
Chapter 10

Fast Algorithms for Digital Computation
of Linear Canonical Transforms

Aykut Koç, Figen S. Oktem, Haldun M. Ozaktas, and M. Alper Kutay

Abstract Fast and accurate algorithms for digital computation of linear canonical

transforms (LCTs) are discussed. Direct numerical integration takes O.N2/ time,

where N is the number of samples. Designing fast and accurate algorithms that

take O.N logN/ time is of importance for practical utilization of LCTs. There are

several approaches to designing fast algorithms. One approach is to decompose an

arbitrary LCT into blocks, all of which have fast implementations, thus obtaining

an overall fast algorithm. Another approach is to define a discrete LCT (DLCT),

based on which a fast LCT (FLCT) is derived to efficiently compute LCTs.

This strategy is similar to that employed for the Fourier transform, where one

defines the discrete Fourier transform (DFT), which is then computed with the fast

Fourier transform (FFT). A third, hybrid approach involves a DLCT but employs

a decomposition-based method to compute it. Algorithms for two-dimensional and

complex parametered LCTs are also discussed.

10.1 Introduction

Linear canonical transforms (LCTs) are commonly referred to as quadratic-phase

integrals or quadratic-phase systems in optics [1]. They have also been referred to
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by names such as generalized Huygens integrals [2], generalized Fresnel transforms

[3, 4], special affine Fourier transforms [5, 6], extended fractional Fourier transforms

(FRTs) [7], and Moshinsky–Quesne transforms [8], among other names. The

so-called ABCD systems widely used in optics [9] are also represented by LCTs.

One-dimensional (1D) LCTs [8, 10] constitute a three-parameter class of linear

integral transforms [1, 11, 12] which include among its special cases, the one-

parameter subclasses of FRTs, scaling operations, and chirp multiplication (CM)

and chirp convolution (CC) operations, the latter also known as Fresnel transforms.

LCTs appear widely in optics [2, 10, 11], electromagnetics, classical and

quantum mechanics [8, 13, 14], as well as in computational and applied math-

ematics [15]. The application areas of LCTs include, among others, the study

of scattering from periodic potentials [16–18], laser cavities [2, 19, 20], and

multilayered structures in optics and electromagnetics [21]. They can also be used

for fast and efficient realization of filtering in LCT domains [22].

Generalizations to two-dimensional (2D) transforms and complex-parametered

transforms are also present in the literature. Classification of first-order optical

systems and their representation through LCTs are studied in [23–27] for 1D and

2D cases, respectively. Bilateral Laplace transforms, Bargmann transforms, Gauss–

Weierstrass transforms [8, 28, 29], fractional Laplace transforms [30, 31], and

complex-ordered fractional Fourier transformations (CFRTs) [32–35] are all special

cases of complex linear canonical transforms (CLCTs).

The LCTs are of great importance in electromagnetic, acoustic, and other

wave propagation problems since they represent the solution of the wave equation

under a variety of circumstances. At optical frequencies, LCTs can model a

broad class of optical systems including thin lenses, sections of free space in the

Fresnel approximation, sections of quadratic graded-index media, and arbitrary

concatenations of any number of these, sometimes referred to as first-order optical

systems [1, 5, 6, 10, 12].

Given its ubiquitous nature and numerous applications, the discretization, sam-

pling, and efficient digital computation of LCTs are of considerable interest.

The 1D LCT of f .u/ with parameter matrixM is denoted as fM.u/ D .CMf /.u/:

.CMf /.u/ D
p

ˇe�i�=4

Z 1

�1
exp

�

i�.˛u2 � 2ˇuu0 C �u02/
�

f .u0/ du0; (10.1)

where ˛, ˇ, � are real parameters independent of u and u0 and where CM is the

LCT operator. The transform is unitary. The 2 � 2 matrix M whose elements are

A;B;C;D represents the same information as the three parameters ˛, ˇ, � which

uniquely define the LCT:

M D
Ä

A B

C D

�

D
Ä

�=ˇ 1=ˇ

�ˇ C ˛�=ˇ ˛=ˇ

�

D
Ä

˛=ˇ �1=ˇ

ˇ � ˛�=ˇ �=ˇ

��1

: (10.2)

The unit-determinant matrix M belongs to the class of unimodular matrices. More

on the group-theoretical structure of LCTs may be found in [8, 10].



10 Fast Algorithms for Digital Computation of Linear Canonical Transforms 295

The result of repeated application (concatenation) of LCTs can be handled easily

with the above-defined matrix. When two or more LCTs are cascaded, the resulting

transform is again an LCT whose matrix is given by the product of the matrices of

the cascaded LCTs. For instance, if two LCTs with matrices M1 and M2 operate

successively, then the equivalent transform is an LCT with matrix M3 D M2M1.

LCTs are not commutative. The matrix of the inverse of an LCT is simply the inverse

of the matrix of the original LCT [8, 10].

There has been considerable work on defining discrete/finite FRTs and, to

a lesser degree, discrete/finite LCTs [36–55]. Definitions of the discrete FRT

(DFRT) [45, 53, 55] are more established and recognized than definitions of the

discrete LCT (DLCT). In this chapter the primary emphasis is not on sampling and

the definition of discrete transforms. We concentrate on fast and accurate algorithms

for digitally computing continuous LCTs, with careful attention to sampling issues,

so as to produce results that are nearly as accurate and fast as is theoretically

possible. Some approaches do involve the definition of a discrete transform, others

do not.

Historically, computation of the Fresnel diffraction integral, which is a special

case of LCTs, has received the greatest attention since it describes the propagation

of light in free space (see [56, 57] and the references therein). Since the Fresnel

integral is space-invariant and takes the form of a convolution, it can be computed

in O.N logN/ time. It is important to note that despite the fact that general LCTs

are not space-invariant (not in convolution form), so that a standard Fourier domain

approach cannot be used to obtain an O.N logN/-time algorithm, the algorithms

presented in this chapter are O.N logN/-time algorithms.

The Fourier transform (FT) is the most prominent special case of LCTs. Most

often, the continuous FT is approximated by the discrete Fourier transform (DFT)

and the DFT is computed with the fast Fourier transform (FFT) algorithm [58]

in O.N logN/ time. The FRT, another important special case of LCTs, is a

generalization of the FT. A fast algorithm for digital computation of the continuous

FRT was first developed in [59]. This fast FRT algorithm paved the way for

the development of fast algorithms for more general transforms, leading to the

algorithms for arbitrary LCTs that are discussed in Sects. 10.4, 10.7, and 10.8. The

algorithm in [59] serves as a basic building block within these fast linear canonical

transform (FLCT) algorithms.

In the next section, we present some preliminary material. In Sect. 10.3, we

discuss fast computation of the FRT. In Sect. 10.4, we turn our attention to

decomposition-based approaches to LCT computation. Next, in Sect. 10.5, we

present DLCT based methods. This is followed by Sect. 10.6, where we discuss

hybrid algorithms that involve the DLCT but employ a decomposition-based method

to compute it. Finally, we discuss extensions to two-dimensional (2D) and complex

transforms.
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10.2 Preliminaries

We begin by reviewing the concepts of compactness and the relationship of LCTs

to the Wigner distribution.

10.2.1 Compactness in Space, Frequency, and Phase Space

A function will be referred to as compact if its support is so. The support of a

function is the subset of the real axis in which the function is not equal to zero. In

other words, a function is compact if and only if its nonzero values are confined to

a finite interval. It is well known that a function and its Fourier transform cannot

both be compact (unless they are identically zero). In practice however, it seems

that we are always working with a finite space interval and a finite bandwidth. This

discrepancy between our mathematical idealizations and the real world is usually

not a problem when we work with signals of large space-bandwidth product. The

space-bandwidth product can be crudely defined as the product of the spatial extent

of the signal and its (double-sided) bandwidth. It is equal to the number of degrees

of freedom, the number of complex numbers required to uniquely characterize the

signal among others of the same space-bandwidth product.

We will assume that the space-domain representation of our signal is approx-

imately confined to the interval Œ��x=2; �x=2� and that its frequency-domain

representation is confined to the interval Œ���=2; ��=2�. With this statement we

mean that a sufficiently large percentage of the signal energy is confined to these

intervals. For a given class of functions, this can be ensured by choosing �x and

�� sufficiently large. We then define the space-bandwidth product N Á �x�� ,

which is always greater than unity, because of the uncertainty relation.

Let us now introduce the scaling parameter s with the dimension of space and

introduce scaled coordinates u D x=s and � D �s. With these new coordinates, the

space and frequency domain representations will be confined to intervals of length

�x=s and ��s. Let us choose s D
p

�x=�� so that the lengths of both intervals

are now equal to the dimensionless quantity
p

���x which we will denote by �u.

In the newly defined coordinates, our signal can be represented in both domains

with N D �u2 samples spaced �u�1 D 1=
p
N apart.

