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Abstract—We focus on the problem of representing a nonstation-
ary finite-energy random field, with finitely many samples. We do
not require the field to be of finite extent or to be bandlimited. We
propose an optimizable procedure for obtaining a finite-sample
representation of the given field. We estimate the reconstruction
error of the procedure, showing that it is the sum of the trunca-
tion errors in the space and frequency domains. We also optimize
the truncation parameters analytically and present the resultant
Pareto-optimal tradeoff curves involving the error in reconstruc-
tion and the sample count, for several examples. These tradeoff
curves can be used to determine the optimal sampling strategy in
a practical situation based on the relative importance of error and
sample count for that application.

Index Terms—Random field estimation, finite-energy signals,
non-stationary signals, uniform sampling, reconstruction error.

I. INTRODUCTION

IN THIS work, we present a method to represent any non-
stationary finite-energy field by using finitely many samples.

This problem is not only practical, but also has theoretical and
conceptual significance. We analytically characterize the source
of the inevitable approximation and error involved, how this er-
ror is related to our choice of the fundamental parameters, and
the tradeoff between representational accuracy and efficiency.
More specifically, we analyze the reconstruction error, and see
that it is approximately equal to the energy of the truncated
parts of the signal lying outside the chosen space and frequency
extents, and that it can be made as small as we wish by choos-
ing these extents large enough. By optimizing the space and
frequency extents, we obtain the best possible (Pareto-optimal)
tradeoff curves involving the reconstruction error and the sample
count. This gives us a very satisfying picture of what it means
to represent a function using a finite number of samples.

We can only give a very brief survey of works on sam-
pling of a field. Review articles on sampling include [1]–[4].
Some extensions of the Shannon-Nyquist theorem are presented
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in [1], including sampling of functions of more than one vari-
able, random processes, non-bandlimited functions, generalized
functions; as well as nonuniform sampling, implicit sampling,
sampling with derivatives, and sampling for general integral
transforms. A review of sampling theory for non-bandlimited
signals is given in [2], covering sup-norm error for bandlimit-
ing operations, and sampling approximation of derivatives. The
main focus of [3] is uniform sampling with more general classes
of interpolating functions and wider classes of anti-aliasing
prefilters. Non-bandlimited signal recovery from nonuniform
samples and pointwise reconstruction stability are reviewed in
[4]. Sampling theorem for bandlimited random processes was
considered in [5]. Reference [6] provides an error analysis for
nonuniform sampling of non-bandlimited signals that are time-
limited. A different error analysis addressing the aliasing ef-
fect for uniform sampling of non-bandlimited signals appears
in [7], providing a counterexample on how much the 2-norm
of the aliasing error can be. While [7] provides an analysis of
2-norm truncation error, there are other works, all dealing with
bandlimited signals [8]–[10] focusing on the sup-norm of the
error term. A recent paper deals with variable-density sampling
strategies for compressive imaging [11]. References [12]–[15]
focus on the subject of reconstruction from irregular samples.
Reference [12] covers the approximation of some convolution
operators and the representation of signals in a wide class of
function spaces and in general locally compact abelian groups
by irregular samples. Reconstruction of a bandlimited function
from any random sampling set is considered and the rate of
convergence for the proposed iteration method is estimated in
[13], while exact reconstruction of spline-like functions from
irregular samples using an iterative fast algorithm is dealt with
in [14]. Analysis of the maximum deviation from regularity
that can be tolerated to ensure exact recovery for bandlimited
functions is the subject of [15]. Tradeoffs related to the accu-
racy of the sample measurements are considered in [16]–[18].
A brute-force method for optimal reconstruction from uniform
samples is investigated in [19]. Wavelets and splines are consid-
ered in numerous works [20]–[22] as the interpolating function.
In [20], perfect reconstruction filter banks are reviewed. For a
low-pass filter, the necessary and sufficient conditions for the
existence of a complementary high-pass filter that will permit
perfect reconstruction are derived. A family of nonorthogonal
polynomial spline wavelet transform is introduced and analyzed
in [21] while [22] presents the derivation of filtering algorithms
for polynomial spline interpolation and the construction of an
extended family of polynomial spline wavelet transforms.

As for the study of non-stationary signals, we can only men-
tion a small sample of recent papers [23]–[27]. Reference [28] is
a special issue dedicated to the subject. Several works have dealt
with sampling of non-stationary signals [29]–[31]. In particular,
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[29] shows that mean-square error goes to zero for all time in-
stants when the non-stationary process of interest is bandlimited.

Another concept highly relevant to the present work is the
number of degrees of freedom (DOF) of a field. This is a funda-
mental concept appearing in many disciplines, especially those
dealing with propagating wave signals, such as optics, electro-
magnetics, and wireless communications [32]–[41]. The DOF
is sometimes, but not always, the same as the space-bandwidth
or time-bandwidth product [42], [43].

We emphasize that in our framework, both the energy of the
field and the total number of samples used is finite, as opposed
to the common case of considering the number of samples per
unit interval to be finite for infinite-energy processes or fields
[44], [45]. We aim to develop a thorough understanding of the
nature and tradeoffs involved in the finite sampling and sinc
interpolation problem in its most basic form. To this end, we
strive to not deviate from an analytical development, and suc-
ceed in solving the optimal sampling problem analytically. Our
approach is sufficient to address important basic problems such
as determining the minimum number of samples required to
achieve a specified error tolerance, finding the optimal sam-
pling frequency and the optimal sampling extent, and determin-
ing the minimum representation error for a given number of
samples.

The minimum number of samples required to represent and
recover a random field may be interpreted as the number of
degrees of freedom of the field. So the method of our paper
allows us to find the number of degrees of freedom of a field
from its autocorrelation function. It is important to underline
that this also depends on the specified error tolerance in a fun-
damental way. This is most obviously seen if we consider how
the space-bandwidth (or time-bandwidth) product of a signal
is roughly estimated by simply multiplying the extents of the
signal in the space (or time) and frequency domains. Since it
is a fundamental fact that both extents cannot be finite, de-
termination of these finite extents involves a decision regard-
ing how much of the tails of the functions can be neglected.
This decision is sometimes explicit but often implicit. Thus the
number of degrees of freedom of a signal is not an absolute
concept but is conditioned on the error tolerance. These con-
siderations and relationships are put on solid ground in this
paper.

