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We consider the problem of recovering a signal from partial and redundant information distributed over two
fractional Fourier domains. This corresponds to recovering a wave field from two planes perpendicular to the
direction of propagation in a quadratic-phase multilens system. The distribution of the known information over
the two planes has a significant effect on our ability to accurately recover the field. We observe that distributing
the known samples more equally between the two planes, or increasing the distance between the planes in free
space, generally makes the recovery more difficult. Spreading the known information uniformly over the
planes, or acquiring additional samples to compensate for the redundant information, helps to improve the ac-
curacy of the recovery. These results shed light onto redundancy and information relations among the given data
for a broad class of systems of practical interest, and provide a deeper insight into the underlying mathematical
problem. © 2016 Optical Society of America

OCIS codes: (070.0070) Fourier optics and signal processing; (070.2575) Fractional Fourier transforms; (100.3190) Inverse

problems.
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1. INTRODUCTION

As is well known, if we know the values of a propagating wave
field on a planar surface, we can determine the values of the wave
field over the entire three-dimensional space. The only require-
ment is that there are a sufficient number of known sample values
within its extent to satisfy sampling constraints.Herewe consider
the problemwhere known sample values do not all lie on a single
plane but may be distributed over more than one plane. In this
case, the known sample values may not represent independent
pieces of information. In particular, a number of samples that
would have been sufficient had they all been lying on a single
plane perpendicular to the direction of propagation, may now
not be sufficient to uniquely determine the wave field. The pur-
pose of thiswork is to develop insight intohow the distribution of
known sample points affects our ability to recover thewhole field.

In order to bring forth the essence of the issue as transpar-
ently as possible, we will work with only one transverse dimen-
sion instead of two. Furthermore, rather than working with the
Fresnel integral that describes the propagation of light under
common assumptions, we will model propagation behavior
with the fractional Fourier transform (FRT) [1–3]. It has been
well established that the Fresnel integral can be written as
an FRT followed by simple scaling followed by a residual
quadratic-phase factor, and the propagation of waves can

be considered as a process of continual fractional Fourier trans-
formation, where the fractional order monotonically increases
as a function of the distance of propagation [4–6]. Planes
perpendicular to the axis of propagation correspond to frac-
tional Fourier domains (FRFDs) [3]. Furthermore, the same
is true for all quadratic-phase systems [4], which are systems
including an arbitrary sequence of lenses, sections of free space,
and quadratic graded-index media [7–16]. Working with the
FRT will allow us to approach the heart of the problem in
its purest form and identify the main trends as clearly as
possible, while the resulting important observations remain
applicable to a broad class of systems of practical interest.

Thus we will consider a class of signal recovery problems
where distributed partial information in some fractional
Fourier domains are available and the aim is to recover the wave
field everywhere [17–19]. Physically, this corresponds to the
problem of recovering wave fields from partial information dis-
tributed over several transverse planes in either free space, or
multilens quadratic-phase systems. These problems can arise
in optical, acoustical, and electromagnetic wave propagation.
One timely area where this problem is particularly relevant
is digital three-dimensional television [20–26].

While some ad hoc algorithms have been applied to
these problems, there has not been much theoretical progress.
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A numerical solution to the problem in a pure fractional Fourier
domain context has been given in [27], where an iterative algo-
rithm has been developed based on the method of projections
onto convex sets. A numerical approach to the recovery of the
signal from its samples at arbitrarily distributed points has been
presented in an optical context in [24]. An information theoretic
approach to a related but differently formulated problem has
been discussed in [28–31].

The purpose of this work is not to solve the resulting signal
recovery problem numerically, but to develop insight into the
nature of redundancy and information relationships in such
inverse problems under different configurations of known in-
formation. We formulate the problem as a linear system of
equations and by looking at the condition number of the sys-
tem, try to reach general understanding of how the distribution
of known information affects our ability to recover the wave
field. The condition number of the system indicates how reli-
ably such a system can be solved in the presence of inevitable
modeling errors, sample errors, round-off errors, and finite
machine precision. A poor condition number indicates there
is not sufficient linearly independent information to reliably
solve the problem.

Our analysis of conditioning also has implications for the
choice of signal recovery methods. In particular, bad condition
numbers indicate that taking a simple matrix inversion or least-
squares approach may lead to inaccurate solutions. In this case,
either regularization techniques that incorporate additional prior
information into the solution should be exploited, or more sam-
ples should be taken, to improve conditioning [32–36].

In the following sections we first formulate the recovery
problem in the language of linear algebra and then discuss
how the condition number characterizes the difficulty of reli-
ably solving the resulting system of equations. We then present
the different observing scenarios we have investigated along
with numerical results for them. Finally, we summarize our
overall conclusions. Preliminary versions of this work appears
in [17–19].

2. PROBLEM DEFINITION

The ath-order FRT of a function f �x�, denoted fa�x�, is
defined as [3]

fa�x� ≡ �F af ��x� ≡
Z

∞

−∞
K a�x; x 0�f �x 0�dx 0; (1)

K a�x; x 0� ≡ Aϕeiπ�cotϕx
2−2 cscϕxx 0�cotϕx 02�;

Aϕ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − i cotϕ

p
; ϕ � aπ∕2;

when a ≠ 2k, and K a�x; x 0� � δ�x − x 0� when a � 4k and
K a�x; x 0� � δ�x � x 0� when a � 4k � 2, where k is an
integer. The FRT is additive in index: F a2F a1 � F a2�a1

and reduces to the ordinary Fourier transform and identity
operators for a � 1 and a � 0, respectively. In the space-
frequency plane, the ath-order FRT transforms a signal to
the oblique axis making angle ϕ � aπ∕2 with the space axis
x. This axis is referred to as the ath-order FRFD [3]. As noted
in the introduction, it has been shown that Fresnel propagation
and all other quadratic-phase systems can be written as an FRT
followed by simple scaling followed by a residual quadratic-

phase factor, and the propagation of waves through such sys-
tems can be considered as a process of continual fractional
Fourier transformation [4,8,14].

