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Discrete Linear Canonical Transform Based
on Hyperdifferential Operators
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Abstract—Linear canonical transforms (LCTs) are of impor-
tance in many areas of science and engineering with many ap-
plications. Therefore, a satisfactory discrete implementation is of
considerable interest. Although there are methods that link the
samples of the input signal to the samples of the linear canoni-
cal transformed output signal, no widely-accepted definition of the
discrete LCT has been established. We introduce a new approach
to defining the discrete linear canonical transform (DLCT) by em-
ploying operator theory. Operators are abstract entities that can
have both continuous and discrete concrete manifestations. Gener-
ating the continuous and discrete manifestations of LCTs from the
same abstract operator framework allows us to define the contin-
uous and discrete transforms in a structurally analogous manner.
By utilizing hyperdifferential operators, we obtain a DLCT matrix,
which is totally compatible with the theory of the discrete Fourier
transform (DFT) and its dual and circulant structure, which makes
further analytical manipulations and progress possible. The pro-
posed DLCT is to the continuous LCT, what the DFT is to the
continuous Fourier transform. The DLCT of the signal is obtained
simply by multiplying the vector holding the samples of the input
signal by the DLCT matrix.

Index Terms—Linear canonical transform (LCT), fractional
Fourier transform (FRT), operator theory, discrete transforms,
hyperdifferential operators.

I. INTRODUCTION

L INEAR canonical transforms (LCTs) are a family of lin-
ear integral transforms with three parameters, [1]–[4]. The

family of LCTs is a generalization of many important transforms
such as the fractional Fourier transform (FRT), chirp multipli-
cation (CM), chirp convolution (CC), and scaling operations.
For certain values of the three parameters, the LCT reduces
to these transforms or their combinations. LCTs have several
applications in signal processing [3] and computational and ap-
plied mathematics [5], [6], including fast and efficient optimal
filtering [7], radar signal processing [8], [9], speech processing
[10], image representation [11], and image encryption and wa-
termarking [12]–[14], to mention a small sample of published
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works. LCTs have also been extensively studied for their appli-
cations in optics [2], [15]–[20], electromagnetics, and classical
and quantum mechanics [1], [3], [21], [22].

In optical contexts, LCTs are commonly referred to as
quadratic-phase integrals or quadratic-phase systems [17], [23].
The so-called ABCD systems widely used in optics [24] are
also represented by linear canonical transforms. They have also
been referred to by other names: generalized Huygens integrals
[15], generalized Fresnel transforms [25], [26], special affine
Fourier transforms [27], [28], extended fractional Fourier trans-
forms [29], and Moshinsky-Quesne transforms [1].

Two-dimensional (2D) LCTs and complex-parametered
LCTs (CLCTs) have also been discussed in the literature,
[30]–[33]. Bilateral Laplace transforms, Bargmann transforms,
Gauss-Weierstrass transforms, [1], [34], [35], fractional Laplace
transforms, [36], [37], and complex-ordered FRTs [38]–[41] are
all special cases of CLCTs.

The establishment of a discrete framework is essential to the
deployment of LCTs in applications. There is considerable work
on discrete or finite forms of fractional Fourier transforms, and,
to a lesser degree, discrete or finite linear canonical transforms.
Being one of the most important special cases of LCTs, dis-
cretization and discrete versions of fractional Fourier transforms
have been well studied and established [42]–[54].

As for the discretization or digital computation of LCTs, there
are many approaches present in the literature, [23], [55]–[70].
Some of these [23], [56]–[59], [61], [62], [66], [67] numerically
compute the continuous integral and establish a direct mapping
between the samples of the continuous input function and the
samples of the LCT-transformed continuous output function.
The methods in [55]–[58], [66] directly convert the LCT inte-
gral to a summation and [23], [59]–[62], [67] make use of de-
compositions into elementary building blocks. Moreover, some
approaches focus on defining a discrete LCT (DLCT), which
can then be used to numerically approximate continuous LCTs,
in the same way that the discrete Fourier transform (DFT) is
used to approximate continuous Fourier transforms [55], [57],
[60], [63]–[65], [68]–[70]. Algorithms in [55], [57], [60] also
numerically approximate the continuous LCTs in the same way
the DFT approximates the continuous FT. Based on the DLCT
definition proposed in [55], Refs. [66] and [67] propose effi-
cient numerical computation algorithms. Ref. [55] also includes
a comparison of the properties satisfied by definitions of DLCTs
proposed up to that date.

Despite these works, no single definition has been widely
established as the definition of the DLCT. In this paper, we

1053-587X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-6348-2663
https://orcid.org/0000-0002-0079-8126
mailto:aykut.koc@gmail.com
mailto:bbartan@stanford.edu
mailto:haldun@ee.bilkent.edu.tr


2238 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 9, MAY 1, 2019

present a different approach based on hyperdifferential operator
theory [1], [2], [71]–[73], to obtain a definition of the DLCT.
Why do we propose to use operator theory? Most approaches
to discretization are naturally based on sampling of the contin-
uous entities. However, sampling often does not lead to a clean,
discrete transform definition that satisfies operational formulas
and exhibits desirable analytical properties such as unitarity and
preservation of the group structure. So if our purpose is not to
merely numerically compute a continuous transform, but to ob-
tain a self-consistent discrete transform definition, it often turns
out to be insufficient. A purely numerical method can compute
the continuous transform accurately, but it does not provide us
with a definition on which further manipulation can be done, and
theoretical progress can build upon. We want a discrete defini-
tion that is as analogous to the continuous definition as possible.
(This is satisfied by the discrete Fourier transform (DFT) and
that is why the DFT is so established.)