From now on we will assume that this dimensional normalization has been

performed and that the coordinates appearing in the definition of the FRT, Wigner

distribution, etc. are all dimensionless quantities.

For a signal with rectangular space-frequency support, the space-bandwidth

product is equal to the number of degrees of freedom. This is not true for signals

with other support shapes. While LCTs do not change the number of degrees of

freedom of a signal, they may change its space-bandwidth product.
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10.2.2 Relationship of LCTs to the Wigner Distribution

The relationship between first-order optical systems (quadratic-phase systems or

LCTs) and the Wigner distribution has been extensively studied [1, 11, 12, 60, 61].

The Wigner distributionWf .u; �/ of a signal f .u/ can be defined as [62, 63]

Wf .u; �/ D
Z 1

�1
f .uC u0=2/f �.u � u0=2/e�2� i�u0

du0: (10.3)

Roughly speaking, Wf .u; �/ is a function which gives the distribution of signal

energy over space and frequency. Its infinite integral over space and frequency,

expressed as
R 1

�1
R 1

�1Wf .u; �/ du d�, gives the signal energy.

Let f denote a signal and fM be its LCT with parameter matrix M. Then, the

Wigner distribution (WD) of fM can be expressed in terms of the WD of f as [10]

WfM.u; �/ D Wf .Du � B�; �CuC A�/: (10.4)

This means that the WD of the transformed signal is a linearly distorted version of

the original distribution. The Jacobian of this coordinate transformation is equal to

the determinant of the matrix M, which is unity. Therefore this coordinate trans-

formation does not change the support area of the Wigner distribution. (A precise

definition of the support area is not necessary for the purpose of this paper; it may

be defined as the area of the region where the values of the Wigner distribution are

non-negligible, or the area of a region containing a certain high percentage of the

total energy.) The invariance of support area means that LCTs do not concentrate

or deconcentrate energy; that is, they do not carry energy in or out of the defined

support area, keeping the total energy within the support area constant. The support

area of the Wigner distribution can also be approximately interpreted as the number

of degrees of freedom of the signal. Therefore, the number of samples needed to

represent the signal does not change after an LCT operation.

10.3 Fast Computation of Fractional Fourier Transforms

Here we review the fast algorithm for computing the continuous FRT presented in

[59], both for historical reasons and since it constitutes an important building block

of the LCT algorithms we will later present in Sects. 10.4 and 10.7.

Let fF f g.u/ denote the Fourier transform of f .u/. Integral powers F j of

the operator F Á F1 may be defined as its successive applications. Then we

have fF2f g.u/ D f .�u/ and fF 4f g.u/ D f .u/. The ath order FRT fF af g.u/ of
the function f .u/ may be defined for 0 < jaj < 2 as
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FaŒf .u/� Á fFaf g.u/ Á
Z 1

�1
Ka.u; u

0/f .u0/ du0;

Ka.u; u
0/ Á A� exp

�

i�.u2 cot� � 2uu0 csc� C u02 cot�/
�

;

A� Á exp.�i�sgn.sin�/=4 C i�=2/

j sin�j1=2
; (10.5)

where � Á a�=2 and i is the imaginary unit. The kernel approaches K0.u; u0/ Á
ı.u � u0/ and K˙2.u; u0/ Á ı.u C u0/ for a D 0 and a D ˙2, respectively. The

definition is easily extended outside the interval Œ�2; 2� by remembering that F4j is

the identity operator for any integer j and that the FRT operator is additive in index,

that is, Fa1Fa2 D Fa1Ca2 .

The FRT, like all LCTs, can be broken down into a succession of simpler

operations, such as chirp multiplication, chirp convolution, scaling, and ordinary

Fourier transformation. Here we will concentrate on two particular decompositions

which lead to two distinct algorithms. By ensuring that the sampling interval

satisfies the Nyquist criterion at each stage of the decomposition, it becomes

possible to use the output samples to reconstruct good approximations of the

continuous FRT.

First, we consider decomposing the FRT into a chirp multiplication followed

by a chirp convolution followed by another chirp multiplication [59]. We assume

a 2 Œ�1; 1�. Manipulating Eq. (10.5), we can write

fa.u/ D expŒ�i�u2 tan.�=2/�g0.u/; (10.6)

g0.u/ D A�

Z 1

�1
expŒi�ˇ.u � u0/2�g.u0/ du0; (10.7)

g.u/ D expŒ�i�u2 tan.�=2/�f .u/; (10.8)

where g.u/ and g0.u/ represent intermediate results and ˇ D csc�. In the first step

[Eq. (10.8)] we multiply the function f .u/ by a chirp function. As shown in [59],

the bandwidth and space-bandwidth product of g.u/ can be as large as twice that

of f .u/. Thus, we require samples of g.u/ at intervals of 1=2�u. If the samples of

f .u/ spaced at 1=�u are given to begin with, we can interpolate these by a factor

of two and then multiply by the samples of the chirp function to obtain the desired

samples of g.u/. The next step is to convolve g.u/ with a chirp function, as given in

Eq. (10.7). To perform this convolution, we note that since g.u/ is bandlimited, the

chirp function can also be replaced with its bandlimited version without any effect.

That is,

g0.u/ D A�

Z 1

�1
expŒi�ˇ.u � u0/2�g.u0/ du0 D A�

Z 1

�1
h.u � u0/g.u0/ du0; (10.9)

where

h.u/ D
Z �u

��u

H.�/ exp.i2��u/ d�; (10.10)
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where

H.�/ D 1
p

ˇ
ei�=4 exp.�i��2=ˇ/; (10.11)

is the Fourier transform of expŒi�ˇu2�. It is possible to express h.u/ explicitly in

terms of the Fresnel integral defined as F.z/ D
R z

0
exp.�z2=2/ dz. Now, Eq. (10.7)

can be sampled, giving

g0
� m

2�u

Á

D
N

X

nD�N
h

�m � n
2�u

Á

g
� n

2�u

Á

: (10.12)

This convolution can be evaluated using a FFT. Then, after performing the last step

[Eq. (10.6)], we obtain the samples of fa.u/ spaced at 1=2�u. Since we assumed

that all transforms of f .u/ are bandlimited to the interval Œ��u=2; �u=2�, we finally

decimate these samples by a factor of 2 to obtain samples of fa.u/ spaced at 1=�u.

Then the continuous function fa.u/ can be reconstructed from these samples.

The second method does not require Fresnel integrals [59]. Equation (10.5) can

be alternatively put in the form:

fFaf g.u/ D A�e
i�˛u2

Z 1

�1
e�i2�ˇuu0

h

ei�˛u02

f .u0/
i

du0; (10.13)

where ˛ D cot� and ˇ D csc�. We again assume that the Wigner distribution of

f .�/ is zero outside a circle of diameter �u centered around the origin. Under this

assumption, and by limiting the order a to the interval 0:5 Ä jaj Ä 1:5, the amount

of vertical shear in Wigner space resulting from the chirp modulation is bounded

by �u=2. Then the modulated function ei�˛u02
f .u0/ is band-limited to �u in the

frequency domain. Thus ei�˛u02
f .u0/ can be represented by Shannon’s interpolation

formula:

ei�˛u02

f .u0/ D
N

X

nD�N
ei�˛. n

2�u /2

f
� n

2�u

Á

sinc
�

2�u
�

u0 � n

2�u

ÁÁ

; (10.14)

where N D .�u/2. The summation goes from �N to N since f .u0/ is assumed to be
zero outside Œ��u=2; �u=2�. By using Eqs. (10.14) and (10.13), and changing the

order of integration and summation we obtain

fFaf g.u/ D A�e
i�˛u2

N
X

nD�N
ei�˛. n

2�u /2

f
� n

2�u

Á

�
Z 1

�1
e�i2�ˇuu0

sinc
�

2�u
�

u0 � n

2�u

ÁÁ

du0: (10.15)
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The integral is equal to e�i2�ˇu n
2�u .1=2�u/rect.ˇu=2�u/. For the range of 0:5 Ä

jaj Ä 1:5, rect.ˇu=2�u/ will always be equal to unity on the support juj Ä �u=2

of the transformed function. Hence we can write

fFaf g.u/ D A�

2�u

N
X

nD�N
ei�˛u2

e�i2�ˇu n
2�u ei�˛. n

2�u /2

f
� n

2�u

Á

: (10.16)

Then, the samples of the transformed function are obtained as

fFaf g
� m

2�u

Á

D A�

2�u

N
X

nD�N
e
i�

�

˛. m
2�u /2�2ˇ mn

.2�u/2
C˛. n

2�u /2
Á

f
� n

2�u

Á

(10.17)

which is a finite summation allowing us to obtain the samples of the fractional

transform in terms of the samples of the original function. Direct computation of

this form would require O.N2/ multiplications. An O.N logN/ algorithm can be

obtained as follows. We put Eq. (10.17) into the following form after some algebraic

manipulations:

fFaf g
� m

2�u

Á

D A�

2�u
ei�.˛�ˇ/. m

2�u /2
N

X

nD�N
ei�ˇ. m�n

2�u /2

ei�.˛�ˇ/. n
2�u /2

f
� n

2�u

Á

:

(10.18)

It can be recognized that the summation is the convolution of ei�ˇ.n=2�u/2
and the

chirp modulated function f .�/. The convolution can be computed inO.N logN/ time

by using the FFT. The output samples are then obtained by a final chirp modulation.