Consider two FRFDs of orders a1 and a2 such that the
representation of a signal in these two domains is, respectively,
denoted by f �x� and g�x�. That is, g�x� � �F af ��x� with
a � a2 − a1. We will assume that the signal f in the a1th-order
FRFD is approximately confined to the interval �−Δxa1∕
2;Δxa1∕2� and the signal g in the a2th-order FRFD is approx-
imately confined to the interval �−Δxa2∕2;Δxa2∕2�. That is, a
sufficiently large percentage of the signal energy is confined to
these intervals. Then, according to the FRT sampling theorem
[37,38], the sampling interval in the a1th-order domain should
not be larger than δxa1 � 1∕�Δxa2 j csc�aπ∕2�j�. If we sample
this domain at this rate, the total number of samples over
the extent Δxa1 will be given by Δxa1∕δxa1 � Δxa1Δxa2 j
csc�aπ∕2�j. This product is a special case of the bicanonical
width product [4,13]. Similarly, if we sample in the a2th-order
domain, the sampling interval should not be larger than
δxa2 � 1∕�Δxa1 j csc�aπ∕2�j�. If we sample this domain at this
rate, the total number of samples over the extentΔxa2 will again
be given by Δxa2∕δxa2 � Δxa1Δxa2 j csc�aπ∕2�j. Hence at each
domain the signal can be sampled at N equally spaced points,
where the number of samples N must be greater than or equal
to Δxa1Δxa2 j csc�aπ∕2�j.

Let f � �f �−N∕2�;…; f �N∕2 − 1��T and g � �g �−N∕2�;…;
g �N∕2 − 1��T denote the vectors of length N which represent
the samples of the signals f and g in the a1th- and a2th-order
FRFDs, respectively. If a � a2 − a1, the relation between the
signals at these domains is given by

g � Faf ; (2)

where Fa denotes the N × N ath-order discrete FRT matrix
given in [39], cyclically shifted since we are working with dis-
crete signals over �−N∕2; N∕2 − 1� rather than �0; N − 1�.

Let m1 and m2 denote the number of known samples in the
a1th- and a2th-order FRFDs, respectively (m1 < N and
m2 < N ). If the indices corresponding to the known samples
form the vectors k � �k1;…; km1

�T and n � �n1;…; nm2
�T,

then the vectors f �k� � �f �k1�;…; f �km1
��T and g�n� �

�g �n1�;…; g �nm2
��T contain the known signal values of f and

g , respectively. Similarly, if the indices in vectors k̄ and n̄
represent unknown sample locations in f and g, then f �k̄�
and g�n̄� represent the unknown signal values.

Let Fa�n; k� be an m2 × m1 submatrix of Fa obtained by
choosing its n1th,…,nm2

th rows and k1th,…,km1
th columns.

By choosing the same rows and the remaining columns, one
can also construct the submatrix Fa�n; k̄�, which is of
size m2 × �N − m1�. Then, the relation in Eq. (2) can be
rewritten as

g�n� � Fa�n; k̄�f�k̄� � Fa�n; k�f �k�: (3)

Since only f �k̄� is unknown and required to be estimated in the
above equation, the linear system of equations defining the
forward problem is given by

g 0 � Fa�n; k̄�f�k̄�; (4)

where g 0 � g�n� − Fa�n;k�f �k�. Thus, in order to estimate f�k̄�,
which contains the unknown signal values of f, we need to solve
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the above system of equations. Similarly, to infer g�n̄�, which
contains the unknown signal values of g, one can solve

f 0 � F−a�k; n̄�g�n̄�; (5)

where f 0 � f �k� − F−a�k;n�g�n�.
Now, notice that knowing the signal completely in one do-

main is equivalent to knowing it in all domains, since simple
discrete fractional Fourier transformation allows us to compute
the signal in any domain from that in any other. Physically this
corresponds to the fact that knowing a wave field fully in any
plane allows it to be computed anywhere else. Thus, when the
signal is partially known in two domains, it is enough to esti-
mate the signal either in the a1th- or a2th-order domain. We
refer to the domain where we choose to estimate the signal as
the reference plane. In this work, we choose the domain with the
largest number of known samples as the reference plane. That
is, if m1 ≥ m2, the reference plane is chosen as the a1th-order
FRFD and we work with Eq. (4). Otherwise, it is chosen as the
a2th-order FRFD and we work with Eq. (5). We could also
choose the reference plane as the domain with fewer number
of samples or as any other domain that does not contain any
known sample; however, our choice requires us to solve for a
fewer number of unknowns and is therefore simpler.