How does operator theory help? Operators are abstract enti-
ties that can have both continuous and discrete concrete mani-
festations. Thus if we begin from a continuous entity and can
appropriately deduce the abstract operator underlying that en-
tity, then, that can form a basis for defining its discrete ver-
sion. Since both the continuous and discrete versions are based
on the same abstract operator, they can be expected to ex-
hibit similar structural characteristics and operational prop-
erties to the extent possible. The structure of relationships
between different entities can also be preserved and can be
expected to mirror the relationships between the abstract oper-
ators. Thus we can obtain discrete entities that are not merely
numerical approximations, but which exhibit desirable analyti-
cal and operational properties. This is the rationale of the present
paper.

Our definition of the discrete LCT will be presented in the
form of a matrix of size N × N which, upon multiplication,
produces the DLCT of a discrete and finite signal of length N ,
expressed as a column vector. The main difference from earlier
approaches is that the definition is based on hyperdifferential
forms of the discrete coordinate multiplication and differen-
tiation operators, which we carefully define so that they are
strictly Fourier duals related through the DFT matrix. Our defi-
nition provides a self-consistent, pure, and elegant definition of
the DLCT which is fully compatible with the theory of the dis-
crete Fourier transform and its dual and circulant structure. By
self-consistent we mean that the relations between discrete enti-
ties should mirror those between continuous entities as much as
possible, e.g. if the coordinate multiplication and differentiation
operators are dual in the continuous case, they should also be so
in the discrete case. The discrete LCT should be built upon these
two operators in the same way that the continuous LCT is, and
so forth. By duality we mean that a kind of symmetry between
the two domains is exactly satisfied (e.g. coordinate multipli-
cation in one domain is differentiation in the other, translation
in one domain is phase multiplication in the other, etc.). All
the dual properties of the Fourier transform (such as those in
parenthesis above) can be derived from the duality of U and
D [2], so first and foremost, this duality must be maintained.
One of the most important features of our approach is that our

definition maintains this structure by treating both domains to-
tally symmetrically.

The paper is organized as follows: Section II reviews the pre-
liminaries and the definition and important properties of LCTs.
Section III describes the theory and derivations for the proposed
DLCT. Theoretical discussions on defining a discrete LCT and
the properties of such a definition that need to exist are given in
Section IV. In Section V, numerical examples and comparisons
are provided. Lastly, we conclude in Section VI. There is also
an Appendix in which we have provided some proofs, necessary
fundamental information, justifications and implementation de-
tails that are needed for the derivations in Section III.

II. PRELIMINARIES

A. Linear Canonical Transform

LCTs are unitary transforms specified by a 2 × 2 parameter
matrix L. Because the determinant of L is required to be equal
to 1, an LCT can also be uniquely specified by three independent
parameters, often denoted by α, β, γ. The elements A,B,C,D
of the 2 × 2 matrix and α, β, γ are related by:

L =
[

A B
C D

]
=

[ γ
β

1
β

−β + αγ
β

α
β

]
=

[ α
β

−1
β

β − αγ
β

γ
β

]−1

.

(1)
We can define an LCT through either the parameter set
(A,B,C,D) with the condition that AD − BC = 1 or the pa-
rameter set (α, β, γ). In this paper, we restrict ourselves to the
case where the parameters in both sets are all real. The definition
of the LCT as a linear integral transform, using the second set
of parameters, can be written as:

CLf(u) =

√
β e−iπ/4

∫ ∞

−∞
exp

[
iπ(αu2 − 2βuu′ + γu′2)

]
f(u′) du′.

(2)

Every triplet (α, β, γ) corresponds to a different LCT. We denote
the LCT operator using CL where the subscript L denotes the
2 × 2 parameter matrix.

B. Important Properties

The utility of the parameter set (A,B,C,D) is best appre-
ciated upon observing the concatenation property: If any two
LCTs are concatenated (applied one after the other), the result-
ing operation is also an LCT whose 2 × 2 matrix is the product
of the 2 × 2 matrices of the two original LCTs. This can be
stated as:

CLf(u) = CL1 CL2 f(u), (3)

where L = L1L2 .
An important special case of this property is the reversibility

property. It basically states that the 2 × 2 matrix for the inverse
of an LCT is again an LCT whose 2 × 2 matrix is the matrix
inverse of the original LCT:

CL2 CL1 f(u) = f(u), (4)
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if L2 = L−1
1 .

C. Special Linear Canonical Transforms

We now give some special transforms and operations, which
are all special cases of LCTs.

1) Scaling: The parameter matrix for the scaling operation
is as follows

LM =
[

M 0
0 1

M

]
=

[ 1
M 0
0 M

]−1

. (5)

Functionally it can be defined in the following way:

CLM
f(u) = MM f(u) =

√
1
M

f
( u

M

)
. (6)

2) Fractional Fourier Transform: The Fractional Fourier
transform (FRT) is the generalized version of the Fourier trans-
form (FT). It has the following parameter matrix:

LFa
l c

=
[

cos θ sin θ
− sin θ cos θ

]
=

[
cos θ − sin θ
sin θ cos θ

]−1

, (7)

where θ = πa/2 and a is the fractional order. When a = 1, the
FRT reduces to the FT. (It should be noted that there is a slight
difference between the FRT thus defined (Fa

lc) and the more
commonly used definition of the FRT (Fa ), [2].)