Hence the overall complexity is O.N logN/.

10.4 Decomposition-Based LCT Algorithms

This section discusses decomposition-based approaches to fast and accurate digital

computation of continuous LCTs. These approaches begin with samples of the

continuous input signal and compute samples of the continuous LCT output signal

such that the continuous output can be interpolated from the computed output

samples. This is accomplished by decomposing the LCT operation into basic

building blocks that already have fast algorithms. The main approach we discuss

is based on the following decomposition involving the FRT, scaling, and chirp

multiplication [64, 65]:

M D
Ä

A B

C D

�

D
Ä

1 0

�q 1

� Ä

M 0

0 1=M

� Ä

cos Â sin Â

� sin Â cos Â

�

: (10.19)

Here Â D a�=2 where a is the order of the FRT, q is the chirp multiplication

parameter, and M is the scaling factor. As we will see, these three parameters are
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a b

c

Fig. 10.1 Sequence of geometrical distortions for the decomposition in Eq. (10.19) [65]. (a) After

the first stage: FRT; (b) after the second stage: scaling; (c) after the third stage: CM

sufficient to satisfy the above equality for arbitrary ABCD matrices, so that this

decomposition is capable of representing arbitrary LCTs. Since the fast method

proposed in [59] and reviewed in the previous section can be used for fast

computation of the FRT, this decomposition directly leads to a fast algorithm for

arbitrary LCTs. This decomposition was inspired by the optical interpretation in [66]

and is also a special case of the widely known Iwasawa decomposition [26, 67, 68].

It was also proposed later in [64, 69]. Figure 10.1 illustrates the sequence of

geometrical distortions in phase space corresponding to this decomposition, which

is rotation, scaling, and shearing, respectively. The initial space-frequency support

is a circle of diameter �u.

To obtain the decomposition parameters in terms of the LCT parameters, we

multiply out the right-hand side of Eq. (10.19) and replace the matrix entries A, B,

C, D with ˛; ˇ; � , we obtain:

Ä

�=ˇ 1=ˇ

�ˇ C ˛�=ˇ ˛=ˇ

�

D
Ä

M cos Â M sin Â

�qM cos Â � sin Â=M �qM sin Â C cos Â=M

�

;

(10.20)
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which is equivalent to four equations which we can solve for a; q;M:

a D .2=�/cot�1�; (10.21)

M D
(

p

1 C �2=ˇ; � � 0;

�
p

1 C �2=ˇ; � < 0;
(10.22)

q D �ˇ2=.1 C �2/ � ˛: (10.23)

The ranges of the square root and the cot�1 both lie in .��=2; �=2�. In operator

notation this algorithm can be expressed as

CM D Qq JkMM Falc: (10.24)

In this method, the first operation is an FRT, whose fast computation in O.N logN/

time is presented in [59, 70]. Other works dealing with fast computation of the FRT

include [71, 72]. The first algorithm presented in [59] and reviewed above was based

on decomposing the FRT into a CM followed by a CC followed by a final CM, and

computed the samples of the continuous FRT in terms of the samples of the original

signal. Care was taken to ensure that the output samples uniquely represented

the continuous FRT in the Nyquist–Shannon sense. The presently discussed LCT

algorithm employs that algorithm as a subroutine. The only approximation in this

subroutine comes from the step involving chirp convolution in which a DFT/FFT is

used to approximate the samples of the continuous FT. No other approximation is

made, either in this subroutine or in any of the other operations that we employ. Thus

the only source of approximation can be traced to the evaluation of a continuous

FT by use of a DFT (implemented with an FFT), which is a consequence of the

fundamental fact that the signal energy cannot be confined to finite intervals in

both domains. The second operation in this method is scaling, which only involves

a reinterpretation of the same samples with a scaled sampling interval. The final

operation is CM which takes O.N/ time, leading to an overall complexity of

O.N logN/. As in the first method, it is again necessary to ensure that the final output

samples are sufficient to represent the transformed signal in the Nyquist–Shannon

sense. Since LCTs distort the original space-frequency support, both the space and

frequency extent of the signal, as well as its space-bandwidth product may increase,

despite the fact that the area of the support remains the same. Therefore, a greater

number of samples than �u2 may be needed to represent the transformed signal in

the Nyquist–Shannon sense (unless we use some specialized basis to represent the

signals) [64].

Delaying confrontation with the necessity to deal with this greater number of

samples until the very last step is a significant advantage of the present method.

Since the FRT corresponds to rotation, and scaling only to reinterpretation of the

samples, these steps do not require us to increase the number of samples. At the last

CM step, if we multiply the samples of the intermediate result with the samples of

the chirp, the samples obtained will be good approximations of the true samples of
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the transformed signal at that sampling interval. If these samples are sufficient for

our purposes, nothing further need be done. However, in general these samples will

be below the Nyquist rate for the transformed signal and will not be sufficient for

full recovery of the continuous function. To obtain a sufficient number of samples

that will allow full recovery, we must interpolate the intermediate result before chirp

multiplication at least by a factor k corresponding to the increase in space-bandwidth

product [65]:

k � 1 C
ˇ

ˇ� � ˛.1 C �2/=ˇ2
ˇ

ˇ : (10.25)

For convenience we choose k to be the smallest integer satisfying this inequality.

We have considered several examples to illustrate and compare the presented

methods. We consider the chirped pulse function exp.��u2 � i�u2/, denoted

F1, and the trapezoidal function 1:5tri.u=3/ � 0:5tri.u/, denoted F2 (tri.u/ D
rect.u/ � rect.u/). Since these two functions are well confined to a circle with
diameter �u D 8 we take N D 82. We also consider the binary sequence 01101010

occupying Œ�8; 8� with each bit 2 units in length, so that N D 162. This binary

sequence is denoted by F3 and the function shown in Fig. 10.2 is denoted by F4,

again with N D 162. These choices for �u result in �0%, 0.0002%, 0.47%,
0.03% of the energies of F1, F2, F3, F4, respectively, to fall outside the chosen

frequency extents. The chosen space extents include all of the energies of F2, F3,

F4 and virtually all of the energy of F1. We consider two transforms, the first (T1)

with parameters .˛; ˇ; �/ D .�3; �2; �1/, and the second (T2) with parameters

.�4=5; 1; 2/. The LCTs T1 and T2 of the functions F1, F2, F3, F4 have been

computed by the presented fast method (referred to as A2), another fast method

which will be presented shortly (referred to as A1), and by a highly inefficient brute

force numerical approach based on composite Simpson’s rule, which is here taken

as a reference.

The results are tabulated in Table 10.1 for both transforms (T1, T2). Also shown

are the errors that arise when using the DFT in approximating the FT of the same

functions, which serves as a reference. (The error is defined as the energy of the

difference normalized by the energy of the reference, expressed as a percentage.)

Results are shown for two algorithms denoted as A1 and A2, both of which appear

in [65] as Method I and Method II, respectively. The algorithm outlined above is A2.

The algorithm A1 will be summarized below after we discuss the results.

The key observations that can be made from this table are as follows. The errors

obtained depend on the function, since different functions have different amounts of

energy contained in their tails which fall outside the assumed space and frequency

extents (or assumed space-frequency region). For those cases in which the error

is large, such as F3, this means that we have determined the space-bandwidth

product less conservatively than the other examples, and the error can be reduced

by increasing N. Generally speaking, the errors obtained depend very little on the

transform parameters or which method we use, and are comparable to the error

arising when we use the DFT to approximate the FT. Since a DFT lies at the heart

of both methods, this is the smallest error one could hope for to begin with.
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Fig. 10.2 Example function F4 [65]

Table 10.1 Percentage errors for different functions F, transforms T, and algo-

rithms A [65]

A1 T1 A1 T2 A2 T1 A2 T2 DFT

F1 3:2� 10�22 9:5� 10�22 2:7� 10�17 6:6� 10�17 2:0� 10�21

F2 7:8� 10�4 8:1� 10�4 11� 10�4 9:9� 10�4 6:2� 10�4

F3 1:5 1:6 1:4 1:5 1:2

F4 9:7� 10�2 11� 10�2 8:9� 10�2 9:9� 10�2 8:3� 10�2

Figure 10.3 shows the error versus number of sample points N for selected

functions and transforms. We observe that the error decreases steeply at first with

increasing N as expected, but saturates when we approach and exceed the space-

bandwidth product of the signals (here 64). This demonstrates that the number of

samples N can be chosen comparable to the space-bandwidth product, which is

the smallest number we can expect to work with, and need not be chosen larger.