Note that our problem formulation involves relating the
known samples in two FRFDs to the unknown samples in these
two domains. This formulation is general enough to be appli-
cable to any two planes in a practical quadratic-phase optical
system, which are systems involving an arbitrary sequence of
lenses, sections of free space, and quadratic graded-index media.
This is because quadratic-phase optical systems can be math-
ematically expressed in terms of linear canonical transforms
(LCTs), and, based on the well-known Iwasawa decomposition
[4], an arbitrary LCT can be decomposed into a FRT followed
by scaling followed by chirp multiplication. Among these three
operations (FRT, scaling, and chirp multiplication), the only
operation that affects the conditioning of the inverse problem
is the FRT operation. This is because (i) scaling is simply a
reinterpretation of the samples (by scaling the sampling inter-
val), and (ii) chirp multiplication can be performed through
multiplication with a unitary matrix (a diagonal matrix whose
diagonals are complex numbers with unit magnitude). Thus,
these two operations do not affect the conditioning. As a result,
the only important aspect of the two planes in terms of con-
ditioning is the orders of the FRFDs associated with these
planes, and these orders can be found by using the Iwasawa
decomposition [4]. To summarize, a system involving an arbi-
trary sequence of lenses, sections of free space, and quadratic
graded-index media, can be reduced to a FRT system, whose
only parameter is the fractional order between the two domains
a � a2 − a1. The condition numbers obtained will be the same
for both systems. Thus the formulation we work with can be
kept simple and tractable, while the results remain applicable to
a broad class of systems of practical interest.

Before concluding this section, we will discuss a property of
the discrete fractional Fourier transform that will be helpful in
interpreting our numerical results. Again letting our signals be
defined from k � −N∕2 to k � N∕2 − 1, consider an input
vector f whose only nonzero element is at k � 0 with the value
of unity. In other words, f is a discrete unit impulse centered at

the origin. The discrete FRT of this vector is obtained by
multiplying it by Fa and is the central column of the Fa matrix
corresponding to k � 0. This vector is plotted for several values
of a in Fig. 1.

Now, also recalling that larger values of a correspond to
longer distances of propagation in free space, we see that the
output corresponding to a centrally located impulse gets
broader and broader as a increases from 0 to 1 and light prop-
agates. Moreover, we can observe that the broadening is roughly
proportionate to a. Further discussion may be found in Chap. 6
of [17]. If the input impulse is not centrally situated, the output
will be more complicated due to edge and wraparound effects,
but the same physical interpretation of broadening with in-
creasing a remains.

What does this mean in terms of the conditioning of the
system of equations? As the distance of propagation and the
fractional order a increase, the response to an impulse broadens.
For larger values of a, the broader response means that the in-
put impulse will have an effect on a greater number of output
points. Likewise, if we consider a given point at the output side,
the larger the broadening, the value of light at that point will be
affected by a greater number of input points. So larger a means
that input or output points, either by affecting or being affected
by, have interaction with a greater number of points on the
other plane. This means they determine or depend on a greater
number of points, which means they are less independent, or
have more redundancy with respect to each other. In a setting
containing such known samples, even if the matrix is not rank-
deficient in a strict sense, some of its eigenvalues (or singular
values) will be very small, making it effectively rank-deficient or
ill-conditioned [33,40], leading to a large condition number
and larger errors in the solution with small perturbations.

To be more specific, consider a known sample point on one
of the two planes. (It does not matter which plane the point is
on since both the FRT and the underlying physics of propa-
gation are reciprocal.) Also consider, on the other plane, the
extent of the response to an impulse at the location of the
known point. This extent defines a region of sample points
in the other domain that interact with the known sample point
in the original domain. To a good approximation, the known
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Fig. 1. Discrete FRT of a unit impulse centered at the origin for
different values of a, for N � 256.
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value can be expressed as a linear combination of the values at
the points lying within its interaction region on the other plane.
Now, if all the values within this region are already known, then
the original known sample point will be totally redundant,
since it could be calculated from the already known values.
If, on the other hand, at least one value within this region
is unknown, then the original known sample is not redundant.
Thus, to avoid redundancy, whichever known value we choose,
the extent on the other plane of the response to an impulse,
should contain at least one unknown value. In fact, it is best
if it contains precisely one. In this case, the known value in one
plane directly determines the unknown in the other domain,
essentially corresponding to a transfer of a known from one
plane to another. However, when the interaction region of
one known point overlaps with that of another known point,
and the overlapping region contains one or more unknowns,
things become more complicated. This means that the knowns
on the original plane are dependent on common unknowns in
the other plane.

In our numerical experiments, we investigate for different
distributions of known information, the change in the condi-
tion number as a function of the order a. We consider the cases
when the total number of known samples in the two domains is
equal to or more thanN . When interpreting the results, we will
use the term strict redundancy to refer to the case when the sys-
tem matrix has linearly dependent columns, or equivalently the
matrix is rank-deficient. The term effective redundancy will refer
to the case when the columns are close to being linearly depen-
dent, but are not strictly so, or equivalently the matrix is effec-
tively rank-deficient. The inverse problem is also effectively
underdetermined in this case. For example, when we have lin-
early dependent rows, the associated known samples will be
considered to be strictly redundant, whereas when the rows
are close but not equal to being linearly dependent, the asso-
ciated known samples will be considered to be effectively re-
dundant. In our numerical experiments, we observed strict
redundancy when a � 0 and a � 1. Since the discrete FRT
matrix does not have a closed-form expression for other values
of a, we can only speak of effective redundancy in these cases.
We also note that the results may not be reliable when we are
very close to the strict redundancy cases at a � 0 and a � 1,
since chirp functions exhibit unusual behaviors in these limits.

3. ANALYSIS OF CONDITIONING

In this work, our aim is to analyze conditioning of the linear
problem formulated in Eqs. (4) or (5). As well known, if there
are less equations than unknowns, there cannot be a unique
solution. For this reason, throughout this work, we focus only
on the case where there are at least as many equations as un-
knowns; that is, the number of known samples in the two do-
mains satisfies m1 � m2 ≥ N . In this case, if the system is both
full column rank and consistent, there exists a unique solution,
but the accuracy of it depends on the conditioning of the prob-
lem. This is because the solution of the problem will be affected
by limited machine precision, as well as inevitable model and
sample errors, in a way that depends on its conditioning. The
condition number of the system matrix determines how sensi-
tive the solution is to such perturbations.

