index media
[1–4]. Mathematically, QPSs are referred to as linear canonical
transforms [5,7,6,8–11]. In this paper, we derive the optimal
sampling grid for this general family. This non-redundant grid of
sample points mirrors the physical structure of QPSs and enables
their accurate and fast simulation. The fractional Fourier transform
(FRT) plays a fundamental role in the analysis of QPSs. We also
analyze the evolution of spatial information along the longitudinal
direction and show that the spherical reference surfaces should be
equally spaced with respect to the fractional Fourier transform
order. Our results are relevant to work on both sampling and fast
computation of light fields propagating through quadratic-phase
systems [12–26].
2. Decomposition of propagation in quadratic-phase systems

We will use ^ ( )f x and σ^ ( )F x to represent an optical signal in the
space domain and the frequency domain, respectively. Although
we work with functions of a single variable for sake of simpler
analysis, our results can be generalized to two dimensions. It will
be useful to introduce dimensionless variables u¼x/s and μ σ= s x

for space and frequency, where s is a scaling parameter with units

of length. We now define ^ ( ) ≡ ( ) ( )f x s f u1/ and σ μ^ ( ) ≡ ( )F s Fx .
The functions f(u) and μ( )F are the space- and frequency-domain
functions that take dimensionless arguments. More information
on this dimensional normalization process may be found in [1].

The FRT can be viewed as the “fractional operator power” of the
common Fourier transform (FT). One way of defining the ath order
FRT of a function f(u), which we denote by fa(u), is

∫ ( )π π π π( ) = [ ( ( ) − ′ ( ) + ′ ( ))] ( ′) ′
−∞

∞

1f u A i u a uu a u a f u duexp cot /2 2 csc /2 cot /2a a
2 2

See [1] for subtleties in the definition of fractional operator powers
as well as alternative ways of defining the FRT. Here

π= − ( )A i a1 cot /2a . When a¼1, we obtain the common FT, so
that the FRT can be seen as a generalization of the common FT.
Viewed in the space–frequency plane (phase space), the act of
taking the FRT of a signal results in a α π= a /2 rotation of its
Wigner distribution. This can be expressed as a relation between
the Wigner distribution of f(u) and the Wigner distribution of fa(u)
as follows [27]:

μ α μ α α μ α( ) = ( − + ) ( )W u W u u, cos sin , sin cos . 2f fa

Quadratic-phase systems (QPSs) are unitary. The input ^ ( )f x
leads to an output ^ ( )g x given by
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Fig. 1. The space–frequency ellipses show the approximate region of confinement of the (a) input signal, (b) output signal on the planar reference surface, and (c) output
signal on the spherical reference surface ( σ= Δ Δs x/ x , which is the optimal value).
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∫β^ ( ) = ^ ( ′) ′ ( )
π π α β γ−

−∞

∞
( − ′+ ′ )g x e e f x dx . 3

i i x xx x/4 22 2

They are often characterized by the ABCD parameters which satisfy
− =AD BC 1 and are defined as

γ
β β

β γα
β

α
β

= = = − + =
( )

A B C D,
1

, , .
4

Consider a quasi-monochromatic optical signal with wavelength λ.
Fresnel diffraction and passage through a thin lens are special
kinds of QPSs. For Fresnel propagation over a distance d, we have

= =A D 1, C¼0, and λ=B d. For a thin lens with focal length f we
have = =A D 1, B¼0, and λ= −C f1/ .

Quadratic-phase systems have many decompositions. A de-
composition is the breaking down of the system into consecutive
simpler parts. One of the possible decompositions involves three
stages. The first is a FRT operation, the second is a magnification
operation, and the final stage is a chirp multiplication operation
[28–32]:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

π
λ

^ ( ) =
( )

π λ π−g x e e
sM

i x
R

f
x

sM
1

exp .
5

i d ia
a

2 / /4
2

Here a, M, and R are defined through
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The ambiguity in inverting the tangent in Eq. (6) should be re-
solved by choosing a in < <a0 2 for >B 0 and in < <a2 4 for