AlgorithmA2 was used to obtain this plot for illustration purposes but similar results

can also be obtained when we use Algorithm A1.

We now briefly summarize Algorithm A1, appearing in [65], where the use of

matrix factorizations to decompose LCTs into cascade combinations of elementary

LCT blocks has been studied exhaustively. Since each stage in such a decomposition
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can be computed in at mostO.N logN/ time, the overall LCT can also be. Numerous

such decompositions are possible [10, 73], but they are not equally suited for

numerical purposes. For instance, direct naive application of the decomposition

of chirp multiplication, Fourier transformation, scaling (magnification), and again

chirp multiplication, which suggests itself upon inspection of Eq. (10.1), will

in general lead to very high sampling rates if conventional Shannon–Nyquist

sampling is employed. We have carried out a systematic exhaustive analysis of

all possible decompositions of arbitrary LCTs into the three basic operations of

scaling, chirp multiplication (CM), and Fourier transformation (FT). All possible

decompositions with three, four, and five cascade blocks have been considered

and every permutation has been checked to see if that decomposition is capable

of expressing an LCT with arbitrary parameters. The resulting algorithm can be

summarized as follows:

• If j� j Ä 1, use the decomposition:

M D
Ä

1 0

˛ 1

� Ä

0 1

�1 0

� Ä

1 0

�=ˇ2 1

� Ä

ˇ 0

0 1=ˇ

�

;

CM D Q�˛ Jk=2 FlcQ��=ˇ2 J2 Mˇ; (10.26)

where Jz represents the �z oversampling operation. The minimum value of k is
k � 1 C j� j C j˛j.1 C j� j/2=ˇ2.
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• If j� j > 1, use the decomposition:

M D
Ä

1 0

˛ � ˇ2=� 1

� Ä

0 1

�1 0

� Ä

1 0

��=ˇ2 1

� Ä

0 1

�1 0

� Ä

��=ˇ 0

0 �ˇ=�

�

;

CM D Q�˛Cˇ2=� Jk=2 FlcQ�=ˇ2 J2 FlcM��=ˇ: (10.27)

The minimum value of k is k � 1 C 1=j� j C .1 C j� j/2j˛ � ˇ2=� j=ˇ2.

The above algorithm, A1, has been compared with the earlier presented FRT-based

algorithm A2, both in terms of computational complexity and accuracy, but no

significant difference has been found [65].

Another work dealing with decomposition-based methods to digitally compute

the fractional Fourier, Fresnel, and general LCTs is [69]. This work is of significance

because of two reasons. First, it reviews previous fast algorithms presented in the

literature for computing the several important special cases of LCTs such as FRT

and Fresnel transformation (FST), and distills them into a single decomposition-

based approach covering the general case. Second, it emphasizes the importance of

tracking the space-bandwidth product through successive stages of the decomposi-

tion as also stressed in [65]. It also sets forth a systematic, elegant, uniform, and

general approach to determining the overall increase in space-bandwidth product

of the final transformed signal and hence the number of samples needed for

Nyquist–Shannon interpolation. It is assumed that the input signal energy is initially

contained within some arbitrary four-sided shape in phase space that is defined

by the coordinates of the four corners, u1; �1, u2; �2, u3; �3, u4; �4. The spatial

and frequency extents of the signal are denoted by W0 and B0, respectively. The

resulting number of regularly placed samples required to represent the signal in the

Nyquist–Shannon sense is given by N0 D W0B0. Given the four corners of the initial

support as

S D
Ä

u1 u2 u3 u4

�1 �2 �3 �4

�

; (10.28)

the new coordinates of the four corners of the region after the LCT is given by

S0 D
Ä

Au1 C B�1 Au2 C B�2 Au3 C B�3 Au4 C B�4

Cu1 C D�1 Cu2 C D�2 Cu3 C D�3 Cu4 C D�4

�

; (10.29)

where A,B,C,D are the LCT parameters.

Then, the spatial and frequency extents are the maximum distance between any

two of the u and any two of the � coordinates, respectively. To represent this,

the Max.� � � / notation is defined to denote the maximum element on each row of

the matrix it operates on Hennelly and Sheridan [69]. Finally, the resultant spatial,

WLCT, and frequency, BLCT, extents after the LCT are given by
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Ä

WLCT

BLCT

�

D Max

Ä

jA.u1 � u2/ C B.�1 � �2/j jA.u1 � u3/ C B.�1 � �3/j
jC.u1 � u2/ C D.�1 � �2/j jC.u1 � u3/ C D.�1 � �3/j

jA.u1 � u4/ C B.�1 � �4/j jA.u2 � u3/ C B.�2 � �3/j
jC.u1 � u4/ C D.�1 � �4/j jC.u2 � u3/ C D.�2 � �3/j

jA.u2 � u4/ C B.�2 � �4/j jA.u3 � u4/ C B.�3 � �4/j
jC.u2 � u4/ C D.�2 � �4/j jC.u3 � u4/ C D.�3 � �4/j

�

:

(10.30)

By using the above procedure, the space-bandwidth of the signal can be tracked

through the intermediate stages of the LCT decomposition and the number of

samples required to represent the signal in the Nyquist–Shannon sense can be

determined.

The Fresnel transform has received a lot of attention, since it models free-space

propagation of waves under the Fresnel approximation. Hennelly and Sheridan

[69] also studies the problem of fast computation of the Fresnel transform and

reviews restrictions of several earlier approaches. Based on these observations, two

decompositions are proposed that work for arbitrary LCTs. One of them is based

on the Iwasawa decomposition that we have presented above [see Eq. (10.19)]. The

second is given by the following matrix equation:

Ä

A B

C D

�

D
Ä

1 0

C=A 1

� Ä

A 0

0 1=A

� Ä

1 B=A

0 1

�

: (10.31)

This is a chirp convolution, scaling, chirp multiplication decomposition. Although

it can indeed realize arbitrary LCTs, it uses both a chirp convolution and a chirp

multiplication that requires an unnecessary increase in the sampling rate. This is

partly avoidable by using more suitable decompositions [65].

10.5 DLCT Based Algorithms

In the previous section, we focused on algorithms for fast computation of continuous

LCTs that are based on decomposition of the LCT operation. In this section, we

discuss the approach involving the definition of a DLCT, but in which computation

is not based on decomposition into basic operations as in the previous section. In

this approach, fast digital algorithms for LCTs, which are often referred to as FLCT

algorithms, are derived by first defining a DLCT, which is to the continuous LCT

what the DFT is to the continuous Fourier transform, and then developing a fast

algorithm to compute the DLCT similar to the FFT algorithm.
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The key points of the derivation of [74] are given here. We first review the

derivation of the DLCT, which was first given in [75], and discuss the shifting

properties of this DLCT, which is the key component in the development of the

FLCT [74]. We start with the sampled version of a continuous signal f .u/ as

f ıu.u/ D f .u/ııu.u/ D
1

X

nD�1
f .nıu/ı.u � nıu/ (10.32)

or in Fourier series form

f ıu.u/ D 1

ıu
f .u/

1
X

nD�1
exp.i2�kfsu/; (10.33)

where ı.u/ is Dirac’s impulse, ıu is the sampling interval, and fs is the sampling

frequency. Let us recall the definition of the LCT with parameters ˛, ˇ, � , of a

function f .u/ as

.CMf /.u/ D
Z 1

�1
A expŒi�.˛u2 � 2ˇuu0 C �u02�f .u0/ du0: (10.34)

CM is the LCT operator. We note that in [74] and later in [76], ˛ ! �� , � ! �˛,

ˇ ! �ˇ, since the authors work with the inverse of the LCT matrix as defined here.

We omit the complex constant A in what follows. The key properties to be utilized

are the shifting theorems [74]:

CMŒexp.i2��u0/f .u0/�.u/ D exp.�i�˛�2=ˇ2/ exp.i2�u�˛=ˇ/

�CMŒf .u0/�.u � �=ˇ/; (10.35)

CMŒf .u0 � �/�.u/ D expŒi��2.� � ˛�2=ˇ2/� expŒi2�u�.˛�=ˇ � ˇ/�

�CMŒf .u0/�.u � ��=ˇ/: (10.36)

When the LCT operator operates on the sampled signal in Eq. (10.32) we get:

CMŒf ıu.u0/�.u/ D
Z 1

�1

" 1
X

nD�1
f .n/ı.u0 � nıu/

#

exp.�i2�ˇuu0/

� expŒ�i�.�u02 C ˛u2/�du0

D exp.i�˛u2/

1
X

nD�1
f .nıu/ expŒi��.nıu/2� exp.�i2�ˇunıu/:

(10.37)
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Equation (10.37) is the discrete time (or space) LCT (DTLCT) which is analogous

to the discrete time (or space) Fourier transform (DTFT). We can also apply the LCT

operator to the alternative expression of a sampled function as given in Eq. (10.33),

to obtain:

CMŒf ıu.u0/�.u/ D 1

ıu

1
X

nD�1
expŒ�i�.kıu/2˛=ˇ2�

� expŒi2�.k=ıu/˛u=ˇ�CMŒf .u0/�.u � k=ıuˇ/: (10.38)

The above expression is important since it reveals the periodicity of the LCT of the

sampled signal, which is a crucial property in deriving the FLCT. The magnitude of

CMŒf ıu.u0/�.u/ is equal to the magnitude of CMŒf .u0/�.u/ repeated periodically with
the period 1=ıuˇ and the phase of CMŒf ıu.u0/�.u/ is also equal to that of CMŒf .u0/�.u/
repeated periodically with the same period 1=ıuˇ.