We will investigate how the condition number of Fa�n; k̄� or
F−a�k; n̄� is affected by the distribution and number of known
samples. This will tell us how difficult it is for us to accurately
recover the field from those known samples, since the condition
number indicates how accurately the unknown samples can be
estimated from the given samples.

The condition number associated with the linear equation
Ax � b gives a bound on the inaccuracy of the solution x and
measures the rate at which the solution x will diverge from the
true solution with respect to a change in b orA. In other words,
the condition number is an amplification factor that bounds
the maximum relative error in the solution due to a given rel-
ative error in the input data when standard matrix inversion or
least-squares techniques are used to obtain a solution [33,40].
The condition number of a nonsingular square matrix A is de-
fined as [40]

cond�A� � ‖A‖‖A−1‖; (6)

with respect to a given matrix norm. For rectangular matrices,
the pseudoinverse is used instead of the inverse in the definition
of the condition number. The condition number of a matrix
measures how close it is to being rank-deficient. For square ma-
trices, it is a measure of how close it is to singularity.

In this study, the condition number in the spectral norm
(induced by the vector 2-norm) is used, which is given
by the ratio of the largest singular value of the matrix to the
smallest [40]:

cond2�A� �
σmax�A�
σmin�A�

; (7)

which is always ≥1, with equality satisfied when A is unitary. A
condition number close to 1 indicates a well-conditioned ma-
trix and small uncertainty in the solution. Note that the value of
the condition number depends on the particular norm used;
however, these values can differ by at most a fixed constant be-
cause of the equivalence of the underlying vector norms. Thus,
our analysis is valid independent of the chosen matrix norm.

We will now present some important properties of the prob-
lem when m1 � m2 � N with the system matrix being square
and invertible. Using the fact that the matrix Fa is unitary and
symmetric, we will show that all of the following matrices have
the same 2-norm condition number: Fa�n; k̄�, Fa�k̄;n�,
F−a�k̄; n�, F−a�n; k̄�. This indicates that the accuracy of the
solution is the same for the following problems:

1. Fa�n; k̄�: The indices in k are known for the signal f
and the indices in n are known for the signal g .

2. Fa�k̄; n�: The indices in n̄ are known for the signal f
and the indices in k̄ are known for the signal g .

3. F−a�k̄;n�: The indices in k̄ are known for the signal f
and the indices in n̄ are known for the signal g .

4. F−a�n; k̄�: The indices in n are known for the signal f
and the indices in k are known for the signal g .

Thus, all of the above problems are equivalent to each other
in terms of conditioning of the problem. If we consider the first
and third ones together, it is clear that the accuracy of the sol-
ution is the same when we exchange the knowns and unknowns
with each other in both domains. Moreover, if we consider the
first and fourth ones together, changing the roles of the two

A136 Vol. 56, No. 1 / January 1 2017 / Applied Optics Research Article



domains does not affect the accuracy of the solution. This sup-
ports the symmetrical structure of the problem and shows that,
as expected from an optical interpretation, the direction of
propagation does not create any difference on the solution.

The equivalence of the second problem in the list to the first
one follows from the following derivation. The transpose of a
matrix has the same singular values as the original matrix; there-
fore, we have cond2�AT� � cond2�A�. Since Fa is a symmetric
matrix, Fa�n; k̄� � �Fa�k̄; n��T. From the above result, we see
that the condition numbers of Fa�n; k̄� and Fa�k̄;n� are the
same. The equivalence of the third and fourth problems in
the list follows similarly.

The equivalence of the fourth problem in the list to the first
one follows from the fact that Fa is a unitary matrix: �Fa�H �
F−a where �·�H denotes the Hermitian transpose of a matrix.
Since Fa is also symmetric, �Fa�	 � F−a, where 	 denotes
the conjugate of a matrix, and thus �Fa�n; k̄��	 � F−a�n; k̄�.
Since the conjugate of a matrix has the same singular values
with the original matrix, we have cond2�A	� � cond2�A�.
Then, Fa�n; k̄� and F−a�n; k̄� have the same condition number.
This completes the proof of the equivalence of all four prob-
lems in terms of conditioning.

As noted before, instead of choosing the domain with the
largest number of known samples as the reference plane, one
could also choose an empty domain as the reference plane. We
will now discuss this case in more detail. Without loss of general-
ity, we can say that the 0th-order FRFD does not contain any
known sample, so that we can choose it as the reference plane.
To formulate the problem, let us denote the signal in the refer-
ence plane as h. Then, the relation between the signals are given
by f � Fa1h and g � Fa2h. If we write these relations only for
the known samples and combine everything together, we obtain�

f �k�
g�n�

�
�

�
Fa1 �k�
Fa2 �n�

�
h; (8)

where Fa1 �k� and Fa2 �n� denote submatrices of Fa1 and Fa2 ob-
tained by choosing the k1th,…,km1

th rows and the n1th,…,nm2

th rows, respectively. We need to solve the above system of equa-
tions in order to find the signal in the reference plane. Although
Fa1 �k� and Fa2 �n� have orthogonal rows separately, their combi-
nation may contain non-orthogonal rows since the rows of FRT
matrices of order a1 and a2 are not necessarily orthogonal to
each other.