The rest of the paper is organized as follows. In Sections II
and III, we give the problem formulation and the reconstruc-
tion error analysis, respectively. Reconstruction without pre-
filtering is discussed in Section IV. Optimization of the sam-
pling variables is explained in Section V. The numerical re-
sults are provided in Section VI. We conclude the paper in
Section VII.

II. FINITE-SAMPLE REPRESENTATION OF

FINITE-ENERGY FIELDS

In this section, we explain how we represent a given finite-
energy field with finitely many samples. Our representation
has two parameters: Spatial extent Δu and spectral extent Δμ.
We will show that the error in such a representation is approxi-
mately equal to the energy of the signal falling outside of these
two extents (Theorem 2), and that it can be made as small as we
wish by choosing the extents sufficiently large (Theorem 1).

Let f : R → C be a finite-energy field having continu-
ous realizations with the covariance function Kf (u1 , u2) =

E[f(u1)f ∗(u2)]. The finite-energy assumption means that

E

[∫ ∞

−∞
|f(u)|2 du

]
=
∫ ∞

−∞
E[|f(u)|2 ] du

=
∫ ∞

−∞
Kf (u, u) du <∞ (1)

We are able to change the order of integration and expectation
in (1) using Fubini-Tonelli’s theorem and the fact that f has to
be product measurable [46], [47].

In addition to the conditions we have stated, we will also as-
sume that the Fourier transform exists for almost all realizations
of f . Let F : R → C denote the Fourier transform of f . We
wish to sample the bandlimited version of f having the Fourier
transform

FΔμ(μ) =
{
F (μ), if |μ| ≤ Δμ/2

0, else

to avoid aliasing. Let

fΔμ˜ (u) =
∫ Δμ/2

−Δμ/2
F (μ) ej2πuμ dμ

denote the resultant signal once the spectral content of f outside
of the interval [−Δμ/2,Δμ/2] has been discarded. From the
sampling theorem, we have

fΔμ˜ (u) =
∞∑

n=−∞
fΔμ˜

(
n

Δμ

)
sinc(Δμu− n)

In order to represent the initial signal f with finitely many
samples, we discard the samples fΔμ˜ ( n

Δμ ) lying outside
[−Δu/2,Δu/2]. The new signal we obtain is denoted by
fΔμ˜ ,Δu (u) and is given by

fΔμ˜ ,Δu (u) =
�ΔuΔμ/2�∑

n=−�ΔuΔμ/2�
fΔμ˜

(
n

Δμ

)
sinc(Δμu− n) (2)

which can be characterized completely by the following number
of samples:

2
⌊

ΔuΔμ
2

⌋
+ 1 ≈ ΔuΔμ (3)

which is commonly known as the space-bandwidth or time-
bandwidth product [42], [43]. The samples defining fΔμ˜ ,Δu as
in (2) constitute the vector

f =

(
fΔμ˜

(
n

Δμ

) ∣∣∣∣∣−
⌊

ΔuΔμ
2

⌋
≤ n ≤

⌊
ΔuΔμ

2

⌋)
(4)

which is the finite-sample representation of f .
Before continuing we note that the subscripts Δu and Δμ

denote the extents of truncation in the space and frequency do-
mains. The under tilde indicates that the truncation has been
done in the domain opposite to which the signal is being repre-
sented in. For example, the Fourier transform of fΔμ˜ ,Δu (u) is
denoted as FΔμ,Δu˜ (μ).

The dual of the representation described above can be ob-
tained by truncating f in the spatial domain, and sampling its
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Fourier transform. More precisely, we define the signal

fΔu (u) =
{
f(u), if |u| ≤ Δu/2

0, else

whose Fourier transform can be expressed as

FΔu˜ (μ) =
∞∑

n=−∞
FΔu˜

( n

Δu

)
sinc(Δuμ− n)

using the sampling theorem. Keeping the samples FΔu˜ ( n
Δu )

which belong to the frequency band [−Δμ/2,Δμ/2] only, we
obtain the signal

FΔu˜ ,Δμ(μ) =
�ΔuΔμ/2�∑

n=−�ΔuΔμ/2�
FΔu˜

( n

Δu

)
sinc(Δuμ− n). (5)

FΔu˜ ,Δμ(μ) is uniquely defined by 2�ΔuΔμ
2 � + 1 ≈ ΔuΔμ

samples, and its inverse Fourier transform fΔu,Δμ˜ can be used
to recover f as an alternative to fΔμ˜ ,Δu defined by (2).

We now analyze the error made by reconstructing f(u) as
fΔμ˜ ,Δu (u). For that purpose, we write

|f(u) − fΔμ˜ ,Δu (u)|2

= |(f(u) − fΔμ˜ (u)) + (fΔμ˜ (u) − fΔμ˜ ,Δu (u))|2

= |f(u) − fΔμ˜ (u)|2

+ 2 Re{(f(u) − fΔμ˜ (u))(fΔμ˜ (u) − fΔμ˜ ,Δu (u))∗}

+ |fΔμ˜ (u) − fΔμ˜ ,Δu (u)|2

which implies

∫ ∞

−∞
|f(u) − fΔμ˜ ,Δu (u)|2 du =

∫ ∞

−∞
|f(u) − fΔμ˜ (u)|2 du

+ 2 Re{〈f(u) − fΔμ˜ (u), fΔμ˜ (u) − fΔμ˜ ,Δu (u)〉}

+
∫ ∞

−∞
|fΔμ˜ (u) − fΔμ˜ ,Δu (u)|2 du, (6)

where 〈. , .〉 denotes the inner product, defined by

〈f(u), g(u)〉 =
∫ ∞

−∞
f(u)g∗(u) du (7)