Denoting the DTLCT operator by DT LCT , analysis yields the following shift

theorem for the DTLCT [74]:

DT LCT MŒf ..n � l/ıu/�.u/

D expŒi� l2ıu2.� � ˛�2=ˇ2/�

� expŒi2�ulıu.˛�=ˇ � ˇ/�DT LCT MŒf .nıu/�.u � lıu�=ˇ/; (10.39)

which implies that when the input function is shifted and then a DTLCT is applied

to the result, the output will be the same as the DTLCT being directly applied to the

original input function, except that the result is shifted by an amount proportional

to the shift in the input function and has a linear phase factor and a constant phase

factor dependent on the shift amount.

For the DTLCT in Eq.(10.37), the summation is still infinite and the output

variable u is continuous. In order to achieve a true discrete transform definition

which maps discrete signals to discrete signals, we replace the infinite summation

with a finite summation over N samples, but we assume that N is chosen suffi-

ciently large so that the summation covers the interval over which the signal is

non-negligible:

exp.i�˛u2/

N=2�1
X

nD�N=2

f .nıu/ expŒi��.nıu/2� exp.�i2�ˇunıu/: (10.40)

Now, we discretize the u variable by taking N samples in the following range:

� 1

2ıuˇ
Ä u Ä 1

2ıuˇ
� 1

Nıuˇ
(10.41)
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in steps of ıuM D 1=Nıuˇ [74]. The discrete transform thus obtained repeats itself

outside of this range. Thus we finally obtain the DLCT as a function of the discrete

output variable m as:

DLCT MŒf .nıu/�.mıuM/

D exp
�

i�˛.mıuM/2
�

N=2�1
X

nD�N=2

f .nıu/ expŒi��.nıu/2� expŒ�i2�ˇ.nıu/.mıuM/�

D exp

"

i�˛

Â

m

Nıuˇ

Ã2
#

N=2�1
X

nD�N=2

f .nıu/ expŒi��.nıu/2� exp

Â

� i2�nm

N

Ã

;

(10.42)

where m covers the range �N=2 Ä m Ä N=2 � 1. A few remarks are in order at this

point. First, note that this DLCT definition [75] contains a finite sum which arises

from the sampling of the continuous input function and the continuous transform

kernel. Second, the only string attached to the definition is ıuM D 1=.Nıujˇj/;
hence, there are many ways to choose the parameters N, ıu, and ıuM, which

correspond to the number of samples, and the sampling intervals in the input and

output domains. In order to use this DLCT definition in practice to approximately

compute the continuous LCT, it is necessary to know how to choose the number of

samples N, and the sampling intervals ıu and ıuM based on some prior information

about the signal. The relationship between the DLCT and the continuous LCT is also

needed to provide a foundation for how to use the DLCT to approximately compute

the samples of the LCT of a continuous signal. The answers to these issues will

be provided in the next section based on [77, 78]. The resulting LCT computation

method allows us to work with the same number of samples in both the input and

output domains without requiring any oversampling. On the other hand, the use of

the Shannon–Nyquist sampling theorem instead of the LCT sampling theorem leads

to problems such as the need to use a greater number of samples, requiring different

sampling rates at intermediate stages of the computation, or different numbers of

samples at the input and output domains [79, 80].

Now we go back to our discussion of the derivation of the FLCT algorithm.

In [74], two important shifting properties of (10.42) have been derived. These

two properties are essential in deriving the FLCT from the DLCT, much like the

derivation of the FFT algorithm. These are:

exp

"

i�˛

Â

m

Nıuˇ

Ã2
# 1

X

nD�1
Œf .nıu/ exp.i2��nıu/�

expŒi��.nıu/2� exp

Â

� i2�nm

N

Ã
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D exp

"

�i�˛

Â

�

ˇ

Ã2
#

exp

Â

i2�˛m�

Nıuˇ2

Ã

exp

"

i�˛

Â

m � �Nıu

Nıuˇ

Ã2
#

�
1

X

nD�1
f .nıu/ expŒi��.nıu/2� exp

Ä

� i2�n.m � �Nıu/

N

�

;

(10.43)

exp

Â

i2��m

Nıuˇ

Ã

exp

"

i�˛

Â

m

Nıuˇ

Ã2
#

1
X

nD�1
f .nıu/ expŒi��.nıu/2� exp

Â

� i2�nm

N

Ã

D exp

"

i�˛

Â

m

Nıuˇ

Ã2
# 1

X

nD�1
f .nıu/ exp

Â

i2��n�ıu

ˇ

Ã

exp

Â

� i���2

ˇ2

Ã

exp

(

i��

ÄÂ

n � �

ıuˇ

Ã

ıu

�2
)

exp

Ä

� i2�m.n � �=ıuˇ/

N

�

: (10.44)

The properties given in Eqs. (10.43) and (10.44), in conjunction with the chirp

periodicity of the DLCT, enable us to use the time (or space) decomposition and

frequency (or spatial frequency) decomposition to derive the FLCT. The rest of the

derivation is quite long and may be found in [74]. The resulting algorithm converts

an N-point DLCT into four N=4-point DLCTs. Recursively applying this and by

properly choosing N D 2n for some integer n, we finally obtain 2 � 2 DLCTs to

calculate. This gives an O.N logN/ method to compute the DLCT. The procedure

is similar to that for the conventional FFT.

Another significant work on fast computation of LCTs is [76]. In this paper, the

DLCT and its fast algorithm, the FLCT, have been further studied by deriving an

advanced FLCT that can work with an input sample vector of almost any length.

The FLCT given in [74] is a radix-2 algorithm, so there is a restriction on the length

of the input vector such that N D 2n. For other lengths of the input vector, [76]

proposes the following DLCT that can be implemented in any radix:

DLCT MŒf .nıu/�.mıuM/ D
r

ˇ

2�
exp

Â�i�
4

Ã N=2�1
X

nD�N=2

f .nıu/W
n;m
N ; (10.45)

where

W
n;m
N D expfi�Œ˛.m=Nıuˇ/2 � 2nm=N C �.nıu/2�g (10.46)
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and DLCT M stands for DLCT operator with LCT parameters .˛; ˇ; �/, ıu is the

sampling interval at the input, ıuM is the sampling interval at the output, and N is

the length of the input vector. The details of the derivation can be found in [76].

The important point about this FLCT is that it can be implemented to work with any

radix, so any input vector of any length can be DLCT-transformed with any desired

radix in a way that the computation cost is minimized. An arbitrary vector length can

be decomposed into its prime dividers and the corresponding radixes can be chosen

to optimize the computation. Note, however, that this does not work with vectors of

prime length. No LCT algorithm exists, as yet, that can work on prime-length input

vectors [76].

10.6 Hybrid LCT Algorithms

In Sect. 10.4, fast algorithms for computing continuous LCTs are discussed, which

are obtained by decomposing continuous LCTs. These algorithms produce output

vectors which are good approximations to the samples of the continuous transform,

limited only by the fundamental fact that a signal cannot have finite extent in more

than one domain. Since the sampling interval is ensured to satisfy the Nyquist

criterion at each stage of the decomposition, the output samples can be used to

reconstruct good approximations of the continuous LCT. While this approach is

nearly optimal in terms of speed and accuracy, it has two disadvantages. Although it

implicitly defines a discrete mapping from the vector of input samples to the vector

of transform samples, this discrete mapping does not constitute an analytically

elegant DLCT. More importantly, this type of approach sometimes requires an

increase in the sampling rate, either during computation at intermediate stages,

or in representation of the output. This is contrary to the fact that the area of the

time- or space-frequency support, and hence the total number of samples required

to represent a signal, remains unchanged when a signal undergoes linear canonical

transformation.

In Sect. 10.5, we reviewed works that first propose a definition of the DLCT and

then develop a fast algorithm for computing it. However, the issue of how to relate

this DLCT to the continuous LCT we are trying to approximate with it has not

been addressed in these works. In order to use these fast computation approaches

in practice to approximately compute the continuous LCT, it is necessary to know

how to choose the number of samples N, and the sampling intervals ıu and ıuM.

Note that the DLCT algorithm described in the last section has been developed with

the following condition only: ıuM D 1=.Nıujˇj/, leaving many ways to choose the
parameters N, ıu, and ıuM. Works that use the Shannon–Nyquist sampling theorem

instead of the LCT sampling theorem lead to problems such as the need to use a

greater number of samples or different numbers of samples at the input and output

domains [79, 80].