Based on the above formulation, we will now prove that the
chosen reference plane does not create any difference on the
conditioning of the problem. Let us choose the ath-order do-
main as reference. Then, the sensitivity of the solution depends
on the condition number of the following matrix:

F1 �
�
Fa1−a�k�
Fa2−a�n�

�
: (9)

If we instead choose the âth-order domain as the reference such
that â ≠ a, the sensitivity depends on the following matrix:

F2 �
�
Fa1−â�k�
Fa2−â�n�

�
: (10)

Since Fa1−aFa−â � Fa1−â, if we multiply F1 from the right by
Fa−â, we will obtain F2. That is, F2 � F1Fa−â. Since Fa−â is a
unitary matrix and the spectral norm of a matrix is invariant

under a unitary transformation, we have cond2�F2� �
cond2�F1�. Thus, the conditioning of the problem is the same
for different choices of the reference plane.

This completes our discussion of the necessary mathematical
issues so that we can now move on to presenting the results.

4. DESIGN OF NUMERICAL EXPERIMENTS

In the numerical results we present, we vary the fractional order a
between the two domains over the range [0, 1] with a step size of
0.1 and the number of samples N in each domain is chosen as
256.We takem1 andm2, which represent the number of known
samples in the two domains, as powers of 2 up to 128 and then
choose their symmetric values with respect to 128, up to 256.
For differentm1 andm2 pairs, and different distributions of these
known samples, the change in the logarithm of the condition
number (to base 10) is investigated as a function of the order
a. Remember that physically, an increase in a corresponds to
an increase in the distance of propagation. Increasing the order
a means a point in one domain will interact with (affect or be
affected by) more points in the other domain.

We considered a number of potential scenarios illustrated in
Fig. 2, where we denote known samples with dark squares and
unknown samples with empty squares. There are two ways in
which we categorize the distribution of the known samples:
uniform versus accumulated distributions, and complementary
versus overlapping distributions. In the uniform distribution,
the known samples are distributed uniformly in both domains
over the whole extent. In the accumulated distribution, the
known samples are accumulated at one end in both domains.
For both cases, the known sample locations in the two domains
can either be complementing each other or overlapping with
each other. For the complementary case, the samples that
are unknown in one domain are known in the other domain,
whereas for the overlapping case, the samples that are known in
one domain are also known in the other domain. The four
combinations are most easily understood with reference to
Fig. 2, which has been drawn for the case where half of the

Fig. 2. Four basic known-sample distribution scenarios for m1 � 4,
m2 � 4, and m1 � 2, m2 � 6 when N � 8. (a) Uniform-comple-
mentary, (b) uniform-overlapping, (c) accumulated-complementary,
(d) accumulated-overlapping. The dark and empty squares denote
the known and unknown samples in each domain, respectively.
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samples are known in both domains (m1 � m2). When the
number of known samples in the two domains are not equal
to each other, the definition of complementary/overlapping
distributions is such that, respectively, maximum possible non-
overlapping/overlapping occurs between known samples in the
two domains as illustrated in Fig. 2.

To give a more precise definition of these cases, if we denote
the number of known samples in one domain as m, we use the
following rules for the distributions of the known samples:

1. Uniform-overlapping distribution: For both domains:

(a) For m ≤ N∕2, multiples of N∕m are known and
the remaining ones are unknown.

(b) For m > N∕2, the points which satisfy N∕�N −
m� − 1 (mod N∕�N − m�) are unknown and the remaining
ones are known.
2. Uniform-complementary distribution: Rules for the

a1th-order domain are the same as above. For the a2th-order
domain, the rules are reversed as follows:

(a) For m ≤ N∕2, the points which satisfy N∕m − 1
(mod N∕m) are known and the remaining ones are
unknown.

(b) For m > N∕2, multiples of N∕�N − m� are un-
known and the remaining ones are known.
3. Accumulated-overlapping distribution: For both do-

mains, the m samples with the most negative indices are known
and the remaining ones are unknown.

4. Accumulated-complementary distribution: For the
a1th-order domain, the m samples with the most negative in-
dices are known and the remaining ones are unknown whereas
for the a2th-order domain, the m samples with the most pos-
itive indices are known and the remaining ones are unknown.

The reason for considering these distributions is that they
provide limiting cases that will allow us to draw general con-
clusions on how the distribution of known values affects our
ability to recover the complete field. This in turn sheds light
on which distributions contain known points that are more in-
dependent or more redundant with respect to each other.
Moreover, these distributions may correspond to certain physi-
cal situations. For instance, the accumulated distributions cor-
respond to situations where we know values only on one side of
the field, or over a limited interval, and there is the need to
complement this information with knowledge of the field at
another plane. The uniform distribution corresponds to the
physical situation where the known values are not spaced suf-
ficiently closely together (with sufficient spatial resolution). In
[41] the case of recovering the signal from two low-resolution
versions at two different planes is considered, which corre-
sponds to the uniform scenario here.

5. RESULTS

In what follows, we will consider the cases m1 � m2 � N and
m1 � m2 > N separately.

A. Total Number of Knowns Equal to Number of
Unknowns
First, we consider the case where the total number of known
samples is equal to the number of unknowns: m1 � m2 � N .

Figures 3 and 4 show the condition number versus a curves for
accumulated and uniform distributions with the known sam-
ples shared differently between the two domains. For easier
comparison of the different types of distributions, the curves
for all different type of distributions are plotted together for
the particular case of m1 � 8, m2 � 248, in Fig. 5.