The ath order fractional Fourier transform Fa of the function
f(u) may be defined as [2]:

Faf(u) =
∫ ∞

−∞
Ka(u, u′)f(u′) du′,

Ka(u, u′) = Aθ exp
[
iπ(u2 cot θ − 2uu′ csc θ + u′2 cot θ)

]
,

Aθ =
exp(−iπsgn(sin θ)/4 + iθ/2)

| sin θ|1/2 (8)

3) Chirp Multiplication: The parameter matrix for the chirp
multiplication operation is

LQ q
=

[
1 0
−q 1

]
=

[
1 0
q 1

]−1

. (9)

The chirp multiplication operation can be expressed as

CQ q
f(u) = Qq f(u) = exp(−iπqu2)f(u). (10)

Corresponding formulas for chirp convolution may be found
in [2].

III. DISCRETE LINEAR CANONICAL TRANSFORMS

We now present our development of the DLCT based on hy-
perdifferential operator theory. Our approach is based on decom-
posing the LCT into simpler parts, finding the discrete versions
of these parts by using operator theory, and then multiplying
those to obtain the final DLCT matrix.

Although there are several ways to decompose the LCT [59],
here we choose the Iwasawa decomposition since it includes a
greater number of special LCTs than other decompositions, pro-
viding the opportunity to discuss their hyperdifferential forms.
The method of using hyperdifferential operators outlined here
can also be applied to other decompositions.

A. The Iwasawa Decomposition

The linear canonical transform (LCT) operator CL can be
expressed as combinations of other simpler operators in many
ways. Using scaling MM , chirp multiplication Qq and frac-
tional Fourier Fa operators, it is possible to construct any linear
canonical transform. The Iwasawa decomposition we will em-
ploy, breaks down an arbitrary LCT into a fractional Fourier
transform followed by scaling followed by chirp multiplication,
and can be written in operator notation as follows [3]:

CL = QqMM Fa
lc, (11)

When each operator is characterized by their 2 × 2 LCT pa-
rameter matrix, the decomposition looks like

L =
[

A B
C D

]
=

[ γ
β

1
β

−β + αγ
β

α
β

]

=
[

1 0
−q 1

] [
M 0
0 1/M

] [
cos aπ/2 sin aπ/2
− sin aπ/2 cos aπ/2

]
(12)

where a, q, M must be chosen as:

M =
{ √

1 + γ2/β, γ ≥ 0,

−
√

1 + γ2/β, γ < 0,
(13)

q =
γβ2

1 + γ2 − α, (14)

a =
2
π

arccot γ. (15)

This decomposition can break down any arbitrary linear
canonical transform into a cascade of elementary operations.
Our approach will be to find the N × N discrete transform ma-
trix for each of these three operations and multiply them to
obtain the discrete LCT matrix.

B. The Hyperdifferential Forms

The term hyperdifferential refers to having differential oper-
ators in an exponent. In the LCT context, we only have second
order coordinate multiplication and differentiation operators in
the exponent. Operators representing an arbitrary LCT or all of
its special cases can be generated by exponentiating these sec-
ond order operators and these constitute the hyperdifferential
forms of these transforms. There is correspondence among the
integral transforms, hyperdifferential operators and the 2 × 2
parameter matrices that are given in the preliminaries section.
An LCT can be represented by any one of these mathematical
objects. More details can be found in [1].

It is well established that the chirp multiplication operatorQq ,
the scaling operator MM , and the fractional Fourier transform
operator Fa

lc can all be written in hyperdifferential forms as
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follows: [1], [2]:

Qq = exp
(
−i2πq

U2

2

)
, (16)

MM = exp
(
−i2π ln (M)

UD + DU
2

)
, (17)

Fa
lc = exp

(
−iaπ2 U2 + D2

2

)
, (18)

where U and D are the coordinate multiplication and differenti-
ation operators, respectively. We see that all three of the opera-
tors we are working with can be expressed in terms of these two
building blocks, whose continuous manifestations are:

Uf(u) = uf(u) (19)

Df(u) =
1

i2π

df(u)
du

, (20)

where the (i2π)−1 is included so that U and D are precisely
Fourier duals (the effect of either in one domain is its dual in
the Fourier domain). This duality can be expressed as follows:

U = FDF−1 . (21)

C. The Discrete Linear Canonical Transform

Our approach is based on requiring that, to the extent possi-
ble, all the discrete entities we define observe the same structural
relationships as they do in abstract operator form. We want a
discrete definition that is as analogous to the continuous defi-
nition as possible. To ensure this, we define the discrete LCT
and its special cases as the discrete manifestations of Eq. (11),
Eq. (16), Eq. (17) and Eq. (18), with the abstract operators being
replaced by matrix operators. This can be written as follows:

CL = QqMM Fa
lc. (22)

Qq = exp
(
−i2πq

U2

2

)
. (23)

MM = exp
(
−i2π ln (M)

UD + DU
2

)
. (24)

Fa
lc = exp

(
−iaπ2 U2 + D2

2

)
. (25)

Note that exp() in the above equations are matrix exponentials
and how they are computed is discussed in Appendix C. Thus
the discrete LCT matrix is given by

CL = exp
(
−i2πq

U2

2

)
×

exp
(
−i2π ln (M)

UD + DU
2

)
exp

(
−iaπ2 U2 + D2

2

)
.