In this section, we will present a FLCT computation method [77, 78] based

on the DLCT defined in [75], which overcomes many of the limitations of
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previous algorithms. This approach works with the minimum number of samples

as determined by the LCT sampling theorem without requiring any sampling rate

change at the intermediate stages. Moreover, it provides a good approximation to

the continuous LCT as ensured by an exact relation between the DLCT and the

continuous LCT [78].

We first review the exact relation between the DLCT and the continuous

LCT given in [78], which provides a solid basis for how to use the DLCT to

approximately compute the samples of the LCT of a continuous signal. This exact

relation helps us use the DLCT to obtain a good and efficient approximation of the

continuous LCT by properly choosing the number of samples. We want to obtain

as good an approximation as possible, limited only by the fundamental fact that

a signal cannot have strictly finite extent in more than one domain. The answer

to this problem first appeared in [77], but became better established when it was

formulated as an exact relation between the DLCT and the continuous LCT [78] in

a manner similar to the classical theorem relating the DFT to the continuous Fourier

transform [81].

The DLCT of f .k ıu/ is defined as follows for m D �N=2; : : : ;N=2 � 1 [75]:

DLCT MŒf .kıu/�.mıuM/ Á ıu

N=2�1
X

kD�N=2

f .k ıu/KM.m ıuM; k ıu/;

KM.m ıuM; k ıu/ D
p

ˇ e�
i�
4 e

i�
Njˇj

.˛
ıuM
ıu m

2�2ˇkmC� ıu
ıuM

k2/
; (10.47)

where ıuM D .jˇjNıu/�1. Here ıu and ıuM are the sampling intervals in the

time (or space) and LCT domains, respectively. N is the number of samples.

This definition of DLCT can be made unitary by including an additional factor
p

ıuM=ıu [78]. Let f .u/ and fM.u/ be a continuous-time signal and its LCT with

parameters ˛, ˇ, � . Define the following periodically replicated functions where

each period has been modulated with varying phase terms:

Nf .u/.M�1;�u/ Á
1

X

nD�1
f .u � n�u/e�i��n�u.2u�n�u/; (10.48)

NfM.u/.M;�uM/ Á
1

X

nD�1
fM.u � n�uM/ei�˛n�uM.2u�n�uM/; (10.49)

where �u and �uM are arbitrary. These functions are chirp-periodic in the sense of

[42]. Then, the exact relation between continuous and discrete LCTs can be stated

as follows: The samples of the chirp periodic functions defined in Eqs. (10.48) and

(10.49) are exactly related to each other through the samples of the continuous

kernel [the DLCT matrix in Eq. (10.47)]:

NfM.m ıuM/.M;�uM/ D ıu
X

k2hNi

Nf .k ıu/.M�1;�u/KM.m ıuM; k ıu/; (10.50)
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for any m and any interval of length N denoted by hNi, and where the sampling
intervals and the number of samples depends on the periods �u and �uM as

follows:

ıu D 1

jˇj�uM
; ıuM D 1

jˇj�u ; N D �u�uMjˇj: (10.51)

This exact relation provides the underlying foundation for approximately com-

puting the samples of the LCT of a continuous signal by replacing the transform

integral with a finite sum. Because this exact relation generalizes the corresponding

relation for Fourier transforms, which has been regarded as a fundamental theorem

by Papoulis [81], this DLCT approximates the continuous LCT in the same sense

that the DFT approximates the continuous FT. We can use this exact relation to see

how this DLCT provides a good approximation of the continuous LCT. Consider an

arbitrary signal f .u/ that is not chirp-periodic. Let us assume that a large percentage

of the total energy of the signal is concentrated in the intervals Œ��u=2; �u=2� and

Œ��uM=2; �uM=2�, in the time (or space) and LCT domains, respectively. Then,
Nf .u/.M�1;�u/ � f .u/ and NfM.u/.M;�uM/ � fM.u/ in the respective intervals, and

from (10.50) the DLCT of the samples of the function are the approximate samples

of the continuous LCT of that function:

fM.m ıuM/ � ıu

N=2�1
X

kD�N=2

f .k ıu/KM.m ıuM; k ıu/; (10.52)

where ıu, ıuM, and N are as in (10.51). If both the functions f .u/ and fM.u/ could be

identically zero outside of the given intervals, the mapping between the samples of

these functions would be exact. But, since the extent of a function and its LCT

cannot both be finite for ˇ ¤ 1 [61, 82], there will be overlaps between the

periodically replicated and phase modulated functions, and the DLCT will be an

approximation between the samples of the continuous signals. This approximation

for the LCT and FRT is similar to that for the FT, where in the FT case the limitation

is that the extent of the signal and its Fourier transform cannot both be finite. The

functions (10.48) and (10.49) reveal the precise nature of overlap and aliasing that

occurs, which is somewhat different than the Fourier case which is a pure periodic

replication. As with the DFT, the approximation improves with increasing N since

this decreases the overlap between the replicas.

Note that we need chirp-periodic functions in order to have an exact equivalence

between continuous and discrete LCTs, just as we need periodic functions to have

an exact equivalence between continuous and discrete FTs. However, our interest in

using this DLCT is mostly for non-chirp-periodic functions (just as we use the DFT

for non-periodic functions), in which case the DLCT provides a good approximation

to the continuous LCT, limited only by the fact that the extent of a function and its

LCT cannot both be finite for ˇ ¤ 1 [61, 82]. Moreover, the proper choice of the

sampling intervals and the number of samples for a good approximation is given by

the relations in (10.51).
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This elegant and natural, fast and accurate LCT computation method provides

a very different approach than that given in Sect. 10.4 [78]. In Sect. 10.4, we

assumed that the time (or space) and frequency extents of the signals are specified

in the conventional manner, defining an initial rectangular time- or space-frequency

support. The number of samples were determined from the standard Nyquist–

Shannon sampling theorem [59, 64, 65, 69, 79, 80, 83]. In this section, we assume

the extents are specified in the input and output LCT domains; that is, in the

original time or space domain, and the target LCT domain. This leads to an initial

parallelogram-shaped time- or space-frequency support [84, 85]. The number of

samples is determined from the LCT sampling theorem [78]. The minimum number

of samples required for computation is given by the so-called bicanonical width

product [78], which is also equal to the area of the parallelogram support. The DLCT

defined in [75] works with this minimum number of samples without requiring

any interpolation or oversampling at the intermediate stages of the computation, in

contrast to previously given approaches [79, 80] for the same DLCT. Also recall that,

sampling the input and output by using the Nyquist–Shannon sampling theorem, as

in these works and Sect. 10.4, usually leads to a greater number of samples and

sometimes requires different numbers of samples for the input and output signals.

So far, we discussed how this DLCT can be used to accurately compute the

samples of a continuous DLCT. Now, let us discuss how this DLCT can be

implemented in a fast way. As discussed previously, the DLCT in (10.47) can

be evaluated with either of two fast methods:

1. A direct approach by successively performing a chirp multiplication, a FFT and

a second chirp multiplication (by taking advantage of the simple form of the

DLCT) [42, 75, 78].

2. A radix-type approach that generalizes the FFT for the Fourier transform to the

LCT (by taking advantage of the shifting properties of the DLCT) [74, 76].

Both approaches yield efficient computation inO.N logN/ time. The first of these is

simpler, since by employing the FFT as a building block, it does not require us to get

into the complications of a radix-type approach [78]. This also has the advantage of

relying on widely available, highly optimized FFT implementations, whereas such

optimized implementations do not exist for the radix-type approach to fast LCT

computation.

The DLCT definition given in Eq. (10.47) has many desirable properties when

used with the parameters satisfying Eq. (10.51) [78]. It has a simple analytic

expression and is unitary. It can be efficiently computed in O.N logN/ time

by successively performing a chirp multiplication, a FFT, and a second chirp

multiplication. It has a well-defined relationship to the continuous LCT [77, 78].

Its accuracy is only limited by the fundamental fact that a signal cannot have strictly

finite extent in more than one domain. Therefore it is an important candidate for

being a widely accepted definition of the discrete version of the LCT.

We refer to this type of approach to LCT computation as a hybrid algo-

rithm. It involves both an analytically desirable definition of the DLCT and fast
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decomposition-based computation by successively performing a chirp multiplica-

tion, a FFT, and a second chirp multiplication. Thus, it combines the best features

of DLCT based algorithms and decomposition based algorithms. It conserves

computational resources by eliminating the interpolation/decimation steps, as well

as keeping the number of samples at the minimum possible [78].