As seen from the figures, asm1 → N∕2, the condition num-
ber gets worse for all distributions. That is, the more equally the
known samples are shared between the two domains, the more
the condition number increases for all distributions. This in-
dicates that distributing the N known samples equally to
the two domains causes the largest amount of redundant infor-
mation in the available data. To understand why, let us consider
the domain with the greater number of known samples. Known
samples in one domain are completely independent from each
other, and there is no redundancy between them. Say we have
248 known samples in one domain and eight known samples in
the other domain. Then these 248 known samples are strictly
non-redundant since they are in the same domain. However,
the other eight samples in the other domain will not be
independent from the 248 samples since they are related to
them through a propagation relationship. As m1 → N∕2,
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Fig. 3. Condition number versus a for complementary and overlap-
ping accumulated distributions. (a) Accumulated-complementary
distribution, (b) accumulated-overlapping distribution. The legend
in part (a) indicating different pairs of m1 and m2, satisfying
m1 � m2 � N , is valid for both plots.

A138 Vol. 56, No. 1 / January 1 2017 / Applied Optics Research Article



the number of strictly non-redundant known samples de-
creases. In fact, the larger of m1 and m2 is a lower bound
for the number of non-redundant samples. As m1 → N∕2, this
lower bound goes to N∕2.

Observe from the figures that as the order a between two
domains increases, the condition number also increases in gen-
eral for all distributions. This is because, when a is small, the
FRT of an impulse has a local broadening, causing only local
dependency. On the other hand, as a approaches 1, the broad-
ening covers the whole extent and each known point starts to
depend on all points in the other domain. Hence, the region of
interaction of each known sample broadens with increasing a.
As a result, the region of interaction of different known samples
also starts to overlap to a greater degree. This means that many
known samples are at least partly related, and do not represent
independent pieces of information. With this redundancy,
knowledge of N values is actually worth less than knowledge
of N independent values, and less sufficient to reliably deter-
mine the N unknown values.

Our observation that the condition number generally wors-
ens with increasing order a has an important practical conse-
quence. It is in general better to know samples from two planes
whose fractional orders are close to each other (i.e., a � a2 − a1
is small). The physical location of such two planes, of course
depends on the application and the optical system configura-
tion. (The fractional orders corresponding to these physical
locations can be found by virtue of the Iwasawa decomposition
[4].) If free-space propagation is in question, this implies choos-
ing planes that are physically close to each other. On the other
hand, for an optical system involving lenses, two planes with
fractional orders that are close to each other may as well be
physically far from each other. In fact, multiple physical planes
can serve the same purpose. This illustrates the generality of our
formulation and its applicability to a rather broad class of op-
tical systems.

As clearly seen from Fig. 5, uniform distributions give better
condition numbers than the accumulated distributions, and the
difference dramatically increases as a increases. Thus, known
field values distributed more uniformly throughout a region
carry more information than the same number of field values
concentrated in a particular portion of that region. To see this,
consider light emanating from known values in the domain
with the fewer number of known samples. For very small values
of a on the other domain, there is only one unknown inside the
interaction region of a known point. That single unknown can
be solved in terms of the known on the original plane; in other
words, a known value can be transferred to the other plane and
make up for missing knowns there. There is no dependency or
redundancy in this case. However, as we increase a, also de-
pending on the value of m1, the known points on the original
plane will start to have overlapping interaction regions that con-
tain common unknowns. This will create effective redundancy
between known samples. However, the increase in the condi-
tion number with increasing a is much less in the uniform case,
compared to the accumulated case. This is because in the uni-
form case, the known samples are farther apart from each other,
resulting in both less overlap between their interaction regions
and fewer number of unknowns falling inside this overlap.
Another way to understand the differing behavior between
the uniform and accumulated cases is to note that the uniform
case resembles an interpolation problem whereas the accumu-
lated case resembles an extrapolation problem, the latter of
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Fig. 4. Condition number versus a for complementary and overlap-
ping uniform distributions. (a) Uniform-complementary distribution,
(b) uniform-overlapping distribution. The legend in part (a) indicating
different pairs of m1 and m2, satisfying m1 � m2 � N , is valid for
both plots.
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which is generally recognized to be more difficult to be solved
numerically. In the uniform case, there is strict redundancy at
a � 1 since the matrix is explicitly rank-deficient in this case
(see the appendix in Chap. 7 of [17] for a proof ). Thus, the
numerically obtained values displayed in the figures for a � 1
are not very meaningful and represent numerical limitations;
theoretically they are infinite for this case.

Having discussed the general dependence on a, the effect of
increasing m1, and the different behavior of the uniform and
accumulated cases, let us now compare the complementary and
overlapping cases. We observe that while the complementary
case is superior to the overlapping case for smaller values of
a, for larger values of a they give similar results. The reason
for this is that when the domains are close to each other, each
known point is interacting with a small number of samples in
the other domain since the extent of the response region for
each point is small. Therefore, as a consequence of complemen-
tarity, most of the points lying in these regions of interaction are
unknown samples, so that there is less redundancy. Indeed, it is
instructive to compare the complementary and overlapping
cases when a � 0. The complementary case reduces to the case
of knowing each and every sample in a given plane, allowing

perfect recovery. The overlapping case, on the other hand, cor-
responds to the case of twofold redundancy of all known sam-
ples along with zero knowledge of the remaining samples, a
catastrophic case of redundancy. Since it is reasonable to expect
this behavior to be inherited to some extent by small nonzero
values of a, the observed behavior is not surprising. However, as
the value of a is further increased, the regions of interaction
become larger, and a comparable number of known sample
points fall into these regions in both the complementary
and overlapping cases, causing a comparable degree of redun-
dancy in both cases. Thus we conclude that for values of a
that are not small, shifting the known sample values in the
transverse direction has little effect on their collective informa-
tion value.