Since Fourier transform preserves inner products, we have

〈f(u) − fΔμ˜ (u), fΔμ˜ (u) − fΔμ˜ ,Δu (u)〉

= 〈F (μ) − FΔμ(μ), FΔμ(μ) − FΔμ,Δu˜ (μ)〉

from which

〈f(u) − fΔμ˜ (u), fΔμ˜ (u) − fΔμ˜ ,Δu (u)〉

=
∫ Δμ/2

−Δμ/2
(F (μ) − FΔμ(μ))(FΔμ(μ) − FΔμ,Δu˜ (μ))∗ dμ

+
∫
|μ |>Δμ/2

(F (μ) − FΔμ(μ))(FΔμ(μ) − FΔμ,Δu˜ (μ))∗ dμ

=
∫ Δμ/2

−Δμ/2
0 (FΔμ(μ) − FΔμ,Δu˜ (μ))∗ dμ

+
∫
|μ |>Δμ/2

(F (μ) − FΔμ(μ)) 0 dμ = 0 + 0 = 0 (8)

follows. Thus, (6) takes the form

∫ ∞

−∞
|f(u) − fΔμ˜ ,Δu (u)|2 du =

∫ ∞

−∞
|f(u) − fΔμ˜ (u)|2 du

+
∫ ∞

−∞
|fΔμ˜ (u) − fΔμ˜ ,Δu (u)|2 du

=
∫
|μ |>Δμ/2

|F (μ)|2 dμ+
∫ ∞

−∞
|fΔμ˜ (u) − fΔμ˜ ,Δu (u)|2 du.

(9)

To simplify
∫∞
−∞ |fΔμ˜ (u) − fΔμ˜ ,Δu (u)|2 du, we first write

∫ ∞

−∞
|fΔμ˜ (u) − fΔμ˜ ,Δu (u)|2 du

=
∫ ∞

−∞

∣∣∣∣∣∣
∑

|n |>�ΔuΔμ/2�
fΔμ˜

(
n

Δμ

)
sinc(Δμu− n)

∣∣∣∣∣∣
2

du

(10)

which can be expressed as

∫ ∞

−∞

∣∣∣∣∣∣ limk→∞

∑
�ΔuΔμ/2�< |n |≤k

fΔμ˜
(
n

Δμ

)
sinc(Δμu− n)

∣∣∣∣∣∣
2

du.

We now take the limit outside the integral (this will be justified
further below):

lim
k→∞

⎡
⎣∫ ∞

−∞

∣∣∣∣∣∣
∑

�ΔuΔμ/2�< |n |≤k
fΔμ˜

(
n

Δμ

)
sinc(Δμu− n)

∣∣∣∣∣∣
2

du

⎤
⎦

= lim
k→∞

∑
�ΔuΔμ/2�< |k1 |≤k

∑
�ΔuΔμ/2�< |k2 |≤k

fΔμ˜
(
k1

Δμ

)

·f ∗Δμ˜
(
k2

Δμ

)
〈sinc(Δμu− k1), sinc(Δμu− k2)〉.
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Noting that the inner product term 〈sinc(Δμu− k1),
sinc(Δμu− k2)〉 simplifies to

〈sinc(Δμu− k1), sinc(Δμu− k2)〉

=
〈

1
Δμ

rect

(
μ

Δμ

)
e−j 2π k 1

Δ μ μ ,
1

Δμ
rect

(
μ

Δμ

)
e−j 2π k 2

Δ μ μ

〉

=
1

Δμ
δk1 k2 , (11)

where δk1 k2 is the Kronecker delta (= 1 when k1 = k2 and = 0
otherwise), we get

lim
k→∞

∫ ∞

−∞

∣∣∣∣∣∣
∑

�ΔuΔμ/2�< |n |≤k
fΔμ˜

(
n

Δμ

)
sinc(Δμu− n)

∣∣∣∣∣∣
2

du

= lim
k→∞

∑
�ΔuΔμ/2�< |n |≤k

1
Δμ

∣∣∣∣∣fΔμ˜
(
n

Δμ

)∣∣∣∣∣
2

(12)

The expression (12) has to be finite with probability 1 since

∑
�ΔuΔμ/2�< |n |≤k

1
Δμ

∣∣∣∣∣fΔμ˜
(
n

Δμ

)∣∣∣∣∣
2

≤
∫ ∞

−∞
|fΔμ˜ (u)|2 du

≤
∫ ∞

−∞
|f(u)|2 du (13)

holds true for all k ∈ N. (Note that the first inequality in (13)
follows from the equation

〈
fΔμ˜ (u) −

∑
�ΔuΔμ/2�< |n |≤k

fΔμ˜
(
n

Δμ

)
sinc(Δμu− n),

∑
�ΔuΔμ/2�< |n |≤k

fΔμ˜
(
n

Δμ

)
sinc(Δμu− n)

〉
= 0,

which is a consequence of (11).)
Knowing that the limit expression (12) and hence (10) is

finite allows us to invoke the dominated convergence theorem
[46], which justifies taking the limit outside the integral
following (10). Consequently, (10) simplifies to

∫ ∞

−∞
|fΔμ˜ (u) − fΔμ˜ ,Δu (u)|2 du

=
∑

�ΔuΔμ/2�< |n |

1
Δμ

∣∣∣∣∣fΔμ˜
(
n

Δμ

)∣∣∣∣∣
2

. (14)

Inserting (14) in (9), we obtain
∫ ∞

−∞
|f(u) − fΔμ˜ ,Δu (u)|2 du

=
∫
|μ |>Δμ/2

|F (μ)|2 dμ+
∑

�ΔuΔμ/2�< |n |

1
Δμ

∣∣∣∣∣fΔμ˜
(
n

Δμ

)∣∣∣∣∣
2

(15)

The dual expression∫ ∞

−∞
|f(u) − fΔu,Δμ˜ (u)|2 du

=
∫
|u |>Δu/2

|f(u)|2 du+
∑

�ΔuΔμ/2�< |n |

1
Δu

∣∣∣∣∣FΔu˜
( n

Δu

)∣∣∣∣∣
2

(16)

follows similarly. Taking the expectation of both
sides in (15), and defining the spectral covariance as
Sf (μ1 , μ2) = E[F (μ1)F ∗(μ2)] we get

E

∫ ∞

−∞
|f(u) − fΔμ˜ ,Δu (u)|2 du

= E

∫
|μ |>Δμ/2

|F (μ)|2 dμ+ E
∑

�ΔuΔμ/2�< |n |

1
Δμ

∣∣∣∣∣fΔμ˜
(
n

Δμ

)∣∣∣∣∣
2

=
∫
|μ |>Δμ/2

Sf (μ, μ) dμ+ E
∑

�ΔuΔμ/2�< |n |

1
Δμ

∣∣∣∣∣fΔμ˜
(
n

Δμ

)∣∣∣∣∣
2

(17)

Equation (1) implies limΔμ→∞
∫
|μ |>Δμ/2 Sf (μ, μ) dμ = 0,

and inequality (13) implies

lim
Δu→∞

E

⎡
⎣ ∑
�ΔuΔμ/2�< |n |

1
Δμ

∣∣∣∣∣fΔμ˜
(
n

Δμ

)∣∣∣∣∣
2
⎤
⎦

= lim
Δu→∞

∑
�ΔuΔμ/2�< |n |

1
Δμ

E

∣∣∣∣∣fΔμ˜
(
n

Δμ

)∣∣∣∣∣
2

= 0.