(26)

The discrete LCT matrix is defined as the product of the FRT,
scaling, and chirp multiplication matrices, all of which are de-
fined in terms of the U and D matrices. To get the DLCT of
a function of a discrete variable, we just need to write it as a
column vector and multiply it with the DLCT matrix CL .

Thus it is seen that all rests on the differentiation and coordi-
nate multiplication matrices D and U and computation of the
matrix exponentials in Eq. (26). Thus, we move on to how to
obtain the U and D matrices.

For signals of discrete variables, the closest thing to differen-
tiation is finite differencing. Consider the following definition:

D̃hf(u) =
1

i2π

f(u + h/2) − f(u − h/2)
h

. (27)

If h → 0, then D̃h → D, since in this case the right-hand side
approaches (i2π)−1df(u)/du. Therefore, D̃h can be interpreted
as a finite difference operator.

Now, using f(u + h) = exp(i2πhD)f(u), which is another
established result in operator theory [1], [2], we express Eq. (27)
in hyperdifferential form:

D̃h =
1

i2π

eiπhD − e−iπhD

h

=
1

i2π

2i sin(πhD)
h

= sinc(hD) D. (28)

Note that if we let h → 0 in the last equation and take the limit,
we can verify that D̃h → D from here as well.

Now, we turn our attention to the task of defining Ũh . It is
tempting to define the discrete version of the coordinate multi-
plication matrix by simply forming a diagonal matrix with the
diagonal entries being equal to the coordinate values. However,
upon closer inspection we have decided that this could not be
taken for granted. In order to obtain the most self-consistent
formulation possible, we must be sure to maintain the struc-
tural symmetry between U and D in all their manifestations.
Therefore, we choose to define Ũh such that it is related to U , in
exactly the same way as D̃h is related to D:

Ũh = sinc(hU) U , (29)

from which we can observe that as h → 0, we have Ũh → U , as
should be. However, beyond that, it is also possible to show that,
Ũh , when defined like this, satisfies the same duality expression
Eq. (21) satisfied by U and D:

Ũh = FD̃hF−1 . (30)

To see this, substitute D̃h in this equation:

Ũh = F
(

1
i2π

2i sin(πhD)
h

)
F−1

=
1

i2π

2i sin(πhU)
h

= sinc(hU)U . (31)

When acting on a continuous signal f(u), the operator U
becomes

Ũhf(u) =
1
π

sin(πhu)
h

f(u). (32)

We observe that the effect is not merely multiplying with the
coordinate variable. Had we defined Ũh such that it corresponds
to multiplication with the coordinate variable, we would have
destroyed the symmetry and duality betweenU andD in passing
to the discrete world.
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Now, by sampling Eq. (32), we can obtain the matrix operator
to act on finite discrete signals. The sample points will be taken
as u = nh to finally yield the U matrix defined as:

Umn =

{√
N
π sin

(
π
N n

)
, for m = n

0, for m �= n
. (33)

As always, the value of N should be determined based on the
time/space and frequency extent of the signal, along with the
required accuracy [59], [74]–[76]. Further detail is provided in
Section III-E.

The matrix D, on the other hand, can be calculated in terms
of U by using the discrete version of the duality relation given
in Eq. (21):

D = F−1UF, (34)

in which F is the matrix representing the unitary discrete
Fourier transform (DFT) matrix. The elements Fmn of the
N -point unitary DFT matrix F can be written in terms of
WN = exp(−j2π/N) as follows:

Fmn =
1√
N

Wmn
N .

When all is put together, the LCT of a signal x[n] of length N ,
represented by the column vector x, is then computed by CLx,
yielding an N × 1 output. Further details of the development of
the U and D matrices and their applications may be found in
[77], which together with the present work, not only establish
a formulation of these operators that is fully consistent with
the theory of the DFT and its circulant structure, but also pave
the way for the utilization of operator theory in deriving other
more sophisticated discrete operations. We believe these works
are the first to apply operator theory in defining discrete
transforms.

D. Unitarity of the Discrete Linear Canonical Transform

One of the most essential properties of the kind of discrete
transforms we are working with is unitarity. This leads to Par-
seval type relationships and manifests itself as energy or power
conservation in physical applications.

Here we prove that the proposed DLCT definition is unitary
by showing that the matrix CL given in Eq. (22) and more
explicitly in Eq. (26) is unitary.

Theorem 1: The discrete LCT defined in Eq. (26) is unitary,
with M, q, a chosen according to Eqs. (13), (14), (15), and U
and D defined according to Eqs. (33) and (34).

Before proceeding with the proof, we first recall some fun-
damental definitions: A matrix A is said to be Hermitian when
A = AH holds, where AH denotes the conjugate transpose of
A, and is said to be unitary when A−1 = AH . Since CL is
defined as the product of three matrices, showing that each of
them is unitary will suffice to show that CL is unitary. U and D
are the fundamental matrices that give rise to those three com-
ponents. We will first show that these matrices are Hermitian.
From that it will follow that the three multiplied matrices are all
unitary.