The accumulated-overlapping case deserves additional
scrutiny. In this case, for values of m1 that are close to N∕2
(more precisely, for m1 > 32), the condition number hits
the MATLAB precision limit ceiling around 1016, for all values
of the fractional order a. We obtain condition numbers that do
not hit the precision limit ceiling only for considerably uneven
distributions (more precisely, for m1 ≤ 32). As we have dis-
cussed before, the redundancy is related to the maximum of
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Fig. 7. Condition number versus a for complementary and overlap-
ping uniform distributions. (a) Uniform-complementary distribution,
(b) uniform-overlapping distribution. The legend in part (a) indicating
different pairs of doubling m1 and constant m2, satisfying
m1 � m2 ≥ N , is valid for both plots.
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Fig. 6. Condition number versus a for complementary and overlap-
ping accumulated distributions. (a) Accumulated-complementary dis-
tribution, (b) accumulated-overlapping distribution. The legend in
part (a) indicating different pairs of doubling m1 and constant m2,
satisfying m1 � m2 ≥ N , is valid for both plots.
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m1 and m2. For the a � 0 case, we have strict redundancy. If
the distribution is considerably uneven (m1 is very different
than m2), then the maximum of m1 and m2 will still be close
to N . For this reason, increasing a even slightly above 0, the
system departs from strict redundancy quickly, since the addi-
tional information provided by the known samples in the other
domain can compensate for the information gap. However, for
distributions where m1 is close to m2, the maximum of m1 and
m2 is much smaller than N , and thus the additional informa-
tion from other known samples cannot close this information
gap since the relative dependency between these points is high,
as discussed before. It is also interesting to note that there often
exists a FRT order between 0 and 1 that makes the condition
number minimum, and this optimal FRT order depends on the
balance between m1 and m2.

Finally, let us take another look at the accumulated-
overlapping distribution. Note that since the discrete FRT
has a periodic nature, the effect of a sample at the edge of
the field wraps around to the other edge, which leads the system
to exhibit complementary-like behavior to some degree. Of
course, this behavior, which is a consequence of discretization,
does not exist in the continuous setting. Therefore, the actual

results corresponding to the real physical situation may be ex-
pected to be even worse than portrayed here.

B. Total Number of Knowns More Than Number of
Unknowns
Here we investigate the improvement in the condition number
when m1 � m2 > N , or equivalently, when we increase the to-
tal number of known samples beyond N . The curves in Figs. 6
and 7 are obtained by starting with the m1 � 8 and m2 � 248
case and doubling m1 each time.

We observe that as we increase the number of known
samples in one domain, the condition numbers improve as ex-
pected. The improvement is more dramatic in the accumulated
case since the condition numbers there were much larger to
begin with, and less pronounced in the uniform case since
the condition numbers there were already not very large.
Also observe that for accumulated distributions, even when
the total number of samples exceeds N considerably, the con-
dition number remains high for large values of a. The behavior
of the curves can be understood through similar arguments as
in the m1 � m2 � N case. For instance, for the accumulated-
complementary case, the sharp increase in the condition num-
ber starts when the extent of the response region associated with
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Fig. 8. Condition number versus a for complementary and overlap-
ping accumulated distributions. (a) Accumulated-complementary dis-
tribution, (b) accumulated-overlapping distribution. The legend in
part (a) indicating different pairs of doubling m1 and increasing
m2, satisfying m1 � m2 ≥ N , is valid for both plots.
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Fig. 9. Condition number versus a for complementary and
overlapping uniform distributions. (a) Uniform-complementary
distribution, (b) uniform-overlapping distribution. The legend in
part (a) indicating different pairs of doubling m1 and increasing
m2, satisfying m1 � m2 ≥ N , is valid for both plots.
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an unknown sample contains at least one unknown in the other
domain, since in this case the known values inside this region
no longer directly determine the unknown in the original
domain.

As an alternative to keeping m2 constant, we modified the
way m1 and m2 change so that m2 also increases while m1

doubles. As seen from Figs. 8 and 9, this improves the condition
number considerably for the accumulated case. There is im-
provement in the uniform case as well, but less pronounced
since the condition numbers are much smaller to begin with.
For the accumulated case, the increase in the condition number
with increasing a is observed at a larger value of a, since the ex-
tent of the response region of an unknown sample starts to con-
tain an unknown at larger values of a. Moreover, the minimum
condition number over a is lower for all m1 and m2 pairs. This is
because the greater of m1 and m2 gives us a basic minimum
number of samples whose independence is guaranteed, and this
increases when we increase m1 and m2.

Last, we investigate the case when there are an equal number
of samples in both domains (m1 � m2). As seen from Figs. 10
and 11, the condition number is very small for most cases
where m1 � m2 > N . The accumulated-overlapping case is a
striking exception, where even considerably large total number

of known samples do not give small condition numbers for
smaller values of a. That is, the system of equations cannot
quickly depart from the strict redundancy case at a � 0.
This different behavior with respect to a, compared to the
m1 � m2 � N cases, deserves explanation. For small values
of a, there are unknowns which do not fall within the response
region of any of the knowns in the other domain. Thus,
roughly speaking, all of the knowns in one domain say nothing
about some of the unknowns in the other domain, hindering
our ability to solve for them. This situation is overcome when
every unknown is covered by the extent of a response region
originating from at least one known. The condition number
improves quickly up to this point, with only small changes
occurring thereafter.