<B 0. We will make a number of observations on these equations.
First, we note that the unit-magnitude π λ π−e ei d ia2 / /4 terms are
constant and unimportant for our purposes. Furthermore, the
chirp multiplication term can be eliminated, if we decide to ob-
serve the output not on a planar surface, but on a spherical re-
ference surface with radius as given by the value of R above. In this
case, we observe a magnified version of the FRT of the input, with
the magnification given by the value of M above. A final note is
that, Eq. (5) is valid no matter what we choose s to be. This de-
composition will constitute the basis for our derivation of the
optimal sampling grid.
3. Transverse sampling spacing

A discussion of sampling often begins with assumptions on the
extent of the signals in both space and frequency, the latter often
called the bandwidth. An alternative approach is to specify the
extent of the signals in the space–frequency plane. Our beginning
assumption will be to specify the space–frequency region to which
the signal is confined. Here, “confined” means that a sufficiently
large percentage of the total energy is contained in that region.

We will take the z¼0 plane as our input plane. We assume that
the space–frequency region of confinement of the input signal at
this plane is an ellipse with diameters denoted by Δx and σΔ x

(Fig. 1(a)). Note that this implies that the space extent of the signal
is Δx and that the frequency extent of the signal is σΔ x. How many
samples are needed to represent the signal? The sampling theo-
rem of Nyquist–Shannon requires a sampling interval of σΔ1/ x.
Over a spatial extent of Δx this means σ σ= Δ ( Δ ) = Δ ΔN x x/ 1/ x x

samples. This is known as the space–bandwidth product. The same
derivation can be repeated in dimensionless coordinates. Now the
ellipse diameters (and thus also the space and frequency extents)
are Δx s/ and σΔs x, which lead to the same value of N. The space–
bandwidth product is invariant under scalings and does not de-
pend on s.

We now consider a QPS between the z¼0 and z¼d planes
characterized by the parameters ABCD. For example, in a system
made up of lenses separated by sections of free space, these ABCD
parameters will depend on the focal lengths and locations of the
lenses. We will first determine the spatial extent of the output

signal ^ ( )g x observed at z¼d, given an input signal ^ ( )f x at z¼0. It is

known that the Wigner distributions of ^ ( )f x and ^ ( )g x have the
following relationship [1,33–36]:

σ σ σ^ ( ) = ^ ( − − + ) ( )W x W Dx B Cx A, , . 9g x f x x

Based on our assumption that the initial space–frequency dis-
tribution of the signal is well-confined to an elliptical region with
diameters Δx and σΔ x, and using Eq. (9), it is possible to show that
the output space–frequency distribution will have a spatial extent

σΔ ″ = Δ + Δ ( )x x D B , 10x
2 2 2 2



S.Ö. Arık, H.M. Ozaktas / Optics Communications 366 (2016) 17–21 19
and a frequency extent

σ σΔ ″ = Δ + Δ ( )x C A . 11x x
2 2 2 2

The derivation of these results are similar to those in [37] and are
thus not repeated. On the output plane, the space–bandwidth
product is σ″ = Δ ″Δ ″N x x . It can be shown that we always have

″ ≥N N , with equality in the trivial case = =B C 0 and =A D1/
(simple scaling system). We have used double primes since we are
saving the use of single primes for the output on the spherical
reference surfaces. The linearly distorted region of confinement on
the output plane at z¼d is illustrated in Fig. 1(b).

We now wish to obtain an expression for the spatial extent Δ ′x
of the output field on the spherical reference surface. We refer to
Eq. (5). First we choose a scale parameter s and map the ellipse
enclosing most of the signal energy, into a dimensionless space–
frequency plane. Here, the diameters are Δx s/ and σΔs x. Now, we
apply a FRT of order a, which results in a rotation by an angle
α π= a /2. Using Eq. (2), we find that the rotated ellipse has a spatial
extent of σ α α( Δ ) + (Δ )s x ssin cos /x

2 2 , in dimensionless co-
ordinates. To express this in dimensional coordinates, we multiply
by s. Finally, we multiply with the magnification M to obtain the
spatial extent of the output signal on the spherical reference sur-
face:

σ α αΔ ′ = ( Δ ) + (Δ ) ( )x M s xsin cos . 12x
2 2 2

Following a similar argument, we can derive the spatial frequency
extent σΔ ′x of the output signal on the spherical reference surface

as σ α α( Δ ) + (Δ )s x scos sin /x
2 2 . Dividing by s to express in di-

mensional coordinates, and finally dividing by the magnification
M, we obtain

σ σ α αΔ ′ = (Δ ) + (Δ ) ( )M
x s

1
cos sin / . 13x x

2 2 2

Now, it is possible to obtain the space–bandwidth product on
the spherical reference surface: σ′ = Δ ′Δ ′N x x from the above ex-
pressions:

( )σ α α σ α α α α′ = [ (Δ ) + Δ Δ ( + ) + Δ ] 14N s x x ssin cos sin cos sin cos / .x x
4 4 2 2 2 2 4 4 4 2 2 4 1/2

Calculating the minimum value of Eq. (14) by equating its de-
rivative with respect to s to 0, we find that the minimum occurs at

σ= Δ Δ ( )s x/ . 15x

With this value of s, we always have ′ =N N , regardless of ABCD. In
other words, this choice of s allows the output signal to be fully re-
presented on the spherical reference surface, with the same number of
samples as the input signal. In contrast, since ″N is equal to N only
for very special values of ABCD, the representation of the signal on
the planar output plane would require a greater number of sam-
ples than information theoretically necessary. Thus, the use of
spherical reference surfaces allows non-redundant representation
of signals with the minimum possible number of samples. Since
this is possible if and only if the scale parameter σ= Δ Δs x/ x , we
refer to this value of s as the natural scale parameter. What is
special about this value of s? It makes the spatial extent Δx s/ and
the frequency extent σΔs x in dimensionless phase-space both
equal to σΔ Δ =x Nx . For this value of s, the ellipse is reduced to
a circle with diameter N . A rotated circle is still the same circle.
So the FRT operation, whose effect in phase space is to rotate, does
not change this circular region in any way. The consequence of this
is that in dimensional coordinates, the output space extent is
nothing more complicated than the input space extent multiplied
with M, and the output frequency extent is nothing more than the
input frequency extent divided by M. This leaves the space–
bandwidth product unchanged.
These observations can also be seen from Fig. 1(c), which shows
the space–frequency region-of-confinement of the signal on the
spherical reference surface. With the natural scale parameter, not
only are the area of the ellipses in Fig. 1(a) and (c) (and the area of
their bounding rectangles) equal, but the space–bandwidth pro-
duct and thus number of samples for the region in Fig. 1(c) is equal
to that in Fig. 1(a). This becomes possible because the natural scale
parameter equates the vertical and horizontal extents of the el-
lipse in dimensionless coordinates, reducing it to a circle. Conse-
quently, no matter how much the space–frequency region is ro-
tated by the FRT operation, the circle remains a circle and upon
going back to dimensional coordinates we obtain an ellipse with
axes aligned with the space and frequency axes as in Fig. 1(c). In
contrast, the sheared space–frequency region in Fig. 1(b), although
having an area equal to the area of the region in Fig. 1(a), exhibits a
space–bandwidth product which is larger, requiring a greater
number of samples. In other words, shearing leads to a space–
bandwidth product and number of samples needlessly greater
than the true number of degrees of freedom of the signal (given by
the area of the region, which is invariant). Use of the natural scale
parameter on the appropriate spherical reference surface avoids
shearing and thus keeps the number of samples equal to the true
number of degrees of freedom of the signal.

The optical field on the output spherical reference surface is
simply related to the field on the input plane through a magnified
FRT. If we choose the natural scale parameter, the magnification
has a simple effect. It increases the spacing of the samples by a
factor of M from σΔ1/ x to σΔM/ x, without affecting their values. We
refer to these spherical reference surface samples as the natural
sampling grid. Based on the Nyquist–Shannon theorem, these N
samples allow interpolation of the continuous transverse optical
field at any point along the QPS. They contain precisely the in-
formation we need to reconstruct the continuous signal without
any redundancy.

The discrete Fourier transform begins with the samples of a
function and delivers the samples of its common Fourier trans-
form, to a good approximation. The discrete FRT does the same for
the FRT [38–43]. It follows that if we are given the values of the
samples of the input field, the discrete FRT can be used to ap-
proximately compute the values of the field on the natural sam-
pling grid. Based on this we can state that, calculation of the field at
any position in a quadratic-phase system requires nothing more than
discrete fractional Fourier transformation.