Theorem 2: The matrices U and D are Hermitian and the
matrices defined in Eqs. (23), (24), (25) are unitary.

Theorem 2 is proved in the Appendix A from which
Theorem 1 follows.

E. Discretization, Sampling and Indexing

We introduce discretization by replacing the continuous
derivative with a finite difference, such that, as the finite
interval goes to zero, it approaches the continuous derivative.
Remembering that exponentiation etc. can be expressed as
power series, the full LCT development is then based on
the following operations on this finite difference operation:
inversion, fractional and ordinary Fourier transformation,
repeated application, multiplication with a scalar and addition.
Now, as the finite difference goes to a derivative, similar
will hold for its repeated applications, as well as scalar
multiplied and added versions. Likewise, we know that the
DFT approximates the continuous Fourier transform more and
more closely as the sampling interval is reduced, so if this
operation is in succession with finite differencing, the resulting
limit will be the succession of Fourier transformation and
continuous differentiation. Similar applies to fractional Fourier
transformation, of which inversion is a special case.

In this paper we deal with finite-length signals of a dis-
crete (integer) variable. (We could equivalently think of them
as being defined on a circulant domain, which would not
make a difference in our arguments.) The length of our sig-
nal vectors will be denoted by N . When N is even, they
will be defined on the interval of integers [−N

2 , N
2 − 1], and

when N is odd, they will be defined on the interval of inte-
gers [−N −1

2 , N −1
2 ]. We will also consider an alternative, less-

common approach based on the device of using “half integers.”
In this approach, the domain is defined as the interval of unit-
spaced half integers [−N

2 + 0.5, N
2 − 1 + 0.5] for even N and

[−N −1
2 − 0.5, N −1

2 − 0.5] for odd N . Although not very usual,
there is nothing unnatural about this way of indexing signals of
a discrete variable; it is merely a particular way of bookkeeping.
Note that the indices are still spaced by unity, and there is merely
a shift by 0.5 with the purpose of making the interval symmet-
rical around the origin when N is even (with the consequence
that symmetry is lost when N is odd). A few examples of works
considering this way of indexing are [51], [78]–[80]. Consistent
with this literature, we will refer to the former approach as the
ordinary DFT and refer to the latter one, in which we use ”half
integers”, as the centered DFT. The DLCT derivation procedure
we presented has been carefully written in a manner that it is
consistent with both approaches. Readers interested in further
details on this issue may refer to [77].

How the number of samples N should be chosen will be de-
termined by factors such as the temporal or spatial extent of the
signal, the frequency extent of the signal and therefore the time-
or space-bandwidth product. It will also depend on the precision
with which the results need to be computed in that application.
The choice of N is exogenous to our method. Nevertheless, for
completeness, let us elaborate on how the number of samples N
is chosen. If the temporal or spatial extent is Δx and the double-
sided frequency extent is Δν, then we should be sampling
with an interval of 1/Δν, which means Δx/(1/Δν) = ΔxΔν
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TABLE I
PERCENTAGE MSE ERRORS FOR DIFFERENT FUNCTIONS AND TRANSFORMS (FOR BOTH ORDINARY AND CENTERED SCHEMES)

samples. We call this number of samples N , the time- or space-
bandwidth product. If appropriate normalization as described in
[59] is applied so that the time/space extent and the frequency
extent are made equal in a dimensionless space, it follows that
we should sample over an extent

√
N with sampling inter-

val h = 1/
√

N . Thus as we increase N , we will be making h
smaller and smaller. Consequently, the finite difference opera-
tor in Eq. (27) approaches a continuous derivative and the finite
coordinate multiplication operator will approach the continuous
coordinate multiplication operator. The matrix in Eq. (33) will
approach Umn = n/

√
N , corresponding to samples of continu-

ous coordinate multiplication. Since all our operators, including
the LCT, are defined in terms of coordinate multiplication and
differentiation through smooth exponential functions, they will
all approach their continuous counterparts.

IV. DISCUSSIONS

Continuous unitary LCTs represented by the parameter matri-
ces L form the real symplectic group Sp(2, R) with three inde-
pendent parameters [81]. The desirable properties of a discrete
LCT mirror those of the continuous LCT: unitarity, preservation
of group structure as expressed by the concatenation property
(and its special case reversibility), reduction to important spe-
cial cases and inverses of special cases, and some satisfactory
approximation of the continuous transform. However, a theo-
rem from group theory [82], [83] precludes realization of this
ideal: It is theoretically impossible to discretize all LCTs with
a finite number of samples such that they are both unitary and
they preserve the group structure [82], [83]. More on the group-
theoretical properties of LCTs can be found in [1], [2], [82].

That said, no unitary DLCT definition can exhibit exact con-
catenation/reversibility properties. However, if the proposed
definition is to have practical use, we can expect that these prop-
erties are at least approximately satisfied. In Section III-D, we
theoretically proved that our proposed DLCT is unitary, so that
it cannot exactly satisfy the concatenation/reversibility property.
Therefore, in the next section, we will numerically show that
the concatenation and reversibility properties are satisfied with
a reasonable accuracy. We will also show that, regardless of

concatenation, the discrete transform provides a reasonable ap-
proximation to the continuous LCT. Before moving on, it needs
to be noted that our definition, by construction, reduces to the
identity, Fourier and fractional Fourier transforms, chirp multi-
plication, and magnification (scaling). This result can be trivially
obtained by substituting the combination of values leading to
the special cases for the parameters a, M , and q in Eq. (26).