Combining these two facts with (17), we see that the average
reconstruction error E

∫∞
−∞ |f(u) − fΔμ˜ ,Δu (u)|2 du can be

made arbitrarily small by choosing the spatial extent Δu and
the spectral extent Δμ sufficiently large. Proceeding in a similar
way, from (16) we obtain

E

∫ ∞

−∞
|f(u) − fΔu,Δμ˜ (u)|2 du

=
∫
|u |>Δu/2

Kf (u, u) du+ E
∑

�ΔuΔμ/2�< |n |

1
Δu

∣∣∣∣∣FΔu˜
( n

Δu

)∣∣∣∣∣
2

(18)

which implies the average errorE
∫∞
−∞ |f(u) − fΔu,Δμ˜ (u)|2 du

goes to zero as Δu and Δμ tends to infinity. These results are
summarized in the following theorem.

Theorem 1: Let f : R → C be a random field having covari-
ance function Kf (u1 , u2) = E[f(u1)f ∗(u2)] with continuous
realizations, and let f be a finite energy field in the sense that∫∞
−∞E|f(u)|2 du =

∫∞
−∞Kf (u, u) du <∞.

Then, the reconstruction fΔμ˜ ,Δu (u) given in (2) can be ob-
tained from ΔuΔμ± 1 (see (3)) samples, such that the aver-
age reconstruction error E

∫∞
−∞ |f(u) − fΔμ˜ ,Δu (u)|2 du goes

to zero as Δu,Δμ→ ∞. A similar result is valid for the recon-
struction fΔu,Δμ˜ (u).

This is an important observation regarding the representation
of finite-energy signals with finitely many samples. It is well
known that a function and its Fourier transform cannot both be
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confined within a finite extent, so that for given finite Δu and
Δμ, there will always be some representation and reconstruc-
tion error. However, this error can be made arbitrarily small by
increasing Δu and Δμ. We now proceed to show that this error
can be characterized in a very simple and intuitive manner.

III. ERROR ANALYSIS OF FINITE-SAMPLE REPRESENTATION

To analyze the reconstruction error
∫∞
−∞ |f(u)−

fΔμ˜ ,Δu (u)|2 du, we focus on the summation term appearing
in (15). Since fΔμ˜ (u) is bandlimited to [−Δμ/2,Δμ/2], the
value it takes does not fluctuate significantly over a length of
1/Δμ. Therefore, we may assume that the approximation

∑
�ΔuΔμ/2�< |n |

1
Δμ

∣∣∣∣∣fΔμ˜
(
n

Δμ

)∣∣∣∣∣
2

≈
∫
|u |> �Δ u Δ μ / 2 �

Δ μ

|fΔμ˜ (u)|2 du≈
∫
|u |>Δu/2

|fΔμ˜ (u)|2 du (19)

is valid for most of the realizations (with a high probability).
Alternatively, one can argue that∫

|u |> �Δ u Δ μ / 2 �+ 1
Δ μ

|fΔμ˜ (u)|2 du

≤
∑

�ΔuΔμ/2�< |n |

1
Δμ

∣∣∣∣∣fΔμ˜
(
n

Δμ

)∣∣∣∣∣
2

≤
∫
|u |> �Δ u Δ μ / 2 �

Δ μ

|fΔμ˜ (u)|2 du (20)

provided |fΔμ˜ (u)|2 is monotone decreasing for u > Δu/2 and

increasing for u < −Δu/2, which is expected to be the case
with a high probability if Δu is large enough. Combining the
observations given by (19) and (20) with (15), we get∫ ∞

−∞
|f(u) − fΔμ˜ ,Δu (u)|2 du

≈
∫
|μ |>Δμ/2

|F (μ)|2 +
∫
|u |>Δu/2

|fΔμ˜ (u)|2 du

≈
∫
|μ |>Δμ/2

|F (μ)|2 +
∫
|u |>Δu/2

|f(u)|2 du

meaning that

E

∫ ∞

−∞
|f(u) − fΔμ˜ ,Δu (u)|2 du

≈ E

∫
|u |>Δu/2

|f(u)|2 du+ E

∫
|μ |>Δμ/2

|F (μ)|2 dμ

=
∫
|u |>Δu/2

Kf (u, u) du+
∫
|μ |>Δμ/2

Sf (μ, μ) dμ (21)

holds if the sampling parameters Δu and Δμ are
sufficiently large. In a similar way, it follows from
(16) that the approximation E

∫∞
−∞ |f(u) − fΔu,Δμ˜ (u)|2

du ≈ ∫|u |>Δu/2 Kf (u, u) du+
∫
|μ |>Δμ/2 Sf (μ, μ) dμ is also

valid.

In formal terms, (19) can be expressed as

lim
Δμ→∞

∑
�ΔuΔμ/2�< |n |

1
Δμ

∣∣∣fΔμ˜
(

n
Δμ

)∣∣∣2∫
|u |> �Δ u Δ μ / 2 �

Δ μ
|fΔμ˜ (u)|2 du = 1

As Δμ→ ∞, the bandlimited function approaches f(u):

lim
Δμ→∞

∫
|u |> �Δ u Δ μ / 2 �

Δ μ
|fΔμ˜ (u)|2 du∫

|u |>Δu/2 |f(u)|2 du = 1,

Combining the above two equations leads to

lim
Δμ→∞

∑
�ΔuΔμ/2�< |n |

1
Δμ

∣∣∣fΔμ˜
(

n
Δμ

)∣∣∣2∫
|u |>Δu/2 |f(u)|2 du = 1

with probability 1. Then, using (15) we can write that

lim
Δμ→∞

∫∞
−∞ |f(u) − fΔμ˜ ,Δu (u)|2 du∫

|u |>Δu/2 |f(u)|2 du+
∫
|μ |>Δμ/2 |F (μ)|2 dμ = 1

holds true with probability 1. The dual expression

lim
Δu→∞

∫∞
−∞ |f(u) − fΔu,Δμ˜ (u)|2 du∫

|u |>Δu/2 |f(u)|2 du+
∫
|μ |>Δμ/2 |F (μ)|2 dμ = 1

follows similarly. These justify the following theorem.
Theorem 2: Let f : R → C be a random field and let