Our approach allows us to work with the smallest number of
samples N to represent the signal. Computation of the output
samples from the input samples is fast; it takes ∼N Nlog time [38].
Moreover, computational accuracy arising from the use of the
discrete FRT is not different than that arising from the use of the
FFT to compute the common Fourier transform [31]. To summar-
ize, we have shown that we can represent and compute the output
field by using an identical number of samples as required for the
input. This is accomplished through a particular scaling strategy
and by choosing to observe the output on spherical reference
surfaces. Had we not made these choices, the unitarity and space–
frequency-area (and number of degrees of freedom) preserving
property of QPSs would not suffice to avoid information loss with
this number of samples.
4. Longitudinal sampling spacing

Until now we concentrated on transverse sample spacing.
What about the longitudinal spacing between reference surfaces?

For simplicity, in this derivation we will use the QPS re-
presentation with the parameters α, β, γ, instead of the ABCD
parameters. Consider the integral in Eq. (3). We can truncate the
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infinite limits to ±Δx/2 on both sides, because the signal is as-
sumed to have an extent of Δx around zero. We will see that de-
pending on the parameters and integrand structure, the integral
can be limited even more tightly. The instantaneous frequency of
the chirp function inside the integral is found by differentiating its
phase and multiplying by π1/2 , resulting in γ β′ −x x. The largest

frequency of ^ ( ′)f x is σΔ /2x . When the absolute value of the in-
stantaneous frequency exceeds this largest frequency, the high-
frequency chirp will average out the signal to very small values,
and there will be very little contribution to the value of the in-
tegral. If we focus our attention to the optical axis (x¼0), we see
that this happens when γ σ| ′| > |Δ |x /2x . Thus, if we express the lower
limit of the integral as −L and its upper limit as +L , we have

⎛
⎝⎜

⎞
⎠⎟

σ
γ

= Δ Δ
( )

L
x

min
2

,
2

.
16

x

If we approximate M in Eq. (7) as ( )A B smax , / 2 , then Eq. (16) fur-
ther simplifies to

σ
β

= Δ
( )

L
M2

.
17

x

We want to analyze the behavior of the integral along z. If there is
an incremental change δz in z, the chirp phase change would be-
come π γ δ(∂ ∂ ) ′z zx/ 2. Since the maximum change occurs at the edge
values −L and +L, we would obtain a maximum phase change of

π γ δ σ
β

∂
∂

Δ
( )z

z
M4

.
18

x
2

2 2

This phase change may be considered substantial enough to cause
significant changes when it equals π2 . This yields

δ γ
β

σ
= ∂

∂
Δ

( )

z

z

M1 8
.

19
x

2 2

2

Note that δz depends not only on the values of α β γ, , , but also on
the change of γ with respect to z. If we use the approximation
δ δ= ∂ ∂a z a z/ with

π
γ

γ
∂
∂

= ∂
∂ + ( )

a
z z

s
s

2
1

,
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4 2

obtained from Eq. (6), and with

γ
β

= +
( )

M
s

s
1

,
21

4 2

2 4

obtained from Eq. (7), we eventually obtain

δ
π σ π

=
Δ Δ

=
( )

a
x N
16 16

.
22x

Notice that while δz depends on z, the value of δa does not depend
on z nor any of the system parameters. It is a constant for given
signal space–frequency extents. Thus the spherical reference sur-
faces should be spaced equally with respect to the FRT order, rather
than with respect to the distance. This is a generalization to QPSs, of
the result we derived for Fresnel diffraction in [44], where we refer
the reader for further discussion.
5. Discussion and conclusion

The non-uniform grid of samples points we have proposed has
two constituents: the curved reference surfaces and the separation
of samples on them. The parameters a, M, R define the curved
surface structure, which mirrors the physical structure of the QPS.
The parameters Δx and σΔ x defines s and δa, which mirrors the
information content of the set of signals. The special value

σ= Δ Δs x/ x matches the structure of the grid to the natural pro-
pensity of the signal to diffract, as determined by its space and
frequency extent [37]. Fig. 2 shows the natural sampling grid for
an example system consisting of multiple lenses and sections of
free space.

In conclusion, we derived a natural sampling grid that mirrors
the fundamental structure of optical propagation through quad-
ratic-phase systems. This grid is optimal in that it allows non-re-
dundant representation of signals with the fewest number of
samples and allows their efficient fast processing. The longitudinal
spacing is uniform with respect to the FRT order.
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