V. NUMERICAL RESULTS AND COMPARISONS

We will numerically explore three different aspects of the
proposed DLCT definition: (i) approximation of the contin-
uous LCT, (ii) concatenation of multiple transforms, and (ii)
reversibility. We will carry out numerical tests regarding these
aspects of the proposed DLCT definition.

As the example input functions, the discretized versions
of the chirped pulse function exp(−πu2 − iπu2), denoted
F1, the trapezoidal function 1.5tri(u/3) − 0.5tri(u), de-
noted F2 (tri(u) = rect(u) ∗ rect(u)), rectangular pulse func-
tion rect(u), denoted F3, and the damped sine function
exp(−2|u|) sin(3πu), denoted F4, are used. The number of
samples N are taken as 256 and 1024 for two sets of numer-
ical simulations. Four transforms, denoted by T1, T2, T3, and
T4, are considered, with parameters (α, β, γ) = (−3,−2,−1),
(−0.8, 3, 1), (−1.8,−1.75,−1.3), and (0.3,−1.6,−0.9), re-
spectively. The LCTs T1, T2, T3 and T4 of the functions F1, F2,
F3 and F4 have been computed both by the presented DLCT and
by a highly inefficient brute force numerical approach which is
taken as a reference. Throughout our numerical comparisons we
use percentage mean squared error (MSE) as the performance
metric. It is defined as the energy of the difference normalized
by the energy of the reference, expressed as a percentage.

A. Approximation of the Continuous LCT

In this subsection, we focus on how well our method approx-
imates the continuous LCT. The “true” continuous LCT of the
original function is obtained by highly inefficient brute force
numerical integration of the continuous LCT. The resulting per-
centage MSE scores, for both ordinary and centered sampling
schemes, turn out to be giving very similar results, are tabulated
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Fig. 1. Comparison of the proposed DLCT of functions with the reference.

in Table I. Plots for some examples for the resulting DLCTs (T1
of F1, T2 of F2, T3 of F3 and T4 of F4) and the corresponding
references obtained by the brute force numerical method have
been presented for both real and imaginary parts of the signals
in Fig. 1.

Although we use the same two values of N for all the sig-
nals we consider for fair comparison, normally the value of N
should be chosen according to the extent of the signals in both

the time/space and frequency domains. The error is primarily
determined by how much of the signal falls outside of the ex-
tents implied by the chosen value of N . For example, for F1,
which has a very rapidly decaying Gaussian envelope, very little
falls outside so the errors are much smaller than for the others.
In those cases where the results are not sufficiently accurate for
the application at hand, it is possible to obtain higher accuracy
by increasing N.
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TABLE II
PERCENTAGE MSE ERRORS FOR DIFFERENT CONCATENATIONS AND INVERSES

B. Concatenation

In order to test how well the concatenation property is sat-
isfied, we employ the following procedure. Let us consider T1
and T2 as an example: First derive the DLCT matrices CL1 and
CL2 for T1 and T2 separately, following the procedure given
in Section III. Then, by using Eq. (1), we calculate the 2 × 2
LCT parameter matrices L1 and L2 for T1 and T2. Multiplying
these two matrices by using Eq. (3), we obtain the 2 × 2 pa-
rameter matrix of the concatenated system L12 = L2L1 . Then,
we obtain CL1 2 from L12 , again by using our proposed DLCT
procedure. Finally, we compare the result of applying the con-
catenated transform matrix CL12 directly with the result of
applying CL1 and CL2 consecutively. More precisely, we com-
pare CL1 2 x with CL2 CL1 x where a signal x[n] of length N is
represented by the column vector x. The resulting MSE differ-
ences are tabulated in Table II for several such concatenations
among T1, T2, T3, and T4. The ordinary sampling scheme is
used in these numerical calculations.

C. Reversibility

To test the reversibility property numerically, we follow a sim-
ilar procedure as in concatenation. This time the second LCTs
in the cascade are the inverses of the first ones. For example,
we compare x with CL−1

1
CL1 x. Again the ordinary sampling

scheme is used in these calculations and the resulting MSE
differences are tabulated in Table II.

VI. CONCLUSION

In this paper, a definition of the discrete linear canonical trans-
form (DLCT) based on hyperdifferential operator theory is pro-
posed. For finite-length signals of a discrete variable, a unitary
DLCT matrix is obtained so that the LCT-transformed version of
the input signal can be obtained by direct matrix multiplication.
Given a vector holding the samples of a continuous-time signal,
this DLCT matrix multiplies the vector to obtain the approxi-
mate samples of the continuous-time LCT-transformed signal,
similar to the DFT being used to approximate the continuous-
time Fourier transform.