fΔμ˜ ,Δu (u) be its reconstruction as in (2). Then, the reconstruc-
tion error satisfies

lim
Δμ→∞

E

[ ∫∞
−∞ |f(u) − fΔμ˜ ,Δu (u)|2 du∫

|u |>Δu/2 |f(u)|2 du+
∫
|μ |>Δμ/2 |F (μ)|2 dμ

]
= 1.

(22)
A similar result is valid for the reconstruction fΔu,Δμ˜ (u).

It is noteworthy to observe that under reasonable assump-
tions, the reconstruction error for the finite-sample representa-
tion considered here simplifies to the sum of two terms. These are
the energies contained in the truncated “tails” of the function
in the spatial domain and the spectral domain. If a function is
of finite extent in the frequency domain, the sampling theorem
says that finitely spaced samples in the original space domain
will be sufficient to reconstruct it. If the function could also be
of finite extent in the original space domain, then clearly we
would need to retain only those of these finitely-spaced samples
falling within the extent of the signal, leading to a finite number
of samples that exactly represented the signal. However, it is a
fundamental fact that a signal cannot have finite extent in both
the space and frequency domains. Therefore, we cannot have a
finite number of finitely-spaced samples that exactly represent
our signal—the samples would have to be either infinitesimally
spaced or extend over an infinite extent, or both, to ensure an
exact representation. The same argument can be repeated with
the roles of the space and frequency variables interchanged.
It follows that we can only have a finite representation if we
pretend that the signal has a finite extent in both domains by
ignoring, or neglecting, parts of the signal that lie outside those
assumed finite extents. The above result shows that the energy
of the reconstruction error that results, is given by the energy of
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the parts of the signal that we neglect. In other words, whatever
we choose to neglect, returns to us as an error in reconstruction.

Results consistent with this were observed in the numeri-
cal simulations in [48], [49], where the authors note that the
approximation error for linear canonical transform computation
algorithms is basically determined by the error in approximating
the continuous Fourier transform by the discrete Fourier trans-
form (DFT), with the error being comparable to the amount of
energy falling outside the space and frequency extents implicitly
defined by the DFT employed.

According to (21), the reconstruction error is the sum of the
energies of the signal left outside the intervals Δu and Δμ in the
space and frequency domains respectively. Reducing the error
requires increasing both Δu and Δμ. On the other hand, accord-
ing to (3), the number of samples is given by ΔuΔμ, leading
to the expected result that reducing the error requires the ac-
ceptance of a greater number of samples, or that reducing the
number of samples requires the tolerance of a greater error. But
what is the minimum number of samples for a specified error, or
the smallest error for a specified number of samples? To answer
these questions, one needs to optimize these two parameters
in order to minimize the error expression given by (21). This
optimization is undertaken in Section V. Before that, for com-
pleteness and generality, we will consider the corresponding
analysis for the case where anti-aliasing is not used before sam-
pling. The following section can be omitted without loss of
continuity.

IV. ERROR ANALYSIS FOR RECONSTRUCTION

WITHOUT PRE-FILTERING

The finite-sample representation of Section II makes use of
anti-aliasing filtering before sampling. In this section, we ana-
lyze the reconstruction error for the case when an anti-aliasing
filter is not used. In the absence of pre-filtering, the finite-sample
representation signal takes the form

f̂Δμ˜ ,Δu (u) =
�ΔuΔμ/2�∑

n=−�ΔuΔμ/2�
f

(
n

Δμ

)
sinc(Δμu− n) (23)

having the Fourier transform F̂Δμ,Δu˜ . Let f̂Δμ˜ be defined as

f̂Δμ˜ (u) =
∞∑

n=−∞
f

(
n

Δμ

)
sinc(Δμu− n).

The Fourier transform F̂Δμ(μ) of f̂Δμ˜ does not agree withF (μ)
on the interval [−Δμ/2,Δμ/2] because of aliasing. Hence, we
have

〈F (μ) − F̂Δμ(μ), F̂Δμ(μ) − F̂Δμ,Δu˜ (μ)〉 �= 0

∫ ∞

−∞
|f(u) − f̂Δμ˜ ,Δu (u)|2 du �=

∫ ∞

−∞
|f(u) − f̂Δμ˜ (u)|2 du

+
∫ ∞

−∞
|f̂Δμ˜ (u) − f̂Δμ˜ ,Δu (u)|2 du

as opposed to the equalities (8) and (9). Nevertheless, the error
term

∫ |f(u) − f̂Δμ,Δu (u)|2 du can be bounded as

(∫ ∞

−∞
|f(u) − f̂Δμ˜ ,Δu (u)|2 du

)1/2

≤
(∫ ∞

−∞
|f(u) − f̂Δμ˜ (u)|2 du

)1/2

+

(∫ ∞

−∞
|f̂Δμ˜ (u) − f̂Δμ˜ ,Δu (u)|2 du

)1/2

(24)

Then, we obtain from (14) that

∫ ∞

−∞
|f̂Δμ˜ (u) − f̂Δμ˜ ,Δu (u)|2 du =

∑
�ΔuΔμ/2�< |n |

1
Δμ

∣∣∣∣f
(
n

Δμ

)∣∣∣∣
2

≈
∫
|u |>Δu/2

|f(u)|2 du (25)

Inserting (25) in (24), we get

(∫ ∞

−∞
|f(u) − f̂Δμ˜ ,Δu (u)|2 du

)1/2

≤
(∫ ∞

−∞
|f(u) − f̂Δμ˜ (u)|2 du

)1/2

+
(∫

|u |>Δu/2
|f(u)|2 du

)1/2

=
(∫ ∞

−∞
|F (μ) − F̂Δμ(μ)|2 dμ

)1/2

+
(∫

|u |>Δu/2
|f(u)|2 du

)1/2

.