6. CONCLUSION

We considered the mathematical problem of recovering a signal
from partial and redundant information distributed over two
fractional Fourier transform domains. Physically, this corre-
sponds to the problem of recovering an optical field from partial
and redundant information distributed over two planes
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Fig. 10. Condition number versus a for complementary and over-
lapping accumulated distribution. (a) Accumulated-complementary
distribution, (b) accumulated-overlapping distribution. The legend
in part (a) indicating different pairs ofm1 � m2, satisfyingm1 � m2 ≥
N , is valid for both plots.
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Fig. 11. Condition number versus a for complementary and over-
lapping uniform distributions. (a) Uniform-complementary distribu-
tion, (b) uniform-overlapping distribution. The legend in part
(a) indicating different pairs of m1 � m2, satisfying m1 � m2 ≥ N ,
is valid for both plots.
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perpendicular to the optical axis. We took a novel linear alge-
braic approach to this problem and used the condition number
as a measure of redundant information in the available sample
values. By analyzing the effect of the number of known samples
and their distributions on the condition number, we have ex-
plored the redundancy and information relations between the
given data under different partial information conditions. This
led us to a number of general observations on how the distri-
bution of samples affects our ability to accurately solve for the
optical field. As was very evident from our numerical experi-
ments, the distribution of known samples over space was at
least as important as their number in determining the solution.

We now summarize our main observations. But first recall
that when we have an impulse in one plane, its discrete frac-
tional Fourier transform on the other plane (corresponding to
the light that would propagate from that point) has an extent
that increases with increasing order a (corresponding to increas-
ing distance of propagation). This extent defines a region of
sample points in the other domain that interacts with a sample
point at the original domain where the impulse is. With the
term “interact,” we mean that those sample points are related
to each other through a linear expression involving coefficients
that are substantially different than zero. Thus the larger the
order a between the two planes, the greater the number of
points on the other plane that will interact with a given point
in the original plane. For small values of a, there is only local
dependency but as a goes to unity, there is dependence on the
whole transverse field.

We saw that when the known samples are shared more
equally between the two domains, we have greater redundancy
between these known samples, the condition number is worse,
and it is much more difficult to recover the field accurately.
It is more advantageous for more of the known samples to
be in one plane and best when all of them are in the same plane,
in which perfect determination of the field everywhere is p
ossible. The critical quantity here is the greater of the number
of knowns in the two planes. The larger this quantity is the
better, since it gives us a guaranteed number of samples that
are independent. It is worst when the number of knowns are
shared equally between the two planes. The practical conse-
quence of this observation in the design of an optical system
is that one should try to choose as many samples as possible
from one plane, and then compensate for the missing ones
by taking additional samples from a second plane.

Generally speaking, as the fractional order between the
domains increases, the condition number and the quality of
the solution gets worse. This physically corresponds to increas-
ing the distance between the transverse planes in free space,
which leads to greater interaction, dependence, and therefore
redundancy between the known samples, as a result of the
broadening of the response to an impulse with increasing
distance. The practical design consequence of this observation
is that one should choose the two planes to correspond
to FRFDs of close orders. Moreover, as occurred with the
accumulated-overlapping distribution, there is sometimes an
optimal fractional order, in which case the two planes should
be chosen so that the difference of their fractional orders is this
optimal value.

Having the known sample values in both domains uni-
formly distributed throughout the transverse extent of the field
is better than having them huddled up in one side or region
since in the latter case, the proximity of the known samples
leads to greater overlap of their regions of interaction in the
other domain, leading to greater dependency and redundancy.
Another way of understanding this is to note that a more uni-
form distribution makes the problem more akin to interpola-
tion, which is usually better posed than the extrapolation
problem which arises when the samples are accumulated to
a region. This suggests that we should choose equally spaced
samples distributed over the support of the signal, rather than
taking finer samples from a limited region.

Unless the fractional order between the two domains is very
small, it does not make much difference whether the known
samples are on directly corresponding grid points (overlapping)
or alternating grid points (complementary). This is because
unless the two planes are very close, shifting the sample points
on the other side has little effect on what falls into the relatively
broad regions of interaction. However, for small values of a
(corresponding to small physical distance between the two
planes in free space), having the known sample locations in
the two domains complement each other rather than overlap
with each other is clearly better, as evident by considering
the limiting case of a � 0 where the complementary case cor-
responds to perfectly independent known sample values while
the overlapping case corresponds to a case of extreme re-
dundancy.

Finally, increasing the total number of known samples be-
yond the number of unknowns is generally helpful. This not
only may increase the greater ofm1 andm2, and hence the guar-
anteed number of samples that are independent, but even when
that does not change, it can reduce the condition number
considerably. In this overdetermined case, extra information be-
yond the number of unknowns we are trying to solve for com-
pensates for the information redundancy between the known
samples. The benefit of increasing the total number of samples
is less, however, when the condition numbers are already
satisfactory.

Note that all these observations regarding the effects of the
parameters and various different cases are consistent with
the fact that the ideal scenario is to have all known samples
in the same domain (on the same plane), in which case they
are all independent, leading to perfect recovery. All the other
cases may be considered as departures from this ideal situation.

In conclusion, we have observed how the spatial distribution
of a number of known samples affects our ability to recover an
optical field accurately. Certain qualities of this distribution, as
we have summarized in the above paragraphs, reduce the value
of given samples in recovering the field by making them more
dependent and hence redundant. This dependency, of course,
stems from the basic laws of propagation governing how the
sample points at different planes are related to each other.
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