The advantage of a discrete transform is that it provides a ba-
sis for numerical computation. However, our expectations were
more than that. The main goal of this work was to obtain a formu-
lation of the discrete LCT based on self-consistent definitions of
the discrete coordinate multiplication and differentiation oper-
ators, that mirror the structure of their continuous counterparts.
Care was taken to ensure that the discrete coordinate multipli-
cation and differentiation operators were strictly duals of each
other, related through the DFT. The resulting DLCT matrix is to-
tally compatible with the theory of the discrete Fourier transform
(DFT) and its dual and circulant structure. Desirable properties
of a discrete LCT definition such as unitarity, preservation of
group structure, reversibility and approximation of the contin-
uous LCT were discussed both theoretically and numerically.
One immediate possibility for future work is to explore the ap-
plication of the method to alternative decompositions, such as
those discussed in [59], [64], [64].

We showed in [59], that we could digitally compute the con-
tinuous LCT to an accuracy limited by the uncertainty relation-
ship, with a fast algorithm. However, this numerical computation
method did not exhibit properties we desire from a discrete def-
inition. On the other hand, without a fast algorithm, application
of the definition proposed in the present paper involves a ma-
trix multiplication and thus has complexity O(N 2). The best of
both worlds would be to find a fast algorithm for the definition
proposed in the present paper. This would be analogous to first
defining the DFT and then deriving the FFT algorithm for its
fast computation. However, such an algorithm is presently not
available and will require future work. In the meantime, fast
computational methods as in [59], [63], [64], [66] can be used
in practical applications when speed is important. The com-
putational complexity of taking the DLCT of signals, which
is a matrix multiplication with O(N 2) complexity, should not
be confused with the complexity of constructing the proposed
DLCT matrix, which has to be done once for a particular LCT.
The latter is discussed in Appendix D.

In the present paper our emphasis was to define the DLCT in
a manner that preserves structural similarity with the continuous
DLCT. The structure in question is how the LCT is defined in
terms of coordinate multiplication and differentiation in terms
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of hyperdifferential operators, which we followed closely. Since
everything rests on these two operators, their accuracy is what
defines the accuracy of the method. We chose the conceptually
simplest first-order approximations for these. Accuracy can be
increased either by increasing N , or by replacing these building
blocks with higher-order approximations. Thus, the hyperdif-
ferential formulation provided here constitutes not only a the-
oretically pure approach to defining the DLCT, it serves as a
framework for high accuracy numerical computations.

In conclusion, we have applied hyperdifferential operator the-
ory to the task of defining the discrete LCT in a manner that is
fully consistent with the dual and circulant structure of the DFT.
Although several definitions for the DLCT have been proposed,
a comprehensive evaluation of their relationships remains an
important subject for future work. We believe our proposed an-
alytical approach can lead to further possible research directions
in the theory of discrete transforms in general.

APPENDIX A
PROOF OF UNITARITY

We start with U given in Eq. (33). U is a real diagonal matrix,
which implies it is Hermitian. The next step is to show D is also
Hermitian. Starting from Eq. (34), we can write

DH = (F−1UF)H = FHUH (FH )H = F−1UF = D

implying that D is also Hermitian. Now, we move on to show
that Qq , MM , and Fa

lc are unitary given U and D are Hermitian,
by showing that their inverses and their Hermitians are equal.
The inverse of Qq is

Q−1
q = Q−q = exp

(
i2πq

U2

2

)
(35)

while the Hermitian of Qq is

QH
q = exp

(
i2πq

(UH )2

2

)
= exp

(
i2πq

U2

2

)
, (36)

which are equal to each other. Similarly, one can follow the
same procedure for MM as follows:

M−1
M = M1/M = exp

(
−i2π ln (1/M)

UD + DU
2

)

= exp
(

i2π ln (M)
UD + DU

2

)
(37)

and

MH
M = exp

(
i2π ln (M)

(UD + DU)H

2

)

= exp
(

i2π ln (M)
DU + UD

2

)
= M−1

M . (38)

And, finally for Fa
lc we can write:

(Fa
lc)

−1 = F−a
lc = exp

(
iaπ2 U2 + D2

2

)
(39)

and

(Fa
lc)

H = exp
(

iaπ2 (U2 + D2)H

2

)
= (Fa

lc)
−1 . (40)

The first equalities in Eqs. (36), (38), and (40) can be shown by
considering power expansion formula (Appendix B). Thus we
have proven Theorem 2 and therefore Theorem 1. Justifications
for the intermediate steps above will be given in the Appendix B.

APPENDIX B
SOME FUNDAMENTALS OF OPERATOR THEORY

Here we provide further details regarding the derivations that
appear in Section III and Appendix A. These derivations are
mostly based on the following elementary definitions or results:
(i) The integer power of an operator is defined as its repeated
application, e.g. A3 = AAA. (ii) Therefore, any power of A
commutes with itself, i.e. AnA = AAn . (iii) This leads to the
fact that any polynomial p(A) of A commutes with A, i.e.
p(A)A = Ap(A). (iv) Functions such as exp(A) and sin(A)
can be defined through power series of exp(·) and sin(·), which
are essentially like polynomials, therefore these functions of A
also commute withA. (v) Carrying this one step further, two dif-
ferent functions of A that can be expressed as power series will
also commute with each other, again as a consequence of (ii).
(vi) The Hermitian of p(A), and thus also exp(A) and sin(A)
can be obtained by replacing A with its Hermitian inside the
power series. This follows from the fact that (An )H = (AH)n .

Eq. (31) follows directly from (iv) above. Eq. (32) follows
from the fact that the effect of U on a continuous signal f(u) is
to multiply it with u, and the fact that sin(U) can be written as
a power series of U .