This approach has been revisited in [85], where an interpretation of the method

has been given through phase-space diagrams, revealing the decomposition-based

nature of the algorithm (similar to the decompositions of the continuous LCT

discussed in Sect. 10.4). The decomposition consists of a chirp multiplication, mag-

nified FT, and a second chirp multiplication [63]. It first shears the parallelogram-

shaped initial support into a rectangle, then rotates it by 90ı, and then again shears
it back to a parallelogram with the same area as the initial parallelogram. During

these stages, no overlap is introduced between the replicated supports (arising

from sampling). Hence this phase-space picture allows us to see from yet another

perspective how this elegant and accurate LCT computation method [77, 78] works

with the minimum number of samples, without requiring interpolation.

Finally, before ending this section, we also mention another fast algorithm for

LCT computation which is based on an alternative form for the unitary DLCT

[86]. In this approach, a convergent quadrature definition for the continuous Fourier

transform is used to decompose arbitrary LCTs as a scaling, chirp, DFT, chirp,

scaling decomposition. The decomposition and the DFT definition developed in this

paper results in the following algorithm for fast digital computation of LCTs: Let

the vector g, of length N, stand for the samples of the LCT of f .u/ with parameters

A;B;C;D, evaluated at the points vj D 4Buj=� , where uj D . 2j�N�1p
2N

/�=2. Now,

1. Set up the vector p with pk D e�i�
.k�1/.N�1/

N eiAu
2
k=2Bf .uk/, where k D 1; 2; : : : ;N.

This step corresponds to first scaling the input samples and then multiplying with

the chirp in the decomposition.

2. Take the conventional DFT of the vector p using the FFT algorithm and denote

the result as q.

3. Construct the diagonal matrix S as Sjk D �ei �
2

.N�1/2

Np
2N

e

iDv2
j

2B e
�i� N�1

N .j�1/
p

2� iB
ıjk where

j; k D 1; 2; : : : ;N. This matrix serves to implement the second chirp multiplica-

tion. ıjk stands for the Kronecker delta.

4. Lastly, obtain the result vector g by multiplying the vector q with the diagonal

matrix S. The elements of the vector g correspond to samples of the continuous

LCT of f .u/ at the points vj D 4Buj=� .

None of the above steps takes more than O.N logN/ time, so that the overall

complexity is O.N logN/.
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10.7 Computation of Two-Dimensional LCTs

Two-dimensional separable LCTs are addressed in [8, 10, 87–91]. The most special

case is the isotropic 2D LCT in which the system is fully symmetric, orthogonal, and

the parameters for both dimensions are identical. This case can be represented by

only three parameters as in a 1D LCT [24]. When the system is still orthogonal

but the parameters for the orthogonal dimensions differ, the system becomes a

2D separable LCT, which is represented by six parameters [24]. Separable 2D

transforms do not pose much difficulty because the separable transform is essentially

two independent 1D transforms along the two dimensions and the dimensions can

be treated independently. However, the non-separable transform (2D NS LCT)

is significantly more general. The two dimensions are coupled to each other by

four additional cross-parameters, increasing the total number of parameters to ten.

This general case is non-separable, non-axially symmetric, non-orthogonal, and

anamorphic/astigmatic [2, 24, 27, 68, 73]. 2D NS LCTs are able to represent not

only systems involving anamorphic/astigmatic components and reference surfaces,

but also other interesting systems such as optical mode convertors and resonators

since they can represent the coupling between the dimensions [24, 92–94]. Another

prominent feature of 2D NS LCTs is their ability to represent systems with rotations

between any arbitrary planes in phase-space, like rotations and gyrations [24, 27].

These systems are collected under the general name of gyrators and are useful in

two-dimensional image processing, signal processing, mode transformation, etc.

[27, 95–98].

Given an algorithm for efficiently computing 1D LCTs [64, 65, 74], the efficient

computation of separable 2D transforms is straightforward because the kernel can

be separated and the 2D transform can be reduced to two successive 1D LCTs.

On the other hand, in the non-separable case, the two dimensions are coupled and

handling this case requires special attention. An alternative representation of LCTs

is presented and studied in [67]. This decomposition is based on the well-known

Iwasawa decomposition [99]. In [67], the authors further decompose the first matrix

of the Iwasawa decomposition into a two-dimensional separable fractional Fourier

transform (2D S FRT) that is sandwiched between two coordinate rotators. Earlier

in this chapter, we had mentioned the deployment of the 1D version of the Iwasawa

decomposition to develop a fast and efficient algorithm for 1D LCTs [64, 65]. By

using the 2D Iwasawa-type decomposition of [67], it becomes likewise possible to

derive an efficient algorithm for the computation of 2D NS LCTs [83].

The 2D NS LCT with parameter matrix M, of an input function f .u/, can be

expressed as [67, 100]

fM.u/ D .CMf /.u/

D 1p
det iB

Z 1

�1

Z 1

�1
expŒi�.u0TB�1Au0

�2u0TB�1uC uTDB�1u/�f .u0/ du0; (10.53)
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where u D Œux uy�
T, u0 D Œu0

x u
0
y�
T with T denoting the transpose operation.

A;B;C;D are 2�2 submatrices defining the transformation matrixM of the system

that represents the 2D-LCT, B being nonsingular. The matrix M D ŒA BI C D� is

real and symplectic. From a group-theoretical point of view, 2D NS LCTs form the

ten-parameter symplectic group Sp.4;R/. (M has 16 parameters with six constraints

leaving ten independent parameters.) More on group-theoretical properties of LCTs

can be found in [8].

The Iwasawa decomposition is the core of our algorithm. After the dimensional

normalization explained in Sect. 10.2.1, any transformation matrixM can be written

in the following Iwasawa form [67, 99]:

M D
Ä

A B

C D

�

D
Ä

I 0

�G I

� Ä

S 0

0 S�1

� Ä

X Y

�Y X

�

; (10.54)

where

G D �.CAT C DBT/.AAT C BBT/�1; (10.55)

S D .AAT C BBT/1=2; (10.56)

X D .AAT C BBT/�1=2A; (10.57)

Y D .AAT C BBT/�1=2B: (10.58)

Given the 4 � 4 matrix M, we can determine 2 � 2 matrices G, S, X, Y by using

Eqs. (10.55)–(10.58). If we are able to develop a fast algorithm to compute the

three stages in O. QN log QN/ time, the overall transform can also be calculated in

O. QN log QN/ time where QN stands for the total number of samples in a 2D signal.
In this decomposition, the first operation is an orthosymplectic system, followed

by a scaling (magnification) system, finally followed by a two-dimensional chirp

multiplication (2D CM). (Note that each of the stages of the algorithm are special

cases of 2D NS LCTs.)

The first and the most sophisticated stage of the decomposition is the orthosym-

plectic system. This stage of the decomposition can be further decomposed into a

2D S FRT that is sandwiched between two coordinate rotators [67]:

Ä

X Y

�Y X

�

D Rr2Fax;ayRr1 ; (10.59)

where the 4 � 4 matrices Rr1 , Fax;ay , Rr1 are defined as:

Rr1 D

2

6

6

4

cos.r1/ sin.r1/ 0 0

� sin.r1/ cos.r1/ 0 0

0 0 cos.r1/ sin.r1/

0 0 � sin.r1/ cos.r1/

3

7

7

5

; (10.60)
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Rr2 D

2

6

6

4

cos.r2/ sin.r2/ 0 0

� sin.r2/ cos.r2/ 0 0

0 0 cos.r2/ sin.r2/

0 0 � sin.r2/ cos.r2/

3

7

7

5

; (10.61)

Fax;ay D

2

6

6

4

cos.ax�=2/ 0 sin.ax�=2/ 0

0 cos.ay�=2/ 0 sin.ay�=2/

� sin.ax�=2/ 0 cos.ax�=2/ 0

0 � sin.ay�=2/ 0 cos.ay�=2/

3

7

7

5

: (10.62)

Rr1 and Rr2 are rotation matrices that impose rotations of angles r1 and r2,

respectively, through the spatial variables .ux; uy/ and through their frequency

variables .�x; �y/. Unlike these traditional rotators which rotate within space and

spatial frequency separately, the FRT rotates within the space-frequency planes of

each dimension. Fax;ay stands for the 2D S FRT that makes separable rotations of

angle ax�=2 in the .ux; �x/ plane and of angle ay�=2 in the .uy; �y/ plane. Since this

2D FRT operation is separable, it corresponds to two 1D FRT operations performed

over each of the dimensions. This amounts to first performing 1D FRTs with the

fractional order ax for each of the rows (or columns) and then performing 1D FRTs

with the fractional order ay for each of the columns (or rows) of the sampling grid.

It is this observation that enables us to implement this stage of the decomposition

efficiently in O. QN log QN/ time.