(26)

To proceed further with the expression for the error, let us more
closely examine the first term appearing in the last line of (26),
and write

∫ ∞

−∞
|F (μ) − F̂Δμ(μ)|2 dμ =

∫
|μ |>Δμ/2

|F (μ)|2 dμ

+
∫ Δμ/2

−Δμ/2
|F (μ) − F̂Δμ(μ)|2 dμ

≥
∫
|μ |>Δμ/2

|F (μ)|2 dμ+
1

Δμ

(∫ Δμ/2

−Δμ/2
|F (μ) − F̂Δμ(μ)| dμ

)2

(27)

where (27) is due to the Cauchy-Schwarz inequality. Then, we
make use of Nyquist’s sampling theorem to express F̂Δμ as

F̂Δμ(μ) = rect

(
μ

Δμ

) ∞∑
n=−∞

F (μ− Δμn) (28)
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under the assumption that
∫∞
−∞ |F (μ)| dμ <∞. Then, it follows

from (28) that∫ Δμ/2

−Δμ/2
|F (μ) − F̂Δμ(μ)| dμ

=
∫ Δμ/2

−Δμ/2

∣∣∣∣∣
∑
n �=0

F (μ− Δμn)

∣∣∣∣∣ dμ

≤
∫ Δμ/2

−Δμ/2

∑
n �=0

|F (μ− Δμn)| dμ. (29)

Noting that

k∑
n=−k

∫ Δμ/2

−Δμ/2
|F (μ− Δμn)| dμ

=
∫ k + 1

2 Δμ

μ=− k + 1
2 Δμ

|F (μ)| dμ−
∫ Δμ/2

−Δμ/2
|F (μ)| dμ

≤
∫
|μ |>Δμ/2

|F (μ)| dμ <∞ (30)

holds true for all k ∈ N, we conclude∫ Δμ/2

−Δμ/2

∑
n �=0

|F (μ− Δμn)| dμ =
∫
|μ |>Δμ/2

|F (μ)| dμ (31)

from the dominated convergence theorem.
The inequality (27) and the equality (31) suggest that the

aliasing error
∫∞
−∞ |F (μ) − F̂Δμ(μ)|2 dμ is proportional to∫

|μ |>Δμ/2 |F (μ)| dμ. Combining this observation with (26), we

see that it is the 1-norm integral
∫
|μ |>Δμ/2 |F (μ)| dμ which

dominates the upper bound of the reconstruction error given by
(26). This is also consistent with the theorem proved in [50]
which states that |f(u) − f̂Δμ˜ ,Δu (u)| ≤ 2

∫
|μ |>Δμ/2 |F (μ)| dμ

is valid for all u ∈ R. There are counter-examples in the lit-
erature [7] showing that

∫∞
−∞ |F (μ) − F̂Δμ(μ)|2 dμ cannot be

bounded above by a universal constantC times the 2-norm inte-
gral

∫
|μ |>Δμ/2 |F (μ)|2 dμ. Both the analysis we have carried out

here and previous results appearing in [7], [50] indicate that the
use of anti-alias filtering is helpful in reducing the reconstruc-
tion error. Since it also makes the analysis more transparent and
simpler, we continue with that choice.

V. OPTIMIZATION OF THE EXTENTS VIA

LAGRANGE MULTIPLIERS

Returning to where we left at the end of Section II, we had
found that both the number of samples n(Δu,Δμ) and the
reconstruction error e(Δu,Δμ) were functions of the extents
Δu and Δμ, as given by (3) and (21):

n(Δu,Δμ) = ΔuΔμ (32)

e(Δu,Δμ) =
∫
|u |>Δu/2

Kf (u, u) du+
∫
|μ |>Δμ/2

Sf (μ, μ) dμ (33)

Here the reconstruction error can be considered to be a per-
formance parameter, while the number of samples can be con-
sidered to be a cost parameter. The extents Δu and Δμ are
intermediate parameters that we are free to choose but which are
not of interest in themselves. It is clear that greater performan-

ce requires greater cost, and that lower cost requires acceptance
of lower performance. So we can pose two fundamental prob-
lems: (i) Find the minimum number of samples n(Δu,Δμ) to
achieve a specified reconstruction error e(Δu,Δμ); and, (ii)
Find the minimum error e(Δu,Δμ) for a given number of
samples n(Δu,Δμ). Actually, both problems are related and
their solution constitutes the Pareto-optimal tradeoff between
the sample count and the error, obtained after the parameters
Δu and Δμ have been optimized out. The following theorem
characterizes the Pareto optimal (Δu,Δμ) pairs.

Theorem 3: Let f : R → C be a random field and let
fΔμ˜ ,Δu (u) be its reconstruction as in (2). Then, the Pareto op-
timal (Δu,Δμ) pairs satisfy the equation

Δμ
Δu

=
Kf (Δu

2 , Δu
2 ) +Kf (−Δu

2 ,−Δu
2 )

Sf (Δμ
2 , Δμ

2 ) + Sf (−Δμ
2 ,−Δμ

2 )
. (34)

Proof: The Lagrange multipliers method implies the exis-
tence of a λ ∈ R such that the optimal (Δu,Δμ) pair satisfies

∂ e(Δu,Δμ)
∂Δu

+ λΔμ = 0,
∂ e(Δu,Δμ)

∂Δμ
+ λΔu = 0 (35)

Note that e(Δu,Δμ) can be expressed as e(Δu,Δμ) =
e1(Δu) + e2(Δμ), where

e1(x) = E0 −
∫ x/2

−x/2
Kf (x′, x′) dx′

e2(y) = E0 −
∫ y/2

−y/2
Sf (y′, y′) dy′

E0 =
∫ ∞

−∞
Kf (x′, x′) dx′ =

∫ ∞

−∞
Sf (y′, y′) dy′

Rewriting (35) as

e′1(Δu) + λΔμ = 0, e′2(Δμ) + λΔu = 0

we get the equality e′1(Δu)Δu = e′2(Δμ)Δμ, giving rise to
Theorem 3. �

In order to find the optimal (Δu,Δμ) pair, (34) and the
constraint equation need to be solved together. The constraint
equation is either that n(Δu,Δμ) is a given constant, or that
e(Δu,Δμ) is a given constant; corresponding to the problems of
finding the smallest error for given number of samples, or finding
the smallest number of samples for given error, respectively.
Finally, we can plot the number of samples versus reconstruction
error curve consisting of the best achievable (Pareto-optimal)
points.