The steps in Eqs. (35) to (40) in the Appendix A are most
clearly established as follows. For the first equality in Eq. (36), it
follows from (vi) in the established facts above. With regards to
Eq. (35), we observe that Eqs. (9) and (10) show that the inverse
of the chirp multiplication operator is again a similar operator but
with negative parameter. Similar observations can be made for
the other operators by referring to their 2 × 2 matrices. Regard-
ing Eq. (35), this means that the inverse of a chirp multiplication
operator is of the same form but with negative parameter −q.
So we need to show that exp(i2πqU2/2) exp(−i2πqU2/2) is
equal to the identity. Here we can invoke the Baker-Campbell-
Hausdorff formula for matrices, [84], [85], which states that

exp(A) exp(B) = exp(A + B + 1/2(AB − BA)), (41)

for two complex matrices A and B where both A and B com-
mute with their commutator (AB − BA).

In our case, A = −B, so that (AB − BA) = 0. Therefore,
the Baker-Campbell-Hausdorff formula’s condition is met since
every matrix commutes with the zero matrix. Finally, we ob-
serve that the product on the left-hand side of the above identity
becomes equal to the exponential of the zero matrix and there-
fore the identity operator, proving the claim. Exactly the same
argument applies for Eq. (37) and Eq. (39) since, although the
exponents are more complicated, in each case a minus sign is
introduced to the exponent but otherwise the exponent remains
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the same. Therefore the exponent of the original and the inverse
are merely negatives of each other and will commute, so that the
product of the original and inverse matrices will be the identity.

The sinc(x) = sin(πx)/(πx) function has a power series that
is obtained by dividing the power series of sin(πx) by (πx).
From number (iv) of our elementary results, sinc(hD) com-
mutes with D, so both forms in Eq. (28) are the same. The same
is true for Eq. (31).

APPENDIX C
COMPUTATION OF THE MATRIX EXPONENTIAL

Although it may be viewed as an implementation detail, given
that it lies at the heart of the proposed method, it is worth
clarifying how to compute the matrix exponential operation in
Eq. (26). In practice, it is common to use MATLAB’s standard
routines to compute matrix exponentials. Mathematically, the
way in which matrix exponentials are obtained is through the
well-known eigen decomposition

A = PDP−1 (42)

where D is a diagonal matrix that holds the eigenvalues
of A and P is the matrix holding the eigenvectors. Then,
exp(A) = P exp(D)P−1 where the exp() that operates on D
is now simply an element-wise exponentiation operation. When
A has a full set of eigenvalues, this procedure works without any
complication. Given Eqs. (33) and (34), and the unitarity of the
DFT matrix F, the matrices U and D are ensured to have a full
set of eigenvalues and eigenvectors, so there is no mathematical
complication in using matrix exponentials.

APPENDIX D
COMPUTATIONAL COST OF CONSTRUCTING THE

PROPOSED DLCT MATRIX

Given a specified precision (i.e., number of bits used in com-
putations is fixed), to find the complexity of generating the
matrix CL as a function of N , we first find the complexity of
computing the matrices U and D. The matrix U is generated
using Eq. 33. This process requires evaluation of the sine func-
tion at N points and N multiplications by the constant

√
N/π.

Since we assume a fixed precision, we can take the evaluation of
the sine function at a point to be of complexity O(1). The com-
plexity of computing U is thus O(N). Secondly, to compute D
using Eq. 34, we need to compute the matrix F and F−1 , both
of which can be written in terms of WN . In generating F, we
compute WN only once and compute its (mn)’th power for the
(mn)’th entry. Computing the (mn)’th entry for the matrices F
and F−1 requires two multiplications and one exponentiation,
which are each taken to be O(1). It follows that computing F
and F−1 each takes O(N 2) computations. Finally, multiplying
F−1 with U is O(N 2) since U is diagonal whereas multiplying
F−1U with F is O(N 2 log N) (by using fast Fourier trans-
form (FFT) algorithm and by noting that neither matrices are
diagonal), resulting in an overall complexity of O(N 2 log N)
for D.

We can now move on to the complexities of computing the
matrices Qq ,MM ,Fa

lc based on Eqs. 23, 24, and 25. Note that in

Eqs. 23, 24, and 25, the scalar constants can be taken outside the
exp() function, be computed separately and then be multiplied
with the resulting matrix exponentials. This does not have an
effect on the computational complexity with respect to N .

� Complexity of Qq : Taking the square of U is of complex-
ity O(N) since U is a diagonal matrix. We can compute
the matrix exponential of U2 simply by taking the ex-
ponential of each diagonal element because U2 is also a
diagonal matrix. This amounts to an overall computational
complexity of O(N).

� Complexity of MM : One can compute both UD and DU
in O(N 2) time because U is a diagonal matrix. How-
ever, generating D increases the time to compute the ar-
gument of the exp() to O(N 2 log N). Furthermore, com-
puting matrix exponentials as described in Appendix C is
of complexity O(N 3). As a result, the overall complexity
is O(N 3).

� Complexity of Fa
lc: This is the same as the complexity of

MM since it involves computing the matrix exponential of
a non-diagonal matrix.

In conclusion, the overall complexity for computing the ma-
trix CL is O(N 3).
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