The interpretation of the coordinate rotators requires care. When we are working

with sampled functions, we know the value and coordinates (the location where

the particular sample is taken) of all the samples we have. A coordinate rotation

can be interpreted in this situation as a rotation of the locations of the samples

resulting in a new sampling grid, rather than a change in the sample values. If

we assume we start with a regular rectangular grid, after the coordinate rotation,

the grid would no longer coincide with the original grid unless the rotation is an

integer multiple of �=2. Unfortunately, in order to perform FRT operations along the

horizontal and vertical directions, we need the samples to be on a regular rectangular

grid in order to employ available fast algorithms. Therefore, we must carry out

an interpolation operation to determine the values of the function on a regular

rectangular grid. In summary, the first stage of our algorithm involves determining

the angle parameters for the first coordinate rotation, followed by two 1D FRTs over

each of the dimensions, and then followed by the second coordinate rotation. These

angles can be computed by equating the LCT matrix with the decomposition matrix

and solving for the angles. All these steps can be calculated in O. QN log QN/ time.

The second stage is the scaling operation and it seems to be the simplest of

the three stages. It is not, however, as trivial as in the 1D case [65]. In 1D, it

corresponds to only a reinterpretation of the spacing between the samples. The

sampling interval scales with the scaling parameter. Intuitively, it squeezes in or

stretches out the total number of samples as the word scaling implies. This means

there is no change in the total number of samples and thus no need to oversample
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the input samples. The analogue of the 1D scalar scaling parameter in the 2D case

is the matrix S. When S is diagonal, which means there is no coupling between

the two dimensions of the function for scaling purposes, the scaling is separable.

Due to this separability, this situation does not impose an increase in the space-

bandwidth products and thus does not require oversampling, just as in the 1D case.

But when the off-diagonal elements of S are non-zero, the scaling operation is no

longer so trivial. Computationally, such a scaling operation amounts to modifying

the information that tells us which coordinates the samples belong to. Nevertheless,

since it requires only the reinterpretation of the coordinates of the samples plus a

possible oversampling, it does not impose much computational load. The matrix

S can be easily used to determine the output samples by using the input–output

relation of the scaling operation:

fsc.u/ D 1p
det S

f .S�1u/; (10.63)

where f is the function to be scaled and fsc is the scaled function, and u D Œux uy�
T.

The last stage of the main Iwasawa decomposition is the 2D CM operation whose

parameters are given by the matrix G as defined in Eq. (10.55). The input–output

relation of this 2D-CM is given as:

fch.u/ D e�i�.G11u
2
xC.G12CG21/uxuyCG22u

2
y /f .u/; (10.64)

where fch stands for the chirp-multiplied function. The 2D CM operation is the

stage that is mainly burdened with any shears inherent in the 2D NS LCT to be

computed. Such shears may considerably increase the space-bandwidth products of

the function. Thus, before the 2D CM operation, the space-bandwidth products of

the function should be calculated carefully and any necessary oversampling should

be performed. This CM operation may turn out to be non-separable or separable for

particular 2D NS LCTs but regardless, it requires only one multiplication for each

sample, resulting in O. QN/ time computation.

As in the 1D case, this algorithm also has the ability to track the space-bandwidth

product of the function through each step in order to control the sampling rate

of the function with the goal of having enough samples to be able to reconstruct

the continuous function without information loss, and at the same time without

needlessly increasing the number of samples to maintain efficiency. However, the

sampling rate control mechanism is quite involved so we refer the reader to [83] for

details.

Above, we presented the 2D-NS-LCT fast computation algorithm based on the

Iwasawa decomposition, which is a generalization of the algorithm denoted as A2

in Sect. 10.4. In the same section, we also mentioned another algorithm, denoted

A1, which is also based on basic decompositions. In [101], generalization of the

A1 algorithm to 2D-NS-LCT computation has been considered. The results of both

approaches are comparable to each other both in 1D and 2D.
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10.8 Computation of Complex-Parametered Linear

Canonical Transforms

Extension of real-parametered LCTs to complex-parametered LCTs (CLCTs)

is rather involved. Bilateral Laplace transforms, Bargmann transforms, Gauss–

Weierstrass transforms, [8, 28, 29], fractional Laplace transforms [30, 31], and

CFRTs [32–35] are all special cases of complex LCTs. More on the mathematical

foundations and theory of CLCTs can be found in [8, 28, 102, 103].

Complex-parametered LCTs allow several kinds of optical systems to be repre-

sented, including lossy as well as lossless ones. Magnification (scaling), Fourier

transformation (FT), real fractional Fourier transformation (RFRT), real chirp

multiplication (CM), complex chirp multiplication (CCM), Gauss–Weierstrass

Transform, CFRT are all special cases of CLCTs that have optical realizations. The

CFRT is the generalization of the FRT where the order of the transformation is

allowed to be a complex number, and consequently the ABCD matrix elements are

in general complex. The optical interpretation of the CFRT, its properties and optical

realizations can be found in [32–35, 104].

The CLCT of f .u/ with complex parameter matrix MC is denoted as fMC
.u/ D

.CMC
f /.u/:

.CMC
f /.u/ D

Z 1

�1
KC.u; u0/f .u0/ du0;

KC.u; u0/ D e�i�=4

q

ˇ exp
h

i�.˛u2 � 2ˇuu0 C �u02/
i

; (10.65)

where ˛, ˇ, � are complex parameters independent of u and u0 and where CMC
is the

CLCT operator.MC again has unit-determinant and is given by

MC D
Ä

A B

C D

�

D
Ä

Ar C iAc Br C iBc
Cr C iCc Dr C iDc

�

D
Ä

�=ˇ 1=ˇ

�ˇ C ˛�=ˇ ˛=ˇ

�

; (10.66)

where Ar, Ac, Br, Bc, Cr, Cc, Dr, Dc are real numbers.

Fast digital computation algorithms based on decomposition approaches have

been developed. Here we will only show how given ABCD matrices can be

decomposed in a manner that leads to a fast algorithm for computation of CLCTs.

For further details, we refer to [105]. In the most general case, the matrix MC is

composed of the four complex parameters A,B,C,D, whose real and imaginary parts

add up to a total of eight parameters. These eight parameters are restricted by the

unimodularity condition onMC, which requires the real part of the determinant to be

1 and the imaginary part to be 0. Because of these two equations, the total number

of independent parameters of a general CLCT is 6. The following decomposition

will be the basis of the fast algorithm for CLCTs:
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MC D
Ä

1 0

�q3r 1

� Ä

1 0

�iq3c 1

� Ä

0 �1

1 0

� Ä

1 0

�q2r 1

� Ä

1 0

�iq2c 1

�

�
Ä

0 1

�1 0

� Ä

1 0

�q1r 1

� Ä

1 0

�iq1c 1

�

: (10.67)

The above algorithm can efficiently compute any arbitrary CLCT with complex

parameters but the output plane should be real, i.e. the variable at the transform

output is not complex. This is indeed the case for most of the real-world cases,

where one is interested in the output field on a particular plane. In [106], the above

algorithm has been further generalized to cover any complex variable at the output.

The sampling issues of CLCTs have also been studied in detail in [106].

Before ending this section, we mention that LCTs are a special case of the more

general family of oscillatory integrals of the form F.w/ D
R

f .u/eiwg.u/du; w� 1.

Generally speaking, computation of such more general integrals is time consuming.

In [107], a method to convert any general oscillatory integral to a canonical form

F.w/ D
R 1

�1
f .u/eiwudu and then compute it in O.N2/ time is presented.

10.9 Conclusion

In this chapter, we discussed algorithms for computation of LCTs from the N

samples of the input signal in O.N logN/ time. Our approach is based on concepts

from signal analysis and processing rather than conventional numerical analysis.

With careful consideration of sampling issues, N can be chosen very close to the

theoretical minimum required to represent the signals. The transform output may

have a higher time- or space-bandwidth product due to the nature of the transform

family, though it has the same bicanonical width product with the input.

We considered three groups of algorithms. In the first, the LCT operation is

decomposed into more elementary operations. Most elegant among these is based on

the Iwasawa decomposition, which involves the FRT. In the second, one first defines

a DLCT, and then obtains a FLCT algorithm for this DLCT, much like the FFT

algorithm for the DFT. In the third group, a DLCT is defined, but the computation

procedure is based on decompositions.

The algorithms can relate the samples of the input function to the samples of

the continuous LCT of this function in the same sense that the FFT implementation

of the DFT computes the samples of the continuous FT of a function. Since the

sampling rates are carefully controlled, the output samples obtained are accurate

approximations to the true ones and the continuous LCT can be recovered via

interpolation of these samples. The only inevitable source of deviation from

exactness arises from the fundamental fact that a signal and its transform cannot both

be of finite extent. This is the same source of deviation encountered when using the

DFT/FFT to compute the continuous FT. Thus the algorithms compute LCTs with

a performance similar to the DFT/FFT in computing the Fourier transform, both in
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terms of speed and accuracy. This limitation affects not only LCT algorithms, but

also the computation of Fourier transforms using the DFT. Thus this is a source of

error we cannot hope to overcome.

Compared to earlier approaches, these algorithms not only handle a much

more general family of integrals, but also effectively address certain difficulties,

limitations, or tradeoffs that arise in other approaches to computing the Fresnel

integral, which is of importance in the theory of diffraction.
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