VI. NUMERICAL RESULTS

We now provide some numerical examples illustrating the
relationship between the number of samples and reconstruction
error. Our first example is a random field having autocorrelation
function

Kf (u1 , u2) = ψn (u1)ψn (u2) (36)

where ψn (u) is the nth order Hermite-Gaussian function.
Since Hermite-Gaussian functions are the eigenfunctions of the
Fourier transform having eigenvalues of unit magnitude [51],
the autocorrelation of the original function and the autocorre-
lation of its Fourier transform are exactly the same; that is,
Kf (u1 , u2) = Sf (u1 , u2) holds true. Therefore (34) reduces to
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Fig. 1. Pareto-optimal tradeoff curves between finite sample reconstruction
error versus number of samples, for the random processes having autocorre-
lation function Kf (u1 , u2 ) = ψn (u1 )ψn (u2 ), where ψn (u) is the nth order
Hermite-Gaussian function.

Fig. 2. The random field having an autocorrelation function of the form (36)
and its reconstruction for n = 4 and N = 5.

Δu = Δμ× 1 s2 , where s refers to the unit of Δu (such as s =
1 meter or s = 1 second). Then, under the constraint that the
number of samples to be used is N , the error term e(Δu,Δμ)
given by (33) takes the form

2
∫
|u |>√

N /2
ψ2
n (u) du. (37)

We determined the Pareto-optimal curves n(Δu,Δμ) versus
e(Δu,Δμ) for several values of n using (37), and plotted them
in Figure 1.

As the order of the Hermite polynomial increases, both the
spatial and the spectral extent of the corresponding Hermite-
Gaussian function increases as well. Therefore, in Figure 1, it is
natural to observe that larger n results in usage of more samples
to achieve the same error performance. For n = 4 and N = 5,
a realization of the random field f(u) and its reconstruction
fΔμ˜ ,Δu (u) is given in Figure 2.

Our next example is a random field f(u) having a Gaussian
Schell-model (GSM) type autocorrelation function

Kf (u1 , u2) = Ae−(u2
1 +u2

2 )/4σ 2
I e−(u1 −u2 )2 /2σ 2

μ (38)

This is a parametric non-stationary autocorrelation model
widely used in wave propagation problems [52]–[56]. In [52],
it is proven that (38) can be decomposed as

Kf (u1 , u2) =
∞∑

n=−∞
λn

√
c

π
ψn

(√
c

π
u1

)
ψn

(√
c

π
u2

)
,

where ψn (u) is the nth order Hermite-Gaussian function, λn is
a positive number depending on A, σI , σμ and n, according to

a formula which is explicitly given in [52], and

c =

((
1

4σ2
I

)2

+
1

4σ2
I σ

2
μ

)1/2

. (39)

Now, using the fact that the functions ψn (u) are the eigenfunc-
tions of the Fourier transform all having unit-magnitude eigen-
values, and using the scaling property of the Fourier transform,
we get

Sf (μ1 , μ2) =
∞∑

n=−∞
λn

√
π

c
ψn

(√
π

c
μ1

)
ψn

(√
π

c
μ2

)

=
π

c
Kf

(π
c
μ1 ,

π

c
μ2

)
(40)

We insert (40) in (34) to find the relationship between the optimal
Δu and Δμ, leading us to

Kf (Δu
2 , Δu

2 ) +Kf (−Δu
2 ,−Δu

2 )

Kf (πΔμ
2c ,

πΔμ
2c ) +Kf (− πΔμ

2c ,− πΔμ
2c )

=
cΔu
πΔμ

. (41)

from which we see that the optimal (Δu,Δμ) pair for a
GSM-type source should satisfy Δμ = Δu c/π. Hence, un-
der the constraint ΔuΔμ = N , we find the optimal pair to
be (Δu,Δμ) = (

√
Nπ/c,

√
Nc/π). In this case, the best

achievable error is given by

e(Δu,Δμ)

=
∫
|u |>Δu/2

Kf (u, u) du+
∫
|μ |>Δu c/2π

π

c
Kf

(π
c
μ,
π

c
μ
)
dμ

= 2
∫
|u |>Δu/2

Kf (u, u) du = 2A2
∫
|u |>

√
N π/4c

e−u
2 /2σ 2

I du

= 4A2
√

2π σI Q

(√
Nπ

4 c σ2
I

)
(42)

where Q(x) = 1√
2π

∫∞
x e−x

2 /2 dx refers to the Q-function.
Now, let us express this minimum achievable average error in

relative form, by normalizing it by the average energy of f(u)
as follows:

e(Δu,Δμ)∫∞
−∞Kf (u, u) du

=
e(Δu,Δμ)∫∞

−∞A2 e−u2 /2σ 2
I du

=
e(Δu,Δμ)
A2

√
2π σI

= 4Q

(√
Nπ

4 c σ2
I

)
(43)

Setting the insignificant amplitude factor A aside, the two pa-
rameters that determine a GSM-type source are σI and σμ . If
both of these two parameters are increased κ times, then c de-
creases κ2 times. Therefore c σ2

I does not change. This in turn
means that the above normalized error stays the same as well.
Hence, we conclude that the normalized best achievable error
depends only on the ratio σI /σμ . Thus in our numerical exam-
ples we do not have to vary σI and σμ independently; we need
only consider different ratios of them.

Figure 3 illustrates Pareto-optimal tradeoff curves for nor-
malized error versus number of samples, for different values of
σI /σμ . The normalized error given in (43) has been expressed as
a percentage by multiplying with 100. As the intensity width σI
increases and the correlation width σμ decreases, the number of
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Fig. 3. Pareto-optimal tradeoff curves between finite sample reconstruction
error versus number of samples, for GSM-type sources.

Fig. 4. Optimum value of Δu versus the number of samples, for GSM-type
source.

Fig. 5. Optimum value of Δμ versus the number of samples, for GSM-type
source.

independent samples having non-negligible variance increases.
Therefore, it is natural to observe that higher σI /σμ ratios result
in the usage of more samples to achieve the same error.

The optimum values of Δu =
√
Nπ/c and Δμ =

√
Nc/π

as a function of the number of samples N are shown in
Figure 4 and Figure 5, respectively. We conclude from these
figures that the optimum value of Δu increases as σI or σμ
increases, whereas the optimum value of Δμ is inversely pro-
portional to σI and σμ . We also see from Figure 4 and Figure 5
that the (σI , σμ) pair having the largest optimal Δu has the
smallest optimal Δμ, and vice versa.

Moreover, comparing the curve of the (σI , σμ) pair (1s, 0.5s)
with that of (2s, 1s), or comparing the curve of (0.5s, 1s) with
that of (1s, 2s), we can verify that if both σI and σμ are in-
creased by the same factor κ, then c decreases by the factor κ2 ,

Fig. 6. The random field having an autocorrelation function of the form (38)
and its reconstruction for σI = 1, σμ = 0.5 and N = 5.

Fig. 7. Transmitting antenna with reflecting wall. After [57].

resulting in a κ-times increase in the optimum Δu and a κ-times
decrease in the optimum Δμ. For σI = 1, σμ = 0.5 andN = 5,
a realization of the random field f(u) and its reconstruction
fΔμ˜ ,Δu (u) is given in Figure 6.

Our final example is based on a wireless communications
channel model. Specifically, we consider the fading multipath
channel given in [57]: h(t, τ) =

∑
i ai(t)δ(t− τ − τi(t)) is the

response at time t to an impulse generated at time τ . Here ai(t)
and τi(t) respectively denote the attenuation and propagation
delay at time t from the transmitter to the receiver on path i.
For a receiver having bandwidth W , the impulse response takes
the form

h(t, τ) =
∑
i

ai(t)W sinc(W (t− τ − τi(t))). (44)

If unit power white noise is applied to this channel as the input,
we get a random field at the output having autocorrelation
function

Kf (t1 , t2) =
∫ ∞

−∞
h(t1 , τ)h∗(t2 , τ) dτ =

∑
i

∑
j

ai(t1)aj (t2)

× W sinc(W (t1 − t2 − (τi(t1) − τj (t2)))). (45)

For the example of a perfectly reflecting wall shown in Figure 7,
the attenuation and propagation delay terms can be expressed
as [57]

a1(t) =
|α|

r0 + vt
, a2(t) =

|α|
2d− r0 − vt

,

τ1(t) =
r0 + vt

c
, τ2(t) =

2d− r0 − vt

c
, (46)

where c is the speed of light, and the effect of phase change at
the reflector on τ2(t) is neglected.

Inserting (46) in (45) with the parameters α = 1, r0 =
1.5 km, d = 2 km, v = 100 km/h, W = 50 Hz, and 0 ≤ t1 ,
t2 ≤ 10 sec, we get an autocorrelation function for which the
performance curves are provided in Figure 8 and Figure 9. For
N = 400, a realization of the random field f(u) and its re-
construction fΔμ˜ ,Δu (u) is given in Figure 10. The different
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Fig. 8. Pareto-optimal tradeoff curves between finite sample reconstruction
error versus number of samples, for the fading multipath channel output.

Fig. 9. Optimum values of Δu and Δμ, versus the number of samples, for
the fading multipath channel output.

Fig. 10. The random field having an autocorrelation function of the form (45)
and its reconstruction for N = 400.

TABLE I
RECONSTRUCTION ERROR FOR DIFFERENT VALUES OF Δu AND Δμ.

THE OPTIMAL PAIR IS SHOWN IN BOLD

values that the reconstruction error takes for different values of
Δu and Δμ under the constraint N = 400 is given in Table I.
The experimental results verify the (Δu,Δμ) pair found using
Theorem 3 is optimal.

These examples show us the least error for a given number
of samples, or the least number of samples for a given error,
and also tell us how to sample in order to ensure we are on an
optimal tradeoff point.

VII. CONCLUSION

We addressed the problem of representing a non-stationary
finite-energy random field using finitely many samples. In order

to have finitely many samples, the extent over which sampling
takes place, as well as the spacing between the samples must be
finite, the latter which depends on a finite extent in the frequency
domain. While a signal cannot have finite extent in both the space
and frequency domains to begin with, we allow it to have infinite
extent in both domains for generality. Therefore, it becomes
necessary to neglect the content of the signal outside assumed
extents in both domains, creating a source of reconstruction
error. Based on the proposed formulation, we proved that this
reconstruction error can be made arbitrarily small by choosing
the number of samples large enough. More interestingly, we
showed that the error is approximately the sum of the energies
falling outside the assumed extents in the spatial and spectral
domains; that is, the reconstruction error is equal to the energy
of the truncated parts of the signal. Whatever we neglect at the
beginning, returns to us as an error at the end.

The spatial extent Δu and spectral extent Δμ are the two
key parameters defining the representation, which determine
both the reconstruction error and the total number of samples.
By optimizing these parameters we are able to find the tightest
(Pareto-optimal) tradeoff curves between the sample count and
the error. We can think of error as performance and number of
samples as cost. Thus, in a given application these curves would
allow us to choose the best possible performance for given cost,
or the lowest possible cost for given performance.

Since we considered the sampling problem in its most ba-
sic form and obtained analytical results, we have been able to
transparently and precisely portray what is involved in repre-
senting non-stationary finite-energy signals with finitely many
samples. The tradeoff between reconstruction error and sample
count, its dependence on how we choose the sampling param-
eters, and how we can optimize this tradeoff, have been made
explicit. The only information needed to produce this tradeoff
curve is the autocorrelation. Thus if we know or can estimate or
model the autocorrelation for a family of signals, then we can
determine the optimal sampling strategy (the optimal operating
point on the Pareto-optimal tradeoff curve) based on the rela-
tive importance of error and sample count in a given practical
situation.

Our approach also amounts to bounding the number of de-
grees of freedom of a field whose autocorrelation function is
given. We have seen that this is the minimum number of sam-
ples with which the signal can be represented and recovered,
and that it depends on the specified error tolerance and is not an
absolute concept.
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[16] A. Özçelikkale, H. M. Ozaktas, and E. Arıkan, “Signal recovery with cost
constrained measurements,” IEEE Trans. Signal Process., vol. 58, no. 7,
pp. 3607–3617, Jul.2